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We study the structural properties of the neural network of the Celegans (worm) from a directed graph
point of view. The Google matrix analysis is used to characterize the neuron connectivity structure and
node classifications are discussed and compared with physiological properties of the cells. Our results are
obtained by a proper definition of neural directed network and subsequent eigenvector analysis which
recovers some results of previous studies. Our analysis highlights particular sets of important neurons

constituting the core of the neural system. The applications of PageRank, CheiRank and ImpactRank to
characterization of interdependency of neurons are discussed.
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1. Introduction

The human brain neural network has an enormous complexity
containing about 10'" neurons and 10'* synapses linking various
neurons [1]. Such a complex network can only be compared with
the World Wide Web (WWW) which indexed size is estimated to
be of about 10'° pages [2]. This comparison gives an idea that
the methods of computer science, developed for WWW analysis,
can be suitable for the investigations of neural networks. Among
these methods the PageRank algorithm of the Google matrix of
WWW |[3] clearly demonstrated its efficiency being at the heart of
Google search engine [4]. Thus we can expect that the Google ma-
trix analysis can find useful applications for the neural networks.
This approach has been tested in [5] on a reduced brain model
of mammalian thalamocortical systems studied in [6]. However, it
is more interesting to perform the Google matrix analysis for real
neural networks. In this Letter we apply this analysis to character-
ize the properties of neural network of Celegans (worm). The full
connectivity of this directed network is known and documented
at [7]. The number of linked neurons (nodes) is N =279 with the
number of synaptic connections and gap junctions (links) between
them being N, =2990. This network is significantly smaller com-
pared to the one studied in [5] but now we are working not with
a model network but with the real worm network. Also, we use
several new rank-based methods of network analysis comparing to
those used in [5].

* Corresponding author.
E-mail addresses: kandiah@irsamc.ups-tlse.fr (V. Kandiah),
dima@irsamc.ups-tlse.fr (D.L. Shepelyansky).
URL: http://www.quantware.ups-tlse.fr/dima (D.L. Shepelyansky).

http://dx.doi.org/10.1016/j.physleta.2014.04.045
0375-9601/© 2014 Elsevier B.V. All rights reserved.

Recently, there is a growing interest to the complex network
approach for investigation of brain neural networks [8-12]. Gener-
ally these networks are directional but it is difficult to determine
directionality of links by physical and physiological measurements.
Thus, at present, the worm network is practically the only example
of neural network where the directionality of all links is estab-
lished [7]. The analysis of certain properties this directed network
has been reported recently in [11,12], however, the approach based
on the Google matrix has not been used yet.

In the last years there is a clear trend to apply various advanced
methods of network science to understand in a deeper way the
connectivity properties of brain. Thus the properties of network
centrality were used to characterize the human brain functional
graphs [13]. A study of the whole connectivity matrix of the mouse
brain has been reported recently [14]|. Thus we think that our
study will allow to highlight the features of worm network using
recent advancements of computer science and push forward such
methods for investigation of more complex brain networks.

2. Google matrix construction

The Google matrix G of C.elegans is constructed using the con-
nectivity matrix elements Sjj = Ssyn ij + Sgap,ij, Where Sgy is an
asymmetric matrix of synaptic links whose elements are 1 if neu-
ron j connects to neuron i through a chemical synaptic connection
and 0 otherwise. The matrix part Sgqp is a symmetric matrix de-
scribing gap junctions between pairs of cells, Sgap ij = Sgap,ji =1 if
neurons i and j are connected through a gap junction and 0 oth-
erwise. Following the standard rule [3,4], the matrix elements S;;
are renormalized (S;j = Sij/>_; Sij) for each column with non-
zero elements; the columns with all zero elements are replaced by
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Fig. 1. (Color on-line.) Google matrix G (left) and G* (right) for the neural network of Celegans for N =279 connected neurons. Matrix elements Gy are shown in the
basis of PageRank index K (and K’) and elements G» g+ are shown in the basis of CheiRank index K* (and K*') at o = 0.85. Here, x and y axes show 1 < K, K’ < N and
1 < K*, K*' < N; the elements G11,G*11 are placed at the top left corner; color is proportional to the square root of matrix elements which are changing from black at

minimum value (1 —«)/N to light yellow at maximum.

columns with all elements 1/N. Thus the sum of elements in each
column is equal to unity and the Google matrix takes the form

Gij=aS;j+ (1 —a)/N. (1)

Here « is the damping factor introduced in [3]. In the context
of the WWW, the last term of the equation describes a probabil-
ity for a random surfer to jump on any node of the network [4].
Below we use the usual value o = 0.85 [4]. All matrix elements
Ssyn,ij» Sgap,ij» Sij are given at [15].

The eigenspectrum A; and right eigenvectors v;(j) of G satisfy
the equation

> Givi(i) = rivi (). ()
j/

The eigenvector at A =1 is known as the PageRank vector. Accord-
ing to the Perron-Frobenius theorem [4] its elements P(j) ~ v¥1(j)
are positive and their sum is normalized to unity. Thus P(j) gives
a probability to find a random surfer on a node j. All nodes can
be ordered in a decreasing order of probability P(K;) with high-
est probability at top values of PageRank index Kj=1,2,.... For
large matrices P(j) can be found numerically by the iteration
method [4] but for C.elegans case it can be obtained by a direct
matrix diagonalization. We note that it is well established and ver-
ified for various complex networks that the PageRank distribution
is stable in respect to variation of damping factor « in a range
0.5 <o <0.95 [4]. We also checked that it is the case for our net-
work and thus we used the usual value o = 0.85.

It is also useful to consider the Google matrix obtained from
the network with inverted directions of links (see e.g. [16-18]).
The matrix G* for this network with inverted direction of links
is constructed following the same definition (1). The PageRank
vector of this matrix G* is called the CheiRank vector with prob-
ability P*(K;‘) and CheiRank index K*. According to the known
results [3,4] the top nodes of PageRank are the most popular pages,
while the top nodes of CheiRank are the most communicative
nodes [17,18].

The structure of the matrix elements of G, presented in the
PageRank ordering of nodes, and G*, presented in the CheiRank
ordering of nodes, is shown in Fig. 1. The number of nonzero el-
ements N¢ with indexes less than K is determined for various
values of K =10, 100. We find the values of ratio Ng/K ~ 1.2,10
at K = 10, 100. These values correspond approximately to those
of WWW networks of Universities of Cambridge and Oxford being
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Fig. 2. (Color on-line.) Top panel: spectrum of eigenvalues A for the Google matrices
G and G* at « = 0.85 (black and red symbols). Bottom panel: IPR & of eigenvectors
as a function of corresponding Re A (same colors).

significantly smaller than the values of Twitter network character-
ized by a strong connectivity between top PageRank nodes with
Ng/K ~ 100 for K =100 (see Fig. 2 in [20]). We note that the
average number of links per neuron is n = Ny/N = 10.71 being
approximately the same as for WWW of Universities of Cambridge
and Oxford in 2006 [18].

The global matrix structure is asymmetric. This leads to a com-
plex spectrum of eigenvalues of G and G* as shown in top panel of
Fig. 2. The imaginary part of eigenvalues is distributed in a range
—0.2 <ImX < 0.2 which is more narrow than for the networks of
Wikipedia and UK universities [19]. This is related to a significant
number of symmetric links. On the other side the networks of Le
Monde or Python have comparable width for ImA [19]. We find
that the second by modulus eigenvalues are A, = 0.8214 for G and
A =0.8608 for G*. Thus the network relaxation time 7 = 1/|In ;|
is approximately 5, 6.7 iterations of G, G*.

The properties of eigenstates i; can be characterized by the
Inverse Participation Ratio (IPR) & = (3_; [vi())|*)?/ X 1¥i(D)I%,
which is broadly used in analysis of electron conductivity in dis-
ordered systems (see e.g. [19,20]). This quantity effectively deter-
mines the number of nodes on which is located an eigenstate ;.
We see that some eigenstates have rather large & ~ N/3 while oth-
ers have & located only on about ten nodes. We will return to the
discussion of properties of eigenstates later.
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Fig. 3. (Color on-line.) Left panel: dependence of PageRank (CheiRank) probabil-
ity P(K) (P*(K*)) on its index K (K*) shown by black (red) curve. Right panel:
dependence of ImpactRank probability P (P*) on its index K (K*), obtained via
propagator of G (G*) at &« =0.85 and y = 0.7 for the initial probability located on
neuron RMGL (see text).

3. CheiRank versus PageRank

The dependence of probabilities of PageRank and CheiRank vec-
tors on their indexes K and K* is shown in Fig. 3. A formal
fit for a power law dependence P o 1/KV, P* o 1/K*V in the
range 1 < K, K* <200 gives v = 0.33 4 0.03 for PageRank and
v =0.50 £ 0.03 for CheiRank. Of course, the number of nodes is
small compared to the WWW or Wikipedia networks but on aver-
age we can say that a power law provides a satisfactory description
of data. We note that the values of v are notably smaller than the
usual exponent value v ~ 0.9 (in K), 0.6 (in K*) found for the
WWW or Wikipedia networks (see e.g. [4,17]). Also, in our neu-
ral network we find that the exponent in K is smaller then in K*
while usually one finds the opposite situation. At the same time
due to a small size of the network we do not claim that the exact
value of v is so important. It is better to say that its values give an
indication of tendency. We think that for large size brain network
this exponent can be determined with a better precision.

We also find that IPR & ~ 85 for P and & ~ 23 for P* so that
PageRank is distributed over a larger number of neurons. It is pos-
sible that such an inversion is related to a significant importance of
outgoing links in neural systems: in a sense such links transfer or-
ders, while ingoing links bring instructions to a given neuron from
other neurons. We note that somewhat similar situation appears
for networks of Business Process Management (BMP) where Prin-
cipals of a company are located at the top CheiRank position while
the top PageRank positions belong to company Contacts [21].

We note that our network is a directional network and as a re-
sult we have a significant asymmetry between ingoing and outgo-
ing links. As a result the ranking nodes of PageRank and CheiRank
have different probabilities and thus the top nodes have different
functions. This fact is well known for directed networks (see e.g.
[4,18,20,21]).

The correlations between PageRank and CheiRank vectors is
convenient to characterize by the correlator k =N )_; P(i)P*(i) — 1
= 0.125. For C.elegans network the value of correlator is relatively
small compared to those found for Wikipedia (¢ ~ 4) and WWW
of UK universities (k ~ 3) [18]. In a sense for C.elegans neural net-
work the situation if more similar to the networks of Linux Kernel
(k ~0)[16] and BMP (xk = 0.164) [21]. Thus, the Celegans network
has practically no correlations between ingoing and outgoing links.
It is argued in [16,18] that such a network structure allows to per-
form a control of information flow in a more efficient way. Namely,
it allows to reduce the propagation of errors in software codes. It
seems that the neural networks also adopt such a structure.

Each neuron i belongs to two ranks K; and K} and it is conve-
nient to represent the distribution of neurons on the two-dimen-
sional plane (2D) of PageRank-CheiRank indexes (K, K*) shown
in Fig. 4. The plot confirms that there are little correlations be-

Fig. 4. (Color on-line.) PageRank-CheiRank plane (K, K*) showing distribution of
neurons according to their ranking. Left panel: soma region coloration - head (red),
middle (green), tail (blue). Right panel: neuron type coloration - sensory (red), motor
(green), interneuron (blue), polymodal (purple) and unknown (black). The classifi-
cations and colors are given according to WormaAtlas [7].

Table 1

Top twenty neurons of PageRank (PR), CheiRank (CR); ImpactRank of G (IMPR) and
G* (IMCR) at initial state RMGL at y = 0.7; following [7], the colors mark: in-
terneurons (blue bu), motor neurons (green gn), sensory neurons (red rd), polymodal
neurons (purple pu).

PR CR IMPR IMCR
1 AVAR (bu) AVAL (bu) RMGL (bu) RMGL (bu)
2 AVAL (bu) AVAR (bu) URXL (bu) AVAL (bu)
3 PVCR (bu) AVBR (bu) ADEL (rd) ASHL (rd)
4 RIH (bu) AVBL (bu) AIAL (bu) AVBR (bu)
5 AIAL (bu) DDO02 (gn) IL2L (rd) URXL (bu)
6 PHAL (rd) VD02 (gn) ADLL (rd) AVEL (bu)
7 PHAR (rd) DDO1 (gn) PVQL (bu) RIBL (bu)
8 ADEL (rd) RIBL (bu) ALML (rd) RMDR (pu)
9 HSNR (gn) RIBR (bu) ASKL (rd) RMDL (pu)
10 RMGR (bu) VD04 (gn) CEPDL (rd) RMDVL (pu)
11 VCO03 (gn) VD03 (gn) ASHL (rd) AVAR (bu)
12 AIAR (bu) VDO1 (gn) AWBL (rd) SIBVR (bu)
13 AVBL (bu) AVER (bu) SAADR (bu) AIBR (bu)
14 PVPL (bu) RMEV (gn) RMHR (gn) ADAL (bu)
15 AVM (rd) RMDVR (pu) RMHL (gn) RMHL (gn)
16 AVKL (bu) AVEL (bu) RIH (bu) AVBL (bu)
17 HSNL (gn) VDO5 (gn) OLQVL (pu) SIBVL (bu)
18 RMGL (bu) SMDDR (pu) AIML (bu) ASKL (rd)
19 AVHR (bu) DDO03 (gn) HSNL (gn) RID (bu)
20 AVFL (bu) VAO2 (gn) SDQR (bu) SMBVL (pu)

tween both ranks since the points are scattered over the whole
plane. Neurons ranked at top K positions of PageRank have their
soma located mainly in both extremities of the worm (head and
tail) showing that neurons in those regions have important con-
nections coming from many other neurons which control head and
tail movements. This tendency is even more visible for neurons at
top K* positions of CheiRank but with a preference for head and
middle regions. In general, neurons, that have their soma in the
middle region of the worm, are quite highly ranked in CheiRank
but not in PageRank. The neurons located at the head region have
top positions in CheiRank and also PageRank, while the middle re-
gion has some top CheiRank indexes but rather large indexes of
PageRank (Fig. 4 left panel). The neuron type coloration (Fig. 4
right panel) also reveals that sensory neurons are at top PageRank
positions but at rather large CheiRank indexes, whereas in general
motor neurons are in the opposite situation.

The top 20 neurons of PageRank and CheiRank vectors are given
in the first two columns of Table 1. We note that both rankings fa-
vor important signal relaying neurons such as AVA and AVB that
integrate signals from crucial nodes and in turn pilot other crucial
nodes. Neurons AVAL, AVAR, AVBL, AVBR and AVEL, AVER are consid-
ered to belong to the rich club analyzed in [12]. The right panel



Table 2

Top ten neurons of the eigenvectors of G (left panel) and G* (right panel) corresponding to the 10th largest eigen-
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values |1|; IPR are respectively £ ~5 and & ~ 4.

o = —0.49446 [l Ao = —0.45784 Wi
1 AIAR 0.11986 1 AVAL 0.10651
2 AIAL 011159 2 AVAR 0.079403
3 ASIL 0.096475 3 AVBR 0.036779
4 ASIR 0.096236 4 VD05 0.025086
5 AWAR 0.024228 5 VAO09 0.02438
6 ASHR 0.022241 6 VD06 0.020977
7 RMGR 0.018502 7 VAO08 0.020242
8 AIMR 0.018387 8 AVBL 0.019225
9 ADLL 0.01837 9 DD02 0.018684
10 PVQL 0.017547 10 PDB 0.016485
Table 3
Same as in Table 2 for 48th largest eigenvalue modulus |A|; IPR are respectively & ~ 54 and & ~ 47.
Aag = —0.30615 — 0.07037i |l Aag = 0.26353 — 0.095716i /s
1 RIH 0.017854 1 RMEV 0.026461
2 BDUR 0.017737 2 RIBR 0.013343
3 OLLR 0.016701 3 OLQDR 0.013145
4 CEPDR 0.016463 4 IL1DL 0.012932
5 RMGR 0.016357 5 IL1DR 0.012911
6 AIAL 0.016072 6 RIAR 0.012896
7 ASHR 0.015585 7 RICR 0.012728
8 VC04 0.015265 8 OLQDL 0.012586
9 ASKR 0.014 9 RIGR 0.012256
10 IL2R 0.013978 10 SMDDR 0.011958
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Fig. 5. (Color on-line.) Distribution of neurons in the plane (K, K*) of equal oppor-
tunity ranks (see text); colors are the same as in Fig. 4.

in Fig. 3 and second two columns of Table 1 represent ImpactRank
which is discussed below.

We can also use 2DRank index K3, discussed in [17], which
counts nodes in order of their appearance on ribs of squares in
(K, K*) plane with the square size growing from K =1 to K = N.
The top neurons in K, are AVAL, AVAR, AVBL, AVBR, PVCR. Thus
at the top K, values we find dominance of interneurons. More de-
tailed listings are available at [15].

It may be also useful to consider renormalized equal opportu-
nity rank recently discussed in [22]. In this approach PageRank
probability of node i is replaced by P(i)/d(i) where d(i) is in-
degree of node i. For the Google matrix this recipe should be
replaced by P(i) — P(i)/zj Gjj and respectively for CheiRank by
P*(i) — P*(i)/ Zj G:; The corresponding rank indexes K, K* rank
the neurons in the decreasing order of these renormalized prob-
abilities. The distribution of nodes in the plane (K, K*) is shown
in Fig. 5. In this ranking the top K nodes correspond to important
sensory neurons rather than information relaying centers, whereas
the top nodes of K* are composed mainly by motor neurons. Thus
such an approach allows to highlight additional features of C.el-
egans network being complementary to PageRank and CheiRank
properties discussed above. Tables for neuron renormalized rank-
ing are available at [15].

4. ImpactRank

In certain cases it is useful to determine an influence or im-
pact of a given neuron on other neurons. A recent proposal of
ImpactRank, described in [20], is based on the probability distri-
bution of a vector vy = (1 - y)(1 — yG) vy, v? =1-y)a-
yG*)~1vg, where v is initially populated neuron. The vector vy
can be viewed as a Green function propagator. The computation of
vy is obtained numerically by a summation of geometrical expan-
sion series which are convergent within approximately first 200
terms at y ~ 0.7 (see also [20]). The distributions of probabili-
ties of ImpactRank P(i) = v (i), P*(i) = v?(i) versus the corre-
sponding ImpactRank indexes K, K* are shown in Fig. 3 (right
panel) for the initial state neuron RMGL. The corresponding top
20 ImpactRank neurons influenced by RMGL are given in columns
IMPR, IMCR of Table 1. The analysis of neurons linked to RMGL
shows that indeed, ImpactRank correctly selects neurons influ-
enced by RMGL. The neurons in the top list of P(i) are those
pointed by outgoing links of RMGL while those in the top list of
P*(i) are those that have ingoing links to RMGL. Such a method
can be easily applied to other initial neuron states of interest
showing a contamination propagation over the neural network
starting from initial neuron RMGL.

5. Properties of eigenstates

The Google matrix analysis of the Wikipedia hyperlink network
[19] demonstrated that the eigenstates with large values of |A|
select well defined communities. Thus we can expect that other
eigenstates of matrices G and G* with |A| <1 correspond to cer-
tain physiological functions of worm neural network. It is conve-
nient to order index of eigenstates in a decreasing order of |A;]
with A1 =1.

The top ten neurons in eigenfunction amplitude for four specific
eigenstates of G and G* are given in Table 2, Table 3. In Table 2 we
have eigenstates with low value of IPR so that the corresponding
wavefunctions are localized essentially on only about 4 neurons
being AIAR, AIAL, ASISL, ASIR and AVAL, AVAR, AVBR for A1 of G
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Fig. 6. (Color on-line.) Dependence of amplitude of eigenstates |y;(K)| of G and [ (K*)| of G* on PageRank index K (left panel) and CheiRank index K* (right panel); here
x-axis shows values of K and K*, while y-axis shows index i of eigenstates being ordered in a decreasing order of |A;| (see text). The whole index range 1 < K, K* < 279 is
shown with PageRank (CheiRank) vector being at the bottom line of each panel. The color is proportional to |v;(j)| changing from minimum blue value to maximum value

in red.

and G* respectively. In Table 3 the values of IPR are rather large
and these eigenstates are spread over many neurons.

To determine if some eigenvectors are localized on a certain
group of neurons, we plot in Fig. 6 the amplitude of each eigen-
state horizontally in the basis of neurons ordered by indexes of K
and K* of PageRank and CheiRank vectors. The eigenstates of
G matrix show four distinct vertical stripes at K = 149, K = 165,
K =185, K =261 which correspond respectively to neurons PVDR,
IL2DR, IL2DL, PLNR. The same plot for G* matrix shows a larger
number of stripes which have less pronounced amplitudes. These
stripes of G* are located on the following neurons K* =116 (RIPL),
K* =123 (RIPR), K* = 120 (AS07), K* = 122 (AS10), K* = 135
(DB06), K* =137 (DB05), K* =215 (DA07), K* = 162 (VA10), K* =
172 (SIADL), K* =181 (SIAVL), K* =199 (SIAVR), K* =221 (SIADR).

We think that an identification of eigenstates with certain phys-
iological functions of worm can be an interesting task which how-
ever requires further more detailed studies in collaboration with
physiologists. The tables of top 20 nodes of eigenstates with 50
largest |A;| values are available at [15].

6. Discussion

In this Letter, we analyzed the neural network of C.elegans using
Google matrix approach to directed networks which proved its ef-
ficiency for the WWW. We classify worm neurons using PageRank
and CheiRank probabilities corresponding to the principal vectors
of the Google matrix with direct and inverted links. Thus neu-
rons in the head region take top positions in PageRank, CheiRank
and combined 2DRank. Also, interneurons occupy top ranking po-
sitions. We show that influences and interdependency between
neurons can be studied using the ImpactRank propagator. We ar-
gue that the eigenvectors with large modulus of eigenvalues of the
Google matrix may select specific physiological functions. This con-
jecture still need to be investigated in more detailed studies. Our
research shows that the Google matrix analysis represents a useful
and powerful method of neural network analysis.
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