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Abstract
We study numerically the frequency modulated kicked nonlinear rotator with
effective dimension =d 1, 2, 3, 4. We follow the time evolution of the model
up to 109 kicks and determine the exponent α of subdiffusive spreading which
changes from 0.35 to 0.5 when the dimension changes from d = 1 to 4. All
results are obtained in a regime of relatively strong Anderson localization well
below the Anderson transition point existing for d = 3, 4. We explain that this
variation of the exponent is different from the usual −d dimensional Anderson
models with local nonlinearity where α drops with increasing d. We also argue
that the renormalization arguments proposed by Cherroret N et al
(arXiv:1401.1038) are not valid for this model and the Anderson model with
local nonlinearity in d = 3.

Keywords: Anderson localization, nonlinearity, subdiffucion
PACS numbers: 05.45.-a, 71.23.An, 05.45.Mt

(Some figures may appear in colour only in the online journal)

1. Introduction

At present there is a significant interest to effects of nonlinearity on Anderson localization [1].
The early theoretical and numerical studies [2, 3] have been followed by more recent and
more detailed analysis performed by different groups [4–15]. The interest to this problem
comes also from the side of mathematics which puts forward a fundamental question on how
the pure point spectrum of Anderson localization is affected by a weak nonlinearity [16–18].
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At the same time the experiments on spreading of light in nonlinear photonic lattices [19, 20]
and of Bose-Einstein condensates of cold atoms in disordered potential [21] start to be able to
observe effects of nonlinearity on localization.

The main effect found in numerical simulations is a subdiffusive spreading of wave
packet over lattice sites induced by a moderate nonlinearity. Large time scale simulations are
required to determine the spreading exponent with a good accuracy and hence the choice of a
good model, that is easy for numerical simulations and at the same time captures the main
physical effects, is important. One of such models is the model of kicked nonlinear rotator [2],
where nonlinear phase shifts are introduced in the quantum Chirikov standard map, known
also as the kicked rotator [22].

It is also important that the kicked rotator has one more interesting extension: the fre-
quency modulated kicked rotator (FMKR) introduced in [23]. In this model the kick
amplitudes are modulated with −d 1 incommensurate frequencies that allow one to model
the Anderson transition in effective dimensions d = 3,4 [24–26]. This FMKR model, pro-
posed theoretically, has been realized in skillful and impressive experiments with cold atoms
by Garreau group [27]. These experiments allowed the observation of the Anderson transition
in d = 3 and determined experimentally the critical exponents which have been found to be in
agreement with analytical and numerical calculations [28]. At the moment the Garreau
experiments definitely represent the most advanced experimental investigation of the
Anderson transition both in fields of cold atoms and solid state disordered systems.

In a recent preprint [29] it is proposed to to study frequency modulated kicked nonlinear
rotator (FMKNR) model. It is argued there that the FMKNR allows one to investigate the
effects of nonlinearity of Anderson transition in d = 3. Here, we show that the renormalization
group analysis performed in [29] is not relevant for the main physical effects leading to the
nonlinearity induced wave spreading in FMKNR. However, the investigation the FMKNR
model itself is interesting and provides some new information on effects of nonlinearity on
Anderson localization. Thus we present here the results of our numerical studies of FMKNR
in effective dimensions =d 1, 2, 3, 4 up to times =t 109. The model is described in
section 2, numerical results are presented in section 3, simple estimates are presented in
section 4 and discussion is given in section 5.

2. FMKNR model description

The time evolution of the wave function of the FMKNR is described by the equation

ψ ψ+ = − ˆ + ˆ − ˆ( )t e e t( 1) ( ), (1)i H H iV t( )nl0

where

ξ ζˆ = ˆ = +H n model M H n Tn n model M( ) ( 1) ; ( ) ( ) 2 ( 2), (2)n0 0

with ξn being random energies distributed homogeneously in the interval π π− , (model M1)
and ζ= +H n Tn n( ) ( ) 20 (model M2) are rotational phases in a kicked rotator with ζ
corresponding to a quasi-momentum of Bloch waves in kicked optical lattices and parameter

∼ ∼T 1eff . Here, n is a quantum number corresponding to momentum quantization
[23–28]. This part of Hamiltonian describes a free propagation

The nonlinear phase shift, as in [2], is given by

β ψˆ =H n( ) , (3)nl
2
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where β is the strength on nonlinear interactions and ψ n( ) is taken in the momentum
representation. The norm ψ∑ | | =n( ) 1n

2 is conserved by unitary evolution.
The part with the kick is written in the phase representation for ψ θ( ) which is conjugated

to the momentum representation ψ θ π ψ θ+ =( ( 2 ) ( ), θˆ = − ∂ ∂n i ):

θ θ ϵΠ ω= + =
−⎡⎣ ⎤⎦V t k t( , ) cos 1 cos ( ) . (4)i

d
i1

1

Here, ϵ represents a strength of frequency modulation with −d 1 incommensurate fre-
quencies ωi and t is measured in a number of map iterations. For d = 1 in M2 case we obtain
the usual kicked rotator [22] with ∼ k 1 eff , ∼ T eff and the chaos parameter

= =K kT const (ℏeff is an effective Planck constant). For d = 2 we use ω π λ= 21 , for d = 3
we use ω π λ= 21 , ω π λ= 22

2. For d = 4 we add frequency ω π= 2 23 . Here
λ = 1.32471795724475 is a root of cubic equation [25]. At β = 0 the models M1 and M2
manifest the phenomenon of Anderson localization in effective dimensions =d 1, 2, 3, 4;
for d = 3,4 there is the Anderson transition for >k kc at a certain fixed ϵ [25–28]. For d = 3
the curve of the Anderson transition in the plane ϵk( , ) is analyzed in [30].

The numerical simulations of equations (1)–(4) are done by a free propagation in the
momentum representation, fast Fourier transfer to the angle representation, kick in the angle
representation, back Fourier transfer to the momentum representation, Then the next iteration
is done in the same way. This scheme is broadly used in previous studies quoted above. Here
we present our numerical results and analytical estimates. The mathematical based research of
related problems of interplay of nonlinearity and Anderson localization are reviewed
in [16–18].

For β ∼ 1 the model M1 at d = 1 (KNR) shows a subdiffusive spreading of wave packet
over sites (levels) with the second moment growth characterized by an exponent α ∼ 0.4 [2]:

∑σ ψ= = < > ∼ αn n n t( ) . (5)
n

2 2 2

It was argued [2] that this model effectively describes the spreading in discrete Anderson
nonlinear Schrödinger equation (DANSE). The later studies indeed confirmed that in DANSE
the exponent α is approximately the same as in the KNR [4, 7, 9]. The examples of
probability spreading in the FMKNR at =d 1, 2, 3, 4 in the model M1 are shown in figure 1.

The study of the FMKNR at d = 3 has been proposed in [29]. At β = 0 the model FMKR
can be exactly mapped on an Anderson model in effective dimension d [24, 25] by a
transformation similar to those used in d = 1 case [31, 32]. Indeed, since the phases θ ω= ti i

rotates with fixed frequencies we can write the Hamiltonian in effective extended dimension
d:

∑ ∑θ θ ω β ψ θ θ δ= + + +
=

−

=−∞

∞

( ) ( )H n n H n n n n V t, , , ( ) ( , ) , ( ) (6)i i

i

d

i i

n

i i0

1

1
2

1

i

where δ t( )1 is a periodic delta-function with period unity, θn, and θ = −n i d, ( 1 ,.., 1)i i are
conjugated pairs of variables. Then the evolution is given by the unitary propagator:

ψ θ θ ψ+ = − −( )( ) ( ) ( )n n t iH n n iV n n t, , 1 exp ( , ) exp , ( , , ), (7)i int i i i

where ω β ψ= + ∑ + ∑ | |=
−

= − ∞
∞n n H n n n n( , ) ( ) ( , )i i

d
i i n i0 1

1 2
i

. It is important here that the
nonlinear term with β contains a sum over all additional effective dimensions −d 1. In a
certain sense this corresponds to long-range interaction of planes in −d 1 dimensions. This
corresponds to the physics of the FMKNR model where nonlinear coupling acts only in n
independently of phases θ ω= ti i .
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If we would model a real nonlinear interaction term in dimension d we would have
another Hamiltonian

∑θ θ ω β ψ θ θ δ= + + +
=

−

( ) ( )H n n H n n n n V t, , , ( ) ( , ) , ( ) (8)i i

i

d

i i i i0

1

1
2

1

where nonlinear term β ψ| |n n( , )i
2 have no summation over ni. Then the evolution of ψ is still

given by the propagator (7) but with ω β ψ= + ∑ + | |=
−H n n H n n n n( , ) ( ) ( , )int i i

d
i i i0 1

1 2. Such
a local term appears in DANSE in d = 2 and has been studied in [7]. The numerical results of
[7] show that the exponent α of the second moment ∝ αn t2 decreases when we increase d
from d = 1 to d = 2 going from α ∼ 0.4 down to α ∼ 0.25. A similar value has been also
reported in numerical simulations at d = 2 in [33, 34]. The analytical arguments of [7] give:

α = +d2 (3 2). (9)

Of course, this expression assumes local nonlinear interaction term as in (8) that is rather
different from the case of long interactions in effective dimensions effectively appearing in
the FMKNR of (1), (6).

We note that equations (1)–(4) are equivalent to equations of Hamiltonian (6) since the
phase shifts are linear in action variables ni so that the corresponding phases θi rotate with

Figure 1. Time evolution of the probability spreading ψ= | |p n( ) 2, shown by color,
over momentum levels n for the model M1 at k = 1.5 (d = 1); ϵ= =k 0.5, 0.75
( =d 2, 3, 4), and β = 1, the time interval is ⩽ ⩽t1 109. Initial state is n = 0.
Probability p is shown by color variation given by color bars. The logarithms are
decimal.
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fixed frequencies. Also spreading in ni does not affect spreading in n and σ. At the same time
the nonlinear term in (6) drops like σ1 due to norm conservation. This is drastically
different from the case of Hamiltonian (8), discussed in the renormalization group of [29],
where the nonlinear term drops like σ1 d 2 (see discussions in [7]).

All renormalization group arguments presented in [29] are developed for the case of local
nonlinear term (8) while the numerical simulations are done for the FMKNR case (1) and (6)
corresponding to the long-range interactions. Due to such a mixing of concepts the arguments
of [29] are not valid. Also, we point out that the renormalization group arguments [29]
assume a proximity to a critical point of the Anderson transition. But all the studies of the
nonlinearity induced destruction of Anderson localization show that it takes place even in a
relatively strong localization regime and also in d = 1,2 where the Anderson transition is
absent and linear waves are always localized. Due to those reasons we argue that the approach
of [29] is not applicable for the physics of phenomenon of DANSE. However, the investi-
gation of the FMKNR model at certain d is interesting and thus we present our results below
for =d 1, 2, 3, 4.

3. Numerical results

In our numerical studies we fix k = 1.5 for d = 1 and k = 0.5, ϵ = 0.75 for =d 2, 3, 4 for both
models M1 and M2. The frequencies ωi are fixed at values given in the previous Section. For
the model M2 we use T = 2.89 as in experiments [29]; we use up to 10 random values of
quasi-momentum ζ in model M2 ζ⩽ <(0 1) and up to 10 disorder realizations in model M1.
The initial state is taken at n = 0. The transition between momentum and angle representations
is done by the fast Fourier transform.

For d = 3,4 we find that both models have approximately the same critical value kc of
Anderson transition. For d = 3 we have ≈k 1.8c in agreement with [25, 26]. Also for d = 4
both models have the same critical point ≈k 1.15c at ϵ = 0.9 and ≈k 1.3c at ϵ = 0.75. At

−d 1 frequencies the classical chaos border becomes very small in k so that random rota-
tional phases in model M1 have the Anderson transition approximately at the same point as in
the model M2. We stress that all amplitudes of k used in our simulations are located in a well
localized phase being rather far from the Anderson transition in d = 3,4. At those k values the
localization length ∼ −ℓ 1 2 captures only a couple of sites (see figures 1,9 in [25]).

The spearing of probability ψ= | |p n( )n
2 over momentum modes n is shown as a

function of time ⩽t 109 in figure 1 for model M1. The data show that ψ| |n( ) 2 spreads more or
less homogeneously over a plateau (chapeau) which width increases with time.

The growth of the second moment σ with time ⩽t 109 is shown in figure 2 for models
M1 and M2 for a one disorder realization in M1 and one value of quasi-momentum in model
M2 (a random value in the interval ζ⩽ <0 1).

We also determine the dependence σ t( ) for ⩽ ⩽t1 108 for both models for 10 reali-
zations of disorder (M1) or 10 random values of ζ (M2). The values of exponent α are shown
in figure 3 for all four dimensions d. Averaging over these 10 values of α we find the average
α value and its error-bar. For model M1 we obtain α = ±0.36 0.02, ±0.45 0.03,

±0.50 0.04, ±0.52 0.04 and for model M2 we obtain α = ±0.35 0.03, ±0.43 0.03,
±0.51 0.03, ±0.54 0.04 respectively for =d 1, 2, 3, 4. Within the error-bars both models

have the same value of α for a given dimension.
We point out that for one disorder realization there are fluctuations in the growth of σ

well visible in figure 2 giving up and down fluctuations of a local slope of growth. This is an
example of fluctuations typical for mesoscopic disordered systems. However, after averaging
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Figure 2. Dependence of the second moment σ ≡ 〈 〉n2 of probability distribution on
time t shown in logarithmic scale for models M1 (black) and M2 (red) with dimensions

=d 1, 2, 3, 4. Parameters ϵ βk, , are as in figure 1 and T = 2.89 for M2. The power
law fit of subdiffusive spreading σ ∼ αt is shown by the straight dashed lines for each
model. Effective dimensions d and fitted values of α are shown in each panel,
logarithms are decimal.

Figure 3. The subdiffusive spreading exponent α for dimensions =d 1, 2, 3, 4 of both
models. The model parameters are as in figures 1, 2. The exponents α are computed up
to time =t 108 for 10 random realizations of disorder in model M1 and 10 random
values of quasi-momentum ζ in model M2 (left and right panels respectively). Dashed
blue curves represent average α dependence on dimension d for each model.
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over 10 realizations we obtain the accuracy of the exponent α on a level of 6% while the
variation of α with d represents about 50% being well outside of statistical errors. Also the
numerical results presented in [7, 9] confirm that the exponent α is independent of time
for d = 1.

We note that the case d = 3 for model M2 has been studied in [29] with numerically
obtained value α ≈ 0.4. However, the time scales considered there are about 1000 times
smaller than those considered here. Also in [29] the working point was placed rather close to
the Anderson transition so that the localization length of linear problem was rather large so
that it was more difficult to reach the asymptotic regime (in our case we are far from the
Anderson transition point and ∼ −ℓ 1 2). As we see the exponent α is not significantly
affected by such a large change of localization length of a linear problem, thus clearly
indicating that the theoretical renormalization arguments of [29] are not relevant for FMKNR
and the Anderson model with nonlinearity in d = 3 (the independence of αof localization
length has been discussed by different groups for d = 1, see e.g. [4, 7, 9]).

Our data show a clear tendency of growth of α with d in the FMKNR model (1). Of
course, this dependence is absolutely different from the one of (9) obtained for a local
nonlinear term.

4. Simple estimates

It is interesting to note that the exponent α = 1 2 corresponds to a so-called regime of ‘strong
chaos’ [9, 10, 35]. Indeed, the numerical simulations performed in [9, 10] introduced a
randomization of phases of linear eigenmodes after a fixed time scale τ ∼ 1 showing
numerically that in such a case α = 1 2. This relation can be understood on a basis of simple
estimates in the following way: the equations of amplitudes of linear modes Cm in the
interaction representation have a form β∂ ∂ ∼i C t C3 [2, 4, 7]. In [2, 4, 7] it was assumed that
there is a plateau in amplitudes of Δ∼C n1 ( )1 2 with Δ| | <m n and C = 0 outside of the
plateau. Then the time scale ts after which a next level outside of plateau will be populated is
estimated as Γ β β Δ∼ ∼ ∼t C n1 ( )s

2 6 2 3 due to norm conservation. Since the diffusion
coefficient is Δ Γ∼ ∼D n t( )2 this gives α = 2 5 for (d = 1) and the relation (9) for any
d [2, 7].

It is also possible to assume that there is a certain smooth profile distribution of C values
on the plateau and use the estimate of the Fermi golden rule type [36] used in quantum
mechanics with Γ β β Δ∼ ∼C n( )2 4 2 2 that would lead to α = 1 2 and σ ∼ t1 2 in agreement
with arguments of [9, 10, 35]. This assumes random phase approximation and mixing of
phases on a certain fixed time scale τ. Thus in such a case we can write

Δ τ∼n t( ) ( ) . (10)2 1 2

However, it is clear that the time scale should grow with Δn since the rate of chaotization
should become smaller and smaller with time since the nonlinear term decreases. The most
natural assumption is that τ δω Δ∼ ∼ n1 where δω β ψ∼ | |n

2 is a nonlinear frequency shift.
Thus using the relation τ Δ∼ n we obtain from (10) that again α = 2 5.

The numerically obtained values of α (see figure 3) are approximately located in the
range α⩽ ⩽0.35 0.5. It is possible that for d = 3,4 a larger number of modulation phases
generates a more dense spectrum which is more similar to random phase approximation with
τ ∼ const corresponding to the strong chaos regime with α = 1 2. It is also possible that
times even longer than =t 109 are required to be in a really asymptotic regime.
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5. Discussion

We present the results of numerical studies of the FMKNR models with nonlinearity in
effective dimensions =d 1, 2, 3, 4. Our results show that the exponent α of subdiffusive
spreading increases from α ≈ 0.35 up to α ≈ 0.5 when d changes from 1 to 4. We show that
this dependence on d corresponds to a regime of nonlinearity with a long-range interactions
typical for FMKNR. In contrast to FMKNR, for Anderson models, with local nonlinearity
like for DANSE [4, 7], we have a decrease of the exponent α with increase of d given by the
relation (9).

In our opinion, the exact derivation of the expression for the exponent α represents a
nontrivial problem, Indeed, the results presented in [13] clearly show that the measure of
chaos decreases with a growing system size. This important result leads us to a conclusion
that a spreading proceeds over more and more tiny chaotic layers of smaller and smaller
measure. In such a regime a role of correlations should be important and exact derivation of
the expression for α requires additional information about a structure of chaotic layers in
many-body nonlinear systems.

We note that, after the submission of our paper to J. Phys. A: Math. Theor. and arXiv:
1403.2692, the paper [29] has been published in a journal with the statement of the authors of
[29] that ‘our disorder theory (3) is strictly speaking not directly applicable to the QPKNR
[equations (1–4) here]] which pertains to a 1D configuration space ... we expect this differ-
ence to be crucial for a precise determination of the subdiffusion exponent...’.
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