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Abstract. We study numerically the frequency modulated kicked nonlinear
rotator with effective dimension d = 1, 2, 3, 4. We follow the time evolution of the
model up to 109 kicks and determine the exponent α of subdiffusive spreading
which changes from 0.35 to 0.5 when the dimension changes from d = 1 to 4.
All results are obtained in a regime of relatively strong Anderson localization
well below the Anderson transition point existing for d = 3, 4. We explain that
this variation of the exponent is different from the usual d−dimensional Anderson
models with local nonlinearity where α drops with increasing d. We also argue that
the renormalization arguments proposed by Cherroret N et al. arXiv:1401.1038
are not valid.
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1. Introduction

At present there is a significant interest to effects of nonlinearity on Anderson
localization [1]. The early theoretical and numerical studies [2, 3] have been followed by
more recent and more detailed analysis performed by different groups [4, 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14, 15]. The interest to this problem comes also from the side of
mathematics which puts forward a fundamental question on how the pure point
spectrum of Anderson localization is affected by a weak nonlinearity [16, 17, 18].
At the same time the experiments on spreading of light in nonlinear photonic lattices
[19, 20] and of Bose-Einstein condensates of cold atoms in disordered potential [21]
start to be able to observe effects of nonlinearity on localization.

The main effect found in numerical simulations is a subdiffusive spreading of
wave packet over lattice sites induced by a moderate nonlinearity. Large time scale
simulations are required to determine the spreading exponent with a good accuracy
and hence the choice of a good model, which is easy for numerical simulations and at
the same time captures the main physical effects, is important. One of such models is
the model of kicked nonlinear rotator [2], where nonlinear phase shifts are introduced
in the quantum Chirikov standard map, known also as the kicked rotator [22].

It is also important that the kicked rotator has one more interesting extension:
the frequency modulated kicked rotator (FMKR) introduced in [23]. In this model
the kick amplitudes are modulated with d−1 incommensurate frequencies that allows
to model the Anderson transition in effective dimensions d = 3, 4 [24, 25, 26]. This
FMKR model, proposed theoretically, has been realized in skillful and impressive
experiments with cold atoms by Garreau group [27]. These experiments allowed to
observe the Anderson transition in d = 3 and to determine experimentally the critical
exponents which have been found to be in agreement with analytical and numerical
calculations [28]. At the moment the Garreau experiments are definitely represent the
most advanced experimental investigation of the Anderson transition both in fields of
cold atoms and solid state disordered systems.

In a recent preprint [29] it is proposed to to study frequency modulated kicked
nonlinear rotator (FMKNR) model. It is argued there that the FMKNR allows to
investigate the effects of nonlinearity of Anderson transition in d = 3. Here, we
show that the renormalization group analysis performed in [29] is not relevant for the
main physical effects leading to the nonlinearity induced wave spreading. However,
the investigation the FMKNR model itself is interesting and provides some new
information on effects of nonlinearity on Anderson localization. Thus we present here
the results of our numerical studies of FMKNR in effective dimensions d = 1, 2, 3, 4
up to times t = 109. The model is described in Sec.2, numerical results are presented
in Sec.3, simple estimates are presented in Sec.4 and discussion is given in Sec.5.

2. FMKNR model description

The time evolution of the wave function of the FMKNR is described by the equation

ψ(t+ 1) = e−i(Ĥ0+Ĥnl)e−iV̂ (t)ψ(t) , (1)

where

Ĥ0(n) = ξn (model M1) ; Ĥ0(n) = Tn(n+ ζ)/2 (model M2) , (2)

with ξn being random energies distributed homogeneously in the interval −π, π (model
M1) and H0(n) = Tn(n+ ζ)/2 (model M2) are rotational phases in a kicked rotator
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Figure 1. (Color online) Time evolution of the probability spreading p = |ψ(n)|2,
shown by color, over momentum levels n for the model M1 at k = 1.5 (d = 1);
k = 0.5, ǫ = 0.75 (d = 2, 3, 4), and β = 1, the time interval is 1 ≤ t ≤ 109. Initial
state is n = 0. Probability p is shown by color variation given by color bars. The
logarithms are decimal.

with ζ corresponding to a quasi-momentum of Bloch waves in kicked optical lattices
and parameter T ∼ h̄eff ∼ 1. Here, n is a quantum number corresponding to
momentum quantization [23, 24, 25, 26, 27, 28]. This part of Hamiltonian describes a
free propagation.

The nonlinear phase shift, as in [2], is given by

Ĥnl = β|ψ(n)|2 , (3)

where β is the strength on nonlinear interactions and ψ(n) is taken in the momentum
representation. The norm

∑
n |ψ(n)|2 = 1 is conserved by unitary evolution.

The part with the kick is written in the phase representation for ψ(θ) which is
conjugated to the momentum representation (ψ(θ + 2π) = ψ(θ), n̂ = −i∂/∂θ):

V (θ, t) = k cos θ[1 + ǫΠd−1
i=1 cos(ωit)] . (4)

Here, ǫ represents a strength of frequency modulation with d − 1 incommensurate
frequencies ωi and t is measured in a number of map iterations. For d = 1 in M2
case we obtain the usual kicked rotator [22] with k ∼ 1/h̄eff , T ∼ h̄eff and the chaos
parameter K = kT = const (h̄eff is an effective Planck constant). For d = 2 we use
ω1 = 2π/λ, for d = 3 we use ω1 = 2π/λ, ω2 = 2π/λ2. For d = 4 we add frequency
ω3 = 2π/

√
2. Here λ = 1.32471795724475 is a root of cubic equation [25]. At β = 0
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the modelsM1 andM2 manifest the phenomenon of Anderson localization in effective
dimensions d = 1, 2, 3, 4; for d = 3, 4 there is the Anderson transition for k > kc at a
certain fixed ǫ [25, 26, 27, 28]. For d = 3 the curve of the Anderson transition in the
plane (k, ǫ) is analyzed in [30].

For β ∼ 1 the model M1 at d = 1 (KNR) shows a subdiffusive spreading of
wave packet over sites (levels) with the second moment growth characterized by an
exponent α ∼ 0.4 [2]:

σ =
∑

n

|ψ(n)|2n2 =< n2 >∼ tα. (5)

It was argued [2] that this model effectively describes the spreading in discrete
Anderson nonlinear Schrödinger equation (DANSE). The later studies indeed
confirmed that in DANSE the exponent α is approximately the same as in the KNR
[4, 7, 9]. The examples of probability spreading in the FMKNR at d = 1, 2, 3, 4 in the
model M1 are shown in Fig. 1.

The study of the FMKNR at d = 3 has been proposed in [29]. At β = 0 the
model FMKR can be exactly mapped on an Anderson model in effective dimension
d [24, 25] by a transformation similar to those used in d = 1 case [31, 32]. Indeed,
since the phases θi = ωit rotates with fixed frequencies we can write the Hamiltonian
in effective extended dimension d:

H(n, ni, θ, θi) = H0(n)+
d−1∑

i=1

ωini+β
∞∑

ni=−∞

|ψ(n, ni)|2+V (θ, θi)δ1(t)(6)

where δ1(t) is a periodic delta-function with period unity, n, θ and ni, θi(i = 1, .., d−1)
are conjugated pairs of variables. Then the evolution is given by the unitary
propagator:

ψ(n, ni, t+ 1) = exp(−iHint(n, ni)) exp(−iV (θ, θi))ψ(n, ni, t) , (7)

where Hint(n, ni) = H0(n) +
∑d−1

i=1 ωini + β
∑

∞

ni=−∞
|ψ(n, ni)|2. It is important here

that the nonlinear term with β contains a sum over all additional effective dimensions
d− 1. In a certain sense this corresponds to long-range interaction of planes in d− 1
dimensions. This corresponds to the physics of the FMKNR model where nonlinear
coupling acts only in n independently of phases θi = ωit.

If we would model a real nonlinear interaction term in dimension d we would have
another Hamiltonian

H(n, ni, θ, θi) = H0(n) +

d−1∑

i=1

ωini + β|ψ(n, ni)|2 + V (θ, θi)δ1(t) (8)

where nonlinear term β|ψ(n, ni)|2 have no summation over ni. Then the evolution of

ψ is still given by the propagator (7) but with Hint(n, ni) = H0(n) +
∑d−1

i=1 ωini +
β|ψ(n, ni)|2. Such a local term appears in DANSE in d = 2 and has been studied
in [7]. The numerical results of [7] show that the exponent α of the second moment
n2 ∝ tα decreases when we increase d from d = 1 to d = 2 going from α ∼ 0.4 down
to α ∼ 0.25. The analytical arguments of [7] give:

α = 2/(3d+ 2) . (9)

Of course, this expression assumes local nonlinear interaction term as in (8) that is
rather different from the case of long interactions in effective dimensions effectively
appearing in the FMKNR of (1), (6).
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All renormalization group arguments presented in [29] are developed for the
case of local nonlinear term (8) while the numerical simulations are done for the
FMKNR case (1) and (6) corresponding to the long-range interactions. Due to such
a mixing of concepts the arguments of [29] are not valid. Also, we point our that the
renormalization group arguments [29] assume a proximity to a critical point of the
Anderson transition. But all the studies of the nonlinearity induced destruction of
Anderson localization show that it takes place even in a relatively strong localization
regime and also in d = 1, 2 where the Anderson transition is absent and linear waves
are always localized. Due to that reasons we argue that the approach of [29] is not
valid for the physics of phenomenon of DANSE. However, the investigation of the
FMKNR model at certain d is interesting and thus we present our results below for
d = 1, 2, 3, 4.

3. Numerical results

In our numerical studies we fix k = 1.5 for d = 1 and k = 0.5, ǫ = 0.75 for d = 2, 3, 4 for
both models M1 and M2 The frequencies ωi are fixed at values given in the previous
Section. For the model M2 we use T = 2.89 as in experiments [29]; we use up to 10
random values of quasi-momentum ζ in model M2 (0 ≤ ζ < 1) and up to 10 disorder
realizations in model M1. The initial state is taken at n = 0. The transition between
momentum and angle representations is done by the fast Fourier transform.

For d = 3, 4 we find that both models have approximately the same critical value
kc of Anderson transition. For d = 3 we have kc ≈ 1.8 in agreement with [25, 26].
Also for d = 4 both models have the same critical point kc ≈ 1.15 at ǫ = 0.9 and
kc ≈ 1.3 at ǫ = 0.75. At d − 1 frequencies the classical chaos border becomes very
small in k so that random rotational phases in modelM1 have the Anderson transition
approximately at the same point as in the model M2. We stress that all amplitudes
of k used in our simulations are located in a well localized phase being rather far from
the Anderson transition in d = 3, 4. At that k values the localization length ℓ ∼ 1− 2
captures only a couple of sites (see Figs.1,9 in [25]).

The spearing of probability pn = |ψ(n)|2 over momentum modes n is shown as a
function of time t ≤ 109 in Fig. 1 for model M1. The data show that |ψ(n)|2 spreads
more or less homogeneously over a plateau (chapeau) which width increases with time.

The growth of the second moment σ with time t ≤ 109 is shown in Fig. 2 for
models M1 and M2 for a one disorder realization in M1 and one value of quasi-
momentum in model M2 (a random value in the interval 0 ≤ ζ < 1).

We also determine the dependence σ(t) for 1 ≤ t ≤ 108 for both models for 10
realizations of disorder (M1) or 10 random values of ζ (M2). The values of exponent
α are shown in Fig. 3 for all four dimensions d. Averaging over these 10 values of α we
find the average α value and its error-bar. For model M1 we obtain α = 0.36± 0.02,
0.45 ± 0.03, 0.50 ± 0.04, 0.52 ± 0.04 and for model M2 we obtain α = 0.35 ± 0.03,
0.43±0.03, 0.51±0.03, 0.54±0.04 respectively for d = 1, 2, 3, 4. Within the error-bars
both models have the same value of α for a given dimension.

We note that the case d = 3 for model M2 has been studied in [29] with
numerically obtained value α ≈ 0.4. However, the time scales considered there are
about 1000 times smaller than those considered here. Also in [29] the working point
was placed rather close to the Anderson transition so that the localization length of
linear problem was rather large so that it was more difficult to reach the asymptotic
regime (in our case we are far from the Anderson transition point and ℓ ∼ 1− 2).
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Figure 2. (Color online) Dependence of the second moment σ ≡ 〈n2〉 of
probability distribution on time t shown in logarithmic scale for models M1
(black) and M2 (red) with dimensions d = 1, 2, 3, 4. Parameters k, ǫ, β are as
in Fig. 1 and T = 2.89 for M2. The power law fit of subdifussive spreading
σ ∼ tα is shown by the straight dashed lines for each model. Effective dimensions
d and fitted values of α are shown in each panel, logarithms are decimal.

Our data show a clear tendency of growth of α with d in the FMKNR model (1).
Of course, this dependence is absolutely different from the one of (9) obtained for a
local nonlinear term.

4. Simple estimates

It is interesting to note that the exponent α = 1/2 corresponds to a so-called
regime of “strong chaos” [9, 10, 33]. Indeed, the numerical simulations performed
in [9, 10] introduced a randomization of phases of linear eigenmodes after a fixed
time scale τ ∼ 1 showing numerically that in such a case α = 1/2. This relation
can be understood on a basis of simple estimates in a following way: the equations
of amplitudes of linear modes Cm in the interaction representation have a form
i∂C/∂t ∼ βC3 [2, 4, 7]. In [2, 4, 7] it was assumed that there is a plateau in amplitudes
of C ∼ 1/(∆n)1/2 with |m| < ∆n and C = 0 outside of the plateau. Then the time
scale ts after which a next level outside of plateau will be populated is estimated as
Γ ∼ 1/ts ∼ β2C6 ∼ β2/(∆n)3 due to norm conservation. Since the diffusion coefficient
is D ∼ (∆n)2/t ∼ Γ this gives α = 2/5 for (d = 1) and the relation (9) for any d [2, 7].

It is also possible to assume that there is a certain smooth profile distribution
of C values on the plateau and use the estimate of the Fermi golden rule type [34]
used in quantum mechanics with Γ ∼ β2C4 ∼ β2/(∆n)2 that would lead to α = 1/2
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Figure 3. (Color online) The subdifussive spreading exponent α for dimensions
d = 1, 2, 3, 4 of both models. The model parameters are as in Figs. 1, 2. The
exponents α are computed up to time t = 108 for 10 random realizations of
disorder in model M1 and 10 random values of quasi-momentum ζ in model
M2 (left and right panels respectively). Dashed blue curves represent average α
dependence on dimension d for each model.

and σ ∼ t1/2 in agreement with arguments of [9, 10, 33]. This assumes random phase
approximation and mixing of phases on a certain fixed time scale τ . Thus in such a
case we can write

(∆n)2 ∼ (t/τ)1/2 . (10)

However, it is clear that the time scale should grow with ∆n since the rate of
chaotization should become smaller and smaller with time since nonlinear term
decreases. The most natural assumption is that τ ∼ 1/δω ∼ ∆n where δω ∼ β|ψn|2 is
a nonlinear frequency shift.Thus using the relation τ ∼ ∆n we obtain from (10) that
again α = 2/5.

The numerically obtained values of α (see Fig. 3) are approximately located
in the range 0.35 ≤ α ≤ 0.5. It is possible that for d = 3, 4 a larger number of
modulation phases generates a more dense spectrum which is more similar to random
phase approximation with τ ∼ const corresponding to the strong chaos regime with
α = 1/2. It is also possible that times even longer than t = 109 are required to be in
a really asymptotic regime.

5. Discussion

We present the results of numerical studies of the FMKNR models with nonlinearity in
effective dimensions d = 1, 2, 3, 4. Our results show that the exponent α of subdiffusive
spreading increases from α ≈ 0.35 up to α ≈ 0.5 when d changes from 1 to 4. We show
that this dependence on d corresponds to a regime of nonlinearity with a long-range
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interactions typical for FMKNR. In contrast to FMKNR, for Anderson models, with
local nonlinearity like for DANSE [4, 7], we have a decrease of the exponent α with
increase of d given by the relation (9).

In our opinion, the exact derivation of the expression for the exponent α represents
a nontrivial problem, Indeed, the results presented in [13] clearly show that the
measure of chaos decreases with a growing system size. This important result leads
us to a conclusion that a spreading proceeds over more and more tiny chaotic layers
of smaller and smaller measure. In such a regime a role of correlations should be
important and exact derivation of the expression for α requires additional information
about a structure of chaotic layers in many-body nonlinear systems.
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