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In the past decade modern societies have developed enormous communication and social networks.
Their classification and information retrieval processing has become a formidable task for the society.
Because of the rapid growth of the World Wide Web, and social and communication networks, new
mathematical methods have been invented to characterize the properties of these networks in a more
detailed and preciseway. Various search engines extensively use suchmethods. It is highly important to
develop new tools to classify and rank amassive amount of network information in away that is adapted
to internal network structures and characteristics. This review describes the Google matrix analysis of
directed complex networks demonstrating its efficiency using various examples including the World
Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural
networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in
this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.
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I. INTRODUCTION

In the past ten years, modern societies have developed
enormous communication and social networks. The World
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Wide Web (WWW) alone has about 50 × 109 indexed web
pages, so that their classification and information retrieval
processing becomes a formidable task. Various search engines
have been developed by private companies such as Google,
Yahoo!, and others which are extensively used by Internet
users. In addition, social networks (Facebook, LiveJournal,
Twitter, etc.) have gained much popularity in the last few
years. In addition, the use of social networks has spread
beyond their initial purpose, making them important for
political or social events.
To handle such massive databases, fundamental mathemati-

cal tools and algorithms related to centrality measures and
network matrix properties are actively being developed.
Indeed, the PageRank algorithm, which was initially at the
basis of the development of the Google search engine (Brin
and Page, 1998; Langville and Meyer, 2006), is directly linked
to the mathematical properties of Markov chains (Markov,
1906) and Perron-Frobenius operators (Brin and Stuck, 2002;
Langville and Meyer, 2006). Because of its mathematical
foundation, this algorithm determines a ranking order of nodes
that can be applied to various types of directed networks.
However, the recent rapid development of WWW and com-
munication networks requires the creation of new tools and
algorithms to characterize the properties of these networks on
a more detailed and precise level. For example, such networks
contain weakly coupled or secret communities which may
correspond to very small values of the PageRank and are hard
to detect. It is therefore highly important to have new methods
to classify and rank large amounts of network information in a
way adapted to internal network structures and characteristics.
This review describes matrix tools and algorithms which

facilitate classification and information retrieval from large
networks recently created by human activity. The Google
matrix, formed by links of the network, is typically huge (a
few tens of billions of Web pages). Thus, the analysis of its
spectral properties including complex eigenvalues and eigen-
vectors represents a challenge for analytical and numerical
methods. It is rather surprising, but the class of such matrices,
which belong to the class of Markov chains and Perron-
Frobenius operators, has been essentially overlooked in
physics. Indeed, physical problems typically belong to the
class of Hermitian or unitary matrices. Their properties have
been actively studied in the frame of random matrix theory
(RMT) (Guhr, Mueller-Groeling, and Weidenmueller, 1998;
Mehta, 2004; Akemann, Baik, and Francesco, 2011) and
quantum chaos (Haake, 2010). The analytical and numerical
tools developed in these research fields have paved the way for
understanding many universal and peculiar features of such
matrices in the limit of large matrix size corresponding to
many-body quantum systems (Guhr, Mueller-Groeling, and
Weidenmueller, 1998), quantum computers (Shepelyansky,
2001), and a semiclassical limit of large quantum numbers in
the regime of quantum chaos (Haake, 2010). In contrast to the
Hermitian problem, the Google matrices of directed networks
have complex eigenvalues. The only physical systems where
similar matrices had been studied analytically and numerically
correspond to models of quantum chaotic scattering whose
spectrum is known to have such unusual properties as the
fractal Weyl law (Sjöstrand, 1990; Zworski, 1999;

Nonnenmacher and Zworski, 2007; Shepelyansky, 2008;
Gaspard, 2014).
In this review we present an extensive analysis of a variety

of Google matrices emerging from real networks in various
sciences including the WWWof United Kingdom universities,
Wikipedia, the Physical Review citation network, the Linux
Kernel network, the world trade network (WTN) from the UN
COMTRADE database, brain neural networks, networks of
DNA sequences, and many others. As an example, the Google
matrix of the Wikipedia network of English articles
(August 2009) is shown in Fig. 1. We demonstrate that the
analysis of the spectrum and eigenstates of a Google matrix of
a given network provides a detailed understanding about the
information flow and ranking. We also show that such types
of matrices naturally appear for Ulam networks of dyna-
mical maps (Shepelyansky and Zhirov, 2010a; Frahm and
Shepelyansky, 2012a) in the framework of the Ulam method
(Ulam, 1960).
Currently, Wikipedia, a free online encyclopedia, stores

more and more information and has become the largest
database of human knowledge. In this respect it is similar
to The Library of Babel, described by Borges (1962), and
“The Library exists ab aeterno.” The understanding of hidden
relations between various areas of knowledge on the basis of
Wikipedia can be improved with the help of a Google matrix
analysis of directed hyperlink networks of Wikipedia articles
as described in this review.
The specific tools of RMT and quantum chaos, combined

with the efficient numerical methods for large matrix diag-
onalization like the Arnoldi method (Stewart, 2001), allow

(b)(a)

FIG. 1 (color online). Google matrix of the network Wikipedia
English articles for August 2009 in the basis of the PageRank
index K (and K0). Matrix GKK0 corresponds to the x (and y) axis
with (a) 1 ≤ K;K0 ≤ 200, and with (b) 1 ≤ K;K0 ≤ N; all nodes
are ordered by the PageRank index K of matrix G and thus we
have two matrix indices K;K0 for matrix elements in this basis.
(a) The first 200 × 200 matrix elements of the G matrix (see
Sec. III). (b) The density of all matrix elements coarse grained on
500 × 500 cells where its elements GK;K0 are written in the
PageRank basis KðiÞ with indices i → KðiÞ (in the x axis) and
j → K0ðjÞ (in a usual matrix representation with K ¼ K0 ¼ 1 on
the top-left corner). The color shows the density of matrix
elements changing from black for the minimum value
[ð1 − αÞ=N] to white for the maximum value via green (gray)
and yellow (light gray); here the damping factor is α ¼ 0.85. This
and other color figures are available in open access arXiv preprint
(Ermann, Frahm, and Shepelyansky, 2015). From Ermann,
Chepelianskii, and Shepelyansky, 2012.
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one to analyze the spectral properties of such large matrices as
the entire Twitter network of 41 million users (Frahm and
Shepelyansky, 2012a). In 1998 Brin and Page pointed out that
“despite the importance of large-scale search engines on the
Web, very little academic research has been done on them”
(Brin and Page, 1998). The Google matrix of a directed
network, like The Library of Babel of Borges (1962), contains
all the information about a network. The PageRank eigen-
vector of this matrix finds a broad range of applications being
at the mathematical foundation of the Google search engine
(Brin and Page, 1998; Langville and Meyer, 2006). We show
that the spectrum of this matrix and its other eigenvectors also
provide interesting information about network communities
and the formation of the PageRank vector. We hope that this
review yields a solid scientific basis of matrix methods for
efficient analysis of directed networks emerging in various
sciences. The described methods will find broad interdisci-
plinary applications in mathematics, physics, and computer
science with the cross fertilization of different research fields.
Our aim is to combine the analytical tools and numerical
analysis of concrete directed networks to gain a better
understanding of the properties of these complex systems.
An interested reader can find a general introduction about

complex networks (see also Sec. II) in well-established
papers, reviews, and books (Watts and Strogatz, 1998;
Albert and Barabási, 2002; Caldarelli, 2003; Newman,
2003, 2010; Dorogovtsev, Goltsev, and Mendes, 2008;
Castellano, Fortunato, and Loreto, 2009; Dorogovtsev,
2010; Fortunato, 2010). Descriptions of Markov chains and
Perron-Frobenius operators are given by Brin and Page
(1998), Gantmacher (2000), Brin and Stuck (2002), and
Langville and Meyer (2006), while the properties of RMT
and quantum chaos are described by Guhr, Mueller-Groeling,
and Weidenmueller (1998), Mehta (2004), Haake (2010), and
Akemann, Baik, and Francesco (2011).
The data sets for the main part of the networks con-

sidered here are available from the FETNADINE database
at http://www.quantware.ups‑tlse.fr/FETNADINE/datasets
.htm from the Quantware group. All color figures are available
in open access arXiv preprint (Ermann, Frahm, and
Shepelyansky, 2015).

II. SCALE-FREE PROPERTIES OF DIRECTED NETWORKS

The distributions of the number of ingoing or outgoing
links per node for directed networks with N nodes and Nl
links are well known as indegree and outdegree distributions
in the community of computer science (Caldarelli, 2003;
Donato et al., 2004; Pandurangan, Raghavan, and Upfal,
2006). A network is described by an adjacency matrix Aij of
sizeN × N with Aij ¼ 1when there is a link from a node j to a
node i in the network, i.e., “j points to i,” and Aij ¼ 0

otherwise. Real networks are often characterized by power
law distributions for the number of ingoing and outgoing links
per node win;outðkÞ ∝ 1=kμin;out with typical exponents
μin ≈ 2.1 and μout ≈ 2.7 for the WWW. For example, for
the Wikipedia network of Fig. 1 one finds μin ¼ 2.09� 0.04,
μout ¼ 2.76� 0.06 as shown in Fig. 2 (Zhirov, Zhirov, and
Shepelyansky, 2010).

Statistical preferential attachment models were initially
developed for undirected networks (Albert and Barabási,
2000). Their generalization to directed networks (Giraud,
Georgeot, and Shepelyansky, 2009) generates a power law
distribution for ingoing links with μin ≈ 2 but the distribution
of outgoing links is closer to an exponential decay. Wewill see
that these models are not able to reproduce the spectral
properties of G in real networks.
The most recent studies of WWW, crawled by the Common

Crawl Foundation in 2012 (Meusel et al., 2015) for N ≈
3.5 × 109 nodes and Nl ≈ 1.29 × 1011 links, provide the
exponents μin ≈ 2.24, μout ≈ 2.77, even if these distributions
describe probabilities at the tails which capture only about 1%
of nodes. Thus, at present the existing statistical models of
networks capture only in an approximate manner the real
situation in large networks even if certain models are able to
generate a power law decay of PageRank probability.

III. CONSTRUCTION OF GOOGLE MATRIX AND ITS
PROPERTIES

A. Construction rules

The matrix Sij of Markov transitions (Markov, 1906) is
constructed from the adjacency matrix Aij → Sij by normal-
izing elements of each column so that their sum is equal to
unity (

P
iSij ¼ 1) and replacing columns with only zero

elements (dangling nodes) by 1=N. Such matrices with
columns sum normalized to unity and Sij ≥ 0 belong to the
class of Perron-Frobenius operators with a possibly degener-
ate unit eigenvalue λ ¼ 1 and other eigenvalues obeying
jλj ≤ 1 (see Sec. III.B). Then the Google matrix of the
network is introduced as (Brin and Page, 1998)

Gij ¼ αSij þ ð1 − αÞ=N: ð1Þ

The damping factor α in the WWW context describes the
probability ð1 − αÞ to jump to any node for a random surfer.
At a given node a random surfer follows the available
direction of links making a random choice between them
with probability proportional to the weight of links. For
WWW the Google search engine uses α ≈ 0.85 (Langville
and Meyer, 2006). For 0 ≤ α ≤ 1 the matrix G also belongs to
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FIG. 2 (color online). Distribution win;outðkÞ of the number of
(a) ingoing and (b) outgoing links k for N ¼ 3 282 257Wikipedia
English articles (August 2009) of Fig. 1 with the total number of
links Nl ¼ 71 012 307. The straight dashed fit lines show the
slopes with (a) μin ¼ 2.09� 0.04 and (b) μout ¼ 2.76� 0.06.
From Zhirov, Zhirov, and Shepelyansky, 2010.
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the class of Perron-Frobenius operators as S and with its
columns sum normalized. However, for α < 1 its largest
eigenvalue λ ¼ 1 is not degenerate and the other eigenvalues
lie inside a smaller circle of radius α, i.e., jλj ≤ α (Brin and
Stuck, 2002; Langville and Meyer, 2006).
The right eigenvector at λ ¼ 1, which is called the

PageRank, has real non-negative elements PðiÞ and gives
the stationary probability PðiÞ to find a random surfer at site i.
The PageRank can be efficiently determined by the power
iteration method which consists of repeatedly multiplying G
by an iteration vector which is initially chosen as a given
random or uniform initial vector. Developing the initial vector
in a basis of eigenvectors of G one finds that the other
eigenvector coefficients decay as ∼λn and only the PageRank
component, with λ ¼ 1, survives in the limit n → ∞. The
finite gap 1 − α ≈ 0.15 between the largest eigenvalue and
other eigenvalues ensures, after several tens of iterations, the
fast exponential convergence of the method also called the
“PageRank algorithm.” Multiplication of G by a vector
requires only OðNlÞ multiplications due to the links and
the additional contributions due to dangling nodes and the
damping factor can be efficiently performed with OðNÞ
operations. Since often the average number of links per node
is of the order of a few tens for WWW and many other
networks, one has effectively Nl and N of the same order of
magnitude. At α ¼ 1 the matrix G coincides with the matrix S
and we see in Sec. VIII that for this case the largest eigenvalue
λ ¼ 1 is usually highly degenerate due to many invariant
subspaces which define many independent Perron-Frobenius
operators with at least one eigenvalue λ ¼ 1 for each of them.
Once the PageRank is found, e.g., at α ¼ 0.85, all nodes

can be sorted by decreasing probabilities PðiÞ. The node rank
is then given by the index KðiÞ which reflects the relevance of
the node i. The top PageRank nodes, with largest probabil-
ities, are located at small values of KðiÞ ¼ 1; 2;… .
It is known that on average the PageRank probability is

proportional to the number of ingoing links (Langville and
Meyer, 2006; Litvak, Scheinhardt, and Volkovich, 2008),
characterizing how popular or known a given node is.
Assuming that the PageRank probability decays algebraically
as Pi ∼ 1=Kβ

i we obtain that the number of nodes NP with
PageRank probability P scales as NP ∼ 1=Pμin with μin ¼
1þ 1=β so that β ≈ 0.9 for μin ≈ 2.1 being in agreement with
the numerical data for the WWW (Donato et al., 2004;
Pandurangan, Raghavan, and Upfal, 2006; Meusel et al.,
2015) and the Wikipedia network (Zhirov, Zhirov, and
Shepelyansky, 2010). More recent mathematical studies on
the relation between PageRank probability decay and ingoing
links are reported by Jelenkovic and Olvera-Cravioto (2013)
and Chen, Litvak, and Olvera-Cravioto (2014). At the same
time the proportionality relation between PageRank proba-
bility and ingoing links assumes certain statistical properties
of networks and works only on average. We note that there are
examples of Ulam networks generated by dynamical maps
where such proportionality is not working [see, e.g., Ermann
and Shepelyansky (2010a) and Sec. VI.E].
In addition to a given directed network with adjacency

matrix A it is useful to analyze an inverse network where links
are inverted and whose adjacency matrix A� is the transpose of

A, i.e., A�
ij ¼ Aji. The matrices S� and the Google matrixG� of

the inverse network are then constructed in the same way from
A� as described previously and according to Eq. (1) using the
same value of α as for the G matrix. The right eigenvector of
G� at eigenvalue λ ¼ 1 is called CheiRank giving a comple-
mentary rank index K�ðiÞ of network nodes (Chepelianskii,
2010; Zhirov, Zhirov, and Shepelyansky, 2010; Ermann,
Chepelianskii, and Shepelyansky, 2012). The CheiRank
probability P�ðK�Þ is proportional to the number of outgoing
links highlighting node communicativity (Zhirov, Zhirov,
and Shepelyansky, 2010; Ermann, Chepelianskii, and
Shepelyansky, 2012). In analogy with the PageRank we
obtain the fact that P� ∼ 1=K�β with β ¼ 1=ðμout − 1Þ ≈ 0.6
for typical μout ≈ 2.7. The statistical properties of distribution
of nodes on the PageRank-CheiRank plane are described by
Ermann, Chepelianskii, and Shepelyansky (2012) for various
directed networks. We discuss them later.
We consider an example of a simple network of five nodes

shown in Fig. 3(a). The corresponding adjacency matrices A
and A� are shown in Fig. 4 for the indices given in Fig. 3(a).
The matrices of Markov transitions S, S� and Google matrices
are computed as described previously and from Eq. (1).
The distribution of nodes on the ðK;K�Þ plane is shown in
Fig. 3(b). After permutations the matrix G can be rewritten in
the basis of PageRank index K as done in Fig. 1.

B. Markov chains and Perron-Frobenius operators

Matrices with real non-negative elements and column sums
normalized to unity belong to the class of Markov chains
(Markov, 1906) and Perron-Frobenius operators (Gantmacher,
2000; Brin and Stuck, 2002; Langville and Meyer, 2006),
which have been used in a mathematical analysis of dynamical
systems and theory of matrices. A numerical analysis of finite
size approximants of such operators is closely linked with the
Ulam method (Ulam, 1960) which naturally generates such
matrices for dynamical maps (Ermann and Shepelyansky,

FIG. 3 (color online). (a) Example of a simple network with
directed links between five nodes. (b) Distribution of five nodes
from (a) on the PageRank-CheiRank plane ðK;K�Þ, where the
size of a node is proportional to the PageRank probability PðKÞ
and the color of a node is proportional to the CheiRank
probability P�ðK�Þ, with the maximum at gray (red) and the
minimum at black (blue). The locations of the nodes of (a) on
the ðKi; Ki

�Þ plane are (2,4), (1,3), (3,1), (4,2), and (5,5) for the
original nodes i ¼ 1; 2; 3; 4, and 5, respectively. PageRank and
CheiRank vectors are computed from the Google matrices G and
G� shown in Fig. 4 at a damping factor α ¼ 0.85.
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2010a, 2010b; Shepelyansky and Zhirov, 2010a). The Ulam
method generates Ulam networks whose properties are dis-
cussed in Sec. VI.
Matrices G of this type have at least (one) unit eigenvalue

λ ¼ 1 since the vector eT ¼ ð1;…; 1Þ is a left eigenvector for
this eigenvalue. Furthermore, one easily verifies that for any
vector v the inequality ∥Gv∥1 ≤ ∥v∥1 holds where the norm is
the standard 1-norm. From this inequality one immediately
obtains that all eigenvalues λ of G lie in a circle of radius unity
jλj ≤ 1. For the Google matrix G as given in Eq. (1) one can
furthermore show for α < 1 that the unity eigenvalue is not
degenerate and the other eigenvalues obey even jλj ≤ α
(Langville and Meyer, 2006). These and other mathematical
results about properties of matrices of such type can be found
in Gantmacher (2000) and Langville and Meyer (2006).
It should be pointed out that due to the asymmetry of links on

directed networks such matrices have in general a complex
eigenvalue spectrum and sometimes they are not even diago-
nalizable, i.e., there may also be generalized eigenvectors
associated with nontrivial Jordan blocks. Matrices of this type
rarely appear in physical problems which are usually charac-
terized by Hermitian or unitary matrices with real eigenvalues
or located on the unitary circle. The universal spectral proper-
ties of such Hermitian or unitary matrices are well described by
RMT (Guhr, Mueller-Groeling, and Weidenmueller, 1998;
Haake, 2010; Akemann, Baik, and Francesco, 2011). In
contrast to this nontrivial complex spectra appear in physical
systems only in problems of quantum chaotic scattering and
systems with absorption. In such cases it may happen that the
number of states Nγ , with finite values 0 < λmin ≤ jλj ≤ 1

(γ ¼ −2 ln jλj), can grow algebraically Nγ ∝ Nν with increas-
ing matrix size N, with an exponent ν < 1 corresponding to a
fractal Weyl law proposed first in mathematics (Sjöstrand,
1990). Therefore,most eigenvalues drop to λ ¼ 0withN → ∞.
We discuss this unusual property in Sec. V.

C. Invariant subspaces

For typical networks the set of nodes can be decomposed in
invariant subspace nodes and fully connected core space
nodes leading to a block structure of the matrix S in Eq. (1)

which can be represented as (Frahm, Georgeot, and
Shepelyansky, 2011)

S ¼
�
Sss Ssc
0 Scc

�
: ð2Þ

The core space block Scc contains the links between core
space nodes and the coupling block Ssc may contain links
from certain core space nodes to certain invariant subspace
nodes. By construction there are no links from nodes of
invariant subspaces to the nodes of core space. Thus the
subspace-subspace block Sss is actually composed of many
diagonal blocks for many invariant subspaces whose number
can generally be rather large. Each of these blocks corre-
sponds to a column sum normalized matrix with positive
elements of the same type as G and has therefore at least one
unit eigenvalue. This leads to a high degeneracy N1 of the
eigenvalue λ ¼ 1 of S, for example,N1 ∼ 103 as for the case of
UK universities (see Sec. VIII).
In order to obtain the invariant subspaces, we determine

iteratively for each node the set of nodes that can be reached
by a chain of nonzero matrix elements of S. If this set contains
all nodes (or at least a macroscopic fraction) of the network,
the initial node belongs to the core space Vc. Otherwise, the
limit set defines a subspace which is invariant with respect to
applications of the matrix S. At a second step all subspaces
with common members are merged resulting in a sequence of
disjoint subspaces Vj of dimension dj and which are invariant
by applications of S. This scheme, which can be efficiently
implemented in a computer program, provides a subdivision
over Nc core space nodes (70%–80% of N for UK university
networks) and Ns ¼ N − Nc subspace nodes belonging to at
least one of the invariant subspaces Vj. This procedure
generates the block triangular structure of Eq. (2). Note that
since a dangling node is connected by construction to all other
nodes it belongs to the core space as well as all nodes which
are linked (directly or indirectly) to a dangling node. As a
consequence the invariant subspaces do not contain dangling
nodes nor nodes linked to dangling nodes.
The detailed algorithm for an efficient computation of the

invariant subspaces is described by Frahm, Georgeot, and
Shepelyansky (2011). As a result the total number of all
subspace nodes Ns, the number of independent subspaces Nd,
the maximal subspace dimension dmax, etc. can be determined.
The statistical properties for the distribution of subspace
dimensions are discussed in Sec. VIII for UK universities
and Wikipedia networks. Furthermore it is possible to numeri-
cally determine with a very little effort the eigenvalues of S
associated with each subspace by separate diagonalization of
the corresponding diagonal blocks in the matrix Sss. For this,
either exact diagonalization or, in rare cases of quite large
subspaces, the Arnoldi method (see Sec. III.D) can be used.
After the subspace eigenvalues are determined one can

apply the Arnoldi method to the projected core space matrix
block Scc to determine the leading core space eigenvalues. In
this way one obtains accurate eigenvalues because the Arnoldi
method does not need to compute the numerically problematic
highly degenerate unit eigenvalues of S since the latter are
already obtained from the separate and cheap subspace

FIG. 4. (a) Adjacency matrix A of the network of Fig. 3(a) with
indices used there, (b) adjacency matrix A� for the network with
inverted links; (c) matrices S and (d) S� corresponding to the
matrices A and A�; the Google matrices (e) G and (f) G�
corresponding to matrices S and S� for α ¼ 0.85 (only three
digits of matrix elements are shown).
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diagonalization. Actually the alternative and naive application
of the Arnoldi method on the full matrix S, without computing
the subspaces first, does not provide the correct number N1 of
degenerate unit eigenvalues and also the obtained clustered
eigenvalues, close to unity, are not very accurate. Similar
problems hold for the full matrix G (with damping factor
α < 1) since here only the first eigenvector, the PageRank, can
be accurately determined but there are still many degenerate
(or clustered) eigenvalues at (or close to) λ ¼ α.
Since the column sums of Scc are less than unity, due to

nonzero matrix elements in the block Ssc, the leading core

space eigenvalue of Scc is also below unity jλðcoreÞ1 j < 1 even
though in certain cases the gap to unity may be very small (see
Sec. VIII).
We consider concrete examples of such decompositions in

Sec. VIII and show in this review spectra with subspace and
core space eigenvalues of matrices S for several network
examples. The mathematical results for properties of the
matrix S are discussed by Serra-Capizzano (2005).

D. Arnoldi method for numerical diagonalization

The most adapted numerical method to determine the
largest eigenvalues of large sparse matrices is the Arnoldi
method (Arnoldi, 1951; Stewart, 2001; Golub and Greif,
2006; Frahm and Shepelyansky, 2010). Indeed, usually the
matrix S in Eq. (1) is very sparse with only a few tens of links
per node ζ ¼ Nl=N ∼ 10. Thus, a multiplication of a vector
by G or S is numerically cheap. The Arnoldi method is similar
in spirit to the Lanzcos method, but is adapted to non-
Hermitian or nonsymmetric matrices. Its main idea is to
recursively determine an orthonormal set of vectors
ξ0;…; ξnA−1, which define a Krylov space, by orthogonalizing
Sξk on the previous vectors ξ0;…; ξk by the Gram-Schmidt
procedure to obtain ξkþ1 and where ξ0 is some normalized
initial vector. The dimension nA of the Krylov space (in the
following called the Arnoldi dimension) should be “modest”
but not too small. During the Gram-Schmidt procedure one
obtains furthermore the explicit expression Sξk ¼

Pkþ1
j¼0 hjkξj

with matrix elements hjk of the Arnoldi representation matrix
of S on the Krylov space, given by the scalar products or
inverse normalization constants calculated during the ortho-
gonalization. In order to obtain a closed representation matrix
one needs to replace the last coupling element hnA;nA−1 → 0

which introduces a mathematical approximation. The eigen-
values of the nA × nA matrix h are called the Ritz eigenvalues
and often represent accurate approximations of the exact
eigenvalues of S, at least for a considerable fraction of the Ritz
eigenvalues with largest modulus.
In certain particular cases, when ξ0 belongs to an S invariant

subspace of small dimension d, the element hd;d−1 vanishes
automatically (if d ≤ nA and assuming that numerical round-
ing errors are not important) and the Arnoldi iteration stops at
k ¼ d and provides d exact eigenvalues of S for the invariant
subspace. Note that there are more sophisticated variants of
the Arnoldi method (Stewart, 2001) where one applies
(implicit) modifications on the initial vector ξ0 in order to
force this vector to be in some small dimensional invariant
subspace which results in such a vanishing coupling matrix

element. These variants known as (implicitly) restarted
Arnoldi methods allow one to concentrate on certain regions
on the complex plane to determine a few but very accurate
eigenvalues in these regions. However, for the cases of Google
matrices, where one is typically interested in the largest
eigenvalues close to the unit circle, only the basic variant
described above was used but choosing larger values of nA as
would have been possible with the restarted variants. The
initial vector was typically chosen to be random or as the
vector with unit entries.
Concerning the numerical resources the Arnoldi method

requires ζN double-precision registers to store the nonzero
matrix elements of S, nAN registers to store the vectors ξk, and
const × n2A registers to store h (and various copies of h).
The computational time scales as ζnANd for the computation
of Sξk, with Ndn2A for the Gram-Schmidt orthogonalization
procedure (which is typically dominant) and with const × n3A
for the diagonalization of h.
The details of the Arnoldi method are described in

references given previously. This method has problems with
degenerate or strongly clustered eigenvalues and therefore for
typical examples of Google matrices it is applied to the core
space block Scc where the effects of the invariant subspaces,
being responsible for most of the degeneracies, are exactly
taken out according to the previous discussion. In typical
examples it is possible to find about nA ≈ 640 eigenvalues
with largest jλj for the entire Twitter network with N ≈
4.1 × 107 (see Sec. X) and about nA ≈ 6000 eigenvalues
for Wikipedia networks with N ≈ 3.2 × 106 (see Sec. IX).
For the two university networks of Cambridge and Oxford
2006 with N ≈ 2 × 105 it is possible to compute nA ≈ 20 000
eigenvalues (see Sec. VIII). For the case of the citation
network of Physical Review (see Sec. XII) with N ≈
4.6 × 105 it is even possible and necessary to use high-
precision computations (with up to 768 binary digits) to
accurately determine the Arnoldi matrix h with nA ≈ 2000
(Frahm, Eom, and Shepelyansky, 2014).

E. General properties of eigenvalues and eigenstates

According to the Perron-Frobenius theorem all eigenvalues
λi of G are distributed inside the unitary circle jλj ≤ 1. It can
be shown that at α < 1 there is only one eigenvalue λ0 ¼ 1 and
all other jλij ≤ α having a simple dependence on α: λi → αλi
(Langville and Meyer, 2006). The right eigenvectors ψ iðjÞ are
defined by

X
j0
Gjj0ψ iðj0Þ ¼ λiψ iðjÞ: ð3Þ

Only the PageRank vector is affected by α while other
eigenstates are independent of α due to their orthogonality
to the left unit eigenvector at λ ¼ 1. Left eigenvectors
are orthonormal to right eigenvectors (Langville and
Meyer, 2006).
It is useful to characterize the eigenvectors by their inverse

participation patio (IPR) ξi ¼ ½Pjjψ iðjÞj2�2=
P

jjψ iðjÞj4
which gives an effective number of nodes populated by an
eigenvector ψ i. This characteristics is broadly used for a
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description of localized or delocalized eigenstates of electrons
in a disordered potential with Anderson transition (Guhr,
Mueller-Groeling, and Weidenmueller, 1998; Evers and
Mirlin, 2008). We discuss the specific properties of eigen-
vectors in Secs. IV, and VI–XIV.

IV. CHEIRANK VERSUS PAGERANK

It is established that the ranking of network nodes based on
PageRank order works reliably not only for WWW but also
for other directed networks. As an example it is possible to
quote the citation network of Physical Review (Redner, 1998,
2005; Radicchi et al., 2009), the Wikipedia network (Zhirov,
Zhirov, and Shepelyansky, 2010; Aragón et al., 2012; Eom
and Shepelyansky, 2013; Skiena and Ward, 2014), and even
the network of world commercial trade (Ermann and
Shepelyansky, 2011). Here we describe the main properties
of PageRank and CheiRank probabilities using a few real
networks. A more detailed presentation for concrete networks
follows in Secs. VI–XI.

A. Probability decay of PageRank and CheiRank

Wikipedia is a useful example of a scale-free network. An
article quotes other Wikipedia articles that generates a net-
work of directed links. For Wikipedia of English articles dated
August 2009 we have N ¼ 3 282 257 and Nl ¼ 71 012 307
(Zhirov, Zhirov, and Shepelyansky, 2010). The dependences
of PageRank PðKÞ and CheiRank P�ðK�Þ probabilities on
indices K and K� are shown in Fig. 5. In a large range the
decay can be satisfactory described by an algebraic law with

an exponent β. The obtained β values are in reasonable
agreement with the expected relation β ¼ 1=ðμin;out − 1Þ with
the exponents of the distribution of links given previously.
However, the decay is algebraic only on a tail, showing certain
nonlinear variations well visible for P�ðK�Þ at large values
of P�.
Similar data for the network of the University of Cambridge

(2006) with N ¼ 212 710 and Nl ¼ 2 015 265 (Frahm,
Georgeot, and Shepelyansky, 2011) are shown in the same
Fig. 5. Here the exponents β have different values with
approximately the same statistical accuracy of β.
Thus we come to the same conclusion as Meusel et al.

(2015): the probability decay of PageRank and CheiRank is
only approximately algebraic, the relation between exponents
β and μ also works only approximately.

B. Correlator between PageRank and CheiRank

Each network node i has both PageRank KðiÞ and
CheiRank KðiÞ� indices so that it is interesting to know what
is the correlation between the corresponding vectors of
PageRank and CheiRank. It is convenient to characterize this
by a correlator introduced in Chepelianskii (2010):

κ ¼ N
XN
i¼1

P(KðiÞ)P�(K�ðiÞ) − 1: ð4Þ

Even if all the networks from Fig. 6 have similar algebraic
decay of PageRank probability with K and similar β ∼ 1

exponents we see that the correlations between PageRank and
CheiRank vectors are drastically different in these networks.
Thus the networks of UK universities and nine different
language editions of Wikipedia have the correlator κ ∼ 1–8
while all other networks have κ ∼ 0. This means that there are
significant differences hidden in the network architecture
which are not visible from a PageRank analysis. We discuss
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FIG. 5 (color online). Dependence of probabilities of PageRank
P [gray (red) curves] and CheiRank P� [black (blue) curves]
vectors on the corresponding rank indices K and K� for networks
of Wikipedia August 2009 (top curves) and University of
Cambridge (bottom curves, moved down by a factor of 100).
The straight dashed lines show the power law fits for PageRank
and CheiRank with the slopes β ¼ 0.92 and 0.58, respectively,
corresponding to β ¼ 1=ðμin;out − 1Þ for Wikipedia (see Fig. 2),
and β ¼ 0.75 and 0.61 for Cambridge. From Zhirov, Zhirov,
and Shepelyansky, 2010 and Frahm, Georgeot, and Shepelyan-
sky, 2011.
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FIG. 6 (color online). Correlator κ as a function of the number of
nodes N for different networks: From Ermann, Chepelianskii,
and Shepelyansky, 2012, with additional data from Abel and
Shepelyansky, 2011, Eom and Shepelyansky, 2013, Kandiah and
Shepelyansky, 2014, and Frahm, Eom, and Shepelyansky, 2014.
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the possible origins of such a difference for the above
networks in Secs. VIII, IX, and X.

C. PageRank-CheiRank plane

A more detailed characterization of correlations between
PageRank and CheiRank vectors can be obtained from a
distribution of network nodes on the two-dimensional plane
(2D) of indices ðK;K�Þ. Two examples for Wikipedia and
Linux networks are shown in Fig. 7. A qualitative difference
between the two networks is obvious. For Wikipedia we have
a maximum of density along the line lnK� ≈ 5þ ðlnKÞ=3
that results from a strong correlation between PageRank and
CheiRank with κ ¼ 4.08. In contrast to that for the Linux
network V2.4 we have a homogeneous density distribution of
nodes along lines lnK� ¼ lnK þ const corresponding to
uncorrelated probabilities PðKÞ and P�ðK�Þ and an even
slightly negative value of κ ¼ −0.034. Note that if for
Wikipedia we generate nodes with independent probabilities
distributions P and P�, obtained from this network at the
corresponding value of N, then we obtain a homogeneous
node distribution in the ðK;K�Þ plane [in the ðlogK; logK�Þ
plane it takes a triangular form, see Fig. 4 by Zhirov, Zhirov,
and Shepelyansky (2010)].
In Fig. 7(a) we also show the distribution of the top

100 persons from PageRank and CheiRank compared with
the top 100 persons from Hart (1992). There is a significant
overlap between the PageRank and Hart ranking of persons
while CheiRank generates mainly another listing of people.
We discuss the Wikipedia ranking of historical figures
in Sec. IX.

D. 2DRank

PageRank and CheiRank indices KiKi
� order all network

nodes according to a monotonous decrease of corresponding
probabilities PðKiÞ and P�ðKi

�Þ. While top K nodes are most
popular or known in the network, top K� nodes are most
communicative nodes with many outgoing links. It is useful to
consider an additional ranking K2, called 2DRank, which
combines properties of both ranks K and K� (Zhirov, Zhirov,
and Shepelyansky, 2010).
The ranking list K2ðiÞ is constructed by increasing K →

K þ 1 and increasing the 2DRank index K2ðiÞ by 1 if a new
entry is present in the list of first K� < K entries of CheiRank,
then the one unit step is done in K� and K2 is increased by 1 if
the new entry is present in the list of first K < K� entries of
CheiRank. More formally, 2DRank K2ðiÞ gives the ordering
of the sequence of sites that appear inside the squares
½1; 1;K ¼ k; K� ¼ k; � � �� when one runs progressively from
k ¼ 1 to N. In fact, at each step k → kþ 1 there are three
possibilities: (i) no new sites on two edges of the square,
(ii) only one site is on these two edges and it is added in the
listing of K2ðiÞ, and (iii) two sites are on the edges and both
are added in the listing K2ðiÞ, first with K > K� and second
withK < K�. For (iii) the choice of order of addition in the list
K2ðiÞ affects only some pairs of neighboring sites and does
not change the main structure of ordering. An illustration
example of the 2DRank algorithm is given in Fig. 7 of Zhirov,
Zhirov, and Shepelyansky (2010). For Wikipedia a
2DRanking of persons is discussed in Sec. IX.

E. Historical notes on spectral ranking

Starting with the work of Markov (1906) many scientists
contributed to the development of the spectral ranking of
Markov chains. The research of Perron (1907) and Frobenius
(1912) led to the Perron-Frobenius theorem for square
matrices with positive entries (Brin and Stuck, 2002). A
detailed historical description of spectral ranking research is
reviewed by Franceschet (2011) and Vigna (2013). As
described there, the important steps have been done by
researchers in psychology, sociology, and mathematics includ-
ing J. R. Seeley (1949), T.-H. Wei (1952), L. Katz (1953), and
C. H. Hubbell (1965) (Franceschet, 2011; Vigna, 2013). In the
WWW context, the Google matrix in Eq. (1), with regulari-
zation of dangling nodes and damping factor α, was intro-
duced by Brin and Page (1998).
A PageRank vector of a Google matrix G� with inverted

directions of links was considered by Fogaras (2003) and
Hrisitidis, Hwang, and Papakonstantinou (2008), but no
systematic statistical analysis of 2DRanking was presented
there. An important step was done by Chepelianskii (2010)
who analyzed the λ ¼ 1 eigenvectors of G for the directed
network and of G� for the network with inverted links. The
comparative analysis of the Linux Kernel network and the
WWW of the University of Cambridge demonstrated signifi-
cant differences in correlator κ values on these networks and
different functions of top nodes in K and K�. The term
CheiRank was coined by Zhirov, Zhirov, and Shepelyansky
(2010) to have a clear distinction between eigen-
vectors of G and G�. We note that top PageRank and
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FIG. 7 (color online). Density distribution of network nodes
WðK;K�Þ ¼ dNi=dKdK� shown on the plane of PageRank and
CheiRank indices in log scale ðlogN K; logN K�Þ for all
1 ≤ K;K� ≤ N, density is computed over equidistant grid in
plane ðlogN K; logN K�Þ with 100 × 100 cells; color shows the
average value of W in each cell, the normalization condition isP

K;K�WðK;K�Þ ¼ 1. Density WðK;K�Þ is shown by color with
dark gray (blue) for the minimum in (a) and (b) and (a) white and
(b) white (yellow) for the maximum (black for zero). (a) Data for
Wikipedia August 2009, N ¼ 3 282 257 light gray/dark gray
(green/red), points show the top 100 persons from PageRank and
CheiRank white (yellow) pluses show the top 100 persons from
Hart (1992). From Zhirov, Zhirov, and Shepelyansky, 2010.
(b) Density distribution WðK;K�Þ ¼ dNi=dKdK� for the
Linux Kernel V2.4 network with N ¼ 85 757. From Ermann,
Chepelianskii, and Shepelyansky, 2012.
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CheiRank nodes have certain similarities with authorities and
hubs appearing in the Hiperlink-Induced Topic Search (HITS)
algorithm (Kleinberg, 1999). However, the HITS is query
dependent while the rank probabilities PðKiÞ and P�ðKi

�Þ
classify all nodes of the network.

V. COMPLEX SPECTRUM AND FRACTAL WEYL LAW

The Weyl law (Weyl, 1912) gives a fundamental
link between the properties of quantum eigenvalues in
closed Hamiltonian systems, the Planck constant ℏ, and
the classical phase space volume. The number of states in
this case is determined by the phase volume of a system with
dimension d. The case of Hermitian operators is now
well understood on both mathematical and physical grounds
(Landau and Lifshitz, 1989; Dimassi and Sjöstrand, 1999).
Surprisingly, only recently it has been realized that the
case of nonunitary operators describing open systems in the
semiclassical limit has a number of new interesting properties
and the concept of the fractal Weyl law (Sjöstrand, 1990;
Zworski, 1999) has been introduced to describe the depend-
ence of the number of resonant Gamow eigenvalues (Gamow,
1928) on ℏ.
The Gamow eigenstates found important applications for

the decay of radioactive nuclei, quantum chemistry reactions,
chaotic scattering and microlasers with chaotic resonators, and
open quantum maps (Gaspard, 1998, 2014; Shepelyansky,
2008). The spectrum of corresponding operators has a com-
plex spectrum λ. The spread width γ ¼ −2 ln jλj of eigenval-
ues λ determines the lifetime of a corresponding eigenstate.
The understanding of the spectral properties of related
operators in the semiclassical limit represents an important
challenge.
According to the fractal Weyl law (Sjöstrand, 1990; Lu,

Sridhar, and Zworski, 2003) the number of Gamow eigen-
values Nγ , which have escape rates γ in a finite bandwidth
0 ≤ γ ≤ γb, scales as

Nγ ∝ ℏ−d=2 ∝ Nd=2; ð5Þ

where d is a fractal dimension of a classical strange
repeller formed by classical orbits nonescaping in future
and past times. In the context of eigenvalues λ of the
Google matrix we have γ ¼ −2 ln jλj. By numerical simula-
tions it has been shown that the law (5) works for a scat-
tering problem in a three-disk system (Lu, Sridhar, and
Zworski, 2003) and quantum chaos maps with absorption
when the fractal dimension d is changed in a broad range
0 < d < 2 (Shepelyansky, 2008; Ermann and Shepelyansky,
2010b).
The fractal Weyl law (5) of open systems with a fractal

dimension d < 2 leads to a striking consequence: only a
relatively small fraction of eigenvalues μW ∼ Nγ=N ∝
ℏð2−dÞ=2 ∝ Nðd−2Þ=2 ≪ 1 has finite values of jλj while almost
all eigenstates of the matrix operator of size N ∝ 1=ℏ
have λ → 0. The eigenstates with finite jλj > 0 are related
to the classical fractal sets of orbits nonescaping neither in the
future nor in the past. A fractal structure of these quantum
fractal eigenstates was investigated by Shepelyansky (2008).

There it was conjectured that the eigenstates of a Google
matrix with finite jλj > 0 will select interesting specific
communities of a network. We see later that the fractal
Weyl law can indeed be observed in certain directed networks
and, in particular, we show in Sec. VI that it naturally appears
for Perron-Frobenius operators of dynamical systems and
Ulam networks.
It is interesting to note that nontrivial complex spectra also

naturally appear in systems of quantum chaos in the presence
of a contact with a measurement device (Bruzda et al., 2010).
The properties of complex spectra of small size orthostochas-
tic (unistochastic) matrices are analyzed by Zyczkowski et al.
(2003). In such matrices the elements can be presented in a
form Sij ¼ O2

ij (Sij ¼ jUijj2), where O is an orthogonal
matrix (U is a unitary matrix). We will see certain similarities
of their spectra with the spectra of directed networks discussed
in Sec. VIII.
Recent mathematical results for the fractal Weyl law are

presented in Nonnenmacher and Zworski (2007) and
Nonnenmacher, Sjoestrand, and Zworski (2014).

VI. ULAM NETWORKS

By construction the Google matrix belongs to the class of
Perron-Frobenius operators which naturally appear in ergodic
theory (Cornfeld, Fomin, and Sinai, 1982) and dynamical
systems with Hamiltonian or dissipative dynamics (Brin and
Stuck, 2002). Ulam (1960) proposed a method, now known as
the Ulam method, for a construction of finite size approx-
imants for the Perron-Frobenius operators of dynamical maps.
The method is based on discretization of the phase space and
construction of a Markov chain based on probability tran-
sitions between such discrete cells given by the dynamics.
Using as an example a simple chaotic map, Ulam made a
conjecture that the finite size approximation converges to the
continuous limit when the cell size goes to zero. Indeed, it has
been proven that for hyperbolic maps in 1 and higher
dimensions the Ulam method converges to the spectrum of
a continuous system (Li, 1976; Blank, Keller, and Liverani,
2002). The probability flows in dynamical systems have rich
and nontrivial features of general importance, like simple and
strange attractors with localized and delocalized dynamics
governed by simple dynamical rules (Lichtenberg and
Lieberman, 1992). Such objects are generic for nonlinear
dissipative dynamics and hence can have relevance for actual
WWW structure. The analysis of Ulam networks, generated
by the Ulam method, allows one to obtain better intuition
about the spectral properties of a Google matrix. The term
Ulam networks was introduced by Shepelyansky and
Zhirov (2010a).

A. Ulam method for dynamical maps

In Fig. 8 we show how the Ulam method works. The phase
space of a dynamical map is divided in equal cells and a
number of trajectories Nc is propagated by a map iteration.
Thus the number of trajectories Nij arrived from cell j to cell i
is determined. Then the matrix of the Markov transition is
defined as Sij ¼ Nij=Nc. By construction this matrix belongs
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to the class of Perron-Frobenius operators which includes the
Google matrix.
The physical meaning of the coarse grain description by a

finite number of cells is that it introduces in the system a noise
of cell size amplitude. Because of that an exact time
reversibility of dynamical equations of chaotic maps is
destroyed due to exponential instability of chaotic dynamics.
This time reversibility breaking is illustrated by an example of
the Arnold cat map by Ermann and Shepelyansky (2012). For
the Arnold cat map on a long torus it is shown that the
spectrum of the Ulam approximate of the Perron-Frobenius
(UPFO) is composed of a large group of complex eigenvalues
with γ ∼ 2h ≈ 2, and real eigenvalues with j1 − λj ≪ 1 cor-
responding to a statistical relaxation to the ergodic state at
λ ¼ 1 described by the Fokker-Planck equation [here h is the
Kolmogorov-Sinai entropy of the map being here equal to the
Lyapunov exponent, see, e.g., Chirikov (1979)].
For fully chaotic maps the finite cell size, corresponding to

added noise, does not significantly affect the dynamics and the
discrete UPFO converges to the limiting case of the continu-
ous Perron-Frobenius operator (Li, 1976; Blank, Keller, and
Liverani, 2002). The Ulam method finds useful applications in
the studies of dynamics of molecular systems and coherent
structures in dynamical flows (Froyland and Padberg, 2009);
see also Frahm and Shepelyansky (2010).

B. Chirikov standard map

However, for symplectic maps with a divided phase space, a
noise present in the Ulam method significantly affects the
original dynamics leading to a destruction of islands of stable
motion and Kolmogorov-Arnold-Moser (KAM) curves. A
famous example of such a map is the Chirikov standard map
which describes the dynamics of many physical systems
(Chirikov, 1979; Chirikov and Shepelyansky, 2008):

ȳ ¼ ηyþ Ks

2π
sinð2πxÞ; x̄ ¼ xþ ȳ ðmod 1Þ: ð6Þ

Here bars mark the variables after one map iteration and we
consider the dynamics to be periodic on a torus so that
0 ≤ x ≤ 1, −1=2 ≤ y ≤ 1=2; Ks is a dimensionless parameter
of chaos. At η ¼ 1 we have an area-preserving symplectic

map, considered in this section; for 0 < η < 1 we have a
dissipative dynamics analyzed in Sec. VI.C.
Since the finite cell size generates noise and destroys the

KAM curves in the map (6) at η ¼ 1, one should use the
generalized Ulam method (Frahm and Shepelyansky, 2010),
where the transition probabilities Nij=Nc are collected along
one chaotic trajectory. In this construction a trajectory visits
only those cells which belong to one connected chaotic
component. Therefore the noise induced by the discretization
of the phase space does not lead to a destruction of invariant
curves, in contrast to the original Ulam method (Ulam, 1960),
which uses all cells in the available phase space. Since a
trajectory is generated by a continuous map it cannot penetrate
inside the stability islands and on a physical level of rigor one
can expect that, due to ergodicity of dynamics on one
connected chaotic component, the UPFO constructed in such
a way should converge to the Perron-Frobenius operator of the
continuous map on a given subspace of chaotic component.
The numerical confirmations of this convergence are pre-
sented by Frahm and Shepelyansky (2010).
We consider the map (6) at Ks ¼ 0.971 635 406 when the

golden KAM curve is critical. Because of the symmetry of the
map with respect to x → 1 − x and y → −y we can use only
the upper part of the phase space with y ≥ 0 dividing it in
M ×M=2 cells. At that Ks we find that the number of cells
visited by the trajectory in this half square scales as Nd ≈
CdM2=2 with Cd ≈ 0.42. This means that the chaotic com-
ponent contains about 40% of the total area which is in good
agreement with the known result of Chirikov (1979).
The spectrum of the UPFO matrix S for the phase space

division by 280 × 208=2 cells is shown in Fig. 9(b). In a first
approximation the spectrum λ of S is more or less homo-
geneously distributed in the polar angle φ defined as
λj ¼ jλjj expðiφjÞ. With the increase of matrix size Nd the
two-dimensional density of states ρðλÞ converges to a limiting
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FIG. 9 (color online). Complex spectrum of eigenvalues λj,
shown by gray (red) dots, for the UPFO of two variants of the
Chirikov standard map (6); the unit circle jλj ¼ 1 is shown by a
light gray (green) curve, the unit eigenvalue at λ ¼ 1 is shown as a
gray (larger red) dot. (a) The Chirikov standard map at dissipation
η ¼ 0.3 and Ks ¼ 7; the phase space is covered by 110 × 110
cells and the UPFO is constructed by many trajectories with
random initial conditions generating transitions from one cell into
another. From Ermann and Shepelyansky, 2010b. (b) The Chir-
ikov standard map without dissipation at Ks ¼ 0.971 635 406
with an UPFO constructed from a single trajectory of length 1012

in the chaotic domain and 280 × 280=2 cells to cover the phase
space. From Frahm and Shepelyansky, 2010.
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FIG. 8. Illustration of the operation of the Ulam method: the
phase space ðx; yÞ is divided in N ¼ Nx × Ny cells, Nc trajecto-
ries start from cell j and the number of trajectories Nij arrived to a
cell i from a cell j is collected after a map iteration. Then the
matrix of Markov transitions is defined as Sij ¼ Nij=Nc, by
construction

P
N
i¼1 Sij ¼ 1.
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distribution (Frahm and Shepelyansky, 2010). With the help of
the Arnoldi method it is possible to compute a few thousand
of eigenvalues with largest absolute values jλj for maximal
M ¼ 1600 with the total matrix size N ¼ Nd ≈ 5.3 × 105.
The eigenstate at λ ¼ 1 is homogeneously distributed over

the chaotic component at M ¼ 25 (Fig. 10) and higher M
values (Frahm and Shepelyansky, 2010). This results from the
ergodicity of motion and the fact that for symplectic maps the
measure is proportional to the phase space area (Chirikov,
1979; Cornfeld, Fomin, and Sinai, 1982). Examples of other
right eigenvalues of S at real and complex eigenvalues λ with
jλj < 1 are also shown in Fig. 10. For λ2 the eigenstate
corresponds to some diffusive mode with two nodal lines,
while the other two eigenstates are localized around certain
resonant structures in phase space. This shows that eigenstates
of the matrixG (and S) are related to specific communities of a
network.
With an increase of the number of cells M2=2 there are

eigenvalues which become more and more close to the unit
eigenvalue. This is shown to be related to an algebraic
statistics of Poincaré recurrences and long time sticking of
trajectories in the vicinity of critical KAM curves. At the same
time for symplectic maps the measure is proportional to the
area so that we have dimension d ¼ 2 and hence we have a
usual Weyl law with Nγ ∝ N. More details can be found in
Frahm and Shepelyansky (2010, 2013).

C. Dynamical maps with strange attractors

The fractal Weyl law (5) has initially been proposed for
quantum systems with chaotic scattering. However, it is
natural to assume that it should also work for Perron-
Frobenius operators of dynamical systems. Indeed, the

mathematical results for the Selberg zeta function indicated
that the law (5) should remain valid for the UFPO
(Nonnenmacher, Sjoestrand, and Zworski, 2014). A detailed
test of this conjecture (Ermann and Shepelyansky, 2010b) was
performed for the map (6) with dissipation at 0 < η < 1, when
at large Ks the dynamics converges to a strange attractor in the
range −2 < y < 2, and for the nondissipative case η ¼ 1 with
absorption, where all orbits leaving the interval −aKs=4π ≤
y ≤ aKs=4π are absorbed after one iteration (in both cases
there is no modulus in y).
An example of the spectrum of UPFO for the model with

dissipation is shown in Fig. 9(a). We see that now, in contrast
to the symplectic case of Fig. 9(b), the spectrum has a
significant gap which separates the eigenvalue λ ¼ 1 from
the other eigenvalues with jλj < 0.7. For the case with
absorption the spectrum has a similar structure but now with
jλj < 1 for the leading eigenvalue λ since the total number of
initial trajectories decreases with the number of map iterations
due to absorption implying that for this case

P
iSij < 1 with

S being the UPFO.
It is established that the distribution of the density of states

dW=dγ (or dW=djλj) converges to a fixed distribution in the
limit of large N or cell size going to zero (Ermann and
Shepelyansky, 2010b, see Fig. 4). This demonstrates the
validity of the Ulam conjecture for considered systems.
Examples of two eigenstates of the UFPO for these two

models are shown in Fig. 11. The fractal structure of
eigenstates is well visible. For the dissipative case without
absorption we have eigenstates localized on the strange
attractor. For the case with absorption eigenstates are located
on a strange repeller corresponding to an invariant set of
nonescaping orbits. The fractal dimension d of these classical
invariant sets can be computed by the usual box-counting
method for dynamical systems. It is important to note that for
the case with absorption it is more natural to measure the
dimension de of the set of orbits nonescaping in the future.

(b)(a)

(d)(c)

FIG. 10 (color online). Density plots of absolute values of the
eigenvectors of the UPFO obtained by the generalized Ulam
method with a single trajectory of 1012 iterations of the Chirikov
standard map at Ks ¼ 0.971 635 406. The phase space is shown
in the area 0 ≤ x ≤ 1, 0 ≤ y ≤ 1=2; the UPFO is obtained from
M ×M=2 cells placed in this area. (a) Eigenvector ψ0 with
eigenvalue λ0 ¼ 1; (b) eigenvector ψ2 with real eigenvalue
λ2 ¼ 0.99 878 108; (c) eigenvector ψ6 with complex eigenvalue
λ6 ¼ −0.49 699 831þ i0.86 089 756 ≈ jλ6jei2π=3; (d) eigen-
vector ψ13 with complex eigenvalue λ13 ¼ 0.30 580 631þ
i0.94 120 900 ≈ jλ13jei2π=5. (a) Corresponding to M ¼ 25 while
(b)–(d) have M ¼ 800. Color is proportional to the amplitude
with black (blue) for zero and gray (red) for the maximal value.
From Frahm and Shepelyansky, 2010.

(b)(a)

FIG. 11 (color online). Phase space representation of eigenstates
of the UFPO S for N ¼ 110 × 110 cells (color is proportional to
absolute value jψ ijwith gray (red) for maximum and black (blue)
for zero). (a) An eigenstate with maximum eigenvalue λ1 ¼ 0.756
of the UFPO of map (6) with absorption at Ks ¼ 7, a ¼ 2, η ¼ 1,
the space region is (−aKs=4π ≤ y ≤ aKs=4π, 0 ≤ x ≤ 1), the
fractal dimension of the strange repeller set nonescaping in the
future is de ¼ 1þ d=2 ¼ 1.769. (b) An eigenstate at λ ¼ 1 of
the UFPO of map (6) without absorption at Ks ¼ 7, η ¼ 0.3, the
shown space region is (−1=π ≤ y ≤ 1=π, 0 ≤ x ≤ 1), and the
fractal dimension of the strange attractor is d ¼ 1.532. From
Ermann and Shepelyansky, 2010b.
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Because of the time reversal symmetry of the continuous map
the dimension of the set of orbits nonescaping in the past is
also de. Thus the phase space dimension 2 is composed of
2 ¼ de þ de − d and de ¼ 1þ d=2, where d is the dimension
of the invariant set of orbits nonescaping neither in the future
nor in the past. For the case with dissipation without
absorption all orbits drop on a strange attractor and we have
the dimension of invariant set de ¼ d.

D. Fractal Weyl law for Perron-Frobenius operators

The direct verification of the validity of the fractal Weyl law
(5) is presented in Fig. 12. The number of eigenvalues Nγ in
the range with 0 ≤ γ ≤ γb (γ ¼ −2 ln jλj) is numerically
computed as a function of matrix size N. The fit of the
dependence NγðNÞ, as shown in Fig. 12(a), allows one to
determine the exponent ν in the relation Nγ ∝ Nν. The
dependence of ν on the fractal dimension d, computed from
the invariant fractal set by the box-counted method, is shown
in Fig. 12(b). The numerical data are in good agreement with
the theoretical fractal Weyl law dependence ν ¼ d=2. This law
works for a variety of parameters for the system (6) with
absorption and dissipation and also for a strange attractor in
the Hénon map (x̄ ¼ yþ 1 − ax2; ȳ ¼ bx). We attribute
certain deviations, visible in Fig. 12 especially for Ks ¼ 7,
to the fact that at Ks ¼ 7 there is a small island of stability at
η ¼ 1, which can produce a certain influence on the dynamics.
The physical origin of the law (5) can be understood in a

simple way: the number of states Nγ with finite values of γ is
proportional to the number of cells Nf ∝ Nd=2 on the fractal
set of a strange attractor. Indeed, the results for the overlap
measure show that the eigenstates Nγ have a strong overlap

with the steady state while the states with λ → 0 have very
small overlap. Thus almost all N states have eigenvalues λ →
0 and only a small fraction of states on a strange attractor or
repeller Nγ ∝ Nf ∝ Nd=2 ≪ N has finite values of λ. We also
checked that the participation ratio ξ of the eigenstate at λ ¼ 1

grows as ξ ∼ Nf ∝ Nd=2 in agreement with the fractal Weyl
law (Ermann and Shepelyansky, 2010b).

E. Intermittency maps

The properties of the Google matrix generated by one-
dimensional intermittency maps have been analyzed by
Ermann and Shepelyansky (2010a). It was found that for
such Ulam networks there are many eigenstates with eigen-
values jλj being very close to unity. The PageRank of such
networks at α ¼ 1 is characterized by a power law decay with
an exponent determined by the parameters of the map. It is
interesting to note that usually for the WWW the PageRank
probability is proportional to a number of ingoing links
distribution (Litvak, Scheinhardt, and Volkovich, 2008). For
the case of intermittency maps the decay of PageRank is
independent of the number of ingoing links. In addition, for α
close to unity a decay of the PageRank has an exponent β ≈ 1
but at smaller values α ≤ 0.9 the PageRank becomes com-
pletely delocalized. It is shown that the delocalization depends
on the intermittency exponent of the map. This indicates that a
rather dangerous phenomenon of PageRank delocalization
can appear for certain directed networks. At the same time the
one-dimensional intermittency map still generates a relatively
simple structure of links with the typical number of links per
node being close to unity. Such a case is probably not very
typical for real networks. Therefore it is useful to analyze
richer Ulam networks with a larger number of links per node.

F. Chirikov typical map

With this aim we consider the Ulam networks generated
by the Chirikov typical map with dissipation studied by
Shepelyansky and Zhirov (2010a). The map, introduced by
Chirikov in 1969 for a description of continuous chaotic
flows, has the form

ytþ1 ¼ ηyt þ ks sinðxt þ θtÞ; xtþ1 ¼ xt þ ytþ1: ð7Þ

Here the dynamical variables x; y are taken at integer moments
of time t. Also x has the meaning of a phase variable and y is a
conjugated momentum or action. The phases θt ¼ θtþT are T
random phases periodically repeated along time t. We stress
that their T values are chosen and fixed once and they are not
changed during the dynamical evolution of x; y. We consider
the map in the region of Fig. 13 (0 ≤ x < 2π;−π ≤ y < π)
with the 2π-periodic boundary conditions. The parameter
0 < η < 1 gives a global dissipation. The properties of the
symplectic map at η ¼ 1 have been studied in detail by Frahm
and Shepelyansky (2009). The dynamics is globally chaotic
for ks > kc ≈ 2.5=T3=2 and the Kolmogorov-Sinai entropy is
h ≈ 0.29ks2=3 [more details about the Kolmogorov-Sinai
entropy can be found in Chirikov (1979), Cornfeld, Fomin,
and Sinai (1982), and Brin and Stuck (2002)]. A bifurcation
diagram at η < 1 shows a series of transitions between fixed
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FIG. 12 (color online). (a) The dependence of the integrated
number of states Nγ with decay rates 0 ≤ γ ≤ γb ¼ 16 on the
size N of the UFPO matrix S for the map (6) at Ks ¼ 7. The
fits of numerical data, shown by dashed straight lines, give
ν ¼ 0.590; de ¼ 1þ d=2 ¼ 1.643 (at a ¼ 1); ν ¼ 0.772;
de ¼ 1þ d=2 ¼ 1.769 (at a ¼ 2); ν ¼ 0.716; d ¼ 1.532 (at
η ¼ 0.3); ν ¼ 0.827; d ¼ 1.723 (at η ¼ 0.6). (b) The fractal Weyl
exponent ν as a function of fractal dimension d of the invariant
fractal set for the map (6) with a strange attractor ðη < 1Þ at
Ks ¼ 15 [gray (green) crosses], Ks ¼ 12 [gray (red) squares],
Ks ¼ 10 [gray (orange) stars], and Ks ¼ 7 [black (blue) trian-
gles]; for a strange repeller ðη ¼ 1Þ at Ks ¼ 7 (black points) and
for a strange attractor for the Hénon map at standard parameters
a ¼ 1.2; 1.4, b ¼ 0.3 (green diamonds). The straight dashed line
shows the fractal Weyl law dependence ν ¼ d=2. From Ermann
and Shepelyansky, 2010b.
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points, simple and strange attractors. Here we present results
for T ¼ 10, ks ¼ 0.22, η ¼ 0.99 and a specific random set of
θt given in Shepelyansky and Zhirov (2010a).
Because of the exponential instability of motion one cell in

the Ulam method gives transitions to kcl ≈ expðhTÞ other
cells. According to this relation a large number of cells kcl can
be coupled at large T and h. For parameters of Fig. 13 one
finds an approximate power law distribution of ingoing and
outgoing links in the corresponding Ulam network with the
exponents μin ≈ μout ≈ 1.9. The variation of the PageRank
vector with the damping factor α is shown in Fig. 13 on the
phase plane ðx; yÞ. For α ¼ 1 the PageRank is concentrated in
a vicinity of a simple attractor composed of several fixed
points on the phase plane. Thus the dynamical attractors are
the most popular nodes from the network viewpoint. With a
decrease of α down to 0.95, 0.85 values we find a stronger and
stronger delocalization of PageRank over the whole phase
space.
The delocalization with a decrease of α is also well seen in

Fig. 14, where we show the Pj dependence on PageRank
index j with a monotonic decreasing probability Pj. At α ¼ 1

we have an exponential decay of Pj with j that corresponds to
a Boltzmann-type distribution where a noise produced by a
finite cell size in the Ulam method is compensated by
dissipation. For α ¼ 0.95 the random jumps of a network
surfer, induced by the term ð1 − αÞ=N in Eq. (1), produce a
power law decay of Pj ∝ 1=jβ with β ≈ 0.48. For α ¼ 0.85 the
PageRank probability is flat and completely delocalized over
the whole phase space.
The analysis of the spectrum of S for the map (7) for the

parameters of Fig. 14 shows the existence of eigenvalues
being very close to λ ¼ 1;, however, there is no exact
degeneracy as is the case for UK universities which we
discuss later. The spectrum is characterized by the fractal Weyl
law with the exponent ν ≈ 0.85. For eigenstates with jλj < 1

the values of IPR ξ are less than 300 for a matrix size N ≈
1.4 × 104 showing that eigenstates are localized. However, for
the PageRank the computations can be done with larger matrix
sizes reaching a maximal value of N ¼ 6.4 × 105. The
dependence of ξ on α shows that a delocalization transition
of the PageRank vector takes place for α < αc ≈ 0.95. Indeed,
at α ¼ 0.98 we have ξ ≈ 30, while at α ≈ 0.8 the IPR value of
PageRank becomes comparable with the whole system size

ξ ≈ 5 × 105 ∼ N ¼ 6.4 × 105 [see Fig. 9 of Shepelyansky and
Zhirov (2010a)].
The example of Ulam networks considered here shows

that a dangerous phenomenon of PageRank delocalization
can take place under certain conditions. This delocalization
may represent a serious danger for the efficiency of search
engines since for a delocalized flat PageRank the ranking of
nodes becomes very sensitive to small perturbations and
fluctuations.

VII. LINUX KERNEL NETWORKS

Modern software codes now represent complex large-scale
structures and analysis and optimization of their architecture
become a challenge. An interesting approach to this problem,
based on a directed network construction, was proposed by
Chepelianskii (2010). Here we present results obtained for
such networks.

A. Ranking of software architecture

Following Chepelianskii (2010) we considered the pro-
cedure call networks (PCN) for open source programs with
emphasis on the code of Linux Kernel (Linux, 2010a) written
in the C-programming language (Kernighan and Ritchie,
1978). In this language the code is structured as a sequence
of procedures calling each other. Because of that feature the
organization of a code can be naturally represented as a PCN,
where each node represents a procedure and each directed link
corresponds to a procedure call. For the Linux source code
such a directed network is built by its lexical scanning with the
identification of all the defined procedures. For each of them a
list keeps track of the procedure calls inside their definition.
An example of the obtained network for a toy code with two

procedures start_kernel and printk is shown in Fig. 15. The in
and out degrees of this model, noted as k and k̄, are shown in
Fig. 15. These numbers correspond to the number of outgoing

(a) (b) (c)

FIG. 13 (color online). PageRank probability Pj for the Google
matrix generated by the Chirikov typical map at T ¼ 10,
ks ¼ 0.22, and η ¼ 0.99 with (a) α ¼ 1, (b) α ¼ 0.95, and
(c) α ¼ 0.85. The probability Pj is shown in the phase space
region 0 ≤ x < 2π;−π ≤ y < π which is divided in N ¼
3.6 × 105 cells; Pj is zero for black (blue) and maximal for gray
(red). From Shepelyansky and Zhirov, 2010a.

(a) (b) (c)

FIG. 14 (color online). Dependence of PageRank probability Pj
on PageRank index j for number of cells in the UFPO being
N ¼ 104, 9 × 104, 3.6 × 105, and 1.44 × 106 [larger N have more
dark and more long curves in (b) and (c)]. (a) This order of N is
for curves from bottom to top (curves for N ¼ 3.6 × 105 and
1.44 × 106 practically coincide in this panel); for the online
version we note that the above order of N values corresponds to
red, magenta, green, and blue curves, respectively. The dashed
line in (a) shows an exponential Boltzmann decay (see text, the
line is shifted in j for clarity). The dashed straight line in (b)
shows the fit Pj ∼ 1=jβ with β ¼ 0.48. Other parameters,
including the values of α, and panel order are as in Fig. 13.
From Shepelyansky and Zhirov, 2010a.
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and ingoing calls for each procedure. The obtained in- and
outdegree probability distributions PinðkÞ and Poutðk̄Þ are
shown Fig. 15 for different Linux Kernel releases. These
distributions are well described by power law dependences
PinðkÞ ∝ 1=kμin and Poutðk̄Þ ∝ 1=k̄μout with μin ¼ 2.0� 0.02
and μout ¼ 3.0� 0.1. These values of exponents are close to
those found for the WWW (Donato et al., 2004; Pandurangan,
Raghavan, and Upfal, 2006). If only calls to distinct functions
are counted in the outdegree distribution then the exponent
drops to μout ≈ 5, whereas μin remains unchanged. It is
important that the distributions for the different kernel releases
remain stable even if the network size increases from N ¼
2751 for version V1.0 to N ¼ 285 509 for the latest version
V2.6.32 taken into account in this study. This confirms the
free-scale structure of the software architecture of the Linux
Kernel network.
The probability distributions of PageRank and CheiRank

vectors are also well described by power laws with exponents
βin ≈ 1 and βout ≈ 0.5 being in good agreement with the usual
relation β ¼ 1=ðμ − 1Þ [see Fig. 2 in Chepelianskii (2010)].
For V2.6.32 the top three procedures of PageRank at α ¼ 0.85
are printk, memset, and kfree with probabilities 0.024, 0.012,
and 0.011, respectively, while at the top of CheiRank we have
start_kernel, btrfs_ioctl, and menu_finalize with, respectively,
0.000 280, 0.000 255, and 0.000 250. These procedures per-
form rather different tasks with printk reporting messages and
start_kernel initializing the Kernel and managing the repar-
tition of tasks. This gives an idea that both PageRank and
CheiRank order can be useful to highlight different aspects of
directed and inverted flows on our network. Of course, in the
context of the WWW ingoing links related to PageRank are
less vulnerable as compared to outgoing links related to
CheiRank, which can be modified by a user rather easily.

However, in other type of networks both directions of links
appear in a natural manner and thus both vectors of PageRank
and CheiRank play an important and useful role.
For the Linux Kernel network the correlator κ Eq. (4)

between PageRank and CheiRank vectors is close to zero (see
Fig. 6). This confirms the independence of two vectors. The
density distribution of nodes of the Linux Kernel network,
shown in Fig. 7(b), has a homogeneous distribution along
lnK þ lnK� ¼ const lines demonstrating once more the
absence of correlations between PðKiÞ and P�ðKi

�Þ.
Indeed, such homogeneous distributions appear if nodes are
generated randomly with factorized probabilities PiPi

�

(Chepelianskii, 2010; Zhirov, Zhirov, and Shepelyansky,
2010). Such a situation seems to be rather generic for software
architecture. Indeed, other open software codes also have a
small value for a correlator, e.g., OpenSource software
including GIMP 2.6.8 has κ ¼ −0.068 at N ¼ 17 540 and X
Windows server R7.1-1.1.0 has κ ¼ −0.027 at N ¼ 14 887. In
contrast to these software codes the Wikipedia networks have
large values of κ and inhomogeneous distributions in ðK;K�Þ
plane (see Figs. 6 and 7).
The physical reasons for the absence of correlations

between PðKÞ and P�ðK�Þ have been explained by
Chepelianskii (2010) on the basis of the concept of “separa-
tion of concerns” in software architecture (Dijkstra, 1982). It
is argued that a good code should decrease the number of
procedures that have high values of both PageRank and
CheiRank since such procedures will play a critical role in
error propagation since they are both popular and highly
communicative at the same time. For example, in the Linux
Kernel do_fork, that creates new processes, belongs to this
class. Such critical procedures may introduce subtle errors
because they entangle otherwise independent segments of
code. These observations suggest that the independence
between popular procedures, which have high PðKiÞ and
fulfill important but well-defined tasks, and communicative
procedures, which have high P�ðKi

�Þ and organize and assign
tasks in the code, is an important ingredient of well-structured
software.

B. Fractal dimension of Linux Kernel networks

The spectral properties of the Linux Kernel network have
been analyzed by Ermann, Chepelianskii, and Shepelyansky
(2011). At large N the spectrum is obtained with the help of
the Arnoldi method from the ARPACK library. This allows
one to find eigenvalues with jλj > 0.1 for the maximal N at
V2.6.32. An example of the complex spectrum λ of G is
shown in Fig. 16(a). There are clearly visible lines at real axis
and polar angles φ ¼ π=2; 2π=3; 4π=3; 3π=2. The latter are
related to certain cycles in procedure calls, e.g., an eigenstate
at λi ¼ 0.85 expði2π=3Þ is located only on six nodes. The
spectrum of G� has a similar structure.
The network size N grows with the version number of the

Linux Kernel corresponding to its evolution in time. We
determine the total number of states Nλ with 0.1 < jλj ≤ 1 and
0.25 < jλj ≤ 1. The dependence of Nλ on N, shown in
Fig. 16(b), clearly demonstrates the validity of the fractal
Weyl law with an exponent ν ≈ 0.63 for G (we find ν� ≈ 0.65
for G�). We take the values of ν for λ ¼ 0.1, where the number
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FIG. 15 (color online). The diagram in the center represents the
PCN of a toy kernel with two procedures written in the
C-programming language. The data in (a) and (b) show outdegree
and indegree probability distributions Poutðk̄Þ and PinðkÞ, re-
spectively. The colors correspond to different Kernel releases.
The most recent version 2.6.32, with N ¼ 285 509 and an
average of 3.18 calls per procedure, is represented in gray
(red). Older versions (2.4.37.6, 2.2.26, 2.0.40, 1.2.12, and 1.0)
with N respectively equal to (85 756, 38 766, 14 079, 4358, and
2751) follow the same behavior. The dashed curve in (a) shows
the outdegree probability distribution if only calls to distinct
destination procedures are kept. From Chepelianskii, 2010.
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of eigenvalues Nλ gives better statistics. Within statistical
errors the value of ν is not sensitive to the cutoff value at small
λ. The matrix G� has slightly higher values of ν. These results
show that the PCN of the Linux Kernel has a fractal dimension
d ¼ 2ν ≈ 1.26 for G and d ¼ 2ν ≈ 1.3 for G�.
To check that the fractal dimension of the PCN indeed has

this value, the dimension of the network is computed by
another direct method known as the cluster growing method
(Song, Havlin, and Makse, 2005). In this method the average
mass or number of nodes hMci is computed as a function of
the network distance l counted from an initial seed node with
further averaging over all seed nodes. For a dimension d the
mass hMci should grow as hMci ∝ ld that allows one to
determine the value of d for a given network. Note that this
method should be generalized to the case of directed networks.
For that the network distance l is computed following only
outgoing links. The average of hMcðlÞi is done over all nodes.
Because of global averaging the method gives the same result
for the matrix with an inverted link direction (indeed, the total
number of outgoing links is equal to the number of ingoing
links). However, as established by Ermann, Chepelianskii, and
Shepelyansky (2011), the fractal dimension obtained by this
generalized method is very different from the case of a
converted undirected network, when each directed link is
replaced by an undirected one. The average dimension
obtained with this method for PCN is d ¼ 1.4 even if a
certain 20% increase of d appears for the latest Linux version
V2.6. We attribute this deviation for the version V2.6 to the
well-known fact that significant rearrangements in the Linux
Kernel have been done after version V2.4 (Linux, 2010a).
Thus in view of these restrictions we consider that there is

rather good agreement of the fractal dimension obtained from
the fractal Weyl law with d ≈ 1.3 and the value obtained with

the cluster growing method which gives an average d ≈ 1.4.
The fact that d is approximately the same for all versions up to
V2.4 means that the Linux Kernel is characterized by a self-
similar fractal growth in time. The closeness of d to unity
signifies that procedure calls are almost linearly ordered that
corresponds to a good code organization. Of course, the fractal
Weyl law gives the dimension d obtained during the time
evolution of the network. This dimension is not necessary the
same as for a given version of the network of fixed size.
However, one can expect that the growth goes in a self-similar
way (Dorogovtsev, Goltsev, and Mendes, 2008) and that the
static dimension is close to the dimension value emerging
during the time evolution. This can be viewed as some kind of
ergodicity conjecture. Our data show that this conjecture
works with good accuracy up to the Linux Kernel V.2.6.
Thus the results obtained by Ermann, Chepelianskii, and

Shepelyansky (2011) and described here confirm the validity
of the fractal Weyl law for the Linux Kernel network with the
exponent ν ≈ 0.65 and the fractal dimension d ≈ 1.3. It is
important to note that the fractal Weyl exponent ν is not
sensitive to the exponent β characterizing the decay of the
PageRank. Indeed, the exponent β remains practically
the same for the WWW (Donato et al., 2004) and the PCN
of the Linux Kernel (Chepelianskii, 2010), while the values
of fractal dimension are different with d ≈ 4 for the WWW
and d ≈ 1.3 for the PCN (Ermann, Chepelianskii, and
Shepelyansky, 2011).
The analysis of the eigenstates of G and G� shows that their

IPR values remain small (ξ < 70) compared to the matrix size
N ≈ 2.8 × 105 showing that they are well localized on certain
selected nodes.

VIII. WWW NETWORKS OF UK UNIVERSITIES

The WWW networks of certain UK universities for the
years between 2002 and 2006 are publicly available at http://
cybermetrics.wlv.ac.uk/database/. Because of their modest
size, these networks are well suitable for a detailed study
of PageRank, CheiRank, complex eigenvalue spectra, and
eigenvectors (Frahm, Georgeot, and Shepelyansky, 2011).

A. Cambridge and Oxford University networks

We start our analysis of WWW university networks from
those of Cambridge and Oxford 2006. For example, in Fig. 5
we show the dependence of PageRank (CheiRank) probabil-
ities P ðP�Þ on rank indexK (K�) for the WWWof Cambridge
2006 at α ¼ 0.85. The decay is satisfactorily described by a
power law with the exponent β ¼ 0.75 (β ¼ 0.61).
The complex eigenvalue spectrum and the invariant sub-

space structure (see Sec. III.C) have been studied in great
detail for the cases of Cambridge 2006 and Oxford 2006. For
Cambridge 2006 (Oxford 2006) the network size is N ¼
212 710 (200 823) and the number of links is Nl ¼ 2 015 265
(1 831 542). There are ninv ¼ 1543 (1889) invariant subspa-
ces, with maximal dimension dmax ¼ 4656 (1545), together
they contain Ns ¼ 48 239 (30 579) subspace nodes leading to
3508 (3275) eigenvalues (of the matrix S) with jλjj ¼ 1 of
which n1 ¼ 1832 (2360) are at λj ¼ 1 (about 1% of N). The
last number n1 is larger than the number of invariant subspaces
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FIG. 16 (color online). (a) Distribution of eigenvalues λ in the
complex plane for the Google matrix G of the Linux Kernel
version 2.6.32 with N ¼ 285 509 and α ¼ 0.85; the solid curves
represent the unit circle and the lowest limit of computed
eigenvalues. (b) The dependence of the integrated number of
eigenvalues Nλ with jλj > 0.25 [gray (red) squares] and jλj > 0.1
(black circles) as a function of the total number of processes N for
versions of Linux Kernels. The values of N correspond (in
increasing order) to Linux Kernel versions 1.0, 1.1, 1.2, 1.3, 2.0,
2.1, 2.2, 2.3, 2.4, and 2.6. The power law Nλ ∝ Nν has fitted
values νjλj>0.25 ¼ 0.622� 0.010 and νjλj>0.1 ¼ 0.630� 0.015.
The inset shows data for the Google matrix G� with inverse
link directions; the corresponding exponents are ν�jλj>0.25 ¼
0.696� 0.010 and ν�jλj>0.1 ¼ 0.652� 0.007. From Ermann,

Chepelianskii, and Shepelyansky, 2011.
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ninv since each of the subspaces has at least one unit
eigenvalue because each subspace is described by a full
representation matrix of the Perron-Frobenius type. To deter-
mine the complex eigenvalue spectrum one can apply exact
diagonalization on each subspace and the Arnoldi method on
the remaining core space.
The spectra of all subspace eigenvalues and nA ¼ 20 000

core space eigenvalues of the matrices S and S� are
shown in Fig. 17. Even if the decay of PageRank and
CheiRank probabilities with rank index is rather similar for
both universities [see Fig. 1 in Frahm, Georgeot, and
Shepelyansky (2011)] the spectra of two networks are very
different. Thus the spectrum contains much more detailed
information about the network features compared to the rank
vectors.
At the same time the spectra of two universities have certain

similar features. Indeed, one can identify cross and triple-star
structures. These structures are very similar to those seen in
the spectra of random orthostochastic matrices of small size
N ¼ 3; 4 shown in Fig. 18 from Zyczkowski et al. (2003)
(spectra of unistochastic matrices have a similar structure).
The spectrum borders, determined analytically by Zyczkowski

et al. (2003) for these N values, are also shown. The similarity
is more visible for the spectrum of the S� case of Figs. 17(c)
and 17(d). We attribute this to a larger randomness in outgoing
links which have more fluctuations compared to ingoing links,
as discussed by Eom et al. (2013). The similarity of spectra of
Fig. 17 with those of random matrices in Fig. 18 indicates that
there are dominant triple and quadruple structures of nodes
present in the university networks which are relatively weakly
connected to other nodes.
The core space submatrix Scc of Eq. (2) does not obey the

column sum normalization due to nonvanishing elements in
the block Ssc which allow for a small but finite escape
probability from core space to subspace nodes. Therefore
the maximum eigenvalue of the core space (of the matrix Scc)
is below unity. For Cambridge 2006 (Oxford 2006) it is given

by λðcoreÞ1 ¼ 0.999 874 353 718 (0.999 982 435 081) with a

quite clear gap 1 − λðcoreÞ1 ∼ 10−4 (∼10−5).

B. Universal emergence of PageRank

For α ¼ 1 the leading eigenvalue λ ¼ 1 is highly degenerate
due to the subspace structure. This degeneracy is lifted for
α < 1 with a unique eigenvector, the PageRank, for the
leading eigenvalue. The question arises how does the
PageRank emerge if 1 − α ≪ 1. Following Frahm,
Georgeot, and Shepelyansky (2011), an answer is obtained
from a formal matrix expression:

P ¼ ð1 − αÞðI − αSÞ−1e=N; ð8Þ

where the vector e has unit entries on each node and I is the
unit matrix. Then, assuming that S is diagonalizable (with no
nontrivial Jordan blocks) we can use the expansion

P ¼
X
λj¼1

cjψ j þ
X
λj≠1

1 − α

ð1 − αÞ þ αð1 − λjÞ
cjψ j; ð9Þ

where ψ j are the eigenvectors of S and cj coefficients
determined by the expansion e=N ¼ P

jcjψ j. Thus Eq. (9)
indicates that in the limit α → 1 the PageRank converges to a
particular linear combination of the eigenvectors with
λj ¼ 1, which are all localized in one of the subspaces. For

a finite but very small value of 1 − α ≪ 1 − λðcoreÞ1 the
corrections for the contributions of the core space nodes

FIG. 18. Spectra λ of 800 random orthostochastic matrices of
size (a) N ¼ 3 and (b) N ¼ 4 (Reλ ¼ x; Imλ ¼ y). Thin lines
denote 3- and 4-hypocycloids, while the thick lines represent the
3-4 interpolation arc. From Zyczkowski et al., 2003.
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FIG. 17 (color online). (a), (b) The complex eigenvalue spectrum
λ of matrix S for the University of Cambridge 2006 and Oxford
2006, respectively. (c), (d) The spectrum λ of matrix S� for
Cambridge 2006 and Oxford 2006. Eigenvalues λ of the core
space are shown by gray (red) points, eigenvalues of isolated
subspaces are shown by black (blue) points, and the gray (green)
curve (when shown) is the unit circle. (e), (f) The fraction j=N of
eigenvalues with jλj > jλjj for the core space eigenvalues [gray
(red) bottom curve] and all eigenvalues [black (blue) top curve]
from top row data for Cambridge 2006 and Oxford 2006. From
Frahm, Georgeot, and Shepelyansky, 2011.
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are ∼ð1 − αÞ=ð1 − λðcoreÞ1 Þ. This behavior is indeed confirmed
by Fig. 19(a) showing the evolution of the PageRank for
different values of 1 − α for the case of Cambridge 2006 and
using a particular method, based on an alternate combination
of the power iteration method and the Arnoldi method (Frahm,
Georgeot, and Shepelyansky, 2011), to numerically determine
the PageRank for very small values of 1 − α ∼ 10−8.
However, for certain of the university networks the core

space gap 1 − λðcoreÞ1 is particularly small, for example,

1 − λðcoreÞ1 ∼ 10−17, such that in standard double-precision
arithmetic the Arnoldi method, applied to the matrix Scc,
does not allow one to determine this small gap. For these
particular cases it is possible to determine rather accurately the
core space gap and the corresponding eigenvector by another
numerical approach called the “projected power method”
(Frahm, Georgeot, and Shepelyansky, 2011). These eigen-
vectors, shown in Fig. 19(b), are strongly localized on a
modest number of nodes ∼102 and with very small but
nonvanishing values on the other nodes. Technically these
vectors extend to the whole core space but practically they
define small quasisubspaces (in the core space domain), where
the escape probability is extremely small (Frahm, Georgeot,
and Shepelyansky, 2011) and in the range 1 − α ∼ 10−8 they
still contribute to the PageRank according to Eq. (9).
In Fig. 20(b) we show that for several of the university

networks the PageRank at 1 − α ¼ 10−8 has actually a
universal form when using the rescaled variables PNs vs
K=Ns with a power law behavior close to P ∝ K−2=3 for
K=Ns < 1. The rescaled data of Fig. 20(a) show that the
fraction of subspaces with dimensions larger than d is well
described by the power law FðxÞ ≈ ð1þ 2xÞ−1.5 with the
dimensionless variable x ¼ d=hdi, where hdi is an average
subspace dimension computed for the WWW of a given
university. The tables of all considered UK universities with
the parameters of their WWW are given in Frahm, Georgeot,
and Shepelyansky (2011). We note that the CheiRank of S�

of Wikipedia 2009 also approximately follows the above
universal distributions. However, for the S matrix of
Wikipedia the number of subspaces is small and statistical
analysis cannot be performed for this case.
The origin of the universal distribution FðxÞ still remains a

puzzle. Possible links with a percolation on directed networks
(Dorogovtsev, Goltsev, and Mendes, 2008) are still to be

elucidated. It also remains unclear how stable this distribution
really is. It works well for UK university networks 2002–
2006. However, for the Twitter network (Frahm and
Shepelyansky, 2012a) such a distribution becomes rather
approximate. Also for the network of Cambridge in 2011,
analyzed by Ermann, Chepelianskii, and Shepelyansky (2012)
and Ermann, Frahm, and Shepelyansky (2013) with
N ≈ 8.9 × 105, Nl ≈ 1.5 × 107, the number of subspaces is
significantly reduced and a statistical analysis of their size
distribution is not relevant. It is possible that an increase of the
number of links per node Nl=N from a typical value of 10 for
UK universities to 35 for Twitter affects this distribution. For
Cambridge 2011 the network entered in a regime when many
links are generated by robots that apparently leads to a change
of its statistical properties.

C. Two-dimensional ranking for university networks

Two-dimensional ranking of network nodes provides a new
characterization of directed networks. Here we consider a
density distribution of nodes (see Sec. IV.C) in the PageRank-
CheiRank plane for examples of two WWW networks of
Cambridge 2006 and ENS Paris 2011 shown in Fig. 21 from
Ermann, Chepelianskii, and Shepelyansky (2012).
The density distribution for Cambridge 2006 shows that

nodes with high PageRank have low CheiRank that corre-
sponds to zero density at low K, K� values. At large K, K�

values there is a maximum line of density which is located not
very far from the diagonal K ≈ K�. The presence of corre-
lations between PðKiÞ and P�ðKi

�Þ leads to a probability
distribution with one main maximum along a diagonal at
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FIG. 19 (color online). (a) PageRank PðKÞ of Cambridge 2006
for 1 − α ¼ 0.1, 10−3, 10−5, and 10−7. (b) First core space

eigenvector ψ ðcoreÞ
1 vs its rank index KðcoreÞ for the UK university

networks with a small core space gap 1 − λðcoreÞ1 < 10−8. From
Frahm, Georgeot, and Shepelyansky, 2011.
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FIG. 20 (color online). (a) Fraction of invariant subspaces F with
dimensions larger than d as a function of the rescaled variable
x ¼ d=hdi. Upper curves correspond to Cambridge (gray/green)
and Oxford (black/blue) for years 2002 to 2006 and middle
curves (shifted down by a factor of 10) correspond to the
university networks of Glasgow, Cambridge, Oxford, Edinburgh,
UCL, Manchester, Leeds, Bristol, and Birkbeck for year 2006
with hdi between 14 and 31. Lower curve (shifted down by a
factor of 100) corresponds to the matrix S� of Wikipedia with
hdi ¼ 4. The thick black line isFðxÞ ¼ ð1þ 2xÞ−1.5. (b) Rescaled
PageRank PNs vs rescaled rank index K=Ns for 1 − α ¼ 10−8

and 3974 ≤ Ns ≤ 48 239 for the same university networks as in
(a) (upper and middle curves, the latter shifted down and left by a
factor of 10). The lower curve (shifted down and left by a factor of
100) shows the rescaled CheiRank of Wikipedia P�Ns vs K�=Ns
with Ns ¼ 21 198. The thick black line corresponds to a
power law with exponent −2=3. From Frahm, Georgeot, and
Shepelyansky, 2011.
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lnK þ lnK� ¼ const. This is similar to the properties of the
density distribution for the Wikipedia network shown in
Fig. 7(a).
The 2DRanking might give new possibilities for informa-

tion retrieval from large databases which are rapidly growing
with time. For example, the size of the Cambridge network
increased by a factor of 4 from 2006 to 2011. At present, Web
robots start automatically to generate new Web pages. These
features can be responsible for the appearance of gaps in the
density distribution in the ðK;K�Þ plane at large K;K� ∼ N
values visible for large-scale university networks such as ENS
Paris in 2011 (see Fig. 21). Such an automatic generation of
links can change the scale-free properties of networks. Indeed,
for ENS Paris a large step in the PageRank distribution
appears (Ermann, Chepelianskii, and Shepelyansky, 2012)
possibly indicating a delocalization transition tendency of the
PageRank that can destroy the efficiency of information
retrieval from the WWW.

IX. WIKIPEDIA NETWORKS

The free online encyclopedia Wikipedia is a large reposi-
tory of human knowledge. Its size is growing, permanently
accumulating a large amount of information and becoming a
modern version of The Library of Babel, described by Borges
(1962). The hyperlink citations between Wikipedia articles
provides an important example of directed networks evolving
in time for many different languages. In particular, the English
edition of August 2009 has been studied in detail (Zhirov,
Zhirov, and Shepelyansky, 2010; Ermann, Chepelianskii, and
Shepelyansky, 2012; Ermann, Frahm, and Shepelyansky,
2013). The effects of time evolution (Eom et al., 2013) and
entanglement of cultures in multilingual Wikipedia editions

have been investigated by Aragón et al. (2012), Eom and
Shepelyansky (2013), and Eom et al. (2015).

A. Two-dimensional ranking of Wikipedia articles

The statistical distribution of links in Wikipedia networks
has been found to follow a power law with the exponents
μin; μout (Capocci et al., 2006; Zlatic et al., 2006; Muchnik
et al., 2007; Zhirov, Zhirov, and Shepelyansky, 2010). The
probabilities of PageRank and CheiRank are shown in Fig. 5.
They are satisfactorily described by a power law decay with
exponents βPR;CR ¼ 1=ðμin;out − 1Þ (Zhirov, Zhirov, and
Shepelyansky, 2010).
The density distribution of articles over the PageRank-

CheiRank plane ðlogN K; logN K�Þ is shown in Fig. 7(a) for
English Wikipedia August 2009. We stress that the density is
very different from those generated by the product of
independent probabilities of P and P� given in Fig. 5. In
the latter case we obtain a density homogeneous along lines
lnK� ¼ − lnK þ const being rather similar to the distribution
for the Linux network also shown in Fig. 7. This result is in
good agreement with the fact that the correlator κ between
PageRank and CheiRank vectors is rather large for Wikipedia
κ ¼ 4.08 while it is close to zero for the Linux network
κ ≈ −0.05.
The difference between PageRank and CheiRank is clearly

seen from the names of the articles with the highest ranks
[ranks of all articles are given in Zhirov, Zhirov, and
Shepelyansky (2010)]. At the top of PageRank we have
(1) the United States, (2) the United Kingdom, and
(3) France, while for CheiRank we find (1) Portal:
Contents/Outline of Knowledge/Geography and Places,
(2) a list of state leaders by year, and (3) Portal: Contents/
Index/Geography and Places. Clearly PageRank selects first
articles on a broadly known subject with a large number of
ingoing links while CheiRank selects first highly communi-
cative articles with many outgoing links. The 2DRank
combines these two characteristics of information flow on a
directed network. At the top of 2DRank K2 we find (1) India,
(2) Singapore, and (3) Pakistan. Thus, these articles are most
known and popular and most communicative at the same time.
The top 100 articles in K;K2; K� are determined for several

categories including countries, universities, people, and phys-
icists. It is shown in Zhirov, Zhirov, and Shepelyansky (2010)
that PageRank recovers about 80% of the top 100 countries
from the SJR database (SJR, 2007), about 75% of the top 100
universities of Shanghai University ranking,1 and, among
physicists, about 50% of the top 100 Nobel winners in
physics. This overlap is lower for 2DRank and even lower
for CheiRank. However, as we see in more detail, 2DRank and
CheiRank highlight other properties being complementary to
PageRank.
We give an example of the top three physicists among those

of 754 registered in Wikipedia in 2010: (1) Aristotle,
(2) Albert Einstein, and (3) Isaac Newton from PageRank;
(1) Albert Einstein, (2) Nikola Tesla, and (3) Benjamin

(b)(a)

FIG. 21 (color online). Density distribution WðK;K�Þ ¼
dNi=dKdK� for networks of universities in the plane of
PageRank K and CheiRank K� indices on a log scale
ðlogN K; logN K�Þ. The density is shown for a 100 × 100 equi-
distant grid in logN K; logN K� ∈ ½0; 1�, the density is averaged
over all nodes inside each cell of the grid, and the normalization
condition is

P
K;K�WðK;K�Þ ¼ 1. Color varies from black for

zero to gray (yellow) for maximum density value WM with a
saturation value ofW1=4

s ¼ 0.5W1=4
M so that the same color is fixed

for 0.5W1=4
M ≤ W1=4 ≤ W1=4

M to show in a better way low
densities. Networks of the University of Cambridge 2006 with
(a) N ¼ 212 710 and ENS Paris 2011 for crawling level 7
with (b) N ¼ 1 820 015. From Ermann, Chepelianskii, and
Shepelyansky, 2012.

1Shanghai ranking, 2010b, “Academic ranking of world univer-
sities,” http://www.shanghairanking.com/.
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Franklin from 2DRank; and (1) Hubert Reeves, (2) Shen Kuo,
and (3) Stephen Hawking from CheiRank. It is clear that
PageRank gives the most known, 2DRank gives the most
known and active in other areas, and CheiRank gives those
who are known and contribute to the popularization of
science. Indeed, e.g., Hubert Reeves and Stephen Hawking
are very well known for their popularization of physics that
increases their communicative power and places them at the
top of CheiRank. Shen Kuo obtained recognized results in an
enormous variety of fields of science that leads to the second
top position in CheiRank even if his activity was about
1000 years ago.
According to Wikipedia ranking the top universities

are (1) Harvard University, (2) the University of Oxford, and
(3) theUniversityofCambridge inPageRank; and (1)Columbia
University, (2) the University of Florida, and (3) Florida State
University in 2DRank and CheiRank. CheiRank and 2DRank
highlight connectivity degrees of universities that leads to the
appearance of a significant number of arts, religious, and
military specialized colleges (12% and 13%, respectively, for
CheiRank and 2DRank), while PageRank has only 1%of them.
CheiRank and 2DRank introduce also a larger number of
relatively small universities who are keeping links to their
alumni ina significantlybetterway thatgives an increaseof their
ranks. It is established (Eom et al., 2013) that top 10 PageRank
universities fromEnglishWikipedia in years 2003, 2005, 2007,
2009,and2011recovercorrespondingly9,9,8,7,and7fromthe
top 10 of the Shanghai ranking; see footnote 1.
The time evolution of the probability distributions of

PageRank, CheiRank, and two-dimensional ranking is ana-
lyzed by Eom et al. (2013) showing that they become
stabilized for the period 2007–2011.
On the basis of these results we conclude that the above

algorithms provide correct and important ranking of a large
volume of information and knowledge accumulated at
Wikipedia. It is interesting that even Dow-Jones companies
are ranked via Wikipedia networks in a good manner (Zhirov,
Zhirov, and Shepelyansky, 2010). We discuss the ranking of
top people of Wikipedia later.

B. Spectral properties of the Wikipedia network

The complex spectrum of eigenvalues of G for the English
Wikipedia network of August 2009 is shown in Fig. 22. As for
university networks, the spectrum also has some invariant
subspaces resulting in degeneracies of the leading eigenvalue
λ ¼ 1 of S (or S�). However, due to the stronger connectivity
of the Wikipedia network these subspaces are significantly
smaller compared to university networks (Eom et al., 2013;
Ermann, Frahm, and Shepelyansky, 2013). For example, of
the August 2009 edition in Fig. 22 there are 255 invariant
subspaces (of the matrix S) covering 515 nodes with 255 unit
eigenvalues λj ¼ 1 and 381 eigenvalues on the complex unit
circle with jλjj ¼ 1. For the matrix S� of Wikipedia there are
5355 invariant subspaces with 21 198 nodes, 5365 unit
eigenvalues, and 8968 eigenvalues on the unit circle
(Ermann, Frahm, and Shepelyansky, 2013). The complex
spectra of all subspace eigenvalues and the first nA ¼ 6000
core space eigenvalues of S and S� are shown in Fig. 22. As in
the university cases, in the spectrum we can identify cross and

triple-star structures similar to those of orthostochastic matri-
ces shown in Fig. 18. However, for Wikipedia (especially for
S) the largest complex eigenvalues outside the real axis are
much farther away from the unit circle. For S of Wikipedia

the two largest core space eigenvalues are λðcoreÞ1 ¼ 0.999 987

and λðcoreÞ2 ¼ 0.977 237 indicating that the core space gap

j1 − λðcoreÞ1 j ∼ 10−5 is much smaller than the secondary gap

jλðcoreÞ1 − λðcoreÞ2 j ∼ 10−2. As a consequence the PageRank of
Wikipedia (at α ¼ 0.85) is strongly influenced by the leading
core space eigenvector and actually both vectors select the
same five top nodes.
The time evolution of the spectra of G and G� for the

English Wikipedia was studied by Eom et al. (2013). It is
shown that the spectral structure remains stable for years
2007–2011.

C. Communities and eigenstates of the Google matrix

The properties of the eigenstates of the Google matrix of
Wikipedia August 2009 are analyzed by Ermann, Frahm, and
Shepelyansky (2013). The global idea is that the eigenstates
with large values of jλj select certain specific communities. If
jλj is close to unity then a relaxation of probability from such
nodes is rather slow and we can expect that such eigenstates
highlight some new interesting information even if these
nodes are located on a tail of PageRank. The important
advantage of the Wikipedia network is that its nodes are
Wikipedia articles with a relatively clear meaning allowing us
to understand the origins of appearance of certain nodes in one
community.
The localization properties of eigenvectors ψ i of the Google

matrix can be analyzed with the help of IPR ξ (see Sec. III.E).
Another possibility is to fit a decay of an eigenstate amplitude
by a power law jψ iðKiÞj ∼ Kb

i , where Ki is the index ordering
jψ iðjÞj by a monotonically decreasing amplitude [similar to
PðKÞ for PageRank]. The exponents b on the tails of jψ iðjÞj
are found to be typically in the range −2 < b < −1 (Ermann,
Frahm, and Shepelyansky, 2013). At the same time the
eigenvectors with large complex eigenvalues or real
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FIG. 22 (color online). Complex eigenvalue spectra λ of (a) S and
(b) S� for the English Wikipedia of August 2009 with
N ¼ 3 282 257 articles and Nl ¼ 71 012 307 links. The gray
(red) dots are the core space eigenvalues, the black (blue) dots are
the subspace eigenvalues, and the solid gray (green) curves show
the unit circles. The core space eigenvalues are computed by the
projected Arnoldi method with Arnoldi dimension nA ¼ 6000.
From Eom et al., 2013.
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eigenvalues close to �1 are quite well localized on ξi ≈
102–103 nodes that is much smaller than the whole network
size N ≈ 3 × 106.
To understand the meaning of other eigenstates in the core

space we order selected eigenstates by their decreasing value
jψ iðjÞj and apply word frequency analysis for the first 1000
articles with Ki ≤ 1000. The most frequent word of a given
eigenvector is used to label the eigenvector name. These labels
with corresponding eigenvalues are shown in Fig. 23. There
are four main categories for the selected eigenvectors belong-
ing to countries (gray/red), biology and medicine (very light
gray/orange), mathematics (black/blue), and others (light
gray/green). The category of others contains rather diverse
articles about poetry, Bible, football, music, American TV
series (e.g., Quantum Leap), or small geographical places
(e.g., Gaafru Alif Atoll). These eigenstates select certain
specific communities which are relatively weakly coupled
with the main bulk part of Wikipedia that generates a
relatively large modulus of jλij.
For example, for the article Gaafu Alif Atoll the eigenvector

is mainly localized on names of small atolls forming Gaafu
Alif Atoll. This case represents a well-localized community of
articles mainly linked between themselves that gives a slow
relaxation rate of this eigenmode with λ ¼ 0.9772 being rather
close to unity. Another eigenvector has a complex eigenvalue
with jλj ¼ 0.3733 and the top article Portal: Bible. Another
two articles are Portal: Bible/featured chapter/archives, Portal:
Bible/Featured article. These top three articles have very close
values of jψ iðjÞj that seem to be the reason why we have
φ ¼ argðλiÞ ¼ 0.3496π being very close to π=3. Examples of
other eigenvectors are discussed by Ermann, Frahm, and
Shepelyansky (2013) in detail.
The analysis performed by Ermann, Frahm, and

Shepelyansky (2013) for Wikipedia August 2009 shows that

the eigenvectors of the Google matrix of Wikipedia clearly
identify certain communities which are relatively weakly
connected with the Wikipedia core when the modulus of
corresponding eigenvalues is close to unity. For moderate
values of jλj we still have well-defined communities which
however have stronger links with some popular articles (e.g.,
countries) that lead to a more rapid decay of such eigenmodes.
Thus the eigenvectors highlight interesting features of com-
munities and network structure. However, a priori, it is not
evident what is a correspondence between the numerically
obtained eigenvectors and the specific community features in
which someone has a specific interest. In fact, practically each
eigenvector with a moderate value of jλj ∼ 0.5 selects a certain
community and there are many of them. So it remains difficult
to target and select from eigenvalues λ a specific community
one is interested.
The spectra and eigenstates of other networks like the

WWW of Cambridge 2011, Le Monde, BBC, and PCN of
Python are discussed by Ermann, Frahm, and Shepelyansky
(2013). It is found that IPR values of eigenstates with large jλj
are well localized with ξ ≪ N. The spectra of each network
have significant differences from one another.

D. Top people of Wikipedia

There is always significant public interest to know who are
the most significant historical figures, or persons, of humanity.
The Hart list of the top 100 people who, according to him,
most influenced human history is available at Hart (1992).
Hart “ranked these 100 persons in order of importance: that is,
according to the total amount of influence that each of them
had on human history and on the everyday lives of other
human beings.” Of course, a human ranking can always be
objected arguing that an investigator has his or her own
preferences. Also investigators from different cultures can
have different viewpoints on the same historical figure. Thus it
is important to perform a ranking of historical figures on
purely mathematical and statistical grounds which exclude
any cultural and personal preferences of investigators.
A detailed two-dimensional ranking of persons of the

English Wikipedia August 2009 was done by Zhirov,
Zhirov, and Shepelyansky (2010). Earlier studies had been
done in a nonsystematic way without any comparison with
established top 100 lists (Zhirov, Zhirov, and Shepelyansky,
2010, 2015). Also at those times Wikipedia had not yet
entered in its stabilized phase of development.
The top people of Wikipedia August 2009 are found to be

(1) Napoleon I of France, (2) George W. Bush, and
(3) Elizabeth II of the United Kingdom for PageRank;
(1) Michael Jackson, (2) Frank Lloyd Wright, and
(3) David Bowie for 2DRank; and (1) Kasey S. Pipes,
(2) Roger Calmel, and (3) Yury G. Chernavsky for
CheiRank (Zhirov, Zhirov, and Shepelyansky, 2010). For
the PageRank list of 100 the overlap with the Hart list is at
35% (PageRank), 10% (2DRank), and almost zero for
CheiRank. This is attributed to a very broad distribution of
historical figures on a 2D plane, as shown in Fig. 7, and a large
variety of human activities. These activities are classified by
five main categories: politics, religion, arts, science, and sport.
For the top 100 PageRank persons we have the following
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labeled by the most repeated and important words following word
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Shepelyansky, 2013.
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distribution over these categories: 58, 10, 17, 15, and 0,
respectively. Clearly PageRank overestimates the significance
of politicians whose list is dominated by USA presidents not
always well known to a broad public. For 2DRank we find,
respectively, 24, 5, 62, 7, and 2. Thus this rank highlights
artistic sides of human activity. For CheiRank we have 15, 1,
52, 16, and 16 so that the dominant contribution comes from
arts, science, and sport. The interesting property of this rank is
that it selects many composers, singers, writers, and actors. As
an interesting feature of CheiRank we note that among
scientists it selects those who are not so well known to a
broad public but who discovered new objects, e.g., George
Lyell who discovered many Australian butterflies or Nikolai
Chernykh who discovered many asteroids. CheiRank also
selects persons active in several categories of human activity.
For the English Wikipedia August 2009 the distribution of

the top 100 PageRank, CheiRank, and Hart’s persons on
PageRank-CheiRank plane is shown in Fig. 7(a).
The distribution of Hart’s top 100 persons on the ðK;K�Þ

plane for the English Wikipedia in years 2003, 2005, 2007,
August 2009, December 2009, and 2011 is found to be stable
for the period 2007–2011 even if certain persons change their
ranks (Eom et al., 2013). The distribution of the top 100
persons of the Wikipedia August 2009 remains stable and
compact for PageRank and 2DRank for the period 2007–2011
while for CheiRank the fluctuations of positions are large.
This is due to the fact that outgoing links are easily modified
and fluctuating.
The time evolution of distribution of top persons over fields

of human activity has been established by Eom et al. (2013).
PageRank persons are dominated by politicians whose per-
centage increases with time, while the percent of arts
decreases. For 2DRank the arts are dominant but their
percentage decreases with time. We also see the appearance
of sports which is absent in PageRank. The mechanism of the
qualitative ranking differences between two ranks is related to
the fact that 2DRank takes into account via CheiRank a
contribution of outgoing links. Because of that singers, actors,
and sportsmen improve their CheiRank and 2DRank positions
since articles about them contain various music albums,
movies, and sport competitions with many outgoing links.
Because of that the component of arts gets higher positions in
2DRank in contrast with the dominance of politics in
PageRank.
The interest in the ranking of people via the Wikipedia

network is growing as shown by the recent study of the
English edition (Skiena and Ward, 2014).

E. Multilingual Wikipedia editions

The English edition allows one to obtain ranking of
historical people but as we saw the PageRank list is dominated
by USA presidents that probably does not correspond to the
global world viewpoint. Hence, it is important to study
multilingual Wikipedia editions which now have 287 lan-
guages and represent broader cultural views of the world.
One of the first cross-cultural studies was done for the 15

largest language editions constructing a network of links
between a set of articles of people biographies for each
edition. However, the number of nodes and links in such a

biographical network is significantly smaller compared to the
whole network of Wikipedia articles and thus the fluctuations
become rather large. For example, from the biographical
network of the Russian edition one finds as the top person
Napoleon III (and even not Napoleon I) (Aragón et al., 2012),
who has a rather low importance for Russia.
Another approach was used by Eom and Shepelyansky

(2013) ranking the top 30 persons by PageRank, 2DRank, and
CheiRank algorithms for all articles of each of nine editions
and attributing each person to her or his native language. The
selected editions are English (EN), French (FR), German
(DE), Italian (IT), Spanish (ES), Dutch (NL), Russian (RU),
Hungarian (HU), and Korean (KO). The aim here is to
understand how different cultures evaluate a person. Is an
important person in one culture also important in another
culture? It is found that local heroes are dominant but also
global heroes exist and create an effective network represent-
ing entanglement of cultures.
The top article of PageRank is usually USA or the name of a

country of a given language (FR, RU, KO). For NL we have at
the top beetle, species, and France. The top articles of
CheiRank are various listings.
The distributions of articles density and the top 30 persons

for each rank algorithm are shown in Fig. 24 for four editions
EN, FR, DE, and RU. We see that in global the distributions
have a similar shape that can be attributed to the fact that all
editions describe the same world. However, local features of
distributions are different corresponding to different cultural
views on the same world [the other five editions are shown in
Fig. 2 in Eom and Shepelyansky (2013)]. The top 30 persons
for each edition are selected manually that represents a weak
point of this study.
From the lists of top persons, the “fields” of activity

are identified for each top 30 rank persons in which he or
she is active. The six activity fields are politics, art, science,
religion, sports, etc. (here etc. includes all other activities). As
shown in Fig. 25, for PageRank, politics is dominant and
science is secondarily dominant. The only exception is Dutch
where science is the almost dominant activity field (politics
has the same number of points). In the case of 2DRank in
Fig. 25, art becomes dominant and politics is secondarily
dominant. In the case of CheiRank, art and sports are
dominant fields [see Fig. 3 in Eom and Shepelyansky
(2013)]. Thus, for example, in the CheiRank top 30 list we
find astronomers who discovered a lot of asteroids, e.g., Karl
Wilhelm Reinmuth (the fourth position in RU and the seventh
in DE), who was a prolific discoverer of about 400 of them. As
a result, his article contains a long list of asteroids discovered
by him and giving him a high CheiRank. The distributions of
persons over activity fields are shown in Fig. 25 for nine
language editions (marked by the standard two letters used by
Wikipedia).
The change of activity priority for different ranks is due to

the different balance between incoming and outgoing links
there. Usually the politicians are well known to a broad public;
hence, the articles about politicians are pointed to by many
articles. However, the articles about politicians are not very
communicative since they rarely point to other articles. In
contrast, articles about persons in other fields like science, art,
and sports are more communicative because of listings of
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insects, planets, and asteroids they discovered or listings of
song albums or sports competitions they gain.
On the basis of this approach one obtains local ranks for

each of 30 persons 1 ≤ KP;E;A ≤ 30 for each edition E and
algorithm A. Then an average ranking score of a person P is
determined as ΘP;A ¼ P

Eð31 − KP;E;AÞ for each algorithm.
This method determines the global historical figures. The top
global persons are (1) Napoleon, (2) Jesus, and (3) Carl
Linnaeus for PageRank; (1) Micheal Jackson, (2) Adolf Hitler,
and (3) Julius Caesar for 2DRank. For CheiRank the lists of
different editions have rather low overlap and such an
averaging is not efficient. The first positions reproduce the
top persons from the English edition discussed in Sec. IX.D;
however, the next ones are different.

Since each person is attributed to his or her native language
it is also possible for each edition to obtain the top local heroes
who have the native language of the edition. For example, we
find for PageRank for EN George W. Bush, Barack Obama,
and Elizabeth II; for FR Napoleon, Louis XIV of France, and
Charles de Gaulle; for DE Adolf Hitler, Martin Luther, and
Immanuel Kant; and for RU Peter the Great, Joseph Stalin,
and Alexander Pushkin. For 2DRank we have for EN Frank
Sinatra, Paul McCartney, and Michael Jackson; for FR
Francois Mitterrand, Jacques Chirac, and Honore de
Balzac; for DE Adolf Hitler, Otto von Bismarck, and
Ludwig van Beethoven; and for RU Dmitri Mendeleev,
Peter the Great, and Yaroslav the Wise. These ranking
results are rather reasonable for each language. Results
for other editions and CheiRank are given in Eom and
Shepelyansky (2013).
A weak point of the above study is a manual selection of

persons and not a very large number of editions. A significant
improvement was reached in a recent study (Eom et al., 2015)
where 24 editions were analyzed. These 24 languages cover
59% of the world population, and these 24 editions cover 68%
of the total number of Wikipedia articles in all 287 available
languages. Also the selection of people from the rank list of
each edition is now done in an automatic computerized way.
For that a list of approximately 1.1 × 106 biographical articles
about people with their English names is generated. From this
list of persons, with their biographical article title in the
English Wikipedia, the corresponding titles in other language
editions are determined using the interlanguage links provided
by Wikipedia.
Using the corresponding articles, identified by the inter-

language links in different language editions, the top 100
persons are obtained from the rankings of all Wikipedia
articles of each edition. A birth place, birth date, and gender of
each top 100 ranked person are identified, based on DBpedia
or a manual inspection of the corresponding Wikipedia
biographical article, when for the considered person no
DBpedia data were available. In this way 24 lists of the
top 100 persons for each edition are obtained in PageRank
with 1045 unique names and in 2DRank with 1616 unique
names. Each of the 100 historical figures is attributed to a birth
place at the country level, to a birth date in year, to a gender,
and to a cultural language group. The birth place is assigned
according to the current country borders. The cultural group of
historical figures is assigned by the most spoken language of
their birth place at the current country level. The considered
editions are English EN, Dutch NL, German DE, French FR,
Spanish ES, Italian IT, Portuguese PT, Greek EL, Danish DA,
Swedish SV, Polish PL, Hungarian HU, Russian RU, Hebrew
HE, Turkish TR, Arabic AR, Persian FA, Hindi HI, Malaysian
MS, Thai TH, Vietnamese VI, Chinese ZH, Korean KO, and
Japanese JA (dated February 2013). The size of network
changes from the maximal value N ¼ 4 212 493 for EN to the
minimal one N ¼ 78 953 for TH.
All persons are ranked by their average rank score ΘP;A ¼P
Eð101 − KP;E;AÞ with 1 ≤ KP;E;A ≤ 100 similar to the study

of nine editions described previously. For PageRank the top
global historical figures are Carl Linnaeus, Jesus, and
Aristotle and for 2DRank we obtain Adolf Hitler, Michael
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FIG. 25 (color online). Distribution of the top 30 persons over
activity fields for (a) PageRank and (b) 2DRank for each of nine
Wikipedia editions. The color bars show the values in percent.
From Eom and Shepelyansky, 2013.
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FIG. 24 (color online). Density of the Wikipedia articles in the
PageRank-CheiRank plane ðK;K�Þ for four different language
Wikipedia editions. The gray (red) points are top PageRank
articles of persons, the light gray (green) squares are top 2DRank
articles of persons, and the dark gray (cyan) triangles are top
CheiRank articles of persons. Wikipedia language editions
are (a) English EN, (b) French FR, (c) German DE, and
(d) Russian RU. Color bars show a natural logarithm of density,
changing from minimal nonzero density (dark) to maximal
one (white), and zero density is shown by black. From Eom
and Shepelyansky, 2013.
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Jackson, and Madonna (entertainer). Thus the averaging over
24 editions modifies the top ranking. The list of top 100
PageRank global persons has an overlap of 43 persons with
the Hart list (Hart, 1992). Thus the averaging over 24 editions
gives a significant improvement compared to 35 persons
overlap for the case of the English edition only (Zhirov,
Zhirov, and Shepelyansky, 2010). For comparison we note
that the top 100 list of historical figures has also been recently
determined by the Pantheon MIT project at http://pantheon
.media.mit.edu having an overlap of 42 persons with the Hart
list. This Pantheon MIT list is established on the basis of the
number of editions and the number of clicks on an article of a
given person without using rank algorithms discussed here.
The overlap between the top 100 PageRank list and the top
100 Pantheon list is 44%. More data are available in Eom
et al. (2015).
The fact that Carl Linnaeus is the top historical figure of the

Wikipedia PageRank list came as a surprise for media and
the broad public (Shepelyansky, 2015). This ranking is due to
the fact that Carl Linnaeus created a classification of world
species including animals, insects, herbs, trees, etc. Thus all
articles of these species point to the article Carl Linnaeus in
various languages. As a result Carl Linnaeus appears on
almost all top positions in all 24 languages. Hence, even if a
politician, like Barak Obama, takes the second position in his
country language EN (Napoleon is at the first position in EN)
he is usually placed at a low ranking in other language
editions. As a result Carl Linnaeus takes the first global
PageRank position.
The number of appearances of historical persons in 24 lists

of the top 100 for each edition can be distributed over present
world countries according to the birth place of each person.
This geographical distribution is shown in Fig. 26 for
PageRank and 2DRank. In PageRank the top countries are
DE, USA, and IT and in 2DRank US, DE, and UK. The
appearance of many UK and US singers improves the
positions of English speaking countries in 2DRank.
The distributions of the top PageRank and 2DRank his-

torical figures over 24 Wikipedia editions for each century are
shown in Fig. 27. Each person is attributed to a century
according to the birth date covering the range of 35 centuries
from BC 15th to AD 20th centuries. For each century the
number of persons is normalized to unity to see more clearly
the relative contribution of each language for each century.
The Greek edition has more historical figures in the BC fifth

century because of Greek philosophers. Also most of the
Western-Southern European language editions, including
English, Dutch, German, French, Spanish, Italian,
Portuguese, and Greek, have more top historical figures
because they have Augustine the Hippo and Justinian I in
common. The Persian (FA) and the Arabic (AR) Wikipedia
have more historical figures compared to other language
editions (in particular, European language editions) from
the sixth to the 12th century due to Islamic leaders and
scholars. The data of Fig. 27 show well-pronounced patterns,
corresponding to strong interactions between cultures: from
the BC fifth century to the AD 15th century for JA, KO, ZH,
and VI; from the AD sixth century to the AD 12th century for
FA and AR; and a common birth pattern in EN, EL, PT, IT,
ES, DE, and NL (Western European languages) from the BC

fifth century to the AD sixth century. A detailed analysis
shows that even in the BC 20th century each edition has a
significant fraction of persons of its own language so that even
with ongoing globalization there is a significant dominance of
local historical figures for certain cultures. More data on the
above points and gender distributions are available in Eom
et al. (2015).

F. Networks and entanglement of cultures

We now know how a person of a given language is ranked
by editions of other languages. If a top person from a language
edition A appears in another edition B, we consider this as a
“cultural” influence from culture A to B. This generates
entanglement in a network of cultures. Here we associate a
language edition with its corresponding culture considering
that a language is the first element of culture, even if a culture
is not reduced only to a language. Eom and Shepelyansky
(2013) attributed a person to a given language, or culture,
according to his or her native language fixed via correspond-
ing Wikipedia article. In Eom et al. (2015) the attribution to a
culture is done via a birth place of a person, each language
considered as a proxy for a cultural group, and a person is
assigned to one of these cultural groups based on the most
spoken language of his or her birth place at the country level.
If a person does not belong to any of the studied editions then
he or she is attributed to an additional cultural group
world WR.
After such an attribution of all persons the two networks of

cultures are constructed based on the top PageRank historical
figures and the top 2DRank historical figures, respectively.

(a)

(b)

FIG. 26 (color online). The number of appearances of historical
figures of a given country, obtained from 24 lists of the top 100
persons of (a) PageRank and (b) 2DRank, shown on the world
map. Color changes from zero (white) to maximum (black),
corresponding to the average number of person appearances per
country. From Eom et al., 2015.
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Each culture (i.e., language) is represented as a node of the
network, and the weight of a directed link from culture A to
culture B is given by the number of historical figures
belonging to culture B (e.g., French) appearing in the list
of top 100 historical figures for a given culture A (e.g.,
English).
For example, according to Eom et al. (2015), there are five

French historical figures among the top 100 PageRank
historical figures of the English Wikipedia, so we can assign
weight 5 to the link from English to French. Thus, Figs. 28(a)
and 28(b) represent the constructed networks of cultures
defined by appearances of the top PageRank historical figures
and top 2DRank historical figures, respectively.
In total we have two networks with 25 nodes which include

our 24 editions and an additional node WR for all other world
cultures. Persons of a given culture are not taken into account
in the rank list of the language edition of this culture. Then
following the standard rules (1) the Google matrix of the
network of cultures is constructed by the normalization of the
sum of all elements in each column to unity. The matrix GKK0 ,
written in the PageRank indices K;K0, is shown in Fig. 29 for
persons from (a) PageRank and (b) 2DRank lists. The matrix
G� is constructed in the same way as G for the network with
inverted directions of links.
From the obtained matrices G and G� we determine

PageRank and CheiRank vectors and then the PageRank-
CheiRank plane ðK;K�Þ, shown in Fig. 30, for networks of

cultures from Fig. 28. Here K indicates the ranking of a given
culture ordered by how many of its own top historical figures
appear in other Wikipedia editions, and K� indicates the
ranking of a given culture according to how many of the top
historical figures in the considered culture are from other
cultures. It is important to note that for 24 editions the world
node WR appears on positions K ¼ 3 or K ¼ 4 in Figs. 30(a)
and 30(b), signifying that the 24 editions capture the main part
of the historical figures born in these cultures. We note that for
nine editions in Eom and Shepelyansky (2013) the node WR
was at the top position for PageRank so that a significant
fraction of historical figures was attributed to other cultures.
From the data of Fig. 30 we obtain at the top positions of K

cultures EN, DE, and IT showing that other cultures strongly
point to them. However, we argue that for cultures it is also
important to have strong communicative properties and hence
it is important to have a 2DRank of cultures at top positions.
On the top 2DRank position we have Greek, Turkish, and
Arabic (for PageRank persons) in Fig. 30(a) and French,
Russian, and Arabic (for 2DRank persons) in Fig. 30(b). This
demonstrates the important historical influence of these
cultures via both importance (incoming links) and commu-
nicative (outgoing links) properties present in a balanced
manner.
Thus the described research across Wikipedia language

editions suggests a rigorous mathematical way, based on
Markov chains and Google matrix, for the recognition of
important historical figures and the analysis of interactions of
cultures at different historical periods and in different world
regions. Such an approach recovers 43% of persons from the
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FIG. 27 (color online). Birth date distributions over 35 centuries of the top historical figures from each Wikipedia edition marked by the
two letter standard notation of Wikipedia. (a) Column normalized birth date distributions of PageRank historical figures; (b) the same as
(a) for 2DRank historical figures. From Eom et al., 2015.
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FIG. 29 (color online). A Google matrix of the network of
cultures shown in Fig. 28(a) and 28(b), respectively. The matrix
elements Gij are shown by color with the damping factor
α ¼ 0.85. From Eom et al., 2015.
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well-established Hart historical study (Hart, 1992) that dem-
onstrates the reliability of this method. We think that further
extension of this approach to a larger number of Wikipedia
editions will provide a more detailed and balanced analysis of
interactions of world cultures.

X. GOOGLE MATRIX OF SOCIAL NETWORKS

Social networks like Facebook, LiveJournal, Twitter, and
Vkontakte start to play a more and more important role in
modern society. The Twitter network is a directed one and
here we consider its spectral properties mainly following the
analysis reported by Frahm and Shepelyansky (2012a).

A. Twitter network

Twitter is a rapidly growing online directed social network.
For July 2009 a data set of this entire network is available with
N ¼ 41 652 230 nodes andNl ¼ 1 468 365 182 links [for data
sets see Frahm and Shepelyansky (2012a)]. For this case the
spectrum and eigenstate properties of the corresponding
Google matrix have been analyzed in detail using the
Arnoldi method and standard PageRank and CheiRank
computations (Frahm and Shepelyansky, 2012a). For the
Twitter network the average number of links per node
ζ ¼ Nl=N ≈ 35 and the general interconnectivity between
top PageRank nodes are considerably larger than for other
networks such as Wikipedia (Sec. IX) or UK universities
(Sec. VIII) as can be seen in Figs. 31 and 32.
The decay of the PageRank probability can be approx-

imately described by an algebraic decay with the exponent
β ≈ 0.54 while for CheiRank we have a larger value β ≈ 0.86
(Frahm and Shepelyansky, 2012a) that is opposite to the usual
situation. The image of top matrix elements of GKK0 with
1 ≤ K;K;≤200 is shown in Fig. 31. The density distribution
of nodes on the ðK;K�Þ plane is also shown there. It is
somewhat similar to those of the Wikipedia case in Fig. 24, but
with a larger density concentration along the line K ≈ K�.
However, the most striking feature ofGmatrix elements is a

strong interconnectivity between top PageRank nodes. Thus
for Twitter the top K ≤ 1000 elements fill about 70% of the
matrix and about 20% for size K ≤ 104. For Wikipedia
the filling factor is smaller by a factor of 10–20. In particular,
the number NG of links between K top PageRank nodes

behaves for K ≤ 103 as NG ∼ K1.993 while for Wikipedia
NG ∼ K1.469. The exponent for NG, being close to 2 for
Twitter, indicates that for the top PageRank nodes the Google
matrix is macroscopically filled with a fraction 0.6–0.8 of
nonvanishing matrix elements (see also Figs. 31 and 32) and
the very well-connected top PageRank nodes can be consid-
ered as the Twitter elite (Kandiah and Shepelyansky, 2012).
For Wikipedia the interconnectivity among top PageRank
nodes has an exponent 1.5 being somewhat reduced but
still stronger as compared to certain university networks
where typical exponents are close to unity (for the range
102 ≤ K ≤ 104). The strong interconnectivity of Twitter is
also visible in its global logarithmic density distribution of
nodes in the PageRank-CheiRank plane ðK;K�Þ [Fig. 31(b)]
which shows a maximal density along a certain ridge along a

FIG. 30 (color online). PageRank-CheiRank plane of cultures
with corresponding indices K and K� obtained from the network
of cultures based on (a) the top 100 PageRank historical figures,
and (b) the top 100 2DRank historical figures. From Eom
et al., 2015.

a(a) (b)

FIG. 31 (color online). (a) Google matrix of Twitter; matrix
elements of G are shown in the basis of PageRank index K of
matrix GKK0 . Here the x (and y) axis show K (and K0) with
the range 1 ≤ K;K0 ≤ 200. (b) The density of nodes
WðK;K�Þ of Twitter on the PageRank-CheiRank plane ðK;K�Þ,
averaged over 100 × 100 logarithmically equidistant grids for
0 ≤ lnK; lnK� ≤ lnN with the normalization conditionP

K;K�WðK;K�Þ ¼ 1. The x axis corresponds to lnK and the
y axis to lnK�. In both panels the color varies from black (blue) at
the minimal value to gray (red) at the maximal value; here
α ¼ 0.85. From Frahm and Shepelyansky, 2012a.
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FIG. 32 (color online). (a) Dependence of the area density gK ¼
NG=K2 of nonzero elements of the adjacency matrix among top
PageRank nodes on the PageRank index K for Twitter [black
(blue curve] and Wikipedia [gray (red) curve] networks; data are
shown in linear scale. (b) Linear density NG=K of the same
matrix elements shown for the whole range of K in log-log scale
for Twitter (blue curve), Wikipedia (red curve), Oxford Univer-
sity 2006 (magenta curve), and Cambridge University 2006
(green curve) (curves from top to bottom at K ¼ 100). From
Frahm and Shepelyansky, 2012a.
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line lnK� ¼ lnK þ const with a significant large number of
nodes at small values K;K� < 1000.
The decay exponent of the PageRank is for Twitter β ¼

0.540 (for 1 ≤ K ≤ 106), which indicates a precursor of a
delocalization transition as compared to Wikipedia
(β ¼ 0.767) or the WWW (β ≈ 0.9), caused by the strong
interconnectivity (Frahm and Shepelyansky, 2012a). The
Twitter network is also characterized by a large value of
PageRank-CheiRank correlator κ ¼ 112.6 that is by a factor of
30–60 larger than this value for Wikipedia and university
networks. Such a larger value of κ results from certain
individual large values κi ¼ NP(KðiÞ)P�(K�ðiÞ) ∼ 1. It is
argued that this is related to a strong interconnectivity between
top K PageRank users of the Twitter network (Frahm and
Shepelyansky, 2012a).
The spectra of matrices S and S� are obtained with the help

of the Arnoldi method for a relatively modest Arnoldi
dimension due to a very large matrix size. The largest nA
modulus eigenvalues jλj are shown in Fig. 33. The invariant
subspaces (see Sec. III.C) for the Twitter network cover
about Ns ¼ 4 × 104 (1.8 × 105) nodes for S (S�) leading to

1.7 × 104 (6.6 × 104) eigenvalues with λj ¼ 1 or even
3.4 × 104 (1.3 × 105) eigenvalues with jλjj ¼ 1. However,
for Twitter the fraction of subspace nodes g1 ¼ Ns=N ≈ 10−3

is smaller than the fraction g1 ≈ 0.2 for the university net-
works of Cambridge or Oxford (with N ≈ 2 × 105) since the
size of the whole Twitter network is significantly larger. The
complex spectra of S and S� also show the cross and triple-star
structures, as in the cases of Cambridge and Oxford 2006 (see
Fig. 17), even though for the Twitter network they are
significantly less pronounced.

B. Poisson statistics of PageRank probabilities

From a physical viewpoint one can conjecture that the
PageRank probabilities are described by a steady-state quan-
tum Gibbs distribution over certain quantum levels with
energies Ei by the identification PðiÞ ¼ expð−Ei=TÞ=Z with
Z ¼ P

i expð−Ei=TÞ (Frahm and Shepelyansky, 2014). In
some sense this conjecture assumes that the operator matrix G
can be represented as a sum of two operators GH and GNH,
where GH describes a Hermitian system while GNH represents
a non-Hermitian operator which creates a system thermal-
ization at a certain effective temperature T with the quantum
Gibbs distribution over energy levels Ei of the operator GH.
The identification of PageRank with an energy spectrum

allows one to study the corresponding level statistics which
represents a well-known concept in the framework of random
matrix theory (Guhr, Mueller-Groeling, and Weidenmueller,
1998; Mehta, 2004). The most direct characteristic is the
probability distribution pðsÞ of unfolded level spacings s.
Here s ¼ ðEiþ1 − EiÞ=ΔE is a spacing between nearest levels
measured in the units of average local energy spacing ΔE.
The unfolding procedure (Guhr, Mueller-Groeling, and
Weidenmueller, 1998; Mehta, 2004) requires the smoothed
dependence of Ei on the index K which is obtained from a
polynomial fit of Ei ∼ lnðPiÞ with lnðKÞ as an argument
(Frahm and Shepelyansky, 2014).
The statistical properties of fluctuations of levels have been

extensively studied in the fields of RMT (Mehta, 2004),
quantum chaos (Haake, 2010), and disordered solid state
systems (Evers and Mirlin, 2008). It is known that integrable
quantum systems have pðsÞ well described by the Poisson
distribution pPoisðsÞ ¼ expð−sÞ. In contrast the quantum
systems, which are chaotic in the classical limit (e.g., the
Sinai billiard), have pðsÞ given by the RMT being close to the
Wigner surmise pWigðsÞ ¼ ðπ=2Þs exp½−ðπ=4Þs2� (Bohigas,
Giannoni, and Schmit, 1984). Also the Anderson localized
phase is characterized by pPoisðsÞ while in the delocalized
regime one has pWigðsÞ (Evers and Mirlin, 2008).
The results for the Twitter PageRank level statistics

(Frahm and Shepelyansky, 2014) are shown in Fig. 34. We
find that pðsÞ is well described by the Poisson distribution.
Furthermore, the evolution of energy levels Ei with the
variation of the damping factor α shows many level crossings
which are typical for Poisson statistics. Note that here each
level has its own index so that it is rather easy to see if there is
a real or avoided level crossing.
The validity of the Poisson statistics for PageRank prob-

abilities is confirmed also for the networks of Wikipedia
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FIG. 33 (color online). Spectrum of the Twitter matrix (a), (c) S,
and (b), (d) S�. (a), (b) Subspace eigenvalues [black (blue) dots]
and core space eigenvalues [gray (red) dots] in the λ plane [the
gray (green) curve shows the unit circle); there are 17 504 (66
316) invariant subspaces, with maximal dimension 44 (2959) and
the sum of all subspace dimensions is Ns ¼ 40 307 (180 414).
The core space eigenvalues are obtained from the Arnoldi method
applied to the core space sub-block Scc of S with Arnoldi
dimension nA ¼ 640. (c), (d) The fraction j=N of eigenvalues
with jλj > jλjj for the core space eigenvalues [gray (red) bottom
curve] and all eigenvalues [black (blue) top curve] from raw data
[(a), (b), respectively]. The number of eigenvalues with jλjj ¼ 1

is 34 135 (129 185) of which 17 505 (66 357) are at λj ¼ 1; this
number is (slightly) larger than the number of invariant subspaces
which have each at least one unit eigenvalue. Note that in (c) and
(d) the number of eigenvalues with jλjj ¼ 1 is artificially reduced
to 200 in order to have a better scale on the vertical axis. The
correct numbers of those eigenvalues correspond to (c) j=N ¼
8.195 × 10−4 and (d) 3.102 × 10−3 which are strongly outside the
vertical panel scale. From Frahm and Shepelyansky, 2012a.
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editions in English, French, and German from Fig. 24 (Frahm
and Shepelyansky, 2014). We argue that due to the absence of
level repulsion the PageRank order of nearby nodes can be
easily interchanged. The Poisson law obtained implies that the
nearby PageRank probabilities fluctuate as random indepen-
dent variables.

XI. GOOGLE MATRIX ANALYSIS OF WORLD TRADE

During the last decades the trade between countries has
been developed in an extraordinary way. Usually countries are
ranked in the WTN taking into account their exports and
imports measured in USD (US dollars) (Central Intelligence
Agency, 2009). However, the use of these quantities, which
are local in the sense that countries know their total imports
and exports, could hide the information of the centrality role
that a country plays in this complex network. In this section
we present the two-dimensional Google matrix analysis of the
WTN introduced in Ermann and Shepelyansky (2011). Some
previous studies of global network characteristics were
considered by Garlaschelli and Loffredo (2005) and
Serrano, Boguna, and Vespignani (2007), degree centrality
measures were analyzed by De Benedictis and Tajoli (2011),
and a time evolution of network global characteristics was
studied by He and Deem (2010). Topological and clustering
properties of a multiplex network of various commodities
were discussed by Barigozzi, Fagiolo, and Garlaschelli
(2010), and an ecological ranking based on the nestedness
of countries and products was presented by Ermann and
Shepelyansky (2013).
The money exchange between countries defines a directed

network. Therefore a Google matrix analysis can be intro-
duced in a natural way. PageRank and CheiRank algorithms
can be easily applied to this network with a straightforward
correspondence with imports and exports. Two-dimensional
ranking, introduced in Sec. IV, gives an illustrative represen-
tation of global importance of countries in the WTN. The
important element of Google ranking of WTN is its demo-
cratic treatment of all world countries, independently of their
richness, that follows the main principle of the United
Nations (UN).

A. Democratic ranking of countries

The WTN is a directed network that can be constructed
considering countries as nodes and money exchange as links.
We follow the definition of the WTN of Ermann and
Shepelyansky (2011), where trade information comes from
UN COMTRADE (2011). These data include all trades
between countries for different products [using the standard
international trade classification of goods (SITC1)] from 1962
to 2009.
All useful information of the WTN is expressed via the

money matrix M, whose definition, in terms of its matrix
elements Mij, is defined as the money transfer (in USD) from
country j to country i in a given year. This definition can be
applied to a given specific product or to all commodities,
which represent the sum over all products.
In contrast to the binary adjacency matrix Aij of WWW (as

the ones analyzed in Secs. VIII and X, for example) M has
weighted elements. This corresponds to a case when there are
in principle multiple numbers of links from j to i and this
number is proportional to USD amount transfer. Such a
situation appears in Sec. VI for Ulam networks and
Sec. VII for Linux PCN with the main difference that for
the WTN case there is a large variation of mass matrix
elementsMij, related to the fact that there is a strong variation
of richness of various countries.
The Google matricesG andG� are constructed according to

the usual rules and relation (1) with Mij and its transposed:
Sij ¼ Mij=mj and Sij ¼ Mji=m�

j , where Sij ¼ 1=N and
S�ij ¼ 1=N, if for a given j all elements Mij ¼ 0 and
Mji ¼ 0, respectively. Here mj ¼

P
iMij and m�

j ¼
P

iMji

are the total export and import masses for country j. Thus the
sum in each column of G or G� is equal to unity. In this way
the Google matrices G and G� of the WTN allow one to treat
all countries on equal grounds independently of the fact if a
given country is rich or poor. This kind of analysis treats in a
democratic way all world countries in consonance with the
standards of the UN.
The probability distributions of ordered PageRank PðKÞ

and CheiRank P�ðK�Þ depend on their indices in a rather
similar way with a power law decay given by β. For the fit of
the top 100 countries and all commodities the average
exponent value is close to β ¼ 1 corresponding to the Zipf
law (Zipf, 1949).
The distribution of countries on the PageRank-CheiRank

plane for trade in all commodities in year 2008 is shown in
Figs. 35(a) and 35(b) at α ¼ 0.5. Even if the Google matrix
approach is based on a democratic ranking of international
trade, being independent of the total amount of export and
import and the gross domestic product (GDP) for a given
country, the top ranks K and K� belong to the group of
industrially developed countries. This means that these coun-
tries have efficient trade networks with optimally distributed
trade flows. Another striking feature of global distribution is
that it is concentrated along the main diagonal K ¼ K�. This
feature is not present in other networks studied before. The
origin of this density concentration is related to a simple
economy reason: for each country the total import is approx-
imately equal to export since each country should keep on
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FIG. 34 (color online). (a) The dependence of certain top
PageRank levels Ei ¼ − lnðPiÞ on the damping factor α for
the Twitter network. Data points on curves with one color
correspond to the same node i; about 150 levels are shown
close to the minimal energy E ≈ 7.5. (b) The histogram of
unfolded level-spacing statistics for Twitter at 10 < K ≤ 104.
The Poisson distribution pPoisðsÞ ¼ expð−sÞ and the Wigner
surmise pWigðsÞ ¼ ðπ=2Þs exp½−ðπ=4Þs2� are also shown for
comparison. From Frahm and Shepelyansky, 2014.
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average an economic balance. This balance does not imply a
symmetric money matrix, used in a gravity model of trade
(De Benedictis and Tajoli, 2011; Krugman, Obstfeld, and
Melitz, 2011), as can be seen in the significant broadening of
distribution of Fig. 35 (especially at the middle values of
K ∼ 100).
For a given country its trade is doing well if its K� < K so

that the country exports more than it imports. The opposite
relation K� > K corresponds to a bad trade situation (e.g.,
Greece being significantly above the diagonal). We also can
say that local minima in the curve of K� − K vs K correspond
to a successful trade while maxima mark bad traders. In 2008
the most successful were China, Republic of Korea, Russia,
Singapore, Brazil, South Africa, and Venezuela (in the order
of K for K ≤ 50), while among the bad traders we note the
UK, Spain, Nigeria, Poland, Czech Republic, Greece, and
Sudan with an especially strong export drop for the two
last cases.
A comparison between local and global rankings of

countries for both imports and exports gives a new tool to
analyze the countries economy. For example, in 2008 the most
significant differences between CheiRank and the rank given
by total exports are for Canada and Mexico with correspond-
ing money export ranks ~K� ¼ 11 and 13 and with K� ¼ 16

and 23, respectively. These variations can be explained in the
context that the export of these two countries is too strongly
oriented on the USA. In contrast Singapore moves up from the
~K� ¼ 15 export position to K� ¼ 11 that shows the stability
and broadness of its export trade; a similar situation appears

for India moving up from ~K� ¼ 19 to K� ¼ 12 [see Ermann
and Shepelyansky (2011) for a more detailed analysis].

B. Ranking of countries by trade in products

If we focus on the two-dimensional distribution of countries
in a specific product we obtain very different information. The
symmetry approximately visible for all commodities is abso-
lutely absent: the points are scattered practically over the
whole square N × N (see Fig. 35). The reason for such a
strong scattering is clear: e.g., for crude petroleum some
countries export this product while other countries import it.
Even if there is some flow from exporters to exporters it
remains relatively low. This makes the Google matrix very
asymmetric. Indeed, the asymmetry of trade flow is well
visible in Figs. 35(c) and 35(d).
The same comparison of global and local rankings done

before for all commodities can be applied to specific products
obtaining even more strong differences. For example, for
crude petroleum Russia moves up from a ~K� ¼ 2 export
position to K� ¼ 1 showing that its trade network in this
product is better and broader than the one of Saudi Arabia
which is at the first export position ~K� ¼ 1 in money volume.
Iran moves in the opposite direction from the ~K� ¼ 5 money
position down to K� ¼ 14 showing that its trade network is
restricted to a small number of nearby countries. A significant
improvement of ranking takes place for Kazakhstan moving
up from ~K� ¼ 12 to K� ¼ 2. A direct analysis shows that this
happens due to an unusual fact that Kazakhstan is practically
the only country which sells crude petroleum to the CheiRank
leader in this product Russia. This puts Kazakhstan in the
second position. It is clear that such direction of trade is more
of a political or geographical origin and is not based on
economic reasons.
The same detailed analysis can be applied to all specific

products given by SITC1. For example, for the trade of cars
France goes up from the ~K� ¼ 7 position in exports to K� ¼ 3
due to its broad export network.

C. Ranking time evolution and crises

The WTN has evolved during the period 1962–2009. The
number of countries is increased by 38%, while the number of
links per country for all commodities is increased in total by
140% with a significant increase from 50% to 140% during
the period 1993–2009 corresponding to economy globaliza-
tion. At the same time for a specific commodity the average
number of links per country remains on a level of 3–5 links
being by a factor of 30 smaller compared to all commodities
trade. During the whole period the total amountMT of trade in
USD shows an average exponential growth by 2 orders of
magnitude.
A statistical density distribution of countries in the plane

ðK� − K;K� þ KÞ in the period 1962–2009 for all commod-
ities is shown in Fig. 36. The distribution has a form of spindle
with maximum density at the vertical axis K� − K ¼ 0. We
remind one that good exporters are on the lower side of this
axis at K� − K < 0, while the good importers (bad exporters)
are on the upper side at K� − K > 0.
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FIG. 35 (color online). Country positions in the PageRank-
CheiRank plane ðK;K�Þ for world trade in various commodities
in 2008. Each country is shown by a circle with its own flag [for
better visibility the circle center is slightly displaced from its
integer position ðK;K�Þ along the direction angle π=4]. The
panels show the ranking for trade in the following commodities:
(a), (b) all commodities, and (c), (d) crude petroleum. (a), (c) A
global scale with all 227 countries, while (b) and (d) give a zoom
in the region of the 40 × 40 top ranks. From Ermann and
Shepelyansky, 2011.
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The evolution of the ranking of countries for all commod-
ities reflects their economical changes. The countries that
occupy top positions tend to move very little in their ranks and
can be associated with a solid phase. On the other hand, the
countries in the middle region of K� þ K have a gaslike phase
with strong rank fluctuations.
Examples of ranking evolution K and K� for Japan, France,

the Federal Republic of Germany and Germany, Great Britain,
the USA, and for Argentina, India, China, the USSR, and the

Russian Federation are shown in Fig. 37. It is interesting to
note that sharp increases in K mark crises in 1991 and 1998
for Russia and in 2001 for Argentina (import is reduced in a
period of crisis). It is also visible that in recent years the solid
phase is perturbed by the entrance of new countries such as
China and India. Other regional or global crisis could be
highlighted due to the large fluctuations in the evolution of
ranks. For example, in the range 81 ≤ K þ K� ≤ 120, during
the period of 1992–1998 some financial crises such as Black
Wednesday, the Mexico crisis, the Asian crisis, and the
Russian crisis are appreciated with this ranking evolution.

D. Ecological ranking of world trade

Interesting parallels between multiproduct world trade and
interactions between species in ecological systems has been
traced by Ermann and Shepelyansky (2013). This approach is
based on the analysis of the strength of transitions forming the
Google matrix for the multiproduct world trade network.
Ecological systems are characterized by high complexity

and biodiversity (May, 2001) linked to nonlinear dynamics
and chaos emerging in the process of their evolution
(Lichtenberg and Lieberman, 1992). The interactions between
species form a complex network whose properties can be
analyzed by the modern methods of scale-free networks. The
analysis of their properties uses a concept of mutualistic
networks and provides detailed understanding of their features
being linked to a high nestedness of these networks (Burgos
et al., 2007, 2008; Bastolla et al., 2009; Saverda et al., 2011).
Using the UN COMTRADE database we show that a similar
ecological analysis gives a valuable description of the world
trade: countries and trade products are analogous to plants and
pollinators, and the whole trade network is characterized by a
high nestedness typical for ecological networks.
An important feature of ecological networks is that they are

highly structured, being very different from randomly inter-
acting species (Bascompte et al., 2003). Recently it was
shown that the mutualistic networks between plants and their
pollinators (Bascompte et al., 2003; Memmott, Waser, and
Price, 2004; Vázquez and Aizen, 2004; Olesen et al., 2007;
Rezende et al., 2007) are characterized by high nestedness
which minimizes competition and increases biodiversity
(Burgos et al., 2007, 2008; Bastolla et al., 2009; Saverda
et al., 2011).
The mutualistic WTN is constructed on the basis of the UN

COMTRADE database from the matrix of trade transactions
Mp

c0;c expressed in USD for a given product (commodity) p
from country c to country c0 in a given year (from 1962 to
2009). For product classification we use 3-digits SITC Rev1
discussed earlier with the number of products Np ¼ 182. All
these products are described in UN COMTRADE (2011) in
the commodity code document SITC Rev1. The number of
countries varies between Nc ¼ 164 in 1962 and Nc ¼ 227 in
2009. The import and export trade matrices are defined as

MðiÞ
p;c ¼

PNc
c0¼1

Mp
c;c0 and MðeÞ

p;c ¼
PNc

c0¼1
Mp

c0;c, respectively.

We use the dimensionless matrix elements mðiÞ ¼
MðiÞ=Mmax and mðeÞ ¼ MðeÞ=Mmax, where for a given year

Mmax ¼ maxfmax½MðiÞ
p;c�;max½MðeÞ

p;c�g. The distributions of

0

0.5

−0.5

(K
*−

K
)/

N

(K*+K)/N
20

FIG. 36 (color online). Spindle distribution for the WTN of all
commodities for all countries in the period 1962–2009 shown in
the plane of (ðK� − KÞ=N; ðK� þ KÞ=N) (coarse graining inside
each of the 76 × 152 cells); data from the UN COMTRADE
database. From Ermann and Shepelyansky, 2011.

FIG. 37 (color online). Time evolution of CheiRank and
PageRank indices K, K� for some selected countries for all
commodities. The countries shown are (a), (b) Japan (jp, black),
France (fr, red), Federal Republic of Germany and Germany (de,
both blue), Great Britain (gb, green), USA (us, orange) [curves
from top to bottom in 1962 in (a)]. The countries shown are (c),
(d) Argentina (ar, violet), India (in, dark green), China (cn, cyan),
USSR and Russian Federation (ru, both gray) [curves from top to
bottom in 1975 in (c)]. From Ermann and Shepelyansky,
2011.
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matrix elements mðiÞ and mðeÞ in the plane of indices p
and c, ordered by the total amount of import and export in a
decreasing order, are shown and discussed by Ermann and
Shepelyansky (2013). In global, the distributions of mðiÞ and
mðeÞ remain stable in time especially in view of 100 times
growth of the total trade volume during the period 1962–2009.
The fluctuations of mðeÞ are larger compared to the mðiÞ case
since certain products, e.g., petroleum, are exported by only a
few countries while it is imported by almost all countries.
To use the methods of ecological analysis we construct the

mutualistic network matrix for import QðiÞ and export QðeÞ

whose matrix elements take binary value 1 or 0 if correspond-
ing elements mðiÞ and mðeÞ are, respectively, larger or smaller
than a certain trade threshold value μ. The fraction φ of
nonzero matrix elements varies smoothly in the range
10−6 ≤ μ ≤ 10−2 and further analysis is not really sensitive
to the actual μ value inside this broad range.
In contrast to ecological systems (Bastolla et al., 2009) the

world trade is described by a directed network and hence we
characterize the system by two mutualistic matrices QðiÞ and
QðeÞ corresponding to import and export. Using the standard
nestedness BINMATNEST algorithm (Rodríguez-Gironés and
Santamaría, 2006) we determine the nestedness parameter
η of the WTN and the related nestedness temperature
T ¼ 100ð1 − ηÞ. The algorithm reorders lines and columns
of a mutualistic matrix concentrating nonzero elements as
much as possible in the top left corner and thus providing
information about the role of immigration and extinction in an
ecological system. A high level of nestedness and ordering can
be reached only for systems with low T. It is argued that the
nested architecture of real mutualistic networks increases their
biodiversity.
The nestedness matrices generated by the BINMATNEST

algorithm (Rodríguez-Gironés and Santamaría, 2006) are
shown in Fig. 38 for ecology networks ARR1 (Npl ¼ 84,
Nanim ¼ 101, φ ¼ 0.043, and T ¼ 2.4) and WES (Npl ¼ 207,
Nanim ¼ 110, φ ¼ 0.049, and T ¼ 3.2) from Rezende et al.
(2007). Using the same algorithm we generate the nestedness
matrices of the WTN using the mutualistic matrices for import
QðiÞ and exportQðiÞ for the WTN in years 1968 and 2008 with
a fixed typical threshold μ ¼ 10−3 (see Fig. 38). As for
ecological systems, for the WTN data we also obtain a rather
small nestedness temperature (T ≈ 6 and 8 for import and
export in 1968 and T ≈ 4 and 8 in 2008, respectively). These
values are by factors of 9 and 4 times smaller than the
corresponding T values for import and export from random
generated networks with the corresponding values of φ.
The small value of nestedness temperature obtained for the

WTN confirms the validity of the ecological analysis of the
WTN structure: trade products play the role of pollinators
which produce exchange between world countries, which play
the role of plants. As in ecology the WTN evolves to the state
with a very low nestedness temperature that satisfies the
ecological concept of system stability appearing as a result of
high network nestedness (Bastolla et al., 2009).
The nestedness algorithm creates an effective ecological

ranking (EcoloRanking) of all UN countries. The evolution of
the 20 top ranks throughout the years is shown in Fig. 39 for

import and export. This ranking is quite different from themore
commonly applied ranking of countries by their total import
and export monetary trade volume (Central Intelligence
Agency, 2009) (see the corresponding data in Fig. 40) or the
democratic ranking of the WTN based on the Google matrix
analysis discussed previously. Indeed, in 2008 China is at the
top rank for total export volume but it is only at the fifth position
in EcoloRank (see Figs. 39 and 40). In a similar way Japan
moves down from the fourth to the 17th positionwhile theUSA
raises up from the third to the first rank.
The same nestedness algorithm generates not only the

ranking of countries but also the ranking of trade products for
import and export which is presented in Fig. 41. For
comparison we also show the standard ranking of products
by their trade volume. In Fig. 41 the color of symbols marks
the first SITC digit described in the figure (UN COMTRADE,
2011) and Table 2 in Ermann and Shepelyansky (2013).

FIG. 38 (color online). Nestedness matrices for the plant-animal
mutualistic networks in the top panels, and for the WTN of
countries and products in the middle and bottom panels. (a), (b)
Data of ARR1 and WES networks. From Rezende et al., 2007.
The WTN matrices are computed with the threshold μ ¼ 10−3

and corresponding φ ≈ 0.2 for years (c), (d) 2008 and (e), (f) 1968
and 2008 for (c), (e) import and (d), (f) export. Gray (red) and
black (blue) represent unit and zero elements, respectively;
only lines and columns with nonzero elements are shown.
The order of plants and animals, countries and products is given
by the nestedness algorithm (Rodríguez-Gironés and Santamaría,
2006); the perfect nestedness is shown by gray (green) curves for
the corresponding values of φ. From Ermann and Shepelyansky,
2013.
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The origin of such a difference between the EcoloRanking
and the trade volume ranking of countries is related to the
main idea of mutualistic ranking in ecological systems: the
nestedness ordering stresses the importance of mutualistic
pollinators (products for the WTN) which generate links and
exchange between plants (countries for the WTN). In this way
generic products, which participate in the trade between many
countries, become of primary importance even if their trade
volume is not at the top lines of import or export. In fact, such
mutualistic products glue the skeleton of the world trade while
the nestedness concept allows one to rank them in order of
their importance. The time evolution of this EcoloRanking of
products of the WTN is shown in Fig. 41 for import and export
in comparison with the product ranking by the monetary trade
volume (since the trade matrix is diagonal in the product index
the ranking of products in the latter case is the same for import
and export). The top and middle panels have dominate colors
corresponding to machinery (SITC Rev1 code 7, blue) and
mineral fuels (3, black) with a moderate contribution of

chemicals (5, yellow) and manufactured articles (8, cyan)
and a small fraction of goods classified by material (6, green).
Even if the global structure of product ranking by trade
volume has certain similarities with import EcoloRanking
there are also important new elements. Indeed, in 2008 the
mutualistic significance of petroleum products (code 332),
machindus (machines for special industries code 718), and
medpharm (medical-pharmaceutic products code 541) is
much higher compared to their volume ranking, while
petroleum crude (code 331) and office machines (code 714)
have smaller mutualistic significance compared to their
volume ranking.
The new element of EcoloRanking is that it differentiates

between import and export products while for trade volume they
are ranked in the same way. Indeed, the dominant colors for
export (Fig. 41, bottom panel) correspond to food (SITC Rev1
code 0, red) with the contribution of black import and crude
materials (code 2, violet); followed by cyan import and a more
pronounced presence of finnotclass (commodities and

FIG. 40 (color online). The top 20 countries as a function of
years ranked by the total monetary trade volume of the WTN in
(a) import and (b) export, respectively; each country is repre-
sented by its corresponding flag. Dashed lines show time
evolution of the same countries as in Fig. 39. From Ermann and
Shepelyansky, 2013.

FIG. 39 (color online). Top 20 EcoloRank countries as a function
of the years for the WTN (a) import and (b) export panels. The
ranking is given by the nestedness algorithm for the trade
threshold μ ¼ 10−3; each country is represented by its corre-
sponding flag. As an example, dashed lines show a time evolution
of the following countries: USA, UK, Japan, China, and Spain.
From Ermann and Shepelyansky, 2013.
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transactions not classified in code 9, brown). EcoloRanking of
export shows a clear decrease tendency of dominance of SITC
codes 0 and 2 with time and increase of importance of codes 3
and 7. It is interesting to note that the code 332 of petroleum
products is very vulnerable in volume ranking due to significant
variations of petroleum prices but in EcoloRanking this product
keeps the stable top positions in all years showing its mutualistic
structural importance for the world trade. EcoloRanking of
export shows also the importance of fish (code 031), clothing
(code 841), and fruits (code 051) which are placed on higher
positions compared to their volume ranking. At the same time
roadvehic (code 732), which is at the top volume ranking, has
relatively low ranking in export since only a few countries
dominate the production of road vehicles.
It is interesting to note that in Fig. 41 petroleum crude is at

the top of the trade volume ranking, e.g., in 2008 (top panel),
but it is absent in import EcoloRanking (middle panel) and it is
only in the sixth position in export EcoloRanking (bottom

panel). A similar feature is visible for years 1968 and 1978. At
first glance this looks surprising but in fact for mutualistic
EcoloRanking it is important that a given product is imported
from top EcoloRank countries: this is definitely not the case
for petroleum crude which practically is not produced inside
the top 10 import EcoloRank countries (the only exception is
USA, which however also does not export much). Because of
that reason this product has low mutualistic significance.
The mutualistic concept of product importance is at the

origin of a significant difference of EcoloRanking of countries
compared to the usual trade volume ranking (see Figs. 39 and
40). Indeed, in the latter case China and Japan are at the
dominant positions but their trade is concentrated in specific
products in which their mutualistic role is relatively low. In
contrast, USA, Germany, and France keep the top three
EcoloRank positions during almost 40 years, demonstrating
their mutualistic power and importance for the world trade.
Thus our results show the universal features of ecologic
ranking of complex networks with promising future applica-
tions to trade, finance, and other areas.

E. Remarks on world trade and banking networks

The new approach to the world trade, based on the Google
matrix analysis, gives a democratic type of ranking being
independent of the trade amount of a given country. In this
way rich and poor countries are treated on equal democratic
grounds. In a certain sense PageRank probability for a given
country is proportional to its rescaled import flows while
CheiRank is proportional to its rescaled export flows inside of
the WTN.
The global characteristics of the world trade are analyzed on

the basis of this new type of ranking. Even if all countries are
treated now on equal democratic grounds still we find at the
top rank the group of industrially developed countries approx-
imately corresponding to G-20 and recover 74% of countries
listed in G-20. The Google matrix analysis demonstrates an
existence of two solid state domains of rich and poor countries
which remain stable during the years of consideration. Other
countries correspond to a gas phase with ranking strongly
fluctuating in time. We propose a simple random matrix
model which well describes the statistical properties of rank
distribution for the WTN (Ermann and Shepelyansky, 2011).
The comparison between usual ImportRank-ExportRank

(Central Intelligence Agency, 2009) and our PageRank-
CheiRank approach shows that the latter highlights the trade
flows in a new and useful manner which is complementary to
the usual analysis. The important difference between these
two approaches is due to the fact that the ImportRank-
ExportRank method takes into account only a global amount
of money exchange between a country and the rest of the
world, while the PageRank-CheiRank approach takes into
account all links and money flows between all countries.
The future developments should consider a matrix with all

countries and all products whose size becomes significantly
larger (N ∼ 220 × 104 ∼ 2 × 106) compared to a modest size
N ≈ 227 considered here. However, some new problems of
this multiplex network analysis should be resolved combining
a democracy in countries with volume importance of products
in which the role is not democratic. It is quite possible that such

FIG. 41 (color online). The top 10 ranks of trade products as a
function of years for the WTN. (a) Ranking of products by
monetary trade volume. (b), (c) Ranking is given by the nested-
ness algorithm for (b) import and (c) export with the trade
threshold μ ¼ 10−3. Each product is shown by its own symbol
with a short name written at years 1968 and 2008; the symbol
color marks the first SITC digit. The SITC codes of products
and their names are given in the UN COMTRADE (2011) and
Table 2 of Ermann and Shepelyansky (2013). From Ermann and
Shepelyansky, 2013.
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an improved analysis will generate an asymmetric ranking of
products in contrast to their symmetric ranking by volume in
export and import. The ecological ranking of the WTN
discussed in Sec. XI.D indicates preferences and asymmetry
of trade in multiple products (Ermann and Shepelyansky,
2013). The first steps in the Google matrix analysis of the
multiproduct world trade network, with 61 products and
up to 227 countries, were done recently by Ermann and
Shepelyansky (2015) confirming this asymmetry. It is estab-
lished there that such multifunctional networks can be ana-
lyzed by the Google matrix approach, using a certain
personalized vector, so that the world countries are treated
on democratic equal grounds while the contribution of prod-
ucts remains proportional to their trade volume. Such a
multiproduct world trade network allows one to investigate
the sensitivity of trade to price variation of various products.
This approach can also be applied to the world network of
economic activities obtained from the Organization for
Economic Co-operation and Development and the World
Trade Organization (OECD-WTO) database (Kandiah,
Escaith, and Shepelyansky, 2015). It allows one to determine
the sensitivities of the economic balance of world countries
with respect to labor cost variations in certain selected
countries. In difference from the multiproduct WTN of UN
COMTRADE, where there are no direct transitions between
products, the OECD-WTO database contains interactions
between various activity sectors of various countries that
opens new possibilities for a more advanced analysis.
It is also important to note that usually in economy

researchers analyze time evolution of various indexes studying
their correlations. The results presented previously for the
WTN show that in addition to time evolution there is also
evolution in space of the network. As for waves in an ocean,
time and space are both important, and we think that time and
space study of trade captures important geographical factors
which will play a dominant role for the analysis of contami-
nation propagation over the WTN in case of crisis. We think
that the WTN data capture many essential elements which will
play a rather similar role for financial flows in the interbank
payment networks. We expect that the analysis of financial
flows between bank units would prevent an important finan-
cial crisis shaking the world in the last years. Unfortunately, in
contrast to the WWW and the UN COMTRADE, the banks
keep their financial flows hidden. Because of this secrecy of
banks the society is still suffering from financial crises. And
all this for a network of very small size estimated on a level of
50 000 bank units for the whole world being by a factor
1 × 106 smaller than the present size of the WWW [e.g., the
Fedwire interbank payment network of the USA contains only
6600 nodes (Soramäki et al., 2007)]. In a drastic contrast with
bank networks the WWW provided a public access to its
nodes changing the world on a scale of 20 years. A creation of
the World Bank Web (WBW) with information accessible for
authorized investigators allows one to understand and control
financial flows in an efficient manner preventing the society
from bank crises. We note that the methods of network
analysis and ranking start to attract the interest of researchers
in various banks (Craig and von Peter, 2010; Garratt,
Mahadeva, and Svirydzenka, 2011).

XII. NETWORKS WITH NILPOTENT ADJACENCY
MATRIX

A. General properties

In certain networks (Frahm, Chepelianskii, and
Shepelyansky, 2012; Frahm, Eom, and Shepelyansky,
2014) it is possible to identify an ordering scheme for the
nodes such that the adjacency matrix has nonvanishing
elements Amn only for nodes m < n providing a triangular
matrix structure. In these cases it is possible to provide a
semianalytical theory (Frahm, Chepelianskii, and Shepelyansky,
2012; Frahm, Eom, and Shepelyansky, 2014) which allows one
to simplify the numerical calculation of the nonvanishing
eigenvalues of the matrix S introduced in Sec. III.A. It is useful
to write this matrix in the form

S ¼ S0 þ ð1=NÞedT; ð10Þ

where the vector e has unit entries for all nodes and the dangling
vector d has unit entries for dangling nodes and zero entries for
the other nodes. The extra contribution edT=N just replaces the
empty columns (of S0) with 1=N entries at each element. For a
triangular network structure the matrix S0 is nilpotent, i.e.,
Sl0¼0 for some integer l > 0 and Sl−10 ≠ 0. Furthermore, for the
network examples studied previously (Frahm, Chepelianskii,
and Shepelyansky, 2012; Frahm, Eom, and Shepelyansky,
2014) we have l ≪ N which has important consequences for
the eigenvalue spectrum of S.
There are two groups of (right) eigenvectors ψ of S with

eigenvalue λ. For the first group the quantity C ¼ dTψ
vanishes and ψ is also an eigenvector of S0 and if S0 is
nilpotent we have λ ¼ 0 (there are also many higher order
generalized eigenvectors associated with λ ¼ 0). For the
second group we have C ≠ 0, λ ≠ 0, and the eigenvector is
given by ψ ¼ ðλ1 − S0Þ−1Ce=N. Expanding the matrix
inverse in a finite geometric series (for nilpotent S0) and
applying the condition C ¼ dTψ on this expression one finds
that the eigenvalue must be a zero of the reduced polynomial
of degree l:

PrðλÞ ¼ λl −
Xl−1
j¼0

λl−1−jcj ¼ 0; cj ¼ dTSj0e=N: ð11Þ

This shows that there are at most l nonvanishing eigenvalues
of S with eigenvectors ψ ∝

P
l−1
j¼0 λ

−j−1vðjÞ, where vðjÞ ¼
Sj0e=N for j ¼ 0;…; l − 1. Actually, the vectors vðjÞ generate
an S-invariant l-dimensional subspace and from SvðjÞ ¼
cjvð0Þ þ vðjþ1Þ (using the identification vðlÞ ¼ 0) one directly
obtains the l × l representation matrix S̄ of S with respect
to vðjÞ (Frahm, Chepelianskii, and Shepelyansky, 2012).
Furthermore, the characteristic polynomial of S̄ is indeed
given by the reduced polynomial (11) and the sum ruleP

l−1
j¼0 cj ¼ 1 ensures that λ ¼ 1 is indeed a zero of PrðλÞ

(Frahm, Chepelianskii, and Shepelyansky, 2012). The
corresponding eigenvector (PageRank P at α ¼ 1) is given

by P ∝
P

l−1
j¼0 v

ðjÞ. The remaining N − l (generalized)
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eigenvectors of S are associated with many different Jordan
blocks of S0 for the eigenvalue λ ¼ 0.
These l nonvanishing complex eigenvalues can be numeri-

cally computed as the zeros of the reduced polynomial by the
Newton-Maehly method, by a numerical diagonalization of
the “small” representation matrix S̄ (or better a more stable
transformed matrix with identical eigenvalues) or by the
Arnoldi method using the uniform vector e as the initial
vector. In the latter case the Arnoldi method should theoreti-
cally (in the absence of rounding errors) exactly explore the
l-dimensional subspace of the vectors vðjÞ and break off after
l iterations with l exact eigenvalues.
However, numerical rounding errors may have a strong

effect due to the Jordan blocks for the zero eigenvalue (Frahm,
Chepelianskii, and Shepelyansky, 2012). Indeed, an error ϵ
appearing in the bottom left corner of a Jordan matrix of size
D with zero eigenvalue leads to numerically induced eigen-
values on a complex circle of radius

jλϵj ¼ ϵ1=D: ð12Þ

Such an error can become significant with jλj > 0.1 even for
ϵ ∼ 10−15 as soon as D > 15. We call this phenomenon the
Jordan error enhancement. Furthermore, also the numerical
determination of the zeros of PrðλÞ for large values of l ∼ 102

can be numerically rather difficult. Thus, it may be necessary
to use a high-precision library such as the GNU Multiple
Precision Arithmetic Library (see https://gmplib.org/) either
for the determination of the zeros of PrðλÞ or for the Arnoldi
method (Frahm, Eom, and Shepelyansky, 2014).

B. PageRank of integers

A network for integer numbers (Frahm, Chepelianskii, and
Shepelyansky, 2012) can be constructed by linking an integer
number n ∈ f1;…; Ng to its divisorsm different from 1 and n
itself by an adjacency matrix Amn ¼ Mðn;mÞ, where the
multiplicity Mðn;mÞ is the number of times we can divide n
bym, i.e., the largest integer such thatmMðn;mÞ is a divisor of n,
and Amn ¼ 0 for all other cases. The number 1 and the prime
numbers are not linked to any other number and correspond to
dangling nodes. The total size N of the matrix is fixed by the
maximal considered integer. According to numerical data the
number of linksNl¼

P
mnAmn is given byNl¼Nðalþbl lnNÞ

with al ¼ −0.901� 0.018 and bl ¼ 1.003� 0.001.
The matrix elements Amn are different from zero only for

n ≥ 2m and the associated matrix S0 is therefore nilpotent with
Sl0 ¼ 0 and l ¼ log2ðNÞ ≪ N. This triangular matrix structure
can be seen in Fig. 42(a) which shows the amplitudes of S. The
vertical gray/green lines correspond to the extra contribution
due to the dangling nodes. These l nonvanishing eigenvalues of
S can be efficiently calculated as the zeros of the reduced
polynomial (11) up to N ¼ 109 with l ¼ 29. For N ¼ 109 the
largest eigenvalues are λ1 ¼ 1, λ2;3 ≈ −0.27 178� i0.42 736,
λ4 ≈ −0.177 34, and jλjj < 0.1 for j ≥ 5. The dependence of
the eigenvalues on N seems to scale with the parameter
1= lnðNÞ forN → ∞ and in particular γ2ðNÞ ¼ −2 ln jλ2ðNÞj ≈
1.020þ 7.14= lnN (Frahm, Chepelianskii, and Shepelyansky,
2012). Therefore the first eigenvalue is separated from the

second eigenvalue and one can choose the damping factor
α ¼ 1 without any problems to define a unique PageRank.
The large values of N are possible because the vector

iteration vðjþ1Þ ¼ S0vðjÞ can actually be computed without
storing the Nl ∼ N lnN nonvanishing elements of S0 by using

vðjþ1Þ
n ¼

X½N=n�

m¼2

Mðmn;mÞ
QðmnÞ vðjÞmn; if n ≥ 2 ð13Þ

and vðjþ1Þ
1 ¼ 0 (Frahm, Chepelianskii, and Shepelyansky,

2012). The initial vector is given by vð0Þ ¼ e=N and QðnÞ ¼P
n−1
m¼2 Mðn;mÞ is the number of divisors of n (taking into

account the multiplicity). The multiplicity Mðmn; nÞ can be
recalculated during each iteration and one needs only to store
Nð≪ NlÞ integer numbers QðnÞ. It is also possible to
reformulate Eq. (13) in a different way without using
Mðmn; nÞ (Frahm, Chepelianskii, and Shepelyansky, 2012).
The vectors vðjÞ allow one to compute the coefficients cj ¼
dTvðjÞ in the reduced polynomial and the PageRank
P ∝

P
l−1
j¼0 v

ðjÞ. Figure 42(b) shows the PageRank for N ∈
f107; 108; 109g obtained in this way and for comparison also
the result of the power method for N ¼ 107.
Actually Fig. 43 shows that in the sum P ∝

P
l−1
j¼0 v

ðjÞ the
first three terms already give a quite satisfactory approxima-
tion to the PageRank allowing a further analytical simplified
evaluation (Frahm, Chepelianskii, and Shepelyansky, 2012)
with the result PðnÞ ≈ CN=bnn for n ≪ N, where CN is the
normalization constant and bn ¼ 2 for prime numbers n and
bn ¼ 6 − δp1;p2

for numbers n ¼ p1p2 being a product of two
prime numbers p1 and p2. The behavior PðnÞn ≈ CN=bn,
which takes approximately constant values on several
branches, is also visible in Fig. 43 with CN=bn decreasing
if n is a product of many prime numbers. The numerical
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FIG. 42 (color online). (a) The Google matrix of integers. The
amplitudes of matrix elements Smn are shown by color black
(blue) for minimal zero elements and gray (red) maximal unity
elements, with 1 ≤ n ≤ 31 corresponding to the x axis (with
n ¼ 1 corresponding to the left column) and 1 ≤ m ≤ 31 for the
y axis (with m ¼ 1 corresponding to the upper row). (b) The full
lines correspond to the dependence of the PageRank probability
PðKÞ on index K for the matrix sizes N ¼ 107, 108, and 109 with
the PageRank evaluated by the exact expression P ∝

P
l−1
j¼0 v

ðjÞ.
The gray (green) crosses correspond to the PageRank obtained by
the power method for N ¼ 107; the dashed straight line shows the
Zipf law dependence P ∼ 1=K. From Frahm, Chepelianskii, and
Shepelyansky, 2012.
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results up to N ¼ 109 show that the numbers n, corresponding
to the leading PageRank values for K ¼ 1; 2;…; 32, are
n ¼ 2, 3, 5, 7, 4, 11, 13, 17, 6, 19, 9, 23, 29, 8, 31, 10,
37, 41, 43, 14, 47, 15, 53, 59, 61, 25, 67, 12, 71, 73, 22, and 21
with about 30% of nonprimes among these values (Frahm,
Chepelianskii, and Shepelyansky, 2012).
A simplified model for the network for integer numbers

with Mðn;mÞ ¼ 1 if m is the divisor of n and 1 < m < n has
also been studied with similar results (Frahm, Chepelianskii,
and Shepelyansky, 2012).

C. Citation network of Physical Review

Citation networks for Physical Review and other scientific
journals can be defined by taking published articles as nodes
and linking an article A to another article B if A cites B.
PageRank and a similar analysis of such networks are efficient
to determine influential articles (Redner, 1998, 2005;
Newman, 2001; Radicchi et al., 2009).
In a citation network links go mostly from newer to older

articles and therefore such networks have, apart from the
dangling node contributions, typically also a (nearly) triangu-
lar structure as can be seen in Fig. 44 which shows a coarse-
grained density of the corresponding Google matrix for the
citation network of Physical Review from the very beginning
until 2009 (Frahm, Eom, and Shepelyansky, 2014). However,
due to the delay of the publication process in certain rare
instances a published paper may cite another paper that is
actually published a little later and sometimes two papers may
even mutually cite each other. Therefore the matrix structure is
not exactly triangular but in the coarse-grained density in
Fig. 44 the rare “future citations” are not well visible.
The nearly triangular matrix structure implies large dimen-

sional Jordan blocks associated with the eigenvalue λ ¼ 0.
This creates the Jordan error enhancement (12) with severe
numerical problems for an accurate computation of eigenval-
ues in the range jλj < 0.3–0.4when using the Arnoldi method
with standard double-precision arithmetic (Frahm, Eom, and
Shepelyansky, 2014).
One can eliminate the small number of future citations

(12 126 which is 0.26% of the total number of links
Nl ¼ 4 691 015) and determine the complex eigenvalue spec-
trum of a triangular reduced citation network using the semi-
analytical theory presented in Sec XII.B. It turns out that in this

case the matrix S0 is nilpotent Sl0 ¼ 0 with l ¼ 352 which is
much smaller than the total network sizeN ¼ 463 348. The 352
nonvanishing eigenvalues can be determined numerically as
the zeros of the polynomial (11), but due to an alternate sign
problem with a strong loss of significance it is necessary to use
the high-precision library GMPwith 256 binary digits (Frahm,
Eom, and Shepelyansky, 2014).
The semianalytical theory can also be generalized to the

case of nearly triangular networks, i.e., the full citation
network including the future citations. In this case the matrix
S0 is no longer nilpotent but one can still generalize the
arguments of the previous section and discuss the two cases,
where the quantity C ¼ dTψ either vanishes (eigenvectors of
the first group) or is different from zero (eigenvectors of the
second group). The eigenvalues λ for the first group, which
may now be different from zero, can be determined by a quite
complicated but numerically very efficient procedure using
the subspace eigenvalues of S and degenerate subspace
eigenvalues of S0 (due to the absence of dangling node
contributions the matrix S0 produces much larger invariant
subspaces than S) (Frahm, Eom, and Shepelyansky, 2014).
The eigenvalues of the second group are given as the complex
zeros of the rational function:

RðλÞ ¼ 1 − dT
1

λ1 − S0
e=N ¼ 1 −

X∞
j¼0

cjλ−1−j ð14Þ

with cj given as in Eq. (11) and now the series is not finite
since S0 is not nilpotent. For the citation network of Physical

)b()a(

FIG. 44 (color online). Different representations of the Google
matrix structure for the Physical Review network until 2009.
(a) Density of matrix elements Gtt0 in the basis of the publication
time index t (and t0). (b) Density of matrix elements in the basis of
journal ordering according to Phys. Rev. Series I, Phys. Rev.,
Phys. Rev. Lett., Rev. Mod. Phys., Phys. Rev. A, B, C, D, E,
Phys. Rev. STAB, Phys. Rev. STPER, and with time index
ordering inside each journal. Note that the journals Phys. Rev.
Series I, Phys. Rev. STAB, and Phys. Rev. STPER are not clearly
visible due to a small number of published papers. Also Rev.
Mod. Phys. appears only as a thick line with 2–3 pixels (out of
500) due to a limited number of published papers. The different
blocks with triangular structure correspond to clearly visible
seven journals with considerable numbers of published papers.
Both panels show the coarse-grained density of matrix elements
on 500 × 500 square cells for the entire network. Color shows the
density of matrix elements (of G at α ¼ 1) changing from black
(blue) for minimum zero value to gray (red) maximum value.
From Frahm, Eom, and Shepelyansky, 2014.
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FIG. 43 (color online). (a) Comparison of the first three
PageRank approximations PðiÞ ∝

P
i−1
j¼0 v

ðjÞ for i ¼ 1; 2; 3 and
the exact PageRank dependence PðKÞ. (b) Comparison of the
dependence of the rescaled probabilities nP and nPð3Þ on n.
Both panels correspond to the case N ¼ 107. From Frahm,
Chepelianskii, and Shepelyansky, 2012.
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Review the coefficients cj behave as cj ∝ ρj1, where ρ1 ≈
0.902 is the largest eigenvalue of the matrix S0 with an
eigenvector nonorthogonal to d. Therefore the series in
Eq. (14) converges well for jλj > ρ1 but in order to determine
the spectrum the rational function RðλÞ needs to be evaluated
for smaller values of jλj. This problem can be solved by
interpolating RðλÞ with (another) rational function using a
certain number of support points on the complex unit circle,
where Eq. (14) converges well, and determining the complex
zeros, well inside the unit circle, of the numerator polynomial
using again the high-precision library GMP (Frahm, Eom, and
Shepelyansky, 2014). In this way using 16 384 binary digits
one may obtain 2500 reliable eigenvalues of the second group.
The numerical high-precision spectra obtained by the

semianalytic methods for both cases, triangular reduced and
full citation network, are shown in Fig. 45. Note that it is also
possible to implement the Arnoldi method using the high-
precision library GMP for both cases and the resulting
eigenvalues coincide very accurately with the semianalytic
spectra for both cases (Frahm, Eom, and Shepelyansky, 2014).
When the spectrum of G is determined with good accuracy

we can test the validity of the fractal Weyl law (5) changing
the matrix size Nt by considering articles published from the
beginning to a certain time moment t measured in years. The
data presented in Fig. 46 show that the network size grows
approximately exponentially as Nt ¼ 2ðt−t0Þ=τ with the fit
parameters t0 ¼ 1791 and τ ¼ 11.4. The time interval con-
sidered in Fig. 46 is 1913 ≤ t ≤ 2009 since the first data point
corresponds to t ¼ 1913 with Nt ¼ 1500 papers published
between 1893 and 1913. The results, for the number Nλ of
eigenvalues with jλij > λ, show that its growth is well
described by the relation Nλ ¼ aðNtÞν for the range when

the number of articles becomes sufficiently large
3 × 104 ≤ Nt < 5 × 105. This range is not very large and
probably due to that there is a certain dependence of the
exponent ν on the range parameter λc. At the same time we
note that the maximal matrix size N studied here is probably
the largest one used in numerical studies of the fractal Weyl
law. We have 0.47 < ν < 0.6 for all λc ≥ 0.4 that is definitely
smaller than unity and thus the fractal Weyl law is well
applicable to the Physical Review network. The value of ν
increases up to 0.7 for the data points with λc < 0.4 but this is
due to the fact that Nλ also includes some numerically
incorrect eigenvalues related to the numerical instability of
the Arnoldi method at standard double precision (52 binary
digits) as discussed previously.
We conclude that the most appropriate choice for the

description of the data is obtained at λc ¼ 0.4 which from
one side excludes small, partly numerically incorrect, values
of λ and on the other side gives sufficiently large values of Nλ.
Here we have ν ¼ 0.49� 02 corresponding to the fractal
dimension d ¼ 0.98� 0.04. Furthermore, for 0.4 ≤ λc ≤ 0.7
we have a rather constant value ν ≈ 0.5 with df ≈ 1.0. Of
course, it would be interesting to extend this analysis to a
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FIG. 45 (color online). (a) Most accurate spectrum of eigenval-
ues for the full Physical Review network; the gray (red) dots
represent the core space eigenvalues obtained by the rational
interpolation method with the numerical precision of p ¼ 16 384
binary digits, nR ¼ 2500 eigenvalues; light gray (green) dots
show the degenerate subspace eigenvalues of the matrix S0 which
are also eigenvalues of S with a degeneracy reduced by one
(eigenvalues of the first group); black (blue) dots show the direct
subspace eigenvalues of S. (b) Spectrum of numerically accurate
352 nonvanishing eigenvalues of the Google matrix for the
triangular reduced Physical Review network determined by the
Newton-Maehly method applied to the reduced polynomial (11)
with a high-precision calculation of 256 binary digits; note the
absence of subspace eigenvalues for this case. In both panels the
gray (green) curves represent the unit circles. From Frahm, Eom,
and Shepelyansky, 2014.
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FIG. 46 (color online). Data for the whole citation network of
Physical Review at different moments of time. (a) [or (c)] The
number Nλ of eigenvalues with λc ≤ λ ≤ 1 for λc ¼ 0.50 (or
λc ¼ 0.65) vs the effective network size Nt, where the nodes with
publication times after a cut time t are removed from the network.
The gray (green) line shows the fractal Weyl law Nλ ¼ aðNtÞν
with parameters a ¼ 0.32� 0.08 (a ¼ 0.24� 0.11) and ν ¼
0.51� 0.02 (b ¼ 0.47� 0.04) obtained from a fit in the range
3 × 104 ≤ Nt < 5 × 105. The number Nλ includes both exactly
determined invariant subspace eigenvalues and core space ei-
genvalues obtained from the Arnoldi method with double
precision (52 binary digits) for nA ¼ 4000 [gray (red) crosses]
and nA ¼ 2000 [black (blue) squares]. (b) Exponent b with error
bars obtained from the fit Nλ ¼ aðNtÞν in the range 3 × 104 ≤
Nt < 5 × 105 vs the cut value λc. (d) The effective network size
Nt vs cut time t (in years). The gray (green) line shows the
exponential fit 2ðt−t0Þ=τ with t0 ¼ 1791� 3 and τ ¼ 11.4� 0.2
representing the number of years after which the size of
the network (number of papers published in all Physical
Review journals) is effectively doubled. From Frahm, Eom,
and Shepelyansky, 2014.
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larger size N of citation networks of various type and not only
for Physical Review. We expect that the fractal Weyl law is a
generic feature of citation networks.
Further studies of the citation network of Physical Review

concern the properties of eigenvectors (different from the
PageRank) associated with relatively large complex eigen-
values, the fractal Weyl law, the correlations between
PageRank and CheiRank (see also Sec. IV.C), and the notion
of “ImpactRank” (Frahm, Eom, and Shepelyansky, 2014). To
define the ImpactRank one may ask the question how a paper
influences or has been influenced by other papers. For this one
considers an initial vector v0, localized on one node or paper.
Then the modified Google matrix ~G ¼ γGþ ð1 − γÞv0eT
(with a damping factor γ ∼ 0.5–0.9) produces a
“PageRank” vf by the propagator vf ¼ ð1 − γÞ=ð1 − γGÞv0.
In the vector vf the leading nodes or papers have strongly
influenced the initial paper represented in v0. Doing the same
for G� one obtains a vector v�f, where the leading papers have
been influenced by the initial paper represented in v0. This
procedure has been applied to certain historically important
papers (Frahm, Eom, and Shepelyansky, 2014).
In summary, the results of this section show that the

phenomenon of the Jordan error enhancement (12), induced
by finite accuracy of computations with a finite number of
digits, can be resolved by advanced numerical methods
described previously. Thus the accurate eigenvalues λ can
be obtained even for the most difficult case of quasitriangular
matrices. Note that for other networks such as the WWW of
UK universities, Wikipedia, and Twitter, the triangular struc-
ture of S is much less pronounced (see, e.g., Fig. 1) that gives a
reduction of Jordan blocks so that the Arnoldi method with
double precision computes accurate values of λ.

XIII. RANDOM MATRIX MODELS OF MARKOV CHAINS

A. Albert-Barabási model of directed networks

There are various preferential attachment models generating
complex scale-free networks (Albert and Barabási, 2002;
Dorogovtsev, 2010). Such undirected networks are generated
by the Albert-Barabási (AB) procedure (Albert and Barabási,
2000) which builds networks by an iterative process. Such a
procedure has been generalized to generate directed networks in
Giraud, Georgeot, and Shepelyansky (2009) with the aim to
study properties of the Google matrix of such networks. The
procedure works as follows: starting fromm nodes, at each step
m links are added to the existing network with probability p, or
m links are rewired with probability q, or a new node with m
links is added with probability 1 − p − q. In each case the end
node of new links is chosen with preferential attachment, i.e.,
with probability ðki þ 1Þ=Pjðkj þ 1Þ, where ki is the total
number of ingoing and outgoing links of node i. This mecha-
nism generates directed networks having the small-world and
scale-free properties, depending on the values of p and q. The
results are averaged overNr random realizations of the network
to improve the statistics.
The studies (Giraud, Georgeot, and Shepelyansky, 2009)

are done mainly for m ¼ 5, p ¼ 0.2 and two values of q
corresponding to scale-free (q ¼ 0.1) and exponential

(q ¼ 0.7) regimes of link distributions [see Fig. 1 in
Albert and Barabási (2000) for undirected networks]. For
the generated directed networks at q ¼ 0.1, one finds proper-
ties close to the behavior for the WWW with the cumulative
distribution of ingoing links showing algebraic decay Pin

c ðkÞ ∼
1=k and average connectivity hki ≈ 6.4. For q ¼ 0.7 one finds
Pin
c ðkÞ ∼ expð−0.03kÞ and hki ≈ 15. For outgoing links, the

numerical data are compatible with an exponential decay in
both cases with Pout

c ðkÞ ∼ expð−0.6kÞ for q ¼ 0.1 and
Pout
c ðkÞ ∼ expð−0.1kÞ for q ¼ 0.7. Small variations of param-

eters m;p; q near the chosen values do not qualitatively affect
the properties of the G matrix.
It is found that the eigenvalues of G for the AB model have

one λ ¼ 1 with all other jλij < 0.3 at α ¼ 0.85 [see Fig. 1 in
Giraud, Georgeot, and Shepelyansky (2009)]. This distribu-
tion shows no significant modification with the growth of
matrix size 210 ≤ N ≤ 214. However, the values of IPR ξ are
growing with N for typical values jλj ∼ 0.2. This indicates a
delocalization of corresponding eigenstates at large N. At the
same time the PageRank probability is well described by the
algebraic dependence P ∼ 1=K with ξ being practically
independent of N.
These results for the directed AB model network shows that

it captures certain features of real directed networks as, e.g., a
typical PageRank decay with the exponent β ≈ 1. However,
the spectrum of G in this model is characterized by a large gap
between λ ¼ 1 and other eigenvalues which have λ ≤ 0.35 at
α ¼ 1. This feature is drastically different with spectra of such
typical networks at the WWWof universities, Wikipedia, and
Twitter (see Figs. 17, 22, and 32). In fact the AB model has no
subspaces and no isolated or weakly coupled communities. In
this network all sites can be reached from a given site in a
logarithmic number of steps that generates a large gap in the
spectrum of the Google matrix and a rapid relaxation to the
PageRank eigenstate. In real networks there are plenty of
isolated or weakly coupled communities and the introduction
of a damping factor α < 1 is necessary to have a single
PageRank eigenvalue at λ ¼ 1. Thus the results obtained by
Giraud, Georgeot, and Shepelyansky (2009) show that the AB
model is not able to capture the important spectral features of
real networks.
Additional studies by Giraud, Georgeot, and Shepelyansky

(2009) analyzed the model of a real WWWuniversity network
with rewiring procedure of links, which consists of random-
izing the links of the network keeping fixed the number of links
at any given node. Starting from a single network, this creates
an ensemble of randomized networks of the same size, where
each node has the same number of ingoing and outgoing links
as for the original network. The spectrum of such randomly
rewired networks is also characterized by a large gap in the
spectrum ofG showing that rewiring destroys the communities
existing in the original networks. The spectrum and eigenstate
properties are studied in the related work on various real
networks of moderate sizeN < 2 × 104which have no spectral
gap (Georgeot, Giraud, and Shepelyansky, 2010).

B. Random matrix models of directed networks

Previously we saw that the standard models of scale-free
networks are not able to reproduce the typical properties of the
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spectrum of Google matrices of real large-scale networks. At
the same time we believe that it is important to find realistic
matrix models of the WWW and other networks. Here we
discuss certain results for certain random matrix models of G.
Analytical and numerical studies of random unistochastic

or orthostochastic matrices of size N ¼ 3 and 4 lead to triplet
and cross structures in the complex eigenvalue spectra
(Zyczkowski et al., 2003); see also Fig. 18. However, the
size of such matrices is too small.
Here we consider other examples of random matrix models

of Perron-Frobenius operators characterized by non-negative
matrix elements and column sums normalized to unity. We
call these models random Perron-Frobenius matrices (RPFM).
A number of RPFM, with arbitrary size N, can be constructed
by drawing N2 independent matrix elements 0 ≤ Gij ≤ 1

from a given distribution pðGijÞ with finite variance σ2 ¼
hG2

iji − hGiji2 and normalizing the column sums to unity
(Frahm, Eom, and Shepelyansky, 2014). The average matrix
hGiji ¼ 1=N is just a projector on the vector e (with unity
entries on each node, see also Sec. XII.A) and has the two
eigenvalues λ1 ¼ 1 (of multiplicity 1) and λ2 ¼ 0 (of multi-
plicity N − 1). Using an argument of degenerate perturbation
theory on δG ¼ G − hGi and known results on the eigenvalue
density of nonsymmetric random matrices (Guhr, Mueller-
Groeling, and Weidenmueller, 1998; Mehta, 2004; Akemann,
Baik, and Francesco, 2011) one finds that an arbitrary
realization of G has the leading eigenvalue λ1 ¼ 1 and the
other eigenvalues are uniformly distributed on the complex
unit circle of radius R ¼ ffiffiffiffi

N
p

σ (see Fig. 47).
Choosing different distributions pðGijÞ one obtains differ-

ent variants of the model (Frahm, Eom, and Shepelyansky,
2014), for example, R ¼ 1=

ffiffiffiffiffiffiffi
3N

p
using a full matrix with

uniform Gij ∈ ½0; 2=N�. Sparse models with Q ≪ N non-
vanishing elements per column can be modeled by a distri-
bution, where the probability of Gij ¼ 0 is 1 −Q=N and for
nonzero Gij (either uniform in ½0; 2=Q� or constant 1=Q) is
Q=N leading to R ¼ 2=

ffiffiffiffiffiffiffi
3Q

p
(for uniform nonzero elements)

or R ¼ 1=
ffiffiffiffi
Q

p
(for constant nonzero elements). The circular

eigenvalue density with these values of R is also very well
confirmed by numerical simulations in Fig. 47. Another case
is a power law pðGÞ ¼ D=ð1þ aGÞ−b (for 0 ≤ G ≤ 1) with
D and a to be determined by normalization and the average
hGiji ¼ 1=N. For b > 3 this case is similar to a full matrix

with R ∼ 1=
ffiffiffiffi
N

p
. However, for 2 < b < 3 one finds that

R ∼ N1−b=2.
The situation changes when one imposes a triangular

structure on G in which case the complex spectrum of hGi
is already quite complicated and, due to nondegenerate
perturbation theory, close to the spectrum of G with modest
fluctuations, mostly for the smallest eigenvalues (Frahm,
Eom, and Shepelyansky, 2014). Following the previous
discussion about triangular networks (with Gij ¼ 0 for
i ≥ j) we also numerically study a triangular RPFM, where
for j ≥ 2 and i < j the matrix elements Gij are uniformly
distributed in the interval ½0; 2=ðj − 1Þ� and for i ≥ j we have
Gij ¼ 0. When the first column is empty, that means it
corresponds to a dangling node and it needs to be replaced
by 1=N entries. For the triangular RPFM the situation changes

completely since here the average matrix hGiji ¼ 1=ðj − 1Þ
(for i < j and j ≥ 2) has already a nontrivial structure and
eigenvalue spectrum. Therefore the argument of degenerate
perturbation theory which allows one to apply the results of
standard full nonsymmetric random matrices does not apply
here. In Fig. 47 one clearly sees that for N ¼ 400 the spectra
for one realization of a triangular RPFM and its average are
very similar for the eigenvalues with large modulus but both
do not have at all a uniform circular density in contrast to the
RPRM models without the triangular constraint discussed
previously. For the triangular RPFM the PageRank behaves as
PðKÞ ∼ 1=K with the ranking index K being close to the
natural order of nodes f1; 2; 3;…g that reflects the fact that
the node 1 has the maximum of N − 1 incoming links, etc.
These results show that it is not so simple to propose a good

random matrix model which captures the generic spectral
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FIG. 47 (color online). (a) The spectrum [gray (red) dots] of one
realization of a full uniform RPFM with dimension N ¼ 400 and
matrix elements uniformly distributed in the interval ½0; 2=N�; the
black (blue) outer circle represents the theoretical spectral border
with radius R ¼ 1=

ffiffiffiffiffiffiffi
3N

p
≈ 0.028 87. The unit eigenvalue λ ¼ 1

is not shown due to the zoomed presentation range. (c) The
spectrum of one realization of triangular RPFM [gray (red)
crosses] with nonvanishing matrix elements uniformly distributed
in the interval ½0; 2=ðj − 1Þ� and a triangular matrix with non-
vanishing elements 1=ðj − 1Þ [black (blue) squares]; here j ¼
2; 3;…; N is the index number of nonempty columns and the first
column with j ¼ 1 corresponds to a dangling node with elements
1=N for both triangular cases. (b), (d) The complex eigenvalue
spectrum [gray (red) dots] of a sparse RPFM with dimension
N ¼ 400 and Q ¼ 20 nonvanishing elements per column at
random positions. (b) [or (d)] corresponds to the case of
uniformly distributed nonvanishing elements in the interval
½0; 2=Q� (constant nonvanishing elements being 1=Q); the black
(blue) small circle represents the theoretical spectral border with
radius R ¼ 2=

ffiffiffiffiffiffiffi
3Q

p
≈ 0.2582 (R ¼ 1=

ffiffiffiffi
Q

p
≈ 0.2236). (b),

(d) λ ¼ 1 is shown by a larger red dot for better visibility. The
unit circle is shown by the gray (green) curve [(b)–(d)]. From
Frahm, Eom, and Shepelyansky, 2014.
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features of real directed networks. We think that investigations
in this direction should be continued.

C. Anderson delocalization of PageRank?

The phenomenon of Anderson localization of electron
transport in disordered materials (Anderson, 1958) is now a
well-known effect studied in detail in physics (Evers and
Mirlin, 2008). In one and two dimensions even a small
disorder leads to an exponential localization of electron
diffusion that corresponds to an insulating phase. Thus, even
if classical electron dynamics is diffusive and delocalized over
the whole space, the effects of quantum interference generates
a localization of all eigenstates of the Schrödinger equation. In
higher dimensions a localization is preserved at sufficiently
strong disorder, while a delocalized metallic phase appears for
a disorder strength being smaller than a certain critical value
dependent on the Fermi energy of electrons. This phenomenon
is rather generic and we can expect that a somewhat
similar delocalization transition can appear in the small-world
networks.
Indeed, it is useful to consider the 1D Anderson model on a

ring with a certain number of shortcut links, described by the
Schrödinger equation

ϵnψn þ Vðψnþ1 þ ψn−1Þ þ V
X
S

ðψnþS þ ψn−SÞ ¼ Eψn;

ð15Þ

where ϵn are random on site energies homogeneously dis-
tributed within the interval −W=2 ≤ ϵn ≤ W=2, and V is the
hopping matrix element. The sum over S is taken over
randomly established shortcuts from a site n to any
other random site of the network. The number of such
shortcuts is Stot ¼ plL, where L is the total number of sites
on a ring and pl is the density of shortcut links. This model
was introduced by Chepelianskii and Shepelyansky (2001).
The numerical study, reported there, showed that the level-
spacing statistics pðsÞ for this model has a transition from the
Poisson distribution pPoisðsÞ ¼ expð−sÞ, typical for the
Anderson localization phase, to the Wigner surmise distribu-
tion pWigðsÞ ¼ ðπs=2Þ expð−πs2=4Þ, typical for the Anderson
metallic phase (Guhr, Mueller-Groeling, and Weidenmueller,
1998; Evers and Mirlin, 2008). The numerical diagonalization
was done via the Lanczos algorithm for sizes up to L ¼
32 000 and the typical parameter range 0.005 ≤ pl < 0.1 and
1 ≤ W=V ≤ 4. An example of the variation of plðsÞ with a
decrease of W=V is shown in Fig. 48(a). We see that the
Wigner surmise provides a good description of the numerical
data at W=V ¼ 1, when the maximal localization length l1 ≈
96ðV=WÞ2 ≈ 96 in the 1D Anderson model (Evers and Mirlin,
2008) is much smaller than the system size L.
To identify a transition from one limiting case pPoisðsÞ to

another pWigðsÞ it is convenient to introduce the parameter
ηs ¼

R s0
0 ½pðsÞ−pWigðsÞ�ds=

R s0
0 ½pPoisðsÞ−pWigðsÞ�ds, where

s0 ¼ 0.4729… is the intersection point of pPoisðsÞ and
pWigðsÞ. In this way ηs varies from 1 [for pðsÞ ¼ pPoisðsÞ]
to 0 [for pðsÞ ¼ pWigðsÞ] (Shepelyansky, 2001). From the
variation of ηs with system parameters and size L, the critical

density pl ¼ pc can be determined by the condition
ηsðpc;W=VÞ ¼ ηc ¼ 0.8 ¼ const being independent of L.
The obtained dependence of pc on W=V obtained at a
fixed critical point ηc ¼ 0.8 is shown in Fig. 48(b). The
Anderson delocalization transition takes place when the
density of shortcuts becomes larger than a critical density
pl > pc ≈ 1=ð4l1Þ, where l1 ≈ 96ðV=WÞ2 is the length of
Anderson localization in 1D. A simple physical interpretation
of this result is that the delocalization takes place when the
localization length l1 becomes larger than a typical distance
1=ð4plÞ between shortcuts. Further studies of the time
evolution of the wave function ψnðtÞ and IPR ξ variation
also confirmed the existence of quantum delocalization
transition on this quantum small-world network (Giraud,
Georgeot, and Shepelyansky, 2005).
Thus the results obtained for the quantum small-world

networks (Chepelianskii and Shepelyansky, 2001; Giraud,
Georgeot, and Shepelyansky, 2005) show that the Anderson
transition can take place in such systems. However, the above
model represents an undirected network corresponding to a
symmetric matrix with a real spectrum while the typical
directed networks are characterized by asymmetric matrix G
and complex spectrum. The possibility of the existence of
localized states of G for the WWW networks was also
discussed by Perra et al. (2009) but the fact that in a typical
case the spectrum of G is complex has not been analyzed in
detail.
Previously we saw certain indications of the possibility of

an Anderson-type delocalization transition for eigenstates of
the G matrix. Our results show that certain eigenstates in the
core space are exponentially localized [see, e.g., Fig. 19(b)].
Such states are localized only on a few nodes touching other
nodes of network only by an exponentially small tail. A
similar situation appears in the 1D Anderson model if
absorption is introduced on one end of the chain. Then the
eigenstates located far away from this place feel this absorp-
tion only by exponentially small tails so that the imaginary
part of the eigenenergy has for such far away states only an
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FIG. 48 (color online). (a) The gray (red) and black (blue) curves
represent the Poisson and Wigner surmise distributions. Dia-
monds, triangles, open circles, and black solid circles represent,
respectively, the level-spacing statistics pðsÞ atW=V ¼ 4; 3; 2; 1;
pl ¼ 0.02, L ¼ 32 000; averaging is done over 60 network
realizations. (b) Stars give dependence ofpl on a disorder strength
W=V at the critical point when ηlðW;plÞ ¼ 0.8, and pl ¼
0.005; 0.01; 0.02; 0.04 at fixed L ¼ 8000; the straight line corre-
sponds to pl ¼ pc ¼ 1=4l1 ≈ ðW=VÞ2=400; the dashed curve is
to guide the eye. From Chepelianskii and Shepelyansky, 2001.
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exponentially small imaginary part. It is natural to expect that
such localization can be destroyed by some parameter varia-
tion. Indeed, certain eigenstates with jλj < 1 for the directed
network of the AB model have IPR ξ growing with the
matrix size N [see Sec. XIII.A and Giraud, Georgeot, and
Shepelyansky (2009)] even if for the PageRank the values of ξ
remain independent of N. The results for the Ulam network
from Figs. 13 and 14 provide an example of directed network
where the PageRank vector becomes delocalized when the
damping factor is decreased from α ¼ 0.95 to 0.85 (Zhirov,
Zhirov, and Shepelyansky, 2010). This example demonstrates
the possibility of PageRank delocalization but a deeper under-
standing of the conditions required for such a phenomenon to
occur are still lacking. The main difficulty is the absence of
well-established random matrix models which have properties
similar to the available examples of real networks.
Indeed, for Hermitian and unitary matrices the theories of

random matrices, mesoscopic systems, and quantum chaos
allow one to capture the main universal properties of spectra
and eigenstates (Guhr, Mueller-Groeling, and Weidenmueller,
1998; Mehta, 2004; Evers and Mirlin, 2008; Haake, 2010;
Akemann, Baik, and Francesco, 2011). For asymmetric
Google matrices the spectrum is complex and at the moment
there are no good random matrix models which would allow
one to perform analytical analysis of various parameter
dependencies. It is possible that non-Hermitian Anderson
models in 1D, which naturally generates a complex spectrum
and may have delocalized eigenstates, will provide new
insights in this direction (Goldsheid and Khoruzhenko,
1998). We note that the recent random Google matrix models
studied by Zhirov and Shepelyansky (2015) give indications
of the appearance of the Anderson transition for Google
matrix eigenstates and a mobility edge contour in a plane of
complex eigenvalues. Such a delocalization transition cannot
be attributed to the percolation since in the small-world
networks there are only 6 degrees of separation between
nodes (Watts and Strogatz, 1998; Dorogovtsev, 2010).

XIV. OTHER EXAMPLES OF DIRECTED NETWORKS
A. Brain neural networks

von Neumann (1958) in 1958 traced first parallels between
architecture of the computer and the brain. Since that time
computers became an unavoidable element of the modern
society forming a computer network connected by the
WWW with about 4 × 109 indexed web pages spread all over
the world (see, e.g., http://www.worldwidewebsize.com/). This
number starts to become comparable with 1010 neurons in a
human brain, where each neuron can be viewed as an inde-
pendent processingunit connectedwith about104 other neurons
by synaptic links (Sporns, 2007). About 20% of these links are
unidirectional (Felleman and van Essen, 1991) and hence the
brain can be viewed as a directed network of neuron links. At
present, more and more experimental information about neu-
rons and their links becomes available and the investigations of
properties of neuronal networks attract an active interest
(Bullmore and Sporns, 2009; Zuo et al., 2012). The fact that
enormous sizes of the WWW and brain networks are compa-
rable gives an idea that the Google matrix analysis should find
useful application in brain science as is the case for the WWW.

First applications of methods of the Google matrix methods
to brain neural networks was done by Shepelyansky and
Zhirov (2010b) for a large-scale thalamocortical model
(Izhikevich and Edelman, 2008) based on experimental
measures in several mammalian species. The model spans
three anatomic scales. (i) It is based on global (white-matter)
thalamocortical anatomy obtained by means of diffusion
tensor imaging of a human brain. (ii) It includes multiple
thalamic nuclei and six-layered cortical microcircuitry based
on in vitro labeling and three-dimensional reconstruction of
single neurons of cat visual cortex. (iii) It has 22 basic types of
neurons with appropriate laminar distribution of their branch-
ing dendritic trees. According to Izhikevich and Edelman
(2008) the model exhibits behavioral regimes of normal brain
activity that were not explicitly built in but emerged sponta-
neously as the result of interactions among anatomical and
dynamic processes.
The model studied by Shepelyansky and Zhirov (2010b)

contains N ¼ 104 neurons with Nl ¼ 1 960 108. The results
obtained show that PageRank and CheiRank vectors have
rather large ξ being comparable to the whole network size at
α ¼ 0.85. The corresponding probabilities have flat depend-
ence on their indices showing that they are close to a
delocalized regime. We attribute these features to a rather
large number of links per node ζ ≈ 196 being even larger than
for the Twitter network. At the same time the PageRank-
CheiRank correlator is rather small κ ¼ −0.065. Thus this
network is structured in such a way that functions related to
order signals (outgoing links of CheiRank) and signals
bringing orders (ingoing links of PageRank) are well sepa-
rated and independent of each other as is the case for the Linux
Kernel software architecture. The spectrum of G has a gapless
structure showing that long-living excitations can exist in this
neuronal network.
Of course, model systems of neural networks can provide a

number of interesting insights but it is much more important to
study examples of real neural networks. Kandiah and
Shepelyansky (2014) performed such an analysis for the neural
network of C. elegans (a worm). The full connectivity of this
directed network is known and well documented atWormAtlas
(Altun et al., 2012). The number of linked neurons (nodes) is
N ¼ 279 with the number of synaptic connections and gap
junctions (links) between them being Nl ¼ 2990.
The Google matrix G of C. elegans is constructed using the

connectivity matrix elements Sij ¼ Ssyn;ij þ Sgap;ij, where Ssyn
is an asymmetric matrix of synaptic links whose elements are
1 if neuron j connects to neuron i through a chemical synaptic
connection and 0 otherwise. The matrix part Sgap is a
symmetric matrix describing gap junctions between pairs of
cells, Sgap;ij ¼ Sgap;ji ¼ 1 if neurons i and j are connected
through a gap junction and 0 otherwise. Then the matrices G
and G� are constructed following the standard rule (1) at
α ¼ 0.85. The connectivity properties of this network are
similar to those of the WWW of Cambridge and Oxford with
approximately the same number of links per node.
The spectra of G and G� are shown in Fig. 49 with

corresponding IPR values of eigenstates. The imaginary part
of λ is relatively small jImðλÞj < 0.2 due to a large fraction of
symmetric links. The second by modulus eigenvalues are
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λ2 ¼ 0.8214 for G and λ2 ¼ 0.8608 for G�. Thus the network
relaxation time τ ¼ 1=j ln λ2j is approximately 5, 6.7 iterations
of G;G�. Certain IPR values ξi of eigenstates of G;G� have
rather large ξ ≈ N=3while others have ξ located only on about
ten nodes.
We have a large value ξ ≈ 85 for PageRank and a more

moderate value ξ ≈ 23 for CheiRank vectors. Here we have
the algebraic decay exponents being β ≈ 0.33 for PðKÞ and
β ≈ 0.50 for P�ðK�Þ. Of course, the network size is not large
and these values are only approximate. However, they indicate
an interchange between PageRank and CheiRank showing the
importance of outgoing links. It is possible that such an
inversion is related to a significant importance of outgoing
links in neural systems: in a sense such links transfer orders,
while ingoing links bring instructions to a given neuron from
other neurons. The correlator κ ¼ 0.125 is small and thus the
network structure allows one to perform a control of infor-
mation flow in a more efficient way without interference of
errors between orders and executions. We saw already in
Sec. VII.A that such a separation of concerns emerges in the
software architecture. It seems that the neural networks also
adopt such a structure.
We note that a somewhat similar situation appears for

networks of business process management where principals of
a company are located at the top CheiRank position while the
top PageRank positions belong to company contacts (Abel
and Shepelyansky, 2011). Indeed, a case study of a real
company structure analyzed by Abel and Shepelyansky
(2011) also stress the importance of company managers
who transfer orders to other structural units. For this network
the correlator is also small being κ ¼ 0.164. We expect that
brain neural networks may have certain similarities with
company organization.
Each neuron i belongs to two ranks Ki and K�

i and it is
convenient to represent the distribution of neurons on the
PageRank-CheiRank plane ðK;K�Þ shown in Fig. 50. The plot
confirms that there are little correlations between both ranks
since the points are scattered over the whole plane. Neurons
ranked at topK positions of PageRank have their soma located
mainly in both extremities of the worm (head and tail)
showing that neurons in those regions have important

connections coming from many other neurons which control
head and tail movements. This tendency is even more visible
for neurons at top K� positions of CheiRank but with a
preference for head and middle regions. In general, neurons,
that have their soma in the middle region of theworm, are quite
highly ranked in CheiRank but not in PageRank. The neurons
located at the head region have top positions in CheiRank and
also PageRank, while the middle region has some top
CheiRank indexes but rather large indexes of PageRank
[Fig. 50(a)]. The neuron-type coloration [Fig. 50(b)] also
reveals that sensory neurons are at top PageRank positions
but at rather large CheiRank indexes, whereas in general motor
neurons are in the opposite situation.
Top nodes of PageRank and CheiRank favor important

signal relaying neurons such as AVA and AVB that
integrate signals from crucial nodes and in turn pilot other
crucial nodes. Neurons AVAL; AVAR, AVBL; AVBR, and
AVEL; AVER are considered to belong to the rich club
analyzed by Towlson et al. (2013). The top neurons in the
2DRank are AVAL, AVAR, AVBL, AVBR, and PVCR that
correspond to a dominance of interneurons. More details can
be found in Kandiah and Shepelyansky (2014).
The technological progress allows one to obtain more and

more detailed information about neural networks (Bullmore
and Sporns, 2009; Zuo et al., 2012; Towlson et al., 2013) even
if it is not easy to get information about link directions. As a
result we expect that the methods of directed network analysis
described here will find useful future applications for brain
neural networks.

B. Google matrix of DNA sequences

The approaches of the Markov chains and the Google
matrix can also be efficiently used for the analysis of statistical
properties of DNA sequences. The Ensemble Genome data
sets are publicly available at http://www.ensembl.org/. The
analysis of Poincaré recurrences in these DNA sequences
(Frahm and Shepelyansky, 2012b) shows their similarities
with the statistical properties of recurrences for dynamical
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FIG. 49 (color online). (a) Spectrum of eigenvalues λ for the
Google matrices G and G� at α ¼ 0.85 for the neural network of
C. elegans [black and gray (red) symbols]. (b) Values of IPR ξi of
eigenvectors ψ i are shown as a function of corresponding Reλ
(the same colors). From Kandiah and Shepelyansky, 2014.
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FIG. 50 (color online). The PageRank-CheiRank plane ðK;K�Þ
showing distribution of neurons according to their ranking.
(a) Soma region coloration—head (gray/red), middle (light gray/
green), and tail (dark gray/blue). (b) Neuron-type coloration—
sensory (gray/red), motor (light gray/green), interneuron (dark
gray/blue), polymodal (light-dark gray/purple), and unknown
(black). The classifications and colors are given according to
he WormAtlas (Altun et al., 2012). From Kandiah and
Shepelyansky, 2014.
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trajectories in the Chirikov standard map and other symplectic
maps (Frahm and Shepelyansky, 2010). Indeed, a DNA
sequence can be viewed as a long symbolic trajectory and,
hence, the Google matrix, constructed from it, highlights the
statistical features of DNA from a new viewpoint.
An important step in the statistical analysis of DNA

sequences was done by Mantegna et al. (1995) applying
methods of statistical linguistics and determining the fre-
quency of various words composed of up to seven letters. First
order Markovian models have also been proposed and briefly
discussed in this work. The Google matrix analysis provides a
natural extension of this approach. Thus the PageRank
eigenvector gives the most frequent words of a given length.
The spectrum and eigenstates of G characterize the relaxation
processes of different modes in the Markov process generated
by a symbolic DNA sequence. Thus the comparison of
word ranks of different species allows one to identify their
proximity.
The statistical analysis is done for DNA sequences of the

species: Homo sapiens (HS, human), Canis familiaris
(CF, dog), Loxodonta africana (LA, elephant), Bos Taurus
(BT, bull), and Danio rerio (DR, zebrafish) (Kandiah and
Shepelyansky, 2013). For HS, DNA sequences are represented
as a single string of length L ≈ 1.5 × 1010 base pairs (bp)
corresponding to five individuals. Similar data are obtained for
BT (2.9 × 109 bp), CF (2.5 × 109 bp), LA (3.1 × 109 bp),
and DR (1.4 × 109 bp). All strings are composed of four
letters A; G; G, and T and undetermined letterNl. The strings
can be found from Kandiah and Shepelyansky (2013).
For a given sequence we fix the words Wk of m letters

length corresponding to the number of states N ¼ 4m. We
consider that there is a transition from a state j to state i inside
this basis N when we move along the string from left to right
going from a wordWk to the next wordWkþ1. This transition
adds one unit in the transition matrix element Tij → Tij þ 1.
The words with letter Nl are omitted; the transitions are
counted only between nearby words not separated by words
with Nl. There are approximately Nt ≈ L=m such transitions
for the whole length L since the fraction of undetermined
letters Nl is small. Thus we have Nt ¼

P
N
i;j¼1 Tij. The

Markov matrix of transitions Sij is obtained by normalizing
matrix elements in such a way that their sum in each column
is equal to unity Sij ¼ Tij=

P
iTij. If there are columns with

all zero elements (dangling nodes), then zeros of such
columns are replaced by 1=N. Then the Google matrix G
is constructed from S by the standard rule (1). It is found
that the spectrum of G has a significant gap and a variation
of α in a range (0.5,1) does not significantly affect the
PageRank probability. Thus all DNA results are shown
at α ¼ 1.
The image of matrix elements GKK0 is shown in Fig. 51 for

HS with m ¼ 6. We see that almost all of the matrix is full
which is drastically different from the WWW and other
networks considered previously. Analysis of the statistical
properties of matrix elements Gij shows that their integrated
distribution follows a power law as shown in Fig. 52. Here Ng

is the number of matrix elements of the matrix G with values
Gij > g. The data show that the number of nonzero matrix
elements Gij is very close to N2. The main fraction of

elements has values Gij ≤ 1=N (some elements Gij < 1=N
since for certain j there are many transitions to some node i0

with Ti0j ≫ N and, e.g., only one transition to other i00 with
Ti00j ¼ 1). At the same time there are also transition elements
Gij with large values whose fraction decays in an algebraic
law Ng ≈ AN=gν−1 with some constant A and an exponent ν.
The fit of numerical data in the range −5.5 < log10 g < −0.5
of algebraic decay gives for m ¼ 6: ν ¼ 2.46� 0.025 (BT),
2.57� 0.025 (CF), 2.67� 0.022 (LA), 2.48� 0.024 (HS),
and 2.22� 0.04 (DR). For the HS case we find ν ¼
2.68� 0.038 at m ¼ 5 and ν ¼ 2.43� 0.02 at m ¼ 7 with
the average A ≈ 0.003 for m ¼ 5; 6, and 7. There are visible
oscillations in the algebraic decay of Ng with g but in global
we see that on average all species are well described by a
universal decay law with the exponent ν ≈ 2.5. For compari-
son we also show the distribution Ng for the WWW networks
of the University of Cambridge and Oxford in year 2006.

FIG. 51 (color online). DNA Google matrix of Homo sapiens
(HS) constructed for words of six-letters length. Matrix elements
GKK0 are shown in the basis of the PageRank index K (and K0).
Here x and y axes show K and K0 within the ranges
(a) 1 ≤ K;K0 ≤ 200 and (b) 1 ≤ K;K0 ≤ 1000. The element
G11 at K ¼ K0 ¼ 1 is placed at the top-left corner. Color marks
the amplitude of matrix elements changing from black (blue) for
the minimum zero value to gray (red) at the maximum value.
From Kandiah and Shepelyansky, 2013.
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FIG. 52 (color online). Integrated fraction Ng=N2 of Google
matrix elements with Gij > g as a function of g. (a) Various
species with six-letters word length: elephant LA (green), zebra-
fish DR (black), dog CF (red), bull BT (magenta), and Homo
sapiens HS (blue) (from left to right at y ¼ −5.5). (b) Data for HS
sequence with words of length m ¼ 5 (brown), 6 (blue), 7 (red)
(from right to left at y ¼ −2); for comparison black dashed and
dotted curves show the same distribution for the WWW networks
of Universities of Cambridge and Oxford in 2006, respectively.
From Kandiah and Shepelyansky, 2013.
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We see that in these cases the distribution Ng has a very short
range in which the decay is at least approximately algebraic
[−5.5 < log10ðNg=N2Þ < −6]. In contrast to that for the DNA
sequences we have a large range of algebraic decay.
Since in each column we have the sum of all elements equal

to unity we can say that the differential fraction dNg=dg ∝
1=gν gives the distribution of outgoing matrix elements which
is similar to the distribution of outgoing links extensively
studied for the WWW networks. Indeed, for the WWW
networks all links in a column are considered to have the
same weight so that these matrix elements are given by an
inverse number of outgoing links with the decay exponent
ν ≈ 2.7. Thus, the obtained data show that the distribution of
DNA matrix elements is similar to the distribution of outgoing
links in the WWW networks. Indeed, for outgoing links of
the Cambridge and Oxford networks the fit of numerical
data gives the exponents ν ¼ 2.80� 0.06 (Cambridge) and
2.51� 0.04 (Oxford).
As discussed previously, on average the probability of the

PageRank vector is proportional to the number of ingoing
links that works satisfactorily for sparse G matrices. For DNA
we have a situation where the Google matrix is almost full and
zero matrix elements are practically absent. In such a case an
analog of the number of ingoing links is the sum of ingoing
matrix elements gs ¼

P
N
j¼1 Gij. The integrated distribution of

ingoing matrix elements with the dependence of Ns on gs is
shown in Fig. 53. Here Ns is defined as the number of nodes
with the sum of ingoing matrix elements being larger than gs.
A significant part of this dependence, corresponding to large
values of gs and determining the PageRank probability decay,
is well described by a power law Ns ≈ BN=gμ−1s . The fit of
data at m ¼ 6 gives μ ¼ 5.59� 0.15 (BT), 4.90� 0.08 (CF),
5.37� 0.07 (LA), 5.11� 0.12 (HS), and 4.04� 0.06 (DR).
For the HS case at m ¼ 5; 7 we find, respectively, μ ¼
5.86� 0.14 and 4.48� 0.08. For HS and other species we
have on average B ≈ 1.
For the WWW one usually has μ ≈ 2.1. Indeed, for the

ingoing matrix elements of the Cambridge and Oxford net-
works we find, respectively, the exponents μ ¼ 2.12� 0.03
and 2.06� 0.02 (see curves in Fig. 53). For the ingoing links
distribution of the Cambridge and Oxford networks we obtain,

respectively, μ ¼ 2.29� 0.02 and 2.27� 0.02 which are
close to the usual WWW value μ ≈ 2.1. In contrast the
exponent μ for DNA Google matrix elements gets a signifi-
cantly larger value μ ≈ 5. This feature marks a significant
difference between the DNA and WWW networks.
The PageRank vector can be obtained by a direct diago-

nalization. The dependence of probability P on index K is
shown in Fig. 54 for various species and different word length
m. The probability PðKÞ describes the steady state of random
walks on the Markov chain and thus it gives the frequency of
the appearance of various words of length m in the whole
sequence L. The frequencies or probabilities of words
appearance in the sequences were obtained by Mantegna
et al. (1995) by a direct counting of words along the sequence
(the available sequences L were shortened at that time). Both
methods are mathematically equivalent and indeed our dis-
tributions PðKÞ are in good agreement with those found by
Mantegna et al. (1995) even if now we have significantly
better statistics.
The decay of P with K can be described by a power law

P ∼ 1=Kβ. Thus, for example, for the HS sequence at m ¼ 7

we find β¼0.357�0.003 for the fit range 1.5≤ log10K≤3.7
that is rather close to the exponent found in Mantegna et al.
(1995). Since on average the PageRank probability is propor-
tional to the number of ingoing links, or the sum of ingoing
matrix elements ofG, one has the relation between the exponent
of PageRank β and the exponent of ingoing links (or matrix
elements) β¼1=ðμ−1Þ. Indeed, for the HS DNA case atm¼7

we have μ ¼ 4.48 that gives β ¼ 0.29 being close to the above
value of β ¼ 0.357 obtained from the direct fit of the PðKÞ
dependence. The agreement is not so perfect since there is a
visible curvature in the log-log plot ofNs vs gs and also since a
small value of β gives a moderate variation of P that produces a
reduction of accuracy of the numerical fit procedure. In spite of
this only approximate agreement we conclude that in global the
relation between β and μ works correctly.
It is interesting to plot a PageRank index KsðiÞ of a given

species s versus the index KhsðiÞ of HS for the same word i.
For identical sequences one should have all points on a
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FIG. 53 (color online). Integrated fraction Ns=N of the sum of
ingoing matrix elements with

P
N
j¼1 Gi;j ≥ gs. (a), (b) The same

cases as in Fig. 52 in the same colors. The dashed and dotted
curves are shifted on the x axis by one unit left to fit the figure
scale. From Kandiah and Shepelyansky, 2013.
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FIG. 54 (color online). Dependence of the PageRank probability
PðKÞ on the PageRank index K. (a) Data for different species for
word length of six letters: zebrafish DR (black), dog CF (red),
Homo sapiens HS (blue), elephant LA (green), and bull BT
(magenta) (from top to bottom at x ¼ 1). (b) Data for HS (full
curve) and LA (dashed curve) for word length m ¼ 5 (brown),
6 (blue/green), and 7 (red) (from top to bottom at x ¼ 1). From
Kandiah and Shepelyansky, 2013.

Ermann, Frahm, and Shepelyansky: Google matrix analysis of directed networks 1303

Rev. Mod. Phys., Vol. 87, No. 4, October–December 2015



diagonal, while the deviations from the diagonal characterize
the differences between species. The examples of such
PageRank proximity K − K diagrams are shown in Fig. 55
for words atm ¼ 6. Avisual impression is that the CF case has
less deviations from the HS rank compared to BTand LA. The
nonmammalian DR case has the most strong deviations from
the HS rank.
The fraction of purine letters A or G in a word of m ¼ 6

letters is shown by color in Fig. 55 for all words ranked by
PageRank indexK. We see that these letters are approximately
homogeneously distributed over the whole range of K values.
To determine the proximity between different species or
different HS individuals we compute the average dispersion

σðs1; s2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

½Ks1ðiÞ − Ks2ðiÞ�2
vuut ð16Þ

between two species (individuals) s1 and s2. Comparing the
words with lengthm¼5;6, and 7 we find that the scaling σ∝N
workswith good accuracy (about 10%whenN is increased by a
factor of 16). To represent the result in a form independent ofm
we compare the values of σ with the corresponding random
model value σrnd. This value is computed assuming a random
distribution ofN points in a squareN × N when only one point
appears in each column and each line (e.g., at m ¼ 6 we have
σrnd ≈ 1673 and σrnd ∝ N). The dimensionless dispersion is

then given by ζðs1; s2Þ ¼ σðs1; s2Þ=σrnd. From the ranking of
different species we obtain the following values at m ¼ 6:
ζðCF;BTÞ¼0.308; ζðLA;BTÞ ¼ 0.324, ζðLA;CFÞ ¼ 0.303;
ζðHS;BTÞ¼0.246, ζðHS;CFÞ ¼ 0.206, ζðHS; LAÞ ¼ 0.238;
ζðDR;BTÞ¼0.425, ζðDR;CFÞ ¼ 0.414, ζðDR;LAÞ ¼
0.422, and ζðDR;HSÞ ¼ 0.375 (other m have similar values).
According to this statistical analysis of PageRank proximity
between species we find that the ζ value is minimal between CF
and HS showing that these two are the most similar species
among those considered here. Comparison of two HS individ-
uals gives the value ζðHS1; HS2Þ ¼ 0.031 being significantly
smaller then the proximity correlator between different species
(Kandiah and Shepelyansky, 2012).
The spectrum of G was analyzed in detail by Kandiah and

Shepelyansky (2012). It was shown that it has a relatively
large gap due to which there is a relatively rapid relaxation of
probability of a random surfer to the PageRank values.

C. Gene regulation networks

At present the analysis of gene transcription regulation
networks and recovery of their control biological functions is
an active research field of bioinformatics (Milo et al., 2002).
Here, following Ermann, Chepelianskii, and Shepelyansky
(2012), we provide two simple examples of a 2DRanking
analysis for gene transcriptional regulation networks of
Escherichia Coli [N ¼ 423, Nl ¼ 519 (Shen-Orr et al.,
2002)] and yeast [N ¼ 690, Nl ¼ 1079 (Milo et al.,
2002)]. In the construction of the G matrix the outgoing
links to all nodes in each column are taken with the same
weight α ¼ 0.85.
The distribution of nodes in the PageRank-CheiRank plane

is shown in Fig. 56. The top five nodes, with their operon
names, are given there for indices of PageRank K, CheiRank
K�, and 2DRank K2. This ranking selects operons with the
most high functionality in communication (K�), popularity
(K), and those that combine both features (K2). For these
networks the correlator κ is close to zero (κ ¼ −0.0645 for
Escherichia Coli and κ ¼ −0.0497 for yeast; see Fig. 6) that
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FIG. 55 (color online). PageRank proximity K − K plane dia-
grams for different species in comparison with Homo sapiens:
(a) the x axis shows PageRank index KhsðiÞ of a word i and the
y axis shows the PageRank index of the same word i with KbtðiÞ
of bull, (b) KcfðiÞ of dog, (c) KlaðiÞ of elephant, and (d) KdrðiÞ of
zebrafish; here the word length is m ¼ 6. The colors of the
symbols mark the purine content in a word i (fractions of
letters A or G in any order); the color varies from gray (red)
at maximal content, via brown, yellow, green, and light blue, to
black (blue) at minimal zero content. From Kandiah and
Shepelyansky, 2013.
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FIG. 56 (color online). Distribution of nodes in the PageRank-
CheiRank plane ðK;K�Þ for (a) Escherichia Coli v1.1 and
(b) yeast gene transcription networks [network data are taken
fromMilo et al. (2002), Shen-Orr et al. (2002), and Alon (2014)].
The nodes with the top five probability values of PageRank,
CheiRank, and 2DRank are labeled by their corresponding
operon (node) names; they correspond to the five lowest
values of indices K;K2; K�. From Ermann, Chepelianskii, and
Shepelyansky, 2012.
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indicates the statistical independence between outgoing and
ingoing links being quite similar to the case of the PCN for the
Linux Kernel. This shows that a slightly negative correlator κ
is a generic property for the data flow network of control and
regulation systems. A similar situation appears for networks of
business process management and brain neural networks.
Thus it is possible that the networks performing control
functions are characterized in general by small correlator κ
values. We expect that the 2DRanking will find further useful
applications for large-scale gene regulation networks.

D. Networks of game go

The complexity of the well-known game go is such that no
computer program has been able to beat a good player, in
contrastwith chesswhereworld champions have beenbested by
game simulators. It is partly due to the fact that the total number
of possible allowed positions in go is about 10171, compared to,
e.g., only 1050 for chess (Tromp and Farnebäck, 2007).
It has been argued that the complex network analysis can

give useful insights for a better understanding of this game.
With this aim a network, modeling the game of go, was
defined by a statistical analysis of the databases of several
important historical professional and amateur Japanese go
tournaments (Georgeot and Giraud, 2012). In this approach
moves and nodes are defined as all possible patterns in 3 × 3
plaquettes on a go board of 19 × 19 intersections. Taking into
account all possible obvious symmetry operations the number
of nonequivalent moves is reduced to N ¼ 1107. Moves
which are close in space (typically a maximal distance of
four intersections) are assumed to belong to the same tactical
fight generating transitions on the network.
Using the historical data of many games, the transition

probabilities between the nodes may be determined leading
to a directed network with a finite size Perron-Frobenius
operator which can be analyzed by tools of PageRank,
CheiRank, complex eigenvalue spectrum, properties of certain
selected eigenvectors, and also certain other quantities
(Georgeot and Giraud, 2012; Kandiah, Georgeot, and
Giraud, 2014). The studies are done for plaquettes of different
sizes with the corresponding network size changing from
N ¼ 1107 for plaquette squares with 3 × 3 intersections up
to maximal N ¼ 193 995 for diamond-shape plaquettes with
3 × 3 intersections plus the four at distance two from the center
in the four directions left, right, top, down. It is shown that the
PageRank leads to a frequency distribution of moves which
obeys a Zipf lawwith exponents close to unity but this exponent
may slightly vary if the network is constructed with shorter or
longer sequences of successive moves. The important nodes in
certain eigenvectors may correspond to certain strategies, such
as protecting a stone and eigenvectors are also different between
amateur and professional games. It is also found that the
different phases of the game go are characterized by a different
spectrum of the G matrix. The results obtained show that with
the help of the Google matrix analysis it is possible to extract
communities of moves which share some common properties.
Georgeot and Giraud (2012) and Kandiah, Georgeot, and

Giraud (2014) argued that the Google matrix analysis can find
a number of interesting applications in the theory of games
and the human decision-making processes.

E. Opinion formation on directed networks

Understanding the nature and origins of mass opinion
formation is an outstanding challenge of democratic
societies (Zaller, 1999). In the last few years the enormous
development of such social networks as LiveJournal,
Facebook, Twitter, and VKONTAKTE, with up to hundreds
of millions of users, has demonstrated the growing influence
of these networks on social and political life. The small-
world scale-free structure of the social networks, combined
with their rapid communication facilities, leads to a very
fast information propagation over networks of electors,
consumers, and citizens, making them very active on instanta-
neous social events. This invokes the need for new theo-
retical models which would allow one to understand the
opinion formation process in modern society in the 21st
century.
The important steps in the analysis of opinion formation

have been done with the development of various voter
models, described in great detail by Castellano, Fortunato,
and Loreto (2009) and Krapivsky, Redner, and Ben-Naim
(2010). This research field became known as sociophysics
(Galam, 1986, 2008). Here, following Kandiah and
Shepelyansky (2012), we analyze the opinion formation
process introducing several new aspects which take into
account the generic features of social networks. First we
analyze the opinion formation on real directed networks
such as the WWW of the Universities of Cambridge and
Oxford (2006), Twitter (2009), and LiveJournal. This allows
us to incorporate the correct scale-free network structure
instead of unrealistic regular lattice networks, often consid-
ered in voter models. Second, we assume that the opinion at
a given node is formed by the opinions of its linked
neighbors weighted with the PageRank probability of these
network nodes. The introduction of such a weight represents
the reality of social networks, where network nodes are
characterized by the PageRank vector which provides a
natural ranking of node importance, or elector or society
member importance. In a certain sense, the top nodes of
PageRank correspond to a political elite of the social
network whose opinion influences the opinions of other
members of the society (Zaller, 1999). Thus the proposed
PageRank opinion formation (PROF) model takes into
account the situation in which an opinion of an influential
friend from high ranks of the society counts more than an
opinion of a friend from a lower society level. We argue that
the PageRank probability is the most natural form of ranking
of society members. Indeed, the efficiency of a PageRank
rating had been well demonstrated for various types of scale-
free networks.
The PROF model is defined in the following way. In

agreement with the standard PageRank algorithm we deter-
mine the probability PðKiÞ for each node ordered by
PageRank index Ki (using α ¼ 0.85). In addition, a network
node i is characterized by an Ising spin variable σi which can
take value þ1 or −1, coded also by red or blue color,
respectively. The sign of a node i is determined by its direct
neighbors j, which have PageRank probabilities Pj. For that
we compute the sum Σi over all directly linked neighbors j
of node i:
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Σi ¼ a
X
j

ðPþ
j;in − P−

j;inÞ

þ b
X
j

ðPþ
j;out − P−

j;outÞ; aþ b ¼ 1; ð17Þ

where Pj;in and Pj;out denote the PageRank probability Pj of a
node j pointing to node i (ingoing link) and a node j to which
node i points to (outgoing link), respectively. Here the two
parameters a and b are used to tune the importance of ingoing
and outgoing links with the imposed relation aþ b ¼ 1
(0 ≤ a; b ≤ 1). The values Pþ and P− correspond to red
and blue nodes, and the spin σi takes the value 1 or −1,
respectively, forΣi > 0 orΣi < 0. In a certain sensewe can say
that a large value of parameter b corresponds to a conformist
society in which an elector i takes an opinion of other electors
to which he or she points. In contrast, a large value of a
corresponds to a tenacious society in which an elector imainly
takes the opinion of those electors who point to him or her. A
standard random number generator is used to create an initial
random distribution of spins σi on a given network. The time
evolution then is determined by Eq. (17) applied to each spin
one by one. When all N spins are turned following Eq. (17) a
time unit t is changed to t → tþ 1. Up to Nr ¼ 104 random
initial generations of spins are used to obtain statistically stable
results. We present results for the number of red nodes since
other nodes are blue.
The main part of studies is done for the WWW of

Cambridge and Oxford discussed previously. We start with
a random realization of a given fraction of red nodes fi ¼
fðt ¼ 0Þ in which evolution in time converges to a steady state
with a final fraction of red nodes ff approximated after time
tc ≈ 10. However, different initial realizations with the same
fi value evolve to different final fractions ff clearly showing a
bistability phenomenon. To analyze how the final fraction of
red nodes ff depends on its initial fraction fi, we study the
time evolution fðtÞ for a large number Nr of initial random
realizations of colors following it up to the convergence time
for each realization. We found that the final red nodes are
homogeneously distributed in the PageRank index K. Thus
there is no specific preference for top society levels for an
initial random distribution. The probability distributionWf of
final fractions ff is shown in Fig. 57 as a function of initial
fraction fi at a ¼ 0.1. The results show the two main features
of the model: a small fraction of red opinion is completely
suppressed if fi < fc and its larger fraction dominates
completely for fi > 1 − fc; there is a bistability phase for
the initial opinion range fb ≤ fi ≤ 1 − fb. Of course, there is
symmetry with respect to the exchange of red and blue colors.
For the small value a ¼ 0.1 we have fb ≈ fc with fc ≈ 0.25.
For the larger value a ¼ 0.9 we have fc ≈ 0.35 and fb ≈ 0.45
(Kandiah and Shepelyansky, 2012).
Our interpretation of these results is the following. For

small values of a ≪ 1 the opinion of a given society member
is determined mainly by the PageRank of neighbors to whom
he or she points (outgoing links). The PageRank probability P
of nodes to which many nodes point is usually high, since P is
proportional to the number of ingoing links. Thus at a ≪ 1 the
society is composed of members who form their opinion by
listening to an elite opinion. In such a society its elite with one

color opinion can impose this opinion on a large fraction of the
society. Indeed, the direct analysis of the case, where the top
Ntop ¼ 2000 nodes of PageRank index have the same red
color, shows that this 1% of the society elite can impose its
opinion to about 50% of the whole society at small a values
(conformist society) while at large a values (tenacious society)
this fraction drops significantly [see Fig. 4 in Kandiah and
Shepelyansky (2012)]. We attribute this to the fact that in
Fig. 57 we start with a randomly distributed opinion, since the
opinion of the elite has two fractions of two colors this creates
a bistable situation when the two fractions of society follow
the opinions of this divided elite, which makes the situation
bistable on a larger interval of fi compared to the case of a
tenacious society at a → 1. In Eq. (17) when we replace P by
1 then the bistability disappears.
However, a detailed understanding of the opinion formation

on directed networks still waits its development. Indeed, the
results of the PROF model for the LiveJournal and Twitted
networks show that the bistability in these networks practically
disappears. Also for the Twitter network studied in Sec. X.A,
the elite of Ntop ¼ 35 000 (about 0.1% of the whole society)
can impose its opinion to 80% of the society at small a < 0.15
and to about 30% for a > 0.15 (Kandiah and Shepelyansky,
2012). It is possible that a large number of links between top
PageRank nodes in Twitter creates a stronger tendency to a
totalitarian opinion formation comparing to the case of
university networks. At the same time the studies of opinion
formation with the PROF model on the Ulam networks
(Chakhmakhchyan and Shepelyansky, 2013), which do not
have a large number of links, show practically no bistability in
opinion formation. It is expected that a small number of loops
is at the origin of such a difference with respect to university
networks. Various extensions and properties of the PROF
model are discussed by Eom and Shepelyansky (2015).
Finally we discuss a more generic version of opinion

formation called the PROF-Sznajd model (Kandiah and

)b()a(

FIG. 57 (color online). Density plot of probability Wf to find a
final red fraction ff , shown on the y axis, in dependence on an
initial red fraction fi, shown on the x axis; data are shown inside
the unit square 0 ≤ fi; ff ≤ 1. The values of Wf are defined as a
relative number of realizations found inside each of 20 × 20 cells
which cover the whole unit square. Here Nr ¼ 104 realizations of
randomly distributed colors are used to obtained Wf values; for
each realization the time evolution is followed up the conver-
gence time with up to t ¼ 20 iterations.; (a) Cambridge network
and (b) Oxford network at a ¼ 0.1. The probability Wf is
proportional to color changing from zero (black/blue) to unity
(gray/red). From Kandiah and Shepelyansky, 2012.
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Shepelyansky, 2012). Indeed, we see that in the PROF model
on university network opinions of small groups of red nodes
with fi < fc are completely suppressed that seems to not be
very realistic. In fact, the Sznajd model (Sznajd-Weron and
Sznajd, 2000) features the idea of resistant groups of a society
and thus incorporates a well-known trade union principle
“United we stand, divided we fall.” Usually the Sznajd model
is studied on regular lattices. Its generalization for directed
networks is done on the basis of the notion of groups of nodes
Ng at each discrete time step τ.
The evolution of group is defined by the following rules:

(a) We pick in the network by random a node i and
consider the polarization of Ng − 1 the highest
PageRank nodes pointing to it.

(b) If node i and all other Ng − 1 nodes have the same
color (same polarization), then these Ng nodes form a
group whose effective PageRank value is the sum of

all the member values Pg ¼
PNg

j¼1 Pj.
(c) Consider all the nodes pointing to any member of the

group and check all these nodes n directly linked to the
group: if an individual node PageRank value Pn is less
than the defined above Pg, the node joins the group by
taking the same color (polarization) as the group nodes
and increases Pg by the value of Pn; if that is not the
case, a node is left unchanged.

The above time step is repeated many times during time τ,
counting the number of steps and choosing a random node i
on each next step.
The time evolution of this PROF-Sznajd model converges

to a steady state after τ ≈ 10N steps. This is compatible with
the results obtained for the PROF model. However, the
statistical fluctuations in the steady-state regime are present
keeping the color distribution only on average. The depend-
ence of the final fraction of red nodes ff on its initial value fi
is shown by the density plot of probability Wf in Fig. 58 for
the university networks. The probability Wf is obtained from
many initial random realizations in a similar way to the case of
Fig. 57. We see that there is a significant difference compared
to the PROF model: now even at small values of fi we find
small but finite values of ff, while in the PROF model the red
color disappears at fi < fc. This feature is related to the
essence of the Sznajd model: here even small groups can resist
against the totalitarian opinion. Other features of Fig. 58 are
similar to those found for the PROF model: we again observe
bistability of opinion formation. The number of nodes Ng,
which form the group, does not significantly affect the
distribution Wf (for studied 3 ≤ Ng ≤ 13).
The previous studies of opinion formation models on scale-

free networks show that the society elite, corresponding to the
top PageRank nodes, can impose its opinion on a significant
fraction of the society.However, for a homogeneous distribution
of two opinions, there exists a bistability range of opinions
which depends on a conformist parameter characterizing the
opinion formation. The proposed PROF-Sznajd model shows
that totalitarian opinions can be escaped from by small sub-
communities. The enormous development of social networks in
the last few years definitely shows that the analysis of opinion
formation on such networks requires further investigation.

XV. DISCUSSION

Previously we considered many examples of real directed
networks where the Google matrix analysis finds useful
applications. The examples belong to various sciences varying
from the WWW, social and Wikipedia networks, software
architecture to world trade, games, DNA sequences, and Ulam
networks. It is clear that the concept of Markov chains and
Google matrix represents the mathematical foundation of
directed network analysis.
For Hermitian and unitary matrices there are now many

universal concepts, developed in theoretical physics, so that
the main properties of such matrices are well understood.
Indeed, such characteristics as level-spacing statistics, locali-
zation and delocalization properties of eigenstates, Anderson
transition (Anderson, 1958), and quantum chaos features can
be well handled by various theoretical methods (Guhr,
Mueller-Groeling, and Weidenmueller, 1998; Mehta, 2004;
Evers and Mirlin, 2008; Haake, 2010; Akemann, Baik, and
Francesco, 2011). A number of generic models has been
developed in this area allowing one to understand the main
effects via numerical simulations and analytical tools.
In contrast to the previous cases of Hermitian or unitary

matrices, the studies of matrices of Markov chains of directed
networks are now only at their initial stage. In this review, for
examples of real networks we illustrated certain typical
properties of such matrices. Among them there is the fractal
Weyl law, which has certain traces in the field of quantum
chaotic scattering, but the main parts of the features are new
ones. In fact, the spectral properties of Markov chains had not
been investigated on a large scale. We try here to provide an
introduction to the properties of such matrices which contain
all information about large-scale directed networks. The
Google matrix is like The Library of Babel (Borges, 1962),
which contains everything. Unfortunately, we are still not able

)b()a(

FIG. 58 (color online). The PROF-Sznajd model, option 1:
density plot of probability Wf to find a final red fraction ff,
shown on the y axis, in dependence on an initial red fraction fi,
shown on the x axis; data are shown inside the unit square
0 ≤ fi; ff ≤ 1. The values ofWf are defined as a relative number
of realizations found inside each of 100 × 100 cells which cover
the whole unit square. Here Nr ¼ 104 realizations of randomly
distributed colors are used to obtain Wf values; for each
realization the time evolution follows the convergence time with
up to τ ¼ 107 steps. (a) Cambridge network, (b) Oxford network;
here Ng ¼ 8. The probability Wf is proportional to color
changing from zero (black/blue) to unity (gray/red). From
Kandiah and Shepelyansky, 2012.
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to find generic Markov matrix models which reproduce the
main features of the real networks. Among them there is the
possible spectral degeneracy at damping α ¼ 1, the absence of
a spectral gap, and the algebraic decay of eigenvectors.
Because of the absence of such generic models it is still
difficult to capture the main properties of real directed
networks and to understand or predict their variations with
a change of network parameters. At the moment the main part
of real networks have an algebraic decay of the PageRank
vector with an exponent β ≈ 0.5–1. However, certain exam-
ples of Ulam networks (see Figs. 13 and 14) show that a
delocalization of the PageRank probability over the whole
network can take place. Such a phenomenon looks to be
similar to the Anderson transition for electrons in disordered
solids. It is clear that if an Anderson delocalization of the
PageRank would took place, as a result of further develop-
ments of the WWW, the search engines based on the
PageRank would lose their efficiency since the ranking would
become very sensitive to various fluctuations. In a sense the
whole world would go blind the day such a delocalization
takes place. Because of that a better understanding of the
fundamental properties of Google matrices and their depend-
ences on various system parameters have a high practical
significance. We believe that the theoretical research in this
direction should be actively continued. In many respects, as
The Library of Babel, the Google matrix still keeps its secrets
to be discovered by researchers from various fields of science.
We hope that further research will allow one “to formulate a
general theory of the Library and solve satisfactorily the
problem which no conjecture had deciphered: the formless
and chaotic nature of almost all the books” (Borges, 1962).
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