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Abstract – We study numerically the wave function evolution of a Bose-Einstein condensate in a
Bunimovich stadium billiard being governed by the Gross-Pitaevskii equation. We show that for
a moderate nonlinearity, above a certain threshold, there is emergence of dynamical thermaliza-
tion which leads to the Bose-Einstein probability distribution over the linear eigenmodes of the
stadium. This distribution is drastically different from the energy equipartition over oscillator de-
grees of freedom which would lead to the ultra-violet catastrophe. We argue that this interesting
phenomenon can be studied in cold-atom experiments.

Copyright c© EPLA, 2015

Introduction. – Starting from the famous Fermi-
Pasta-Ulam problem [1,2] the interest in the understand-
ing of the thermalization process in dynamical systems
with a finite number of degrees of freedom is continuously
growing (see, e.g., [3,4]). At present the experiments with
cold Bose gas in atom traps and optical lattices open ac-
cess to experimental investigations (see, e.g., [5,6]) stim-
ulating the theoretical and experimental interest in this
phenomenon (see, e.g., [7,8]).

The numerical analysis of dynamical thermalization
in disordered nonlinear chains has been started recently
showing that the quantum Gibbs distribution can ap-
pear at a moderate nonlinearity contrary to usually ex-
pected energy equipartition over linear modes [9,10].
Thus, it is interesting to analyze the dynamics of a
Bose-Einstein condensate (BEC), described by the Gross-
Pitaevskii equation (GPE), in a chaotic billiard where
the quantum evolution corresponds to a regime of quan-
tum chaos and energy levels statistics described by the
random matrix theory [11–13]. As an example we use
a de-symmetrized Bunimovich stadium where the classi-
cal dynamics is fully chaotic (see, e.g., [12,14]). We note
that the chaotic optical billiards, created by a laser beam
and containing cold atoms, have been already studied
experimentally [15,16] and hence our model can be inves-
tigated experimentally.

Model description. – The model is described by the
GPE for BEC in the de-symmetrized Bunimovich stadium
billiard with Dirichlet boundary conditions:

ih̄
∂ψ(�r, t)

∂t
= − h̄2

2m
∆ψ(�r, t) + β|ψ(�r, t)|2ψ(�r, t), (1)

where we consider h̄ = 1, m = 0.5. The height of the
stadium is taken as h = 1 and its maximal length is
l = 2 (see fig. 1). Thus, the average level spacing is
∆ ≈ 4π/A ≈ 7.04, where A is the billiard area. At β = 0
the numerical methods of quantum chaos allow to deter-
mine efficiently about a million of eigenenergies of linear
modes and related eigenmodes [17]. For comparison, we
also consider the case of a rectangular billiard with ap-
proximately the same area as the stadium and with the
golden mean ratio l/h = (1 +

√
5)/2, h = 1. We note that

for model (1) the spectrum of Bogoliubov excitations of
BEC in a Bunimovich stadium has been studied in [18],
but the question of dynamical thermalization has not been
addressed there. We also point out that the model (1) is
described by the partial differential equation (continuous
variables) thus being significantly more complex than the
case of nonlinear chains studied in [9,10]. Indeed, even
the proof of the existence of solution in (1) is a nontriv-
ial mathematical problem which still remains open (e.g.,
the ultra-violet catastrophe would imply the absence of
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Fig. 1: (Color online) Time evolution of wave function ampli-
tude |ψ(x, y, t)| in coordinate representation for an initial state
of linear eigenstate mode m′ = 5 (left column) and m′ = 10
(right column) shown at t = 0 (top panels). Middle and bottom
panels show the snapshots of the corresponding distributions
at t = 4 and t = 40, respectively. Here β = 10, the color bars
give values of |ψ(x, y, t)|.

solution). In the following we restrict our analysis to the
GPE case not going beyond this description.

The time evolution of (1) is integrated by small time
steps of Trotter decomposition of linear and nonlinear
terms with a step size going down to ∆t = 4 × 10−5

to suppress nonlinear growth of high modes. We use
Nc = 1076(1085) linear modes φm of the stadium (rect-
angular) for the linear part of time propagation doing the
nonlinear step with the β term in the coordinate space
with Np = 11207(12816) points inside the billiard. The
lattice points are given by 79 × 79 = 6241 equidistant
x-y coordinates for the square part of the stadium bil-
liard (rectangular billiard), and rays with equidistance in
angles for the circular part. The change of basis from
coordinates to energies (and vice versa) is given by a
unitary matrix in double precision. Similar to [19], a
special aliasing procedure is used with an efficient sup-
pression of nonlinear numerical instability at high modes.
This integration scheme exactly conserves the probability
norm providing the total energy conservation with an ac-
curacy better than 2% at largest value β = 20 and better
than 1% at lower β values. At any step the wave func-
tion is expanded in the basis of linear modes φm so that
ψ(x, y, t) =

∑
m Cm(t)φm(x, y). The averaging of proba-

bilities wm(t) = |Cm(t)|2 (
∑

m wm = 1) over time gives
the average probability distribution ρm = 〈|Cm|2〉t.

We note that the quantum evolution of GPE (1) has
been studied in the frame of quantum turbulence for a
rectangular billiard [20] and for a 3D cube [21]. How-
ever, in these studies there is energy injection/absorption
at low/high modes to generate the Kolmogorov energy
flow in space of linear modes (see, e.g., [22,23]). We also
note that the time evolution of wave packet for the GPE in
Bunimovich stadium has been simulated in [24] but only a
spacial distribution has been considered there. In contrast
to these studies we consider only unitary or Hamiltonian

Fig. 2: (Color online) Time evolution of probabilities wm(t)
in linear mode basis for initial state m′ = 10 at β = 2 (top
panel), m′ = 10, 20 at β = 10 (middle and bottom panels,
respectively). The probabilities wm(t) are averaged over time
interval δt = 0.2 to reduce fluctuations; the color bar shows
values of log

10
ρm(m′).

evolution given by (1) being interested in the distribution
properties of probabilities ρm over linear eigenmodes. In
this respect our approach is different from other studies
where the analysis has been concentrated on space fluctu-
ations (see, e.g., [25]). Also, as we will see below, there
is a significant difference for the GPE evolution in chaotic
and rectangular billiards.

Time evolution. – Examples of time evolution for two
initial eigenmodes m′ = 5, 10 are shown in fig. 1 at β = 10
(video is available in [26]). They show that, due to non-
linearity inside the stadium, there are complex irregular
oscillations of wave function with time.

Another representation is obtained by considering the
time evolution of probabilities wm(t) in the basis of linear
modes shown in fig. 2. At moderate value β = 2 the prob-
ability remains located only in a few modes without ther-
malization and spreading over many modes. For a larger
value of β = 10 the nonlinear spearing over modes goes
in a more efficient way with many excited modes. Thus,
the dynamical thermalization is expected to be absent at
small or moderate β < βc ∼ 1 while for large nonlinearities
β ∼ 10 > βc we may expect the emergence of dynamical
thermalization.

50009-p2
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For the initial state m′ = 10 we have the approximate
energy value Em ≈ m′∆ ≈ mv2/2 ≈ 70, where v ≈

√
280

is the velocity of the classical particle and the time inter-
val between collisions is approximately τcol ≈ h/v ≈ 0.06.
Thus, during the time t = 40 we have approximately
Ncol = t/τcol ≈ 670. Dynamical thermalization is rea-
sonably achieved for time interval t ∈ [20, 40] as is visible
in the middle and bottom panels of fig. 2 where wm(t)
have thermalized like distribution with β = 10.

Bose-Einstein thermal distribution. – To charac-
terize the dynamical thermalization in more detail we
assume that a moderate nonlinearity acts as a certain ther-
malizer which drives the system to a thermal equilibrium
over quantum levels of the stadium. At the same time we
assume that the nonlinear term is not very strong so that
it does not affect significantly the average linear eigenen-
ergies. Indeed, on average we have β|ψ|2 ≈ β/A ≈ ∆ for
β ∼ 10, so that the nonlinear energy shift is moderate at
such values of β.

Thus, we expect that nonlinearity generates a dynami-
cal thermalization over the quantum billiard energy levels.
In such a case we should have the standard Bose-Einstein
distribution ansatz over energy levels Em [27]:

ρm = 1/[exp[(Em − Eg − μ)/T ] − 1], (2)

where Eg = 13.25 is the energy of the ground state, T
is the temperature of the system, μ(T ) is the chemical
potential dependent on temperature. The values Em are
the eigenenergies of the stadium at β = 0. The param-
eters T and μ are determined by the norm conservation∑

∞

m=1
ρm = 1 (we have only one particle in the system)

and the initial energy
∑

m Emρm = E. The entropy S
of the system is determined by the usual relation [27]
S = −∑

m ρm ln ρm. The relation (2) with normalization
condition determines the implicit dependences on temper-
ature E(T ), S(T ), μ(T ).

The advantage of energy E and entropy S is that both
are extensive variables, thus they are self-averaging and
due to that they have reduced fluctuations. Due to this
feature S and E are especially convenient for verifica-
tion of the thermalization ansatz. To check this ansatz
we start from an initial linear mode m′ which corresponds
to the system energy E ≈ Em′ and follow the GPE time
evolution of probabilities wm(t) determining the value of
entropy S from the obtained average probabilities ρm.
Considering the initial states with 1 ≤ m′ ≤ 50 we ob-
tain the numerical dependence S(E) shown by symbols
in fig. 3. This dependence is compared with the analytic
curve following from the Bose-Einstein ansatz (2) which
gives the dependences E(T ) and S(T ) and hence provides
the analytic dependence S(E) shown by the red curve in
fig. 3.

The data of fig. 3 show that even at large β = 20 there
is no thermalization for the rectangular billiard. We at-
tribute this to the fact that the ray dynamics is integrable
in this billiard and thus it is much more difficult to reach

Fig. 3: (Color online) Entropy dependence on energy S(E)
obtained from the GPE time evolution of initial linear eigen-
states with 1 ≤ m′ ≤ 50 for the stadium (dots) and rectangu-
lar (crosses) billiards for nonlinearity β = 2, 5, 10, 20 marked
on each panel. Here the average is done over time intervals
t ∈ [4, 5] (blue), t ∈ [16, 20] (green) and t ∈ [20, 40] (black).
The red curve represents the Bose-Einstein ansatz (2) while
the orange dashed curve shows the case of energy equiparti-
tion over the first 50 modes of the stadium.

the onset of chaos for the GPE in this billiard at the mod-
erate nonlinearity studied here.

The situation is different for the stadium: at β = 2 only
a few modes are populated, at β = 5 the number of modes
is increased but still the numerical data for S are very far
from the thermalization red curve (at least on the time
scale reached in our numerical simulations). However, for
β = 10, 20 we find that the numerical data at large times
t > 15 follow the theoretical curve S(E) given by the Bose-
Einstein thermalization. A small visible deviation from
theory is still visible since the numerical points are sys-
tematically slightly below the theory curve. We attribute
this to a finite computation time which apparently is not
long enough to visit all regions of multi-configurational
space with sufficiently large statistics. On the basis of the
obtained data we can conclude that the dynamical ther-
malization in the stadium sets in for β > βc ≈ 7 ≈ ∆.
We also checked that the initial states, which represent
a linear combination of a few eigenmodes, also follow the
theoretical red curve in fig. 3 at β > βc (e.g., two modes
m = 10, 15 at β = 10).

Another way to check the thermalization predictions
is to determine T from the numerical values of E, S
which, according to the Bose-Einstein ansatz, give in-
dependent values T1(E) and T2(S). The average value
T = (T1+T2)/2 is shown in fig. 4 as a function of numerical
values of E and S. We see that the numerical points
are in a good agreement with the analytic curves (apart
of small systematic displacement of numerical points dis-
cussed in the paragraph above). In a similar way we make
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Fig. 4: (Color online) Theoretical dependences given by Bose-
Einstein ansatz (2) and shown by the red curves for T (E)
(top left panel), T (S) (top right panel), µ(E) (bottom left
panel), µ(T ) (bottom right panel); the numerical results, ob-
tained from GPE in the stadium, are shown by black points
at β = 10 with averaging over the time interval [20, 40]. For
representation convenience we show these dependences using
rescaling to maximal values of variables corresponding to initial
state with m′ = 50: Emax = 414, Smax = 4.8, Tmax = 387.75,
|µmax| = 1500.45.

a comparison between the theory and numerical data for
dependences μ(E) and μ(T ) shown in the bottom pan-
els of fig. 3. Again we find a good agreement between
the numerical data and the Bose-Einstein thermalization
distribution (2).

The validity of the Bose-Einstein thermalization
ansatz (2) leads to a striking paradox pointed out already
for nonlinear chains in [10]: formally the GPE in stadium
gives a system of equations for nonlinear coupled oscilla-
tors (we have nonlinear coupling between linear oscilla-
tor modes of the stadium) with a moderate nonlinearity.
The usual expectations of the statistical mechanics pre-
dict the energy equipartition between these modes [10,27].
If the number of modes is infinite then we should have
ultra-violet catastrophe with probabilities ρm ∼ 1/Em at
high modes m and the global temperature approaching
zero as T ∼ 1/mmax for initial excitation with m′ ∼ 10
(here mmax is the maximal mode number). This classical
thermalization ansatz for mmax = 50 is shown by a dashed
curve in fig. 3 and the data clearly show that it is very dif-
ferent from the numerical data which are close to the Bose-
Einstein ansatz (we note that numerically the quantum
Gibbs distribution [10] over quantum levels of stadium
gives the results being rather close to those of (2) since
at low temperatures and large m values both distributions
are rather similar). Thus, our data clearly show the emer-
gence of the dynamical thermalization described by the
Bose-Einstein distribution in a chaotic billiard for moder-
ate nonlinearity β > βc ∼ ∆.

Fig. 5: (Color online) Time-averaged probabilities ρm(m′) at
stadium eigenstate m for initial state m′; the time averaging
is done for time intervals [20, 40]; the panels show data for
1 ≤ m′, m ≤ 30 in the x, y axes, respectively. Here we show
the cases β = 2 (top left panel), β = 5 (top right panel),
β = 10 (bottom left panel), the theoretical Bose-Einstein dis-
tribution (2) (bottom right panel). The values of ρm(m′) are
shown by color with the corresponding color bars for each
panel.

A more detailed check of the Bose-Einstein distribu-
tion requires a direct comparison of numerically obtained
probabilities ρm(m′) with the theoretical expression (2) for
each initially excited mode m′. We show such data in fig. 5
for β = 2, 5, 10. It is clear that there is no thermalization
at β = 2, 5 since a large fraction of probability remains
at the initially populated state m = m′. For β = 10 we
see that the probability at initial state m′ drops signifi-
cantly indicating emergence of dynamical thermalization.
However, still the numerical probabilities at large m have
larger values compared to those of the theory (2) shown in
the bottom right panel of fig. 5. We attribute this to the
fact that our total computation time is not large enough
to have good statistical data for average values of ρm(m′)
which require good averaging and long computation times.
Such a problem has been visible in the numerical simula-
tions with nonlinear chains [9,10] where the time of simu-
lations have been by a few orders of magnitude larger than
here. At the same time the extensive property of energy E
and entropy S makes them self-averaging and more stable
in respect to fluctuations thus allowing to compare them
with the theory (2) at significantly shorter time scales.

Unfortunately the large-scale simulations of the GPE
for the stadium are rather heavy and time consuming
since they require transformations from coordinate to lin-
ear mode space and small integration time step with

50009-p4



Dynamical thermalization of Bose-Einstein condensate in Bunimovich stadium

aliasing procedure to suppress numerical instabilities of
high modes. It is possible that the numerical codes can
be improved allowing to reach larger time scales but this
requires further studies going beyond the scope of this
work.

Finally we discuss a preparation of one or a few ini-
tial eigenstates considered above for the time evolution
and dynamical thermalization. It is clear that the ground
state of the billiard is relatively easy to prepare since it
is the final state in a process of relaxation and also since
it is compact in space being close to a coherent state of
a harmonic trap. An excited state can be produced from
the ground state applying a monochromatic driving (oscil-
lation) of the billiard that creates an effective ac-potential
Vac = fx cos(ωt) if one goes to the oscillating frame (see,
e.g., [28]). In a chaotic billiard dipole matrix elements
have transitions between all energy eigenstates [28] and
thus a resonant transition will populate one or a few states
being close to the resonance En ≈ E0 + h̄ω. We note that
such a method demonstrated already its efficiency for ex-
citation of high-energy states for chaotic Rydberg atoms
(see, e.g., [29,30]).

Discussion. – Our studies of the GPE in the Buni-
movich stadium billiard show that for a moderate nonlin-
eariy parameter above a certain threshold β > βc ≈ ∆ the
nonlinear Hamiltonian dynamics leads to the emergence
of dynamical thermalization over the linear billiard modes
which is well described by the Bose-Einstein distribution.
This distribution is strikingly different from the usually
expected energy equipartition over modes [10,27] which
would lead to an ultra-violet catastrophe with a signifi-
cant probability transfer to higher and higher modes of
the chaotic billiard. The established validity of the Bose-
Einstein distribution, together with the previous studies of
dynamical thermalization in nonlinear chains [9,10], leads
to an unexpected conclusion about the emergence of quan-
tum distributions over linear energy modes in systems
of coupled nonlinear oscillators at moderate nonlinearity.
This result is drastically different from the standard en-
ergy equipartition picture expected for nonlinear dynamics
of oscillator systems [1–4,27].

The described picture of “quantum” dynamical ther-
malization for the GPE in chaotic billiards requires a bet-
ter understanding of nonlinear dynamics in systems with
many degrees of freedom. It is known that slow chaos, like
the Arnold diffusion [31–33], and an anomalous diffusion in
disordered nonlinear chains (see, e.g., [19,34–36]) generate
a number of features which still wait their deep under-
standing. We hope that our results will stimulate further
research in this field of fundamental aspects of nonlinear
dynamics and thermalization onset in systems with large
but finite number of degrees of freedom.

The modern progress in the cold-atom experiments al-
lows to investigate a dynamics of Bose gas and Bose-
Einstein condensates [5,6] while the chaotic billiard for
such atoms can be created by optical beams [15,16]. Thus,

Fig. 6: (Color online) Poincaré sections (x, px) at y = 0.5,
py > 0. Left and right columns correspond to energy E = 2
and E = 18, respectively. Top panels show the entire Poincaré
sections (10 chaotic orbit up to time t ≤ 104) and middle pan-
els show the zoom marked in top panels (adding 15 trajectories
in the integrable region to time t ≤ 104), one invariant curve of
each panel is highlighted with red (gray) color inside the sta-
bility island at middle panels. Bottom panels show dynamics
in the (x, y)-plane with stable orbits from middle panels (same
red color) and chaotic orbits (orange color, also shown in the
top panels) up to times t = 102; the dashed horizontal lines
mark y = 0.5 used for the Poincaré sections.

we think that the model (1) can be realized with cold-atom
experiments.

Another promising possibility can be an experimental
realization of a harmonic Sinai billiard, or Sinai oscillator.
An example of such a billiard is described by a classical
Hamiltonian H = (px

2 + x2)/2 + (py
2 + 2y2)/2 with a

rigid disk of radius rd = 1 located at x = y = −1 (thus
the ratio of frequencies in x and y is irrational). The har-
monic potential can be realized by optical traps while the
repulsive rigid disk can be created inside by an additional
laser beam with such a frequency detuning that it acts as
a repulsive potential for cold atoms. Examples of typical
trajectories in such a billiard are shown in fig. 6. In the
same figure we also show the Poincaré sections constructed
in the (x, px)-plane at y = 0.5, py > 0 with energies E = 2
and E = 18, when the size of oscillations of the atom is
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larger than rd. In this regime almost all the phase space
is chaotic (the domains of integrable dynamics are very
small). Thus, we think that the GPE in such a harmonic
Sinai billiard will show all the effects of dynamical ther-
malization discussed above for a more convential case of
the Bunimovich stadium. We expect that such a system
can be more simple for experimental investigations. Also
in such a billiard a coherent state of the harmonic potential
can be created experimentally and can be used as an ini-
tial state with energy being close to the energies of linear
eigenmodes of such a billiard. We expect that experimen-
tal investigations of the GPE in a harmonic Sinai billiard
(or in the Bunimovich stadium) will allow to understand
the fundamental aspects of dynamical thermalization.

∗ ∗ ∗

We thank D. Guéry-Odelin for useful discussions of
cold-atom physics.
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