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Abstract –We study numerically the wavefunction evolution of a Bose-Einstein condensate in a
Bunimovich stadium billiard being governed by the Gross-Pitaevskii equation. We show that for
a moderate nonlinearity, above a certain threshold, there is emergence of dynamical thermaliza-
tion which leads to the Bose-Einstein probability distribution over the linear eigenmodes of the
stadium. This distribution is drastically different from the energy equipartition over oscillator de-
grees of freedom which would lead to the ultra-violet catastrophe. We argue that this interesting
phenomenon can be studied in cold atom experiments.

Introduction. – Starting from the famous Fermi-
Pasta-Ulam problem [1, 2] the interest to understanding
of thermalization process in dynamical systems with a fi-
nite number of degrees of freedom is continuously growing
(see e.g. [3,4]). At present the experiments with cold Bose
gas in atom traps and optical lattices open access to ex-
perimental investigations (see e.g. [5, 6]) stimulating the
theoretical and experimental interest to this phenomenon
(see e.g. [7, 8]).

The numerical analysis of dynamical thermalization
in disordered nonlinear chains has been started recently
showing that the quantum Gibbs distribution can appear
at a moderate nonlinearity contrary to usually expected
energy equipartition over linear modes [9, 10]. Thus it is
interesting to analyze the dynamics of a Bose-Einstein con-
densate (BEC), described by the Gross-Pitaevskii Equa-
tion (GPE), in a chaotic billiard where the quantum evolu-
tion corresponds to a regime of quantum chaos and energy
levels statistics described by the Random Matrix The-
ory [11–13]. As an example we use a de-symmetrized
Bunimovich stadium where the classical dynamics is fully
chaotic (see e.g. [12, 14]). We note that the chaotic opti-
cal billiards, created by a laser beam and containing cold
atoms, have been already studied experimentally [15, 16]
and hence our model can be investigated experimentally.

Model description. – The model is described by the
GPE for BEC in the de-symmetrized Bunimovich stadium
billiard with Dirichlet boundary conditions:

ih̄
∂ψ(~r, t)

∂t
= − h̄2

2m
∆ψ(~r, t) + β|ψ(~r, t)|2ψ(~r, t) (1)

where we consider h̄ = 1, m = 0.5. The height of the
stadium is taken as h = 1 and its maximal length is
l = 2 (see Fig. 1). Thus the average level spacing is
∆ ≈ 4π/A ≈ 7.04 where A is the billiard area. At β = 0
the numerical methods of quantum chaos allows to de-
termine efficiently about million of eigenenergies of linear
modes and related eigenmodes [17]. For comparison, we
also consider the case on a rectangular billiard with ap-
proximately the same area as for stadium and with the
golden mean ratio l/h = (1 +

√
5)/2, h = 1. We note that

for model (1) the spectrum of Bogoliubov excitations of
BEC in a Bunimovich stadium had been studied in [18],
but the question of dynamical thermalization has been
not addressed there. We also point that the model (1) is
described by the partial differential equation (continuous
variables) thus being significantly more complex than the
case of nonlinear chains studied in [9, 10]. Indeed, even
the prove of the existence of solution in (1) is a nontrivial
mathematical problem which still remains open (e.g. the
ultra-violet catastrophe would imply the absence of solu-
tion). In the following we restrict our analysis to the GPE
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case not going beyond this description.

Fig. 1: (Color on-line) Time evolution of wavefunction ampli-
tude |ψ(x, y, t)| in coordinate representation for an initial state
of linear eigenstate mode m′ = 5 (left column) and m′ = 10
(right column) shown at t = 0 (top panels). Middle and bot-
tom panels show the snapshots of corresponding distributions
at t = 4 and t = 40 respectively. Here β = 10, color bars give
values of |ψ(x, y, t)|.

The time evolution of (1) is integrated by small time
steps of Trotter decomposition of linear and nonlinear
terms with a step size going down to ∆t = 4 × 10−5

to suppress nonlinear growth of high modes. We use
Nc = 1076(1085) linear modes φm of stadium (rectangu-
lar) for linear part of time propagation doing the non-
linear step with β term in the coordinate space with
Np = 11207(12816) points inside the billiard. The lat-
tice points are given by 79 × 79 = 6241 equidistant x-y
coordinates for the square part of the stadium billiard
(rectangular billiard), and rays with equidistance in an-
gles for the circular part. The change of basis from co-
ordinates to energies (and viceversa) is given by a uni-
tary matrix in double precision. Similar to [19], a special
aliasing procedure is used with an efficient suppression of
nonlinear numerical instability at high modes. This in-
tegration scheme exactly conserves the probability norm
providing the total energy conservation with an accu-
racy better than 2% at largest value β = 20 and better
than 1% at lower β values. At any step the wavefunc-
tion is expanded in the basis of linear modes φm so that
ψ(x, y, t) =

∑
m Cm(t)φm(x, y). The averaging of proba-

bilities wm(t) = |Cm(t)|2 (
∑

m wm = 1) over time gives
the average probability distribution ρm = 〈|Cm|2〉t.

We note that the quantum evolution of GPE (1) has
been studied in the frame of quantum turbulence for a
rectangular billiard [20] and for a 3D-cube [21]. However,
in these studies there is energy injection/absorption at
low/high modes to generate the Kolmogorov energy flow
in space of linear modes (see e.g. [22, 23]). We also note
that the time evolution of wave packet for the GPE in
Bunimovich stadium had been simulated in [24] but only a
spacial distribution had been considered there. In contrast

to these studies we consider only unitary or Hamiltonian
evolution given by (1) being interested in the distribution
properties of probabilities ρm over linear eigenmodes. In
this respect our approach is different from other studies
where the analysis had been concentrated on space fluc-
tuations (see e.g. [25]). Also, as we will see below, there
is a significant difference for the GPE evolution in chaotic
and rectangular billiards.

Time evolution. – Examples of time evolution for
two initial eigenmodes m′ = 5, 10 are shown in Fig. 1
at β = 10 (video is available at [26]). They show that,
due to nonlinearity inside the stadium, there are complex
irregular oscillations of wavefunction with time.

Another representation is obtained by considering the
time evolution of probabilities wm(t) in the basis of linear
modes shown in Fig. 2. At moderate value β = 2 the
probability remains located only in a few modes without
thermalization and spreading over many modes. For larger
value of β = 10 the nonlinear spearing over modes goes
in a more efficient way with many excited modes. Thus
the dynamical thermalization is expected to be absent at
small or moderate β < βc ∼ 1 while for large nonlinearities
β ∼ 10 > βc we may expect the emergence of dynamical
thermalization.

For the initial state m′ = 10 we have the approxi-
mate energy value Em ≈ m′∆ ≈ mv2/2 ≈ 70, where
v ≈
√

280 is a velocity of classical particle and a time inter-
val between collisions is approximately τcol ≈ h/v ≈ 0.06.
Thus during the time t = 40 we have approximately
Ncol = t/τcol ≈ 670. Dynamical thermalization is reason-
ably achieved for time interval t ∈ [20, 40] as it is visible
in middle and bottom panels of Fig.2 where wm(t) have
thermalized like distribution with β = 10.

Bose-Einstein thermal distribution. – To char-
acterize the dynamical thermalization in more detail we
assume that a moderate nonlinearity acts as a certain ther-
malizer which drives the system to a thermal equilibrium
over quantum levels of the stadium. At the same time we
assume that the nonlinear term is not very strong so that
it does not affect significantly the average linear eigenen-
ergies. Indeed, on average we have β|ψ|2 ≈ β/A ≈ ∆
for β ∼ 10, so that indeed, the nonlinear energy shift is
moderate at such values of β.

Thus we expect that nonlinearity generates a dynamical
thermalization over the quantum billiard energy levels. In
such a case we should have the standard Bose-Einstein
distribution ansatz over energy levels Em [27]:

ρm = 1/[exp[(Em − Eg − µ)/T ]− 1] (2)

where Eg = 13.25 is the energy of the ground state, T
is the temperature of the system, µ(T ) is the chemical
potential dependent on temperature. The values Em are
the eigenenergies of the stadium at β = 0. The param-
eters T and µ are determined by the norm conservation∑∞

m=1 ρm = 1 (we have only one particle in the system)
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Fig. 2: (Color on-line) Time evolution of probabilities wm(t)
in linear mode basis for initial state m′ = 10 at β = 2 (top
panel), m′ = 10, 20 at β = 10 (middle and bottom panels
respectively). The probabilities wm(t) are averaged over time
interval δt = 0.2 to reduce fluctuations; color bar shows values
of log10 ρm(m′).

and the initial energy
∑

mEmρm = E. The entropy S
of the system is determined by the usual relation [27]:
S = −

∑
m ρm ln ρm. The relation (2) with normalization

condition determines the implicit dependencies on tem-
perature E(T ), S(T ), µ(T ).

The advantage of energy E and entropy S is that both
are extensive variables, thus they are self-averaging and
due to that they have reduced fluctuations. Due to this
feature S and E are especially convenient for verification
of the thermalization ansatz. To check this ansatz we
start from an initial linear mode m′ which corresponds
to the system energy E ≈ Em′ and follow the GPE time
evolution of probabilities wm(t) determining the value of
entropy S from obtained average probabilities ρm. Con-
sidering the initial states with 1 ≤ m′ ≤ 50 we obtain the
numerical dependence S(E) shown by symbols in Fig. 3.
This dependence is compared with the analytic curve fol-
lowing from the Bose-Einstein ansatz (2) which gives the
dependencies E(T ) and S(T ) and hence provides the an-
alytic dependence S(E) shown by the red curve in Fig. 3.

The data of Fig. 3 show that even at large β = 20 there

Fig. 3: (Color on-line) Entropy dependence on energy S(E)
obtained from the GPE time evolution of initial linear eigen-
states with 1 ≤ m′ ≤ 50 for the stadium (circles) and rectan-
gular (crosses) billiards for nonlinearity β = 2, 5, 10, 20 marked
on each panel. Here the average is done over time intervals
t ∈ [4, 5] (blue), t ∈ [16, 20] (green) and t ∈ [20, 40] (black).
The red curve represents the Bose-Einstein ansatz (2) while
the orange dashed curve shows the case of energy equiparti-
tion over first 50 modes of the stadium.

is no thermalization for the rectangular billiard. We at-
tribute this to the fact that the ray dynamics is integrable
in this billiard and thus it is much more difficult to reach
onset of chaos for the GPE in this billiard at moderate
nonlinearity studied here.

The situation is different for the stadium: at β = 2 only
a few modes are populated, at β = 5 the number of modes
is increased but still the numerical data for S are very far
from the thermalization red curve (at least on the time
scale reached in our numerical simulations). However, for
β = 10, 20 we find that the numerical data at large times
t > 15 follow the theoretical curve S(E) given by the Bose-
Einstein thermalization. A small visible deviation from
theory is still visible since the numerical points are sys-
tematically slightly below the theory curve. We attribute
this to a finite computation time which apparently is not
long enough to visit all regions of multi-configurational
space with sufficiently large statistics. On the basis of
obtained data we can conclude that the dynamical ther-
malization in the stadium sets in for β > βc ≈ 7 ≈ ∆.
We also checked that the initial states, which represent
a linear combination of a few eigenmodes, also follow the
theoretical red curve in Fig. 3 at β > βc (e.g. two modes
m = 10, 15 at β = 10).

Another way to check the thermalization predictions
is to determine T from the numerical values of E, S
which, according to the Bose-Einstein ansatz, give in-
dependent values T1(E) and T2(S). The average value
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Fig. 4: (Color on-line) Theoretical dependencies given by Bose-
Einstein ansatz (2) and shown by the red curves for T (E) (top
left panel), T (S) (top right panel), µ(E) (bottom left panel),
µ(T ) (bottom right panel); the numerical results, obtained
from GPE in the stadium, are shown by black points at β = 10
with averaging over the time interval [20, 40]. For representa-
tion convenience we show these dependencies using rescaling
to maximal values of variables corresponding to initial state
with m′ = 50: Emax = 414, Smax = 4.8, Tmax = 387.75,
|µmax| = 1500.45.

T = (T1 +T2)/2 is shown in Fig. 4 as a function of numer-
ical values of E and S. We see that the numerical points
are in a good agreement with the analytic curves (apart
of small systematic displacement of numerical points dis-
cussed in the paragraph above). In a similar way we make
a comparison between the theory and numerical data for
dependencies µ(E) and µ(T ) shown in bottom panels of
Fig. 3. Again we find a good agreement between the nu-
merical data and the Bose-Einstein thermalization distri-
bution (2).

The validity of the Bose-Einstein thermalization ansatz
(2) leads to a striking paradox pointed already for nonlin-
ear chains in [10]: formally the GPE in stadium gives a
system of equations for nonlinear coupled oscillators (we
have nonlinear coupling between linear oscillator modes of
the stadium) with a moderate nonlinearity. The usual ex-
pectations of the statistical mechanics predict the energy
equipartition between these modes [10,27]. If the number
of modes is infinite then we should have ultra-violet catas-
trophe with probabilities ρm ∼ 1/Em at high modesm and
the global temperature approaching zero as T ∼ 1/mmax

for initial excitation with m′ ∼ 10 (here mmax is the max-
imal mode number). This classical thermalization ansatz
for mmax = 50 is shown by a dashed curve in Fig. 3 and
the data clearly show that it is very different from the nu-
merical data which are close to the Bose-Einstein ansatz
(we note that numerically the quantum Gibbs distribu-
tion [10] over quantum levels of stadium gives the results

Fig. 5: (Color on-line) Time averaged probabilities ρm(m′) at
stadium eigenstate m for initial state m′; the time averaging
is done for time intervals [20, 40]; the panels show data for
1 ≤ m′,m ≤ 30 in x, y axes respectively. Here we show the
cases: β = 2 (top left panel), β = 5 (top right panel), β = 10
(bottom left panel), the theoretical Bose-Einstein distribution
(2) (bottom right panel). The values of ρm(m′) are shown by
color with the corresponding color bars for each panel.

being rather close to those of (2) since at low temper-
atures and large m values both distributions are rather
similar). Thus our data clearly show the emergence of the
dynamical thermalization described by the Bose-Einstein
distribution in a chaotic billiard for moderate nonlinearity
β > βc ∼ ∆.

A more detailed check of the Bose-Einstein distribu-
tion requires a direct comparison of numerically obtained
probabilities ρm(m′) with the theoretical expression (2)
for each initially excited mode m′. We show such data
in Fig. 5 for β = 2, 5, 10. It is clear that there is no
thermalization at β = 2, 5 since a large fraction of prob-
ability remains at the initially populated state m = m′.
For β = 10 we see that the probability at initial state
m′ drops significantly indicating emergence of dynamical
thermalization. However, still the numerical probabilities
at large m have larger values compared to those of the
theory (2) shown in the bottom right panel of Fig. 5. We
attribute this to the fact that our total computation time
is not large enough to have good statistical data for av-
erage values of ρm(m′) which require good averaging and
long computation times. Such a problem had been visible
in the numerical simulations with nonlinear chains [9, 10]
where the time of simulations have been by a few orders
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of magnitude larger than here. At the same time the ex-
tensive property of energy E and entropy S makes them
self-averaging and more stable in respect to fluctuations
thus allowing to compare them with the theory (2) at sig-
nificantly shorter time scales.

Unfortunately the large scale simulations of the GPE for
stadium are rather heavy and time consuming since they
require transformations from coordinate to linear mode
space and small integration time step with aliasing proce-
dure to suppress numerical instabilities of high modes. It
is possible that the numerical codes can be improved al-
lowing to reach larger time scales but this requires further
studies going beyond the scope of this work.

Finally we discuss a preparation of one or a few ini-
tial eigenstates considered above for the time evolution
and dynamical thermalization. It is clear that the ground
state of the billiard is relatively easy to prepare since it
is the final state in a process of relaxation and also since
it is compact in space being close to a coherent state of
a harmonic trap. An excited state can be produced from
the ground state applying a monochromatic driving (oscil-
lation) of the billiard that creates an effective ac-potential
Vac = fx cos(ωt) if one goes to the oscillating frame (see
e.g. [28]). In a chaotic billiard dipole matrix elements have
transitions between all energy eigenstates [28] and thus a
resonant transition will populate one or a few states being
close to the resonance En ≈ E0 + h̄ω. We note that such a
method demonstrated already its efficiency for excitation
of high energy states for chaotic Rydberg atoms (see e.g.
[29, 30]).

Discussion. – Our studies of the GPE in the Buni-
movich stadium billiard show that for a moderate nonlin-
eariy parameter above a certain threshold β > βc ≈ ∆
the nonlinear Hamiltonian dynamics leads to emergence
of dynamical thermalization over the linear billiard modes
which is well described by the Bose-Einstein distribution.
This distribution is strikingly different from the usually
expected energy equipartition over modes [10, 27] which
would lead to a violet catastrophe with a significant prob-
ability transfer to higher and higher modes of the chaotic
billiard. The established validity of the Bose-Einstein dis-
tribution, together with the previous studies of dynami-
cal thermalization in nonlinear chains [9, 10], leads to an
unexpected conclusion about emergence of quantum dis-
tributions over linear energy modes in systems of coupled
nonlinear oscillators at moderate nonlinearity. This result
is drastically different from the standard energy equiparti-
tion picture expected for nonlinear dynamics of oscillator
systems [1–4,27].

The described picture of “quantum” dynamical ther-
malization for the GPE in chaotic billiards requires a bet-
ter understanding of nonlinear dynamics in systems with
many degrees of freedom. It is known that slow chaos, like
the Arnold diffusion [31–33], and an anomalous diffusion in
disordered nonlinear chains (see e.g. [19, 34–36]) generate
a number of features which still wait their deep under-

standing. We hope that our results will stimulate further
research in this field of fundamental aspects of nonlinear
dynamics and thermalization onset in systems with large
but finite number of degrees of freedom.

The modern progress in the cold atom experiments al-
lows to investigate a dynamics of Bose gas and Bose-
Einstein condensates [5, 6] while the chaotic billiard for
such atoms can be created by optical beams [15,16]. Thus
we think that the model (1) can be realized with cold atom
experiments.

Fig. 6: (Color on-line) Poincaré sections (x, px) at y = 0.5, py >
0. Left and right columns correspond to energy E = 2 and
E = 18 respectively. Top panels show the entire Poincaré
sections (10 chaotic orbit up to time t ≤ 104) and middle panels
show zoom marked in top panels (adding 15 trajectories in the
integrable region to time t ≤ 104), one invariant curve of each
panel is highlighted with red (gray) color inside stability island
at middle panels. Bottom panels show dynamics in (x, y) plane
with stable orbits from middle panels (same red color) and
chaotic orbits (orange color also shown in top panels) up to
times t = 102; dashed horizontal lines mark y = 0.5 used for
the Poincaré sections.

Another promising possibility can be an experimental
realization of a harmonic Sinai billiard, or Sinai oscillator.
An example of such a billiard is described by a classical
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Hamiltonian H = (px
2 + x2)/2 + (py

2 + 2y2)/2 with a
rigid disk of radius rd = 1 located at x = y = −1 (thus
the ratio of frequencies in x and y is irrational). The har-
monic potential can be realized by optical traps while the
repulsive rigid disk can be created inside by an additional
laser beam with such a frequency detuning that it acts as
a repulsive potential for cold atoms. Examples of typi-
cal trajectories in such a billiard are shown in Fig. 6. In
the same figure we also show the Poincaré sections con-
structed in (x, px) plane at y = 0.5, py > 0 with energies
E = 2 and E = 18, when the size of oscillations of atom
is larger than rd. In this regime almost all phase space
is chaotic (the domains of integrable dynamics are very
small). Thus we think that the GPE in such a harmonic
Sinai billiard will show all the effects of dynamical ther-
malization discussed above for a more convential case of
the Bunimovich stadium. We expect that such a system
can be more simple for experimental investigations. Also
in such a billiard a coherent state of the harmonic potential
can be created experimentally and can be used as an ini-
tial state with energy being close to the energies of linear
eigenmodes of such a billiard. We expect that experimen-
tal investigations of the GPE in a harmonic Sinai billiard
(or in the Bunimovich stadium) will allow to understand
the fundamental aspects of dynamical thermalization.

We thank D.Guéry-Odelin for useful discussions of cold
atom physics.
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