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The statistics of Poincaré recurrences is studied for the base-pair breathing dynamics of an all-atom DNA
molecule in a realistic aqueous environment with thousands of degrees of freedom. It is found that at least
over five decades in time the decay of recurrences is described by an algebraic law with the Poincaré
exponent close to β ¼ 1.2. This value is directly related to the correlation decay exponent ν ¼ β − 1, which
is close to ν ≈ 0.15 observed in the time resolved Stokes shift experiments. By applying the virial theorem
we analyze the chaotic dynamics in polynomial potentials and demonstrate analytically that an exponent
β ¼ 1.2 is obtained assuming the dominance of dipole-dipole interactions in the relevant DNA dynamics.
Molecular dynamics simulations also reveal the presence of strong low frequency noise with the exponent
η ¼ 1.6. We trace parallels with the chaotic dynamics of symplectic maps with a few degrees of freedom
characterized by the Poincaré exponent β ∼ 1.5.
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The celebrated Poincaré recurrence theorem of 1890 [1]
guarantees that a dynamical trajectory with a fixed energy
and bounded phase space will always return in a close
vicinity of the initial state. For dynamical systems with hard
chaos the statistics of Poincaré recurrences, and the related
probability to stay in a bounded phase space region, behave
similarly to coin flipping and drop exponentially with
the return time τ [2,3]. However, in the generic case of
chaos with divided phase space, when islands of inte-
grable motion are embedded in a chaotic sea [4,5], it was
established that the probability distribution of recurrences
PðτÞ is described by an algebraic decay

PðτÞ ∝ 1=τβ; ð1Þ
with the Poincaré exponent β ∼ 1.5 [6–11]. This slow decay
originates from sticking of dynamical trajectories in the
vicinity of stability islands and results in a slow decay of
the corresponding autocorrelation function CðτÞ ∝ τPðτÞ
[10]. Most of the studies of the algebraic statistics of
Poincaré recurrences (ASPR) considered 2D symplectic
maps, notably, the Chirikov standard map, with recurrence
times changing by more than 10 orders of magnitude [12].
A few recent studies of Hamiltonian systems with a larger
number of degrees of freedom also revealed an algebraic
decay of recurrences with similar values of the Poincaré
exponent β ∼ 1.3–1.5 [13–16].
The generic nature of the ASPR phenomenon is well

established. It is known to occur on a huge range of
physical scales from electron trajectories for microwave
ionization of Rydberg atoms [17,18] to comet orbits in the
Solar System [19]. One should expect that it is also inherent

in conformational dynamics of macromolecules. These
systems are characterized by complex energy landscapes,
with numerous barriers and saddle points crossed during
thermal motion. It is tacitly assumed that such dynamics
results in a developed chaos with multiexponential relax-
ation decay. Recent experimental evidence suggests, how-
ever, that the ASPR may play an important role, notably, in
the behavior of the double helical DNA. The power-law
relaxation in the B-DNA double helix was discovered
[20,21] and carefully studied during the last decade by
using the time resolved Stokes shift (TRSS) experiments
[22–27]. In the last years these results were analyzed with
different theoretical approaches [28–34], but, nevertheless,
the possible underlying molecular mechanism remains
elusive. By analogy with the long known power-law
kinetics in proteins [35], this effect in DNA is interpreted
in terms of models developed earlier for glassy systems,
with multiple substates, hierarchical relaxation, mode
coupling, etc. However, unlike proteins, the B-DNA
molecule has only a few well-studied conformational
substates with relatively fast and spatially localized dynam-
ics that does not resemble those in glasses. With hydration
water and surrounding ions included, the system becomes
more complex, but, in spite of all efforts, there is no
agreement even on whether the power-law relaxation in the
submicrosecond time range is due to DNA itself or the
hydration water, or both [27,32,36].
We asked, what if, instead of the spin-glass–like effect of

multiple degrees of freedom, the power-law relaxation in
DNA represents a manifestation of the ASPR phenomenon.
According to experiment, the decay of the TRSS signal in
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DNA is described by time autocorrelation function CðτÞ ∝
1=τν with ν ≈ 0.15 [21], that is, rather close to ASPR in
systems with a few degrees of freedom. This decay is
observed over six decades in time from 10−13 to 10−7 sec;
therefore, one can hope to detect it by means of all-atom
molecular dynamics (MD) simulations. The TRSS signal is
obtained by substituting a polarity sensitive dye coumarin
for one of the stacked bases, and the measured effect can be
due to any motion that changes the dye local electric field
[20]. Since in MD different motions are coupled we started
from a trial search of relevant parameters. The statistics of
Poincaré recurrences for kinetic energies of selected atoms
revealed only exponential decay. A similar behavior, except
for minor details, was found for conformational transitions
of backbone torsion angles. After a few unsuccessful trials,
however, the ASPR has been revealed in the base-pair
breathing motion.
The base-pair breathing occurs due to temporal breaking

of one or more hydrogen bonds (H bonds) in a Watson-
Crick pair. The statistics of Poincaré recurrences was
studied for the model system shown in Fig. 1. On the left,
a GC pair is displayed with three H bonds. The right panel
shows a tetramer duplex formed by two strands with
identical GC-alternating sequences. This is a minimal
symmetrical structure with two external and two internal
base pairs. The duplex is placed in a small water box of 489
water molecules with periodic boundaries. Six sodium ions
are added for neutralization. All-atom MD simulations
were carried out under normal temperature using internal
coordinate Hamiltonian equations [37] and a symplectic
integrator [38,39] with the time step of 0.01 ps [40,41]. The
recent version of the AMBER force field [42–44] was used
with SPC/E water [45]. The system had 3226 degrees of
freedom for 1705 atoms [46].
The base-pair breathing was followed by measuring the

distances (R) between the H-bond forming atoms shown in
Fig. 1 at every time step. The stopwatch was started when
a given distance exceeded a certain threshold (Rth) and

stopped once the boundary was crossed in the opposite
direction. These events are called Poincaré recurrences. The
integrated probability distribution PðτÞ is obtained by
counting the number of recurrences with duration larger
than τ and normalizing it by the total number of events,
that is, Pð0Þ ¼ 1 by construction. Function PðτÞ is a very
powerful instrument of analysis because it is positive
definite and, due to statistical averaging over a large
number of crossings, stable with respect to fluctuations
(see, e.g., discussion in [10]). Importantly, these compu-
tations are trivially parallelizable, that is, the PðτÞ statistics
can be accumulated in a large number of independent
MD trajectories. Most of the results discussed below were
obtained by using parallel computations on 65 cores.
Representative results obtained for the three H bonds

in terminal base pairs are shown in Fig. 2. The left panel
displays double-logarithmic plots of PðτÞ distributions
obtained with Rth ¼ 3.15 Å. This threshold is close to
the equilibrium H-bond lengths; therefore, a large fraction
of recurrences result from oscillations within the bonded
ground state. These motions give for τ < 0.3 ps a charac-
teristic fall of PðτÞ typical for exponential decays. The right
panel of Fig. 2 shows the plots of average distances for
recurrences of different duration. For returns shorter than
0.3 ps these values remain around 3.5 Å, that is, the H
bonds are not broken. With τ > 0.3 ps the average dis-
tances grow with τ and the PðτÞ decay becomes algebraic.
The short time boundary of the power-law relaxation is
close to that in TRSS experiments [21]. Moreover, the
decay exponent β ∼ 1 for all three H bonds is not far from
experimental β − 1 ¼ ν ≈ 0.15. To refine these results we
decided to concentrate upon the O6N4H bond in terminal
base pairs. This H bond is broken easier than others;
therefore, it is an adequate indicator of partial base-pair
openings. The internal base pairs were also checked, but
they are opened rarely and only traces of algebraic decay
were detectable in the tails of PðτÞ distributions.

FIG. 1 (color online). The left panel shows the Watson-Crick
base pair formed by guanine and cytosine. The three H bonds are
shown by thick dashed lines. Their lengths are about 3 Å. The
right panel shows a snapshot of the model system taken at the end
of one of the 65 MD trajectories involved in statistical analysis. A
tetramer fragment of a B-DNA double helix was built from two
identical strands with the self-complementary base pair sequence
GCGC. The six sodium ions necessary for charge neutralization
are shown as spheres.

FIG. 2 (color online). The left panel shows statistics of Poincaré
recurrences PðτÞ for the three Watson-Crick H bonds shown in
Fig. 1. The results for distances O6N4, N1N3, and N2O2 are
displayed by solid black, dashed red, and dotted blue curves,
respectively. The threshold distance is Rth ¼ 3.15 Å in all three
cases. The right panel shows the corresponding dependencies of
average bond distances hRi obtained for recurrences of different
duration. Here and in other figures the logarithms are decimal.
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To get a better estimate of the short-time boundary of the
algebraic decay in PðτÞ we need to remove the contribution
of quick returns that do not result in the H-bond opening.
To this end, the threshold Rth was gradually increased up to
4.55 Å. The results of these computations are displayed in
the left panel of Fig. 3. It is seen that the short time hump is
essentially removed already with Rth ¼ 3.55 and that for
the true base-pair breathing the algebraic decay starts from
very short recurrences of only 0.1 ps. This refined boundary
is in excellent agreement with the experimental data [21].
These computations were also used to refine the estimate

of the exponent β. Linear fits of the plots in the left panel
of Fig. 3 were carried out in the range −0.5 ≤ logðτ=psÞ
≤ 2.5, which gives exponent values β ¼ 1.27, 1.20, 1.13,
and 1.05 for thresholds Rth ¼ 3.15, 3.55, 4.15, and 4.55 Å,
respectively. It is seen that there is a moderate influence
of Rth upon the exponent, which can be related to the fact
that longer recurrences correspond to larger atom-atom
separations (Fig. 2). Note that the β values obtained give
the exponent of correlation decay ν ¼ β − 1 very close to
the experimental TRSS value (ν ≈ 0.15) [21]. For visual
comparison, the PðτÞ decay predicted from experiment is
shown in Fig. 3 by the dash-dotted lines.
The experimental long-time boundary occurs at ≈100 ns

and it corresponds to the maximal resolution of the TRSS
method [20,21]. The long-time boundary in our computa-
tions is limited by sampling. We tried to push it somewhat
further by taking into account that H bonds in our simu-
lations spend almost all the time oscillating around the
ground energy minimum. To reduce this nonproductive
time a flat-bottom restraint was added that prevented the
O6N4 distances to go below 3.15 Å. It is understood that
this simple ad hoc trick perturbs realistic dynamics, but the
information it provides may be useful. The results of these

computations shown in the right panel of Fig. 3 confirm
that the sampling is indeed improved, with the time range of
the approximate power law extended by about an order of
magnitude. For shorter duration the PðτÞ distribution repro-
duces the curve obtained without the restraint. Therefore,
one can reasonably expect that the long-time boundary of
the power-law decay of PðτÞ occurs at least at ≈10 ns.
Encouraged by the foregoing findings, notably, the

surprisingly good agreement with experiment obtained
with no adjustable parameters, we decided to study the
power spectrum of the fluctuations of the O6N4 distance.
The results shown in Fig. 4 reveal a strong power-law
growth of density S for low frequencies. However, the
exponent η ¼ 1.63 estimated by linear fitting does not seem
to be related to either the experimental data or the Poincaré
recurrences studied above. This paradoxical observation is
discussed further below.
To shed light on the possible origin of the foregoing

results we use the virial theorem [54] for analysis of chaotic
dynamics in systems with representative polynomial poten-
tials. The corresponding Hamiltonian reads

Hðp; rÞ ¼ p2=2 − a=rm ¼ E; ð2Þ
where ðp; rÞ is the pair of conjugated variables, with
momentum p and radial coordinate r. The energy E < 0
corresponds to a bounded motion; a ∼ 1 and m > 0 are
numerical coefficients (the mass is taken as unity). We
assume that in addition to radial dynamics there is a chaotic
motion in angle degrees of freedom. For this system the
action can be estimated as J ∼ pr ∼ ðbEÞðm−2Þ=ð2mÞ with
a certain numerical constant b < 0, which follows from
relationships p2 ∼ 1=rm and E ∼ p2. Thus we have
bE∼jEj∼J2m=ðm−2Þ, and ω¼ dH=dJ∼Jðmþ2Þ=ðm−2Þ∼1=τ,

FIG. 3 (color online). The left panel shows statistics of Poincaré
recurrences PðτÞ for H-bond O6N4 measured at four different
threshold distances Rth. The results for Rth ¼ 3.15, 3.55, 4.15,
and 4.55 Å are shown by the solid black, dashed red, dotted blue,
and thin solid magenta curves, respectively. The right panel
shows similar statistics for the threshold of 3.55 Å evaluated
in two separate runs. The solid black curve corresponds to the
original simulation (dashed red curve in the left panel). The
second run, shown by dashed red curve, is carried out with a
flat-bottom restraint that prevented the O6N4 distance to go
below 3.15 Å, thus pushing the system to better sampling of long
returns. In both panels the dash-dotted straight line shows the
power law decay with the Poincaré exponent β ¼ 1.15.

FIG. 4. The average power spectral density of time fluctuations
of the O6N4 distance obtained from 16 independent trajectories
of 10 ns each, with the data stored at every time step. The
dash-dotted straight line shows the power law decay with the
exponent η ¼ 1.63 obtained from the linear fit in the range
−5 < logðf · psÞ < −1. The inset shows a representative time
trace of the same parameter between two consecutive crossings of
the threshold distance Rth ¼ 3.15 Å.
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where ω is a frequency of motion and τ is the related
characteristic time scale.
As a result, the measure μ related to the sticking time

scale τ is obtained as μ ∼ J ∼ 1=τðm−2Þ=ðmþ2Þ, which
follows from the fact that in Hamiltonian systems the
measure is proportional to the phase volume, that is,
μ ∼

R
Jdθ ∼ J × 2π, where θ is the angle variable con-

jugated to action J. According to [10] we have
PðτÞ ∼ dμ=dτ ∼ μ=τ, where μðτÞ is the measure of a region
where a trajectory is stuck for the time τ. This follows from
the ergodicity relation according to which the measure of a
region is proportional to the time spent by the trajectory in
this region μðτÞ ∼ τPðτÞ=hτi, where hτi ¼ R

∞
0 PðτÞdτ is the

average time of recurrences [2,3]. From these relations one
obtains the following expression for the Poincaré exponent:

β ¼ 2m=ðmþ 2Þ: ð3Þ

Here, PðτÞ can be considered as an integrated probability of
Poincaré recurrences or as a survival probability in a given
region for time periods longer than τ since both are
proportional to each other [10,12].
Consider some earlier studied potentials with different

m. With m ¼ 1 we get the Kepler problem. This case
appears in the microwave ionization of Rydberg atoms
[17,18], and also in the comet [19] or dark matter [55]
dynamics in the Solar System affected by Jupiter. In both
cases the energy change occurs when the particle passes
near the perihelion (near the nuclei or near the Sun). This
energy change produces chaotic dynamics in the system.
In this case the measure μ ∼ J ∼ 1=

ffiffiffiffiffiffijEjp
is diverging at

jEj → 0 and from (3) we have β ¼ 2=3 < 1, which agrees
with the analytical and numerical results reported in [56].
For m ¼ 2 we have a period independent of action,
which gives β ¼ 1 without decay of correlations, that is,
C ∼ τPðτÞ ∝ const with ν ¼ β − 1 ¼ 0.
For the most relevant case of dipole-dipole interactions

that are dominant in H bonds and, more generally, in
neutral polar systems like B-DNA with ions in water, we
have m ¼ 3 and β ¼ 1.2. The last value is close to that
obtained in our numerical simulations as well as that
corresponding to exponent ν ¼ β − 1 found in the TRSS
experiments. We believe that the above estimates correctly
capture the main physical effects in the dynamics of this
complex system and are at the origin of the observed slow
algebraic decay of Poincaré recurrences. It is understood
that in systems with thousands of atoms like that studied
here other factors can interfere. It is possible that Coulomb
forces (m ¼ 1) of locally uncompensated charges are
responsible for a certain reduction of β to a slightly smaller
value compared to the above theoretical estimate. Also,
for the van der Waals potential we have m ¼ 6 with the
corresponding β ¼ 3=2. We make a conjecture that on
small scales in the vicinity of stability regions of dynamical
maps the sticking trajectories that generate ASPR [11–16],

experience forces similar to those of polynomial potentials
(2) thus leading to similar β values.
Finally, consider the result shown in Fig. 4. The measure

of sticking regions is μ ∼ J ∼ jEj1=6 ∼ 1=
ffiffiffi
r

p
∼ 1=τ1=5. It

decreases with large τ, but the typical atom-atom separa-
tions are growing as Rb ∼ r ∼ τ2=5. The correlation function
CðτÞ ¼ hrðtþ τÞrðtÞit is commonly defined for a bounded
variable rðtÞ, so that the average square variation is
hrðτÞ2it ∼ τ

R
CðτÞdτ ∼ τ2−ν, where ν ¼ β − 1 < 1 is the

correlation decay exponent related to the superdiffusive
growth. In the present case, we have a variable that grows
with τ, which gives an additional contribution to the
average square variation hrðτÞ2i∼R2

bτ
2CðτÞ∼R2

bτ
3−β∼ τκ

with κ ¼ 3β − 1 ¼ 2.6. Using the Wiener-Khintchine rela-
tion (see, e.g., [57]) between the square variation of a time
dependent variable rðtÞ and its spectral density SðfÞ we
obtain

SðfÞ ∝ 1=fη; η ¼ κ − 1 ¼ 3β − 2 ¼ 1.6 ð4Þ
in good agreement with Fig. 4. Thus, we have a very strong
low frequency noise, with the η exponent larger than usual
[58], that results from only the inherent chaotic dynamics of
the system, with no external noise involved.
In summary, using all-atom MD simulations, we uncov-

ered the existence of algebraic decay of Poincaré recur-
rences in the base-pair breathing motion of the B-DNA
molecule, with the decay exponent β ≈ 1.2 and a strong
divergence of spectral density of vibration motion with
the exponent η ≈ 1.6 over at least five decades in time
from 10−13 to 10−8 sec. These results are well described by
the proposed theory of Poincaré recurrences for chaotic
dynamics in polynomial potentials, assuming a dominant
contribution of dipole-dipole interactions. The theory
correctly captures the qualitative origin of this effect in
MD in spite of the difference in the number of degrees
of freedom. The exponent β ≈ 1.2 predicts a power-law
relaxation of the corresponding correlations with the
exponent ν ¼ β − 1 ≈ 0.2. This prediction as well as the
time scale of the algebraic decay in MD are in striking
similarity with TRSS experiments, suggesting that this
effect is due to the base-breathing motion. Further studies
should help to clarify the relationship between the inherent
dynamical chaos in DNA and these experimental data.
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