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h i g h l i g h t s 

• Poincaré section of survival orbits in binary stars has a strange repeller. 
• Density of survival particles has a spiral form. 
• Fractal dimension of the strange repeller is similar to galaxy fractal dimension. 
• Survival probability drops algebraically due to stability islands. 

a r t i c l e i n f o 

Article history: 

Received 30 September 2015 

Revised 21 January 2016 

Accepted 29 February 2016 

Available online 4 March 2016 

Communicated by J. Makino 

Keywords: 

Chaos 

Celestial mechanics 

Binaries 

Galaxies: spiral 

a b s t r a c t 

We study the dynamical chaos and integrable motion in the planar circular restricted three-body problem 

and determine the fractal dimension of the spiral strange repeller set of non-escaping orbits at different 

values of mass ratio of binary bodies and of Jacobi integral of motion. We find that the spiral fractal 

structure of the Poincaré section leads to a spiral density distribution of particles remaining in the sys- 

tem. We also show that the initial exponential drop of survival probability with time is followed by the 

algebraic decay related to the universal algebraic statistics of Poincaré recurrences in generic symplectic 

maps. 
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. Introduction 

The restricted three-body problem was at the center of stud-

es of dynamics in astronomy starting from the works of Euler

1772) , Jacobi (1836) and Poincaré (1890) . The progress in the un-

erstanding of this complex problem in XXth and XXIth centuries

s described in the fundamental books ( Szebehely, 1967; Hénon,

997; 2001; Valtonen and Karttunen, 2006 ). As it was proven by

oincaré (1890) in the general case this system is not integrable 

nd only the Jacobi integral is preserved by the dynamics ( Jacobi,

836 ). Thus a general type of orbits has a chaotic dynamics with a

ivided phase space where islands of stability are embedded in a

haotic sea ( Chirikov, 1979; Lichtenberg and Lieberman, 1992; Ott,

993 ). 

In this work we consider the Planar Circular Restricted Three-

ody Problem (PCRTBP). This is an example of a conservative

amiltonian system (in a synodic or rotating reference frame of
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wo binaries) with two degrees of freedom. However, this is an

pen system since some trajectories can escape to infinity (be ion-

zed) so that the general theories of leaking systems ( Altmann

t al., 2013 ) and naturally open systems (e.g. Contopoulos and Efs-

athiou, 2004 ) find here their direct applications. It is known that

uch open systems are characterized by strange repellers related to

on-escaping orbits and by an exponential time decay of probabil-

ty to stay inside the system. However, as we show, in the PCRTBP

ystem with a divided phase space one generally finds an alge-

raic decay of probability of stay related to an algebraic statistics

f Poincaré recurrences in Hamiltonian systems (see e.g. Chirikov

nd Shepelyansky, 1981; Karney, 1983; Chirikov and Shepelyan-

ky, 1984; Meiss and Ott, 1985; Chirikov and Shepelyansky, 1999;

ristadoro and Ketzmerick, 2008; Shevchenko, 2010; Frahm, and

hepelyansky, 2010 , and Refs. therein). This effect appears due to

ong sticking of trajectories in a vicinity of stability islands and

ritical Kolmogorov–Arnold–Moser (KAM) curves. Thus an interplay

f fractal structures and algebraic decay in the PCRTBP deserves

etailed studies. 

Among the recent studies of the PCRTBP we point out the ad-

anced results of Nagler (20 04, 20 05) where the crash probability

http://dx.doi.org/10.1016/j.newast.2016.02.010
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Fig. 1. ( x , y ) – Poincaré sections of the Jacobi Hamiltonian (1) with ˙ r = 0 and ˙ φ < 0 . 

Poincaré sections for a binary with μ = 0 . 3 , C = 3 are shown in panels: ( a ) at a 

large scale, ( b ) at an intermediate scale, ( c ) close-up in the vicinity of the primary 

mass. Panel ( d ) shows the Poincaré section for μ = 0 . 5 and C = 3 . Red regions are 

forbidden since there ˙ x 2 + ˙ y 2 < 0 . Black dots represent non-escaped orbits staying 

inside the r < R s = 10 region after time t = 10 . Invariant KAM curves (blue dots) 

are obtained choosing initial conditions inside KAM islands. The red (blue) star 

( ) gives the position of the 1 − μ mass ( μ mass). The Poincaré section is obtained 

with orbits of N = 10 7 test particles initially placed at random in the region 1.3 ≤ r 

≤ 2.5. Particles as escaped once r > R S . (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article). 

Fig. 2. ( p x , x ) – Poincaré section of the Jacobi Hamiltonian (1) with y = 0 and p y > 0 

for a binary with μ = 0 . 3 , C = 3 (corresponding to Fig. 1 a , b , c ). Panel ( a ): Poincaré

section at large scale; panel ( b ): zoom in the vicinity of primaries. Black dots repre- 

sent non-escaped orbits staying inside the r < R s = 10 region after time t = 10 . Blue 

dots represent bounded orbits inside stability islands. The red (blue) star ( ) gives 

the position of the primary (secondary) mass as in Fig. 1 . The Poincaré section is 

obtained with the same orbits as in Fig. 1 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article). 
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dependence on the size of large bodies has been studied and the

fractal structure of non-escaping orbits has been seen even if the

fractal dimensions were not determined. This research line was

extended in Astakhov and Farrelly (2004) ; Astakhov et al. (2005)

with a discussion of possible applications to the Kuiper-belt and

analysis of various types of orbits in Barrio et al. (2009) ; Zotos

(2015) . The analysis of orbits in three dimensional case is reported

in Makó et al. (2010) and basin of escaping orbits around the

Moon has been determined in de Assis and Terra (2014) . 

In this work we determine the fractal dimension of non-

escaping orbits for the PCRTBP with comparable masses of heavy

bodies and consider the properties of Poincaré recurrences and the

decay probability of stay in this system. The system description is

given in Section 2 , the structure of strange repeller is analyzed in

Section 3 , the decay of Poincaré recurrences and probability of stay

are studied in Section 4 , a symplectic map description of the dy-

namics is given in Section 5 , discussion of the results is presented

in Section 6 . 

2. System description 

The PCRTBP system is composed of a test particle evolving in

the plane of a circular binary whose primaries have masses m 1 =
1 − μ and m 2 = μ with m 1 > m 2 . In the synodic frame the dynam-

ics of the test particle is given by the Hamiltonian 

H(p x , p y , x, y ) = 

1 

2 

(
p 2 x + p 2 y 

)
+ yp x − xp y + V (x, y ) (1)

where x and y are the test particle coordinates, p x = ˙ x − y and p y =
˙ y + x are the corresponding canonically conjugated momenta, and

 (x, y ) = − ( 1 − μ) 
(
( x − μ) 

2 + y 2 
)1 / 2 

− μ
(
( x + ( 1 − μ) ) 

2 + y 2 
)1 / 2 

(2)

is the gravitational potential of the two primaries. Here the dis-

tance between primaries is 1, the total mass m 1 + m 2 = 1 , the

gravitational constant G = 1 , consequently the rotation period of

the binary is 2 π . Hamiltonian (1) with potential (2) represents the

Jacobi integral of motion ( Jacobi, 1836 ). In the following we define

the Jacobi constant as C = −2 H. This Jacobi Hamiltonian describes

also the planar dynamics of an electrically charged test particle ex-

periencing a perpendicular magnetic field and a classical hydrogen-

like atom with a Coulomb-like potential (2) . 

We aim to study the dynamics of particles evolving on escap-

ing and non-escaping orbits around the binary. We perform inten-

sive numerical integration of the equations of motion derived from

Hamiltonian (1) using an adaptive time step 4th order Runge–Kutta

algorithm with Levi-Civita regularization in the vicinity of the pri-

maries ( Levi-Civita, 1920 ). The achieved accuracy is such as the in-

tegral of motion relative error is less than 10 −9 ( 10 −5 ) for more

than 91% (99%) of integration steps. For different Jacobi constants

C , we randomly inject up to 10 8 test particles in the 1.3 ≤ r ≤ 2.5

ring with initial radial velocity ˙ r = 0 and initial angular velocity
˙ φ < 0 ( r and φ are polar coordinates in the synodic frame). Each

test particle trajectory is followed until the integration time attains

 S = 10 4 or until the region r > R S = 10 is reached where we con-

sider that test particles are escaped (ionized) from the binary. 

3. Strange repeller structures 

In phase space, orbits are embedded in a three-dimensional

surface defined by the Jacobi constant C . In order to monitor

particle trajectories we choose a two-dimensional surface defined

by an additional condition. Here we choose either the condi-

tion ( ̇ r = 0 , ˙ φ < 0) to represent Poincaré section as a ( x , y )-plane

( Figs. 1 , 5–7 and 10 ) or the condition (y = 0 , p y > 0) to represent
oincaré section as a ( p x , x )-plane ( Fig. 2 ). A similar approach was

lso used in Nagler (2004, 2005) . 

We show in Fig. 1 (panels a , b , c ) an example of ( x , y ) – Poincaré

ection of the Jacobi Hamiltonian (1) for mass parameter μ = 0 . 3

nd Jacobi constant C = 3 . Red regions correspond to forbidden

ones where particles would have imaginary velocities. Inside cen-

ral islands in the close vicinity of primaries blue points mark out

egular and chaotic orbits of bounded motion. In particular, the

AM invariant curves ( Lichtenberg and Lieberman, 1992 ) can be

een e.g. in Fig. 1 c . In Fig. 1 a , the trace of non-escaped chaotic or-

its (black points) remaining inside the disk r < R S = 10 after time

 = 10 defines a set of points forming two spiral arms centered on

he binary center of mass. This set has a spiral structure of strange

epeller since orbits in its close vicinity rapidly move away from
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Fig. 3. Number of boxes N b covering at scale b non-escaped orbits structure 

(strange repeller) appearing in ( x , y ) – Poincaré section of the Jacobi Hamilto- 

nian (1) . Box-counting computation is performed in an annulus square consisting 

in a square region −3 . 9 ≤ x, y ≤ 3 . 9 deprived of its central square region −1 . 3 ≤
x, y ≤ 1 . 3 . The annulus square is divided into 8 equal square areas of linear size 

dl 0 = 1 . 3 . We average the box counting N b over the 8 squares. At scale b each 

square is divided into 1/ b 2 boxes of linear size d l = b d l 0 . Box-counting results are 

shown for Poincaré section of orbits staying in the r < R S = 10 disk after t = 3 

(black crosses), t = 10 (red squares), t = 30 (green circles), t = 50 (blue triangles). 

The fractal dimension D of the strange repeller is the slope of the affine function 

log 2 N b = f ( log 2 (1 /b)) . Keeping orbits staying in the r < R S disk after time t = 10 

( t = 3 ) we obtain a strange repeller fractal dimension ( a ) D = 1 . 8711 ± 0 . 0100 ( D = 

1 . 8732 ± 0 . 0105 ) for μ = 0 . 3 and C = 3 (see Fig. 1 a , b , c ), ( b ) D = 1 . 8657 ± 0 . 0117 

( D = 1 . 8690 ± 0 . 0129 ) for μ = 0 . 4 and C = 3 (see Fig. 10 b ), ( c ) D = 1 . 8700 ± 0 . 0077 

( D = 1 . 8722 ± 0 . 0084 ) for μ = 0 . 3 and C = 2 . 6 (see Fig. 5 a ), ( d ) D = 1 . 8349 ± 0 . 0484 

( D = 1 . 8464 ± 0 . 0436 ) for μ = 0 . 3 and C = 3 . 4 (see Fig. 5 d ). Fits have been per- 

formed in the scale range 2 4 ≤ 1/ b ≤ 2 8 . We used N = 10 8 ( a , b , c ), N = 10 6 ( d ) 

test particles initially distributed at random in the 1.3 ≤ r ≤ 2.5 ring. The frac- 

tal dimension has been computed with ( a ) N t> 3 = 39 , 526 , 570 , N t> 10 = 9 , 933 , 333 , 

N t> 30 = 768 , 282 , N t> 50 = 83 , 290 points, ( b ) N t> 3 = 26 , 743 , 797 , N t> 10 = 6 , 550 , 163 , 

N t> 30 = 372 , 871 , N t> 50 = 25 , 037 points, ( c ) N t> 3 = 37 , 610 , 948 , N t> 10 = 8 , 721 , 338 , 

N t> 30 = 419 , 296 , N t> 50 = 39 , 891 points, ( d ) N t> 3 = 8 , 569 , 720 , N t> 10 = 5 , 447 , 406 , 

N t> 30 = 2 , 245 , 927 , N t> 50 = 1 , 083 , 887 points. The curves bend down for the small- 

est scales b when 1/ b 2 becomes of the order of the number of collected points in 

Poincaré section. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article). 
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Fig. 4. Number of boxes N b covering at scale b non-escaped orbits structure 

(strange repeller) appearing in ( x , y ) – Poincaré section of the Jacobi Hamilto- 

nian (1) . Box-counting computation is performed as in Fig. 3 . Box-counting re- 

sults are shown for Poincaré section of orbits staying in the r < R S = 100 disk after 

t = 3 (black crosses), t = 10 (red squares), t = 30 (green circles), t = 50 (blue tri- 

angles). Keeping orbits staying in the r < R S = 100 disk after time t = 3 , 10 , 30 , 50 

we obtain a strange repeller fractal dimension ( a ) D = 1 . 8908 ± 0 . 0 0876 , 1 . 890 0 ±
0 . 00858 , 1 . 8874 ± 0 . 00754 , 1 . 8799 ± 0 . 00480 for μ = 0 . 3 and C = 3 (see Fig. 1 a , 

b , c ), ( b ) D = 1 . 8916 ± 0 . 0129 , 1 . 8911 ± 0 . 0127 , 1 . 8869 ± 0 . 0110 , 1 . 8786 ± 0 . 0086 for 

μ = 0 . 4 and C = 3 (see Fig. 10 b ). Fits have been performed in the scale range 

2 4 ≤ 1/ b ≤ 2 8 . We used N = 10 8 test particles initially distributed at random in 

the 1.3 ≤ r ≤ 2.5 ring. The fractal dimension has been computed with ( a ) N t> 3 = 

38 , 090 , 345 , N t> 10 = 18 , 470 , 667 , N t> 30 = 7 , 588 , 914 , N t> 50 = 4 , 574 , 705 points, 

( b ) N t> 3 = 27 , 206 , 778 , N t> 10 = 14 , 259 , 496 , N t> 30 = 6 , 542 , 192 , N t> 50 = 4 , 286 , 763 

points. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article). 
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he set and consequently from the binary. The fractal property re-

ults in a self-similar structure clearly seen by zooming to smaller

nd smaller scales (see Fig. 1 a , b , c ). This fractal structure remains

table in respect to moderate variation of mass ratio μ as it is il-

ustrated in Fig. 1 (panels b , d ). A strange repeller structure is also

learly visible in the corresponding Poincaré section in ( p x , x ) plane

hown in Fig. 2 for μ = 0 . 3 , C = 3 . 

The fractal dimension of the strange repeller is determined us-

ng box-counting method ( Lichtenberg and Lieberman, 1992; Ott,

993 ) as D = lim b→ 0 ln N b / ln (1 /b) where N b is at scale b the num-

er of at least once visited boxes in the Poincaré section. The

ox-counting fractal dimension of the strange repeller presented

n Fig. 1 a , b , c is D ≈ 1.87 ( Fig. 3 a ). This fractal dimension value

s computed from the strange repeller structure formed by orbits

taying in the disk r < R S = 10 after time t = 10 . We see from Fig. 3

hat the fractal dimension remains practically the same for the

arameters considered here μ = 0 . 3 , 0 . 4 and C = 2 . 6 , 3 , 3 . 4 . When

he escape radius is increased up to R S = 100 ( Fig. 4 ) the fractal di-

ension value is the same as for an escape radius R S = 10 ( Fig. 3 ).

hus the obtained value of D is not affected by the escape cut-off

istance R S . Also, as seen in Fig. 4 , the fractal dimension remains

ractically the same if we consider strange repeller structures ob-

ained after time t = 3 , 10, 30 and 50. Hence even for short times

he strange repeller structure is already well defined and perdures

or greater times since D is constant (at least here up to t = 50 ).
hroughout this work, for the sake of clarity we choose to present

oincaré sections for orbits staying in the r < R S = 10 disk after

ime t = 10 . 

Fig. 5 shows ( x , y ) – Poincaré sections for the mass parameter

= 0 . 3 and for different Jacobi constants from C = 2 . 6 to C = 4 .

he strange repeller structure constituted by non-escaping orbits

s progressively expelled from the primaries vicinity as C increases.

t C = 2 . 6 , 3, 3.2, 3.4 ( Fig. 5 a , b , c , d ) non-escaping trajectories may

till pass close by each one of the primaries. The strange repeller

till dominates the phase portrait with a fractal dimension de-

reasing down to D ≈ 1.84 for C = 3 . 4 ( Fig. 3 d ). For greater values

 = 3 . 6 , 4 ( Fig. 5 e , f ) the forbidden zone insulates the immediate

icinity of the primaries from trajectories coming from regions be-

ond r ∼ 1. Regular and chaotic trajectories corresponding to par-

icles gravitating one or the two primaries are confined in the very

entral region ( Valtonen and Karttunen, 2006 ). The strange repeller

s confined in a narrow ring located in the region r ∼ 1.5. Beyond

hat region we observe nearly stable circular orbits (blue dots) cor-

esponding to particles gravitating the whole binary with a radius

 ∼ 2. For these orbits stable means that these orbits have not es-

aped from the disk r < R S during the whole integration duration

 S . 

Unless otherwise stated, we have deliberately omitted the class

f orbits crashing primaries. According to Nagler (20 04, 20 05) the

rash basin scales as a power law r α
b 

where r b is the radius of the

rimary mass and α ∼ 0.5. In this work we choose a radius of

 b = 10 −5 for the two primaries which gives two percent of crash-

ng orbits and an area of about one percent for crash basin not visi-

le in the presented Poincaré sections. The sets of non-escaping or-

its shown in Fig. 1 are also distinguishable in the studies ( Nagler,

0 04, 20 05 ) devoted to crashing orbits but not studied in details.

or example Fig. 1 d presents a Poincaré section for the Copenhagen

roblem case ( μ = 0 . 5 ) with C = 3 which is similar to the Poincaré

ection presented in the study ( Nagler, 2004 ) Fig. 3 right column

iddle row for C = 2 . 85 . 

The time evolution of density of non-escaped particles is shown

n Fig. 6 for μ = 0 . 5 and Fig. 7 for μ = 0 . 3 for the case of primary

odies of relatively large radius r b = 0 . 01 (such a size is also avail-

ble in Fig. 5 in Nagler (2004) ). These data clearly show that the
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Fig. 5. ( x , y ) – Poincaré sections of the Jacobi Hamiltonian (1) with ˙ r = 0 and ˙ φ < 0 

for μ = 0 . 3 and Jacobi constant ( a ) C = 2 . 6 , ( b ) C = 3 , ( c ) C = 3 . 2 , ( d ) C = 3 . 4 , ( e ) 

C = 3 . 6 , and ( f ) C = 4 . Red regions are forbidden since there ˙ x 2 + ˙ y 2 < 0 . Black dots 

represent non-escaped orbits staying inside the r < R s = 10 region after time t = 10 . 

Blue dots represent bounded orbits. The red (blue) star ( ) gives the position of 

the primary (secondary) mass as in Fig. 1 . Poincaré sections have been obtained 

analyzing orbits of N = 10 7 ( a , b , c ) and N = 10 5 ( d , e , f ) particles initially placed 

in the 1.3 ≤ r ≤ 2.5 region. Particles are considered as escaped once r > R S . (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. ( x , y ) – Poincaré sections of the Jacobi Hamiltonian (1) with ˙ r = 0 and ˙ φ < 0 

for primary bodies with radius r b = 0 . 01 and for μ = 0 . 5 and C = 1 . The panels 

show traces of orbits associated with particles escaping at time ( a ) t esc > 0 ( i.e. 

all computed orbits are shown), ( b ) t esc > 0.01, ( c ) t esc > 1, ( d ) t esc > 10. The gray 

scale bar shows the time when particles pass through the Poincaré section. Light 

gray (dark gray) points have been obtained at t ≈ 1 ( t ≈ 10 3 ). Red (blue) points 

have been obtained from orbits crashing on the μ ( 1 − μ) primary mass. Initially 

10 6 particles have been randomly distributed in the 1.3 ≤ r ≤ 2.5 ring. Fig. 5 (4th 

panel for r b = 0 . 01 ) in Nagler (2004) is similar to panel ( a ). (For interpretation of 

the references to color in this figure legend, the reader is referred to the web ver- 

sion of this article). 

Fig. 7. ( x , y ) – Poincaré sections of the Jacobi Hamiltonian (1) with ˙ r = 0 and ˙ φ < 

0 for primary bodies with radius r b = 0 . 01 and for μ = 0 . 3 and C = 3 . The panels 

show ( a ) all points after t = 0 , ( b ) all points after t = 0 . 01 , ( c ) all points after t = 1 , 

( d ) all points after t = 10 . The gray scale bar shows the time when particles pass 

through the Poincaré section. Light gray (dark gray) points have been obtained at 

t ≈ 1 ( t ≈ 10 3 ). Red (blue) points have been obtained from orbits crashing on the 

μ ( 1 − μ) primary mass. Initially 10 5 particles have been randomly distributed in 

the 1.3 ≤ r ≤ 2.5 ring. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article). 
strange repeller structure is established on rather short time scales

with t ∼ 1. We also see that for such a value of r b the measure of

crashed orbits gives a visible contribution to the measure of non-

escaping orbits of strange repeller. 

Finally we note that in our computations we determined the

fractal dimension D of trajectories non-escaping in future (see a

similar situation considered for the Chirikov standard map with

absorption in Ermann, and Shepelyansky, 2010 ). According to the

general relations known for the strange fractal sets in dynamical

systems the fractal dimension D 0 of the invariant repeller set (or-

bits non-escaping neither in the future nor in the past) satisfies

the relation D 0 = 2(D − 1) ( Ott, 1993 ). Thus for the typical value

we have in Fig. 1 at μ = 0 . 3 with D ≈ 1.87 we obtain D 0 ≈ 1.74. 

We can expect that the spiral fractal structure, clearly present

in the plane ( x , y ) of the Poincaré sections (see e.g. Fig. 1 ), will

give somewhat similar traces for the surface (or area) density ρs =
d N t /d xd y of particles N t remaining in the system at an instant mo-

ment of time t . A typical example of surface density, correspond-

ing to Fig. 1 a , b , c , is shown in Fig. 8 . Indeed, we find a clear spiral

structure of ρs ( x , y ) similar to the spiral structure of the strange
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Fig. 8. ( a ) Snapshot of the remaining particles at t = 10 for μ = 0 . 3 and C = 3 . The 

number of particles initially injected in the 1.3 ≤ r ≤ 2.5 ring is N = 10 8 , at time 

t = 10 there are N t = 13 , 302 , 225 particles remaining inside the circle r ≤ R S = 10 , 

colors show the surface density of particles ρs in the plane ( x , y ), color bar gives 

the logarithmic color scale of density with levels corresponding to a proportion of 

the N t remaining particles; (b) same as panel (a) but on a smaller scale; (c) linear 

density ρ(r) = d N t /d r; (d) angle averaged surface density ρ(r) /r = 2 π < ρs (r) >, 

the dashed line shows the slope ∝ 1/ r 3/2 . 
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Fig. 9. Survival probability P of particles as a function of time t (left panels, binary 

period is 2 π ) and as a function of the number n of successive Poincaré section 

crossings (right panels) for C = 3 and binaries with mass parameter μ = 0 . 3 (black 

curve), μ = 0 . 4 (red curve), μ = 0 . 5 (blue curve). Survival probabilities are shown in 

semi-log scale (top panels) and in log–log scale (bottom panels). Dashed lines show 

( a ) exponential decay P ∝ exp (−t/τs ) with 1 /τs = 0 . 13 , ( b ) algebraic decay P ( t ) ∝ 1/ t β

with the Poincaré exponent β = 1 . 82 , ( c ) exponential decay P(n ) ∝ exp (−n/τs ) with 

1 /τs = 0 . 07 , ( d ) algebraic decay P ( n ) ∝ 1/ n β with β = 1 . 49 . Initially 10 8 particles have 

been randomly distributed in the 1.3 ≤ r ≤ 2.5 ring. Escape radius is R S = 10 . (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article). 

Fig. 10. ( x , y ) – Poincaré sections of the Jacobi Hamiltonian (1) with ˙ r = 0 and 
˙ φ < 0 for C = 3 in the case of ( a ) a μ = 0 . 3 binary and ( b ) a μ = 0 . 4 binary. Red re- 

gions are forbidden since there ˙ x 2 + ˙ y 2 < 0 . Black dots represent non-escaped orbits 

staying inside the r < R S = 10 region after time t = 10 . Blue dots represent bounded 

orbits on KAM curves inside integrable islands. Green plain circles mark out non- 

escaped orbits remaining inside the disk r < R s after time t = 500 . The red (blue) 

star ( ) gives the position of the primary (secondary) mass. Each of Poincaré sec- 

tions is obtained from orbits of N = 10 7 particles initially placed in the 1.3 ≤ r ≤
2.5 region; these particles are considered as escaped once r > R s . (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article). 
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epeller of Fig. 1 a , b , c . Of course, here in Fig. 8 we have the pro-

ected density of particles in ( x , y ) plane taken at all values of ˙ r

and not only at ˙ r = 0 as in Fig. 1 ), This leads to a smoothing of

he fractal structure of the Poincaré section but the spiral distribu-

ion of density ρs remains well visible. We also note that the an-

le averaged density of remaining particles < ρs ( r ) > ∝ 1/ r 3/2 has

 radial dependence on r being similar to those found for the dark

atter density obtained in the symplectic simulations of scattering

nd capture of dark matter particles on binary system (see e.g. Fig.

a in Lages and Shepelyansky, 2013; Rollin et al., 2015b ). 

. Poincaré recurrences and probability decay 

We determine numerically the probability P ( t ) to stay inside the

ystem for time larger than t . For that N particles are randomly dis-

ributed in the range 1.3 ≤ r ≤ 2.5 and then the survival probabil-

ty P ( t ) is defined as the ratio P (t) = N t /N, where N t is the number

f particles remained inside the system with r < R S = 10 at times

arger than t . This survival probability is proportional to the in-

egrated probability of Poincaré recurrences (see e.g. Chirikov and

hepelyansky, 1999; Frahm, and Shepelyansky, 2010 ). 

The typical examples of the decay P ( t ) are shown in Fig. 9 . At

elatively small time scales with t < 100 the decay can be ap-

roximately described by an exponential decay with a decay time

s ∼ 10. Indeed, for the strange dynamical sets (e.g. strange attrac-

ors) one obtains usually an exponential decay since there are no

pecific sticking regions in such strange sets ( Chirikov and Shep-

lyansky, 1984 ). 

However, at larger time scales t > 100 we see the appearance

f the algebraic decay of probability corresponding to the algebraic

tatistics of Poincaré recurrences discussed for symplectic maps

see e.g. Chirikov and Shepelyansky, 1999; Cristadoro and Ketzmer-

ck, 2008; Frahm, and Shepelyansky, 2010 ). When the decay time

s measured in number of crossings of the Poincaré section n we

btain the Poincaré exponent β of this decay β = 1 . 49 being close
o the values β ≈ 1.5 found in the symplectic maps. However, if

he time is measured in number of rotations of binaries t /2 π then

e find a somewhat large value of β (see Fig. 9 ). We explain this

eviation a bit later. 

The properties of orbits surviving in the system for long times

re shown in Fig. 10 . We see that such orbits are concentrated

n the vicinity of critical KAM curves which separate the orbits

f strange repeller from the integrable islands with KAM curves.

his is exactly the situation discussed in the symplectic maps (see

.g. Chirikov and Shepelyansky, 1999; Cristadoro and Ketzmerick,

008; Frahm, and Shepelyansky, 2010 ). Thus the asymptotic de-

ay of survival probability is determined by long time sticking or-

its in the vicinity of critical KAM curves. The detail analytical
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Fig. 11. Survival probability P of particles as a function of time t (left panels, bi- 

nary period is 2 π ) and as a function of the number n of successive Poincaré sec- 

tion crossings (right panels) for μ = 0 . 3 and C = 2 . 6 (black curve), C = 3 (red curve), 

C = 3 . 4 (blue curve). Survival probabilities are shown in lin–log scale (top panels) 

and in log–log scale (bottom panels). Blue dashed lines show exponential decay 

P(t) ∝ exp (−t/τs ) with 1 /τs = 0 . 04 (a,b) and P(n ) ∝ exp (−n/τs ) with 1 /τs = 0 . 03 

(c,d). Gray dashed lines show ( a ) exponential decay P ( t ) with 1 /τs = 0 . 14 , ( b ) al- 

gebraic decay P ( t ) with β = 1 . 87 , ( c ) exponential decay P ( n ) with 1 /τs = 0 . 09 , ( d ) 

algebraic decay P ( n ) with β = 1 . 6 . Initially 10 8 particles have been randomly dis- 

tributed in the 1.3 ≤ r ≤ 2.5 ring. Escape radius is R S = 10 . (For interpretation of 

the references to color in this figure legend, the reader is referred to the web ver- 

sion of this article). 
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Fig. 12. Survival probability P of particles as a function of time t (left panels, bi- 

nary period is 2 π ) and as a function of the number n of successive Poincaré section 

crossings (right panels) for μ = 0 . 3 , C = 3 in the case of an escape radius R S = 100 . 

Dashed curves show ( a ) exponential decay P ( t ) with 1 /τs = 0 . 012 , ( b ) algebraic de- 

cay P ( t ) with β = 1 . 11 , ( c ) exponential decay P ( n ) with 1 /τs = 0 . 062 , ( d ) algebraic 

decay P ( n ) with β = 1 . 40 . Initially 10 8 particles have been randomly distributed in 

the 1.3 ≤ r ≤ 2.5 ring. 
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explanation of this generic phenomenon is still under debates (see

e.g. Meiss, 2015 ). 

At fixed μ = 0 . 3 the variation of decay properties of P ( t ) with

the Jacobi constant C is shown in Fig. 11 . For C = 3 . 4 the exponen-

tial decay of P ( t ) is much slower than for the cases C = 3 . 6 and

 = 3 (there is a factor 3.5 between corresponding characteristic

time scales τ s ). We attribute this behavior to the fact that the for-

bidden zone encloses almost completely binary components letting

for particles only a small route to binary components in compar-

ison with cases C = 2 . 6 and C = 3 for which the route to gravita-

tional perturbers is not constrained. Meanwhile, particles have a

limited access to the chaotic component (see Fig. 5 d where it forms

a narrow peanut shell around central stability islands) so that the

sticking in the vicinity of critical KAM curves is reduced empha-

sizing the exponential decay. For C = 2 . 6 , 3 at long time scales

( Fig. 11 d) we have a well visible algebraic decay P ( n ) with β ∼
1.5 (we may assume that increasing sufficiently the number of ini-

tially injected particle for the case C = 3 . 4 , blue line in Fig. 11 d

would also exhibit at large time scales the same β ∼ 1.5 algebraic

decay). However, algebraic decay of P ( t ) for C = 2 . 6 , 3 at large time

scale ( Fig. 11 b) still have somewhat different value of β . 

The origin of this difference for P ( t ) becomes clear from Fig. 12

where we show the data similar to those of Figs. 9 and 11 at

μ = 0 . 3 but with the escape radius R S = 100 . We see that the de-

cay properties of P ( n ) remain practically unchanged that confirms

the generic features of obtained results for β (indeed, stability is-

lands do not affect dynamics at r ∼ R S = 100 ). However, the value

of β for P ( t ) is significantly reduced to β ≈ 1.1. We explain this by

the fact that in the usual time units the measure of chaotic com-

ponent at large distances becomes dominant and the escape time

is determined simply by a Kepler rotation period which becomes

larger for large r values. This leads to the decay exponent β = 2 / 3

for P ( t ) as discussed in Borgonovi et al. (1988) and explains the
ariation of β with R S . However, when the time is counted in the

umber of orbital periods the divergence of the orbital period at

arge r values (or small coupling energies) does not affect the de-

ay and we obtain the Poincaré exponent β ≈ 1.5 being indepen-

ent of R S . 

We note that the recent studies of survival probability decay in

he PCRTBP also report the value of β ≈ 1.5 ( Kovács and Regály,

015 ). 

. Symplectic map description 

Finally we discuss the case when particles in the sidereal ref-

rence frame scatter on the binary with relatively large values

f perihelion distance q � 1. Such a case corresponds to large

 C | � 1. For q � 1 the dynamics of particle in the field of two bina-

ies is approximately described by the symplectic map of the form

¯  = w + F (x ) ; x̄ = x + w̄ 

−3 / 2 where w = −2 E is the particle energy,

 is the phase of binary rotation (in units of 2 π ) when the par-

icle is located at its perihelion and F ( x ) ∝ μ is a periodic function

f x ( Petrosky, 1986; Chirikov and Vecheslavov, 1989; Shevchenko,

011; Rollin et al., 2015a; 2015b ); bars above w and x mark new

alues after one rotation around the binary. The amplitude F max de-

reases exponentially with increasing q . Usually, one considers the

ase of μ 	 1 (e.g. Sun and Jupiter) but our studies show that this

orm remains valid even for μ ∼ 0.5 if q � 1. At μ 	 1 we have

 max 	 1 and the escape time t i becomes very large t i ∝ 1/ F max 
2 

eing much larger than the Lyapunov time scale. In this situa-

ion the fractal dimensions D and D 0 are very close to D = D 0 = 2

 Ott, 1993; Ermann, and Shepelyansky, 2010 ) and the fractal effects

ractically disappear. Due to that this case is not interesting for the

ractal analysis. 

. Discussion 

We analyzed the PCRTBP dynamical system and showed that

or moderate mass ratio of primary bodies μ ∼ 0.5 the Poincaré

ection is characterized by a strange repeller with the fractal di-

ension having typical values D ≈ 1.87 ( D ≈ 1.74) at moderate
0 
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Fig. 13. Density of particles in the steady state. (a) Number N of particles in the 

r < 100 region of the binary as a function of time t . We have continuously in- 

jected N = 10 8 particles placed randomly on r = 100 circle with close to parabolic 

but hyperbolic trajectories in the 2-body paradigm. Steady state is achieved around 

t ∼ t 0 = 10 3 . The surface density of particles ρs ( x , y ) is shown for Jacobi constants 

C = 2 . 6 (b), C = 3 . 4 (c) and C = 4 (e). Each surface density has been obtained from 

10 0 0 surface density snapshots taken at regular time interval after t 0 = 10 3 once 

steady state is attained. Color bar gives the logarithmic color scale of density with 

levels corresponding to the ratio of N C / N 10 where N C is the number of particles in 

a given cell of size 0.1 × 0.1 and N 10 is the number of particles in the r < 10 re- 

gion. Panel (d) shows the normalized steady state distribution of Jacobi constants 

of particles present in the r < 100 region. Panel (f) shows the steady state surface 

density build with all particles in r < 100 region. 
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alues of the Jacobi constant C ∼ 2. At the same time certain is-

ands of integrable motion are still present. Such a structure of the

oincaré section leads to an exponential decay of survival proba-

ility in the system on short time scales followed by the algebraic

ecay with the Poincaré exponent β ≈ 1.5 being similar to the

alues known for the statistics of Poincaré recurrences in generic

ymplectic maps. For the small mass ratio μ 	 1 the escape times

ecomes very large and the fractal dimension becomes close to the

sual value D = 2 . 

It is interesting to note that the strange repeller structure (see

igs. 1, 5–7 and 10 ) reminds the structure of spiral galaxies (see

.g. Milky Way representation at European Southern Observatory

ebsite, 2013 ). In fact the fractal features of galaxies have been

tudied extensively by various groups ( Elmegreen and Elmegreen,

001; Sánchez et al., 2007; 2010 ) which obtained from observation

ata the fractal dimensions for the plane density being around D g 

1.3–1.7 for different galaxies. Some of these values (e.g. Sánchez

t al., 2007 , with D g ≈ 1.7) are similar to those obtained here for

he Poincaré section of PCRTBP. Our results show that the spiral

ractal structure of the Poincaré section of PCRTBP leads to a spi-

al structure of global density of particles ρs remaining in the sys-

em (see Fig. 8 ). Thus we make a conjecture that the spiral struc-
ure of certain galaxies can be linked to the underlying spiral frac-

als appearing in the dynamics of particles in binary systems. Of

ourse, such a conjecture requires more detailed analysis beyond

he present paper such as taking into account the third dimen-

ion. Also whether or not the spiral structure remains in the steady

tate is an important question. To bring some elements of re-

ponse to the latter question we have injected at r = 100 particles

ith close-to-parabolic hyperbolic trajectories in 2-body paradigm.

e use a Maxwellian distribution for initial velocities f (v ) dv =
 

54 /π
(
v 2 /u 3 

)
exp 

(
−3 v 2 / 2 u 2 

)
dv with u = 0 . 035 and a homoge-

eous distribution for perihelion q ∈ [0; 3] parameters. We checked

hat our results in steady state are independent of initial distribu-

ions. We present on Fig. 13 the surface density of particles ρs ( x , y )

n the steady state attained around t 0 ∼ 10 3 ( Fig. 13 a). We clearly

ee that the two arms spiral structure remains in the steady state,

e show examples for particles with trajectories characterized by

b) C = 2 . 6 , (c) C = 3 . 4 , (e) C = 4 (example not shown for C = 3 is

nalogous to Fig. 8 a). However when all injected particles are con-

idered independently of the Jacobi constant C we obtain a blurred

piral ( Fig. 13 f). The contributions of different Jacobi constants are

onsequently mixed according to the distribution Fig. 13 d. We re-

ark that the results presented in Fig. 13 share similarities with

hose obtained in the study of chaotic trajectories in spiral galaxies

 Harsoula et al., 2011; Contopoulos and Harsoula, 2012; 2013 ). On

he basis of obtained results we make a conjecture about existence

f certain links between observed fractal dimensions of galaxies

 Elmegreen and Elmegreen, 20 01; Sánchez et al., 20 07; 2010 ) and

ractal spiral repeller structure studied here. We think that the fur-

her studies of fractal structures in binary systems will bring new

nteresting results. 
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