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We study numerically the evolution of Bose-Einstein condensate in the Sinai oscillator trap de-
scribed by the Gross-Pitaevskii equation in two dimensions. In absence of interactions this trap
mimics the properties of Sinai billiards where the classical dynamics is chaotic and the quantum
evolution is described by generic properties of quantum chaos and random matrix theory. We show
that, above a certain border, the nonlinear interactions between atoms lead to emergence of dynami-
cal thermalization which generates the statistical Bose-Einstein distribution over eigenmodes of sys-
tem without interactions. Below the thermalization border the evolution remains quasi-integrable.
Such a Sinai oscillator trap, formed by the oscillator potential and a repulsive disk located in center
vicinity, had been already realized in first experiments with the Bose-Einstein condensate formation
by Ketterle group in 1995 and we argue that it can form a convenient test bed for experimental in-
vestigations of dynamical origins of thermalization. Possible links and implications for Kolmogorov
turbulence in absence of noise are also discussed.

PACS numbers: 05.45.-a, 05.45.Mt, 67.85.Hj

I. INTRODUCTION

One of the first experimental realizations of Bose-
Einstein condensate (BEC) has been done with sodium
atoms trapped in a novel trap that employed both mag-
netic and optical forces [1]. In this trap, the repulsive
optical potential is created by tightly focusing an intense
blue-detuned laser that generates a repulsive optical plug
bunging a hole in a center of magnetic trap where nona-
diabatic spin flips lead to a loss of atoms. Further de-
velopments of BEC traps, a remarkable progress of BEC
experiments and theory of BEC in trapped gases are re-
viewed in [2–5].

In spite of these achievements, the fundamental ques-
tion about interplay of dynamics, interactions and ther-
malization of BEC in a concrete trap configuration still
waits its clarification. In this work we address this ques-
tion in the frame of the Gross-Pitaevskii equation (GPE)
[4, 5] for the two-dimensional (2D) version of the trap
used in the experimental setup [1]. Thus the trap po-
tential is represented by a 2D harmonic potential and
a rigid disk which center is located in a vicinity of the
center of harmonic potential. If the harmonic potential is
replaced by rigid walls forming a square or rectangle then
the classical dynamics in such a Sinai billiard is proven to
be completely chaotic [6]. The recent analysis of the trap
with the walls formed by a harmonic potential shows that
the dynamics remains chaotic with a very small measure
of integrable dynamics [7]. Due to a similarity with a
Sinai billiard such a trap was called the Sinai oscillator
[7]. Since the realization of rigid walls is rather difficult
for experimental realization the case of Sinai oscillator
trap becomes much more attractive for combined theo-
retical and experimental investigations. In fact a Sinai
oscillator trap in three-dimensions (3D) had been imple-

mented in [1]. Here we restrict our investigations to the
2D case expecting that its main features will be preserved
in 3D.

The quantum properties of Sinai oscillator are charac-
terized by the Wigner-Dyson statistics of energy levels
[8] typical for the random matrix theory [9]. The prop-
erties of the eigenstates are typical for those of systems
of quantum chaos and now are well understood (see e.g.
[10, 11]).

Below we show that the Sinai oscillator trap in 2D is
also characterized by the properties of quantum chaos:
the quantum eigenstates of Sinai oscillator are ergodic
and the level spacing statistic is described by the random
matrix theory, in agreement with the Bohigas-Giannoni-
Schmit conjecture [8, 10]. However, still there is no ther-
malization in this system since the eigenstates are pre-
served in absence of interactions. Thus, in this work we
analyze the dynamics and thermalization conditions for
BEC in the Sinai oscillator in the frame of the GPE equa-
tion. The GPE description is valid in the regime when
the BEC temperature T is below the critical tempera-
ture of Bose-Einstein condensation Tc [12] and when the
validity of GPE description is well justified [4, 5].

Even from the mathematical view point the question
about existence of the solution of GPE in such a trap,
with chaotic classical ray dynamics, at moderate non-
linearity and large times remains an open problem (see
e.g. [13, 14]). Indeed, the GPE can be rewritten in the
basis of linear eigenstates (modes) where the coupling
between modes takes place only due to the nonlinearity
in GPE. In this representation each mode can be consid-
ered as an independent oscillator degree of freedom and
in case of thermalization, induced by nonlinearity, one
should expect energy equipartition over all modes [12]
that leads to ultra-violet catastrophe and energy trans-
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fer to high energy modes. In fact, the Planck constant
and the Planck law had been introduced for a black-body
radiation to avoid such a divergence [15]. However, the
Planck distribution is valid for quantum systems while in
our case of the GPE Sinai oscillator there is no second
quantization. Thus due to classical nonlinear interactions
between modes one would expect to have a classical er-
godicity with equipartition of energy between modes.

Indeed, such an equipartition expectation was at the
origin of the studies of the Fermi-Pasta-Ulam (FPU)
problem [16, 17]. Its absence was attributed to loca-
tion of initial conditions below chaos border and system
proximity to the integrable Toda lattice (see e.g. [18, 19]
and Refs. therein). Thus the FPU oscillator chain has
certain specific features which break system ergodicity
in energy. However, it is natural to expect that in a
generic case, when eigenstates of a linear system are er-
godic and dynamical chaos of classical trajectories takes
place, the energy equipartition over modes should appear
above certain border of nonlinear interaction strength be-
tween modes.

In spite of these expectations of energy equipartition
over modes, the recent studies of the GPE in Bunimovich
stadium showed that the nonlinearity produces an effec-
tive dynamical thermalization in a completely isolated
system, without any contact with external thermal bath,
with the probabilities over linear modes described by the
Bose-Einstein (BE) distribution [7]. Thus the probabil-
ities on high energy modes drop rapidly and the ultra-
violet catastrophe is absent. An experimental realization
of the Bunimovich billiard with cold atoms is possible but
is not so simple. Due to this reason we consider here the
GPE Sinai oscillator trap which in fact has been already
built in [1–3] but without investigation of phenomenon of
dynamical thermalization. Our results show the presence
of dynamical thermalization with BE distribution in this
system even if some aspects still should be clarified for
time evolution of very large time scales.

The model description, the quantum chaos features of
linear system are described in Section II, the thermal-
ization equations and formalism are presented in Section
III; the obtained numerical results for the GPE evolution
are presented and discussed in the Section IV; numerical
methods and behavior on large time scales are discussed
in Section V; the discussion of main results is presented
in Section VI.

II. MODEL DESCRIPTION AND QUANTUM
CHAOS PROPERTIES

The dynamics of the classical Sinai oscillator is de-
scribed by the Hamiltonian:

H =
1

2m
(p2x + p2y) +

m

2
(ω2
xx

2 + ω2
yy

2) + Vd(x, y) , (1)

where the first two terms describe 2D oscillator with fre-
quencies ωx, ωy and the last term describes the potential

FIG. 1: (Color online) Left panels show Poincaré section
given by canonical variables ϕ and κ, taken at the disk bounce;
points show trajectories evolving up to time t = 10000 with 5
random initial conditions at initial energies E = 1.5; 3; 10 in
top, center and bottom panels respectively. Right panels show
dynamics of one trajectory in (x, y) plane evolving up to time
t = 300 with initial energy as in left panels E = 1.5; 3; 10
in top, center and bottom panels respectively. In the top
right panel an example of canonical variables (gray color) is
shown with ϕ = −0.75π (green/gray lines) and κ = sinπ/18
(violet/black lines), these variables are represented in the top
left panel by the orange (gray) point. Disk border is shown
in right panels by red (gray) circle.

wall of elastic disk of radius rd centered at (xd, yd). In
our studies we fixed the mass m = 1, frequencies ωx = 1,
ωy =

√
2 and disk radius rd = 1. The disk center is

placed at (xd, yd) = (−1/2,−1/2) so that the disk bungs
a hole in the center as it was the case in the experiments
[1].

It is convenient to characterize the classical dynam-
ics by the Poincaré section using the canonical variables
taken at the moment of time when a particle bounces
with the disk. At that moment we take the phase ϕ,
given by the angle measured from x-axis, and the conju-
gated dimensionless orbital momentum κ = sin θ, where
θ is the angle of momentum ~p counted from the normal to
the circle (see Fig. 1). Such a pair of conjugated variables
represents a standard choice for description of dynamics
in billiards (see e.g. [10, 11]).

The results for Poincaré sections at Fig. 1 show that
almost all phase space, accessible for dynamics at a given
energy, is chaotic (see e.g. [20, 21] on properties of dy-
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FIG. 2: (Color online) Nearest-neighbor spacing distribution
P (s) for the first 2500 unfolded eigenenergies of the Sinai oscil-
lator (1). The red dashed curve represents the Wigner surmise
P (s) = (πs/2) exp(−πs2/4). Insert panel shows energy eigen-
values E = Em as a function of m for the first 50 eigenvalues
1 ≤ m ≤ 50. Dashed blue curve represents the theoretical
Weyl law m(E) = E2/(2

√
2)− E/2.

namical chaos). Only very tiny stability islets of regular
motion can be found at E = 3 (practically not visible
on the Poincaré section). At small energy E = 1.5 the
dynamics is located only on one side of the disk (varia-
tion of ϕ is bounded, −0.4 < ϕ/π ≤ 1) due to symmetry
breaking of the shift of disk center. At larger energies
the trajectories make complete rotations around the disk.
The amplitude of oscillations grows with energy approx-
imately in the same way as in a usual 2D oscillator in
absence of disk. However, the scattering on disk makes
the dynamics chaotic in a similar manner as for a stan-
dard Sinai billiard [6].

The BEC evolution in the Sinai oscillator trap is de-
scribed by the GPE, which reads:

i~
∂ψ(~r, t)

∂t
= − ~2

2m

−→
∇2ψ(~r, t) (2)

+
[m

2
(ω2
xx

2 + ω2
yy

2) + Vd(x, y)
]
ψ(~r, t)

+ β|ψ(~r, t)|2ψ(~r, t) .

Here in (2), we use the same oscillator and disk param-
eters as in (1) and take ~ = 1. The wave function is
normalized to unity W =

∫
|ψ(x, y)|2dxdy = 1. Then

the parameter β describes the dimensionless nonlinear
interactions of atoms in BEC.

Since the classical dynamics is chaotic and the measure
of integrable islands is very small it is natural to expect
that at zero nonlinearity β = 0 the Sinai oscillator be-
longs to systems of quantum chaos [8, 10, 11]. Indeed,
using the advanced methods of quantum chaos on nu-
merical computation of eigenenergies and eigenstates in
chaotic billiards (see e.g. [22]), we find numerically sev-
eral thousands of eigenenergies Em and eigenstates m
(linear modes) at β = 0.

The level spacing statistics P (s) for the first 2500 en-
ergy levels with the unfolding procedure (see e.g. [10])
is shown in Fig. 2. The results are in good agreement
with the Wigner surmise confirming the validity of the
Bohigas-Giannoni-Schmit conjecture for the Sinai oscil-
lator trap [8, 10]. The system energy Em grows with the
level number m in agreement with the Weyl law as it is
shown in the insert of Fig. 2.

The linear eigenstates φm have a rather complex struc-
ture covering the accessible area in (x, y) plane with
chaotic fluctuations. The probability distributions in
(x, y) plane are shown for first 100 eigenstates in [23];
some eigenstates are also shown in Figs. below.

The GPE (2) can be also rewritten in the basis of
linear eigenstates φm using the completeness of this
basis and presenting the wave function by expansion
ψ(x, y, t) =

∑
m Cm(t)φm(x, y), where Cm(t) are time

dependent probability amplitudes in this basis. Then in
this basis the GPE reads:

i
∂Cm
∂t

= EmCm + β
∑

m1m2m3

Umm1m2m3Cm1C
∗
m2
Cm3 .

(3)
Here the transitions between eigenmodes appear only due
to the nonlinear β-term and the transition matrix ele-
ments are

Umm1m2m3
=

∫
dxdy φ∗mφm1

φ∗m2
φm3

. (4)

In our case, in absence of a magnetic field, the eigenstates
φm are real, but we keep the general expression valid also
for complex eigenstates.

A similar type of representation (4) was used for the
analysis of effects of nonlinearity on the Anderson lo-
calization in disordered lattices [24] known also as the
DANSE model [25, 26]. In this model it was found that
a moderate nonlinearity leads to a destruction of the An-
derson localization of linear eigenmodes and a subdiffu-
sive spreading of wave packet over lattice sites with time.
Such a spreading has been studied by different groups
(see e.g. [24–28] and Refs. therein). Even if the repre-
sentations for the GPE Sinai oscillator (4) and DANSE
models are similar there are significant differences: (a) in
DANSE the eigenenergies are bounded in a finite energy
band while here Em ∝

√
m are growing with m (we note

that for the Bunimovich billiard we have Em ∝ m [7]);
(b) in DANSE the transitions Umm1m2m3

give coupling
mainly between states inside the same localization length
while here there are transitions even between vary differ-
ent m values. At the same time we should say that the
properties of matrix elements Umm1m2m3

are still waiting
their detailed analysis for the cases of Sinai oscillator and
Bunimovich billiard.

We also note that the question of energy transfer to
high energy modes has certain links with the Kolmogorov
turbulence which is based on the concept of energy flow
from large to small scales via the inertial interval (see
[29, 30] and Refs. therein). In this concept energy is in-
jected at large scale and absorbed on small scales and a
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presence of some small noise is assumed to induce ther-
malization flow. In such an approach the “quantum”
turbulence in GPE (or nonlinear Schödinger equation
(NLS)) has been studied in a rectangular 2D billiard [31]
and in 3D cube [32]. Due to the billiard shape chosen
there, the ray dynamics is integrable and it is not obvi-
ous if the dynamical thermalization takes place in such
a billiard in absence of noise. Below we will see that at
moderate nonlinearity and absence of noise there is no
dynamical thermalization in oscillator trap and billiards
of rectangular shape (see the later case in [7]). In fact, in
purely dynamical systems (without external noise) it is
possible that the Kolmogorov flow to high modes can be
stopped by KAM integrability and Anderson localization
[33].

Our results show that the quantum chaos for linear
eigenmodes facilitates onset of dynamic thermalization,
appearing in an isolated system without any external
noise, when the strength of nonlinear term is above a
certain dynamical thermalization border β > βc.

III. THERMODYNAMIC FORMALISM

The dynamical thermalization in nonlinear chains with
disorder has been studied in [34, 35] where it was shown
that the quantum Gibbs distribution appears in an iso-
lated system above a certain border of nonlinearity β >
βc. The dynamical thermalization for the GPE in a
chaotic Bunimovich billiard has been established in [7].

Below for a reader convenience we present the thermal-
ization formalism which directly follows from the stan-
dard results of statistical description of Bose gas [12].
Indeed, we assume that the nonlinearity is moderate and
that the nonlinear term gives only a small energy shift
which can be neglected. Then the energy levels are those
of the quantum Sinai oscillator with the usual quantum
chaos properties and the energy levels Em at β = 0.
Since the energy and the norm of the system (2) are con-
served the thermalization ansatz gives the steady-state
probabilities ρm on energy levels:

ρm = 1/[exp[(Em − Eg − µ)/T ]− 1] , (5)

where where Eg = 1.685 is the energy of the ground
state, T is the temperature of the system, µ(T ) is the
chemical potential dependent on temperature. The pa-
rameters T and µ are determined by the norm conser-
vation

∑∞
m=1 ρm = 1 (we have only one particle in the

system) and the initial energy
∑
mEmρm = E. The en-

tropy S of the system is determined by the usual relation
[12]: S = −

∑
m ρm ln ρm. The relation (5), with normal-

ization condition and equation of energy, determines the
implicit dependencies on temperature E(T ), S(T ), µ(T ).

As it is pointed in [7, 34, 35], the advantage of energy
E and entropy S is that both are extensive variables, thus
they are self-averaging and due to that they have reduced
fluctuations. Due to this feature S and E are especially
convenient for verification of the thermalization ansatz

FIG. 3: (Color online) Dependence of entropy S on energy
E, obtained from the GPE time evolution (2) for initial states
taken as first 50 eigenstates φm of the quantum Sinai oscil-
lator. Blue (black) and red (gray) symbols show the cases
of nonlinearity β = 0.5 and β = 4 respectively, while cir-
cles and crosses represent the system with and without the
elastic disk rd respectively. The entropy S is computed from
ρm = 〈|〈m|ψ〉|2〉t averaged over time intervals t ∈ [500, 1500]
(top panel), and t ∈ [1500, 2500] (bottom panel). The dashed
curve shows the theoretical thermalization ansatz of Bose-
Einstein distribution (5).

(5) which gives the theoretical dependence S(E) in the
assumption that the dynamical thermalization emerges
in the GPE Sinai oscillator due to dynamical chaos in
absence of any external noise and thermostat coupling.

IV. NUMERICAL RESULTS

The numerical integration of GPE (2) is done follow-
ing the approach used for the Bunimovich billiard in
[7]: we introduce the space grid with a usual size of
Ns = nx × ny = 201 × 141 = 28341 spacial points.
The time step is performed with the Trotter decom-
position of linear and nonlinear terms with a usual
time step ∆t = 0.01. Thus, the nonlinear term gives
the wave function transformation in coordinate space
ψ̄(x, y) = exp(−i∆tβ|ψ(x, y)|2)ψ(x, y), which is then
transformed from coordinate space to the linear eigen-
basis φm. The transformation from space grid to linear
eigenfuntion index m is done via a precomputed trans-
fer matrix Ajm (here 1 ≤ j ≤ Ne is an index of space
grid). After that the linear propagation step is per-
formed with expansion coefficients in the eigenstate ba-
sis C(t + ∆t) = exp(−i∆tEm)Cm(t). Then the back
transformation from linear basis φm to coordinate basis
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FIG. 4: (Color online) Dependence of temperature T and
chemical potential µ on energy shown in top and bottom
panels respectively. Black curves represent the theoretical
ansatz given by the Bose-Einstein distribution (5), while red
circles represent numerical data T = (T1(E) + T2(S))/2 and
µ = (µ1(E) + µ2(S))/2 (T1,2 and µ1,2 values are computed
from E and S respectively) for initial states given by first 50
linear eigenstates and probabilities ρm = 〈|〈m|ψ〉|2〉t averaged
over interval t ∈ [500, 1500]. Here β = 4.

finally gives ψ(t + ∆t). We use usually Ne = 2000 lin-
ear eigenstates and the grid with Ns = 28341 points for
such a time evolution. In addition to the space repre-
sentation ψ(x, y, t) we also compute the wave function in
the momentum representation using the standard rela-
tion φ(~p, t) =

∫
ψ(~r, t) exp(−i~r~p/~)dr2/2π~ with a dis-

crete Fourier transform. The time evolution computed
in this way gives an approximate energy E and norm W
conservation. Typically we have at time t = 2000 the
variation of these integrals being δW/W = 0.001(0.004)
and δE/E = 0.002(0.004) for initial state at m = 10(40)
respectively. We return to a more detailed discussion of
the accuracy of computations in Section V.

During the time evolution we determine the proba-
bilities of wave function in the linear eigenmodes ρm =
〈|〈m|ψ〉|2〉t = 〈|Cm|2|〉t averaged over a certain time in-
terval. Usually we choose this time interval as approxi-
mately last half (or similar to that) of the whole evolution
range to obtain approximate steady-state values of ρm.
From these averaged values we determine the entropy
S = −

∑
m ρm ln ρm. Thus starting from different initial

states, chosen as linear eigenstates ψm, we obtain nu-
merically the dependence S(E) which is compared with
the prediction of the Bose-Einstein thermalization ansatz

(5).

FIG. 5: (Color online) Spacial probability distributions
|ψ(x, y)|2 for the GPE Sinai oscillator. Panels a) and b) show
the linear eigenstates m = 1 (ground state) and m = 24 with
eigenergies E1 = 2.417 and E24 = 9.16 respectively. Panels c)
and e) have the initial state m = 24 of panel b) and show the
average distributions at long times with averaging over large
interval t ∈ [1500, 2500] for β = 0.5 and β = 4 respectively.
Panel d) shows the average distribution for short time inter-
val (snapshot) t ∈ [2000, 2005] for β = 4. Panel f) shows the
thermal Bose-Einstein distribution (5) for energy E24 = 9.16
(to be compared with panel e)). Probability is shown by color
bar changing from zero (black) to maximum (yellow/gray).

The comparison of numerical data with the theoret-
ical curve obtained from (5) is shown in Fig. 3. It is
clear that at small β = 0.5 the nonlinear term leads to
excitation of certain eignemodes of the Sinai oscillator
but the numerical data for S(E) are pretty far from the
theoretical dashed curve given by the Bose-Einstein dis-
tribution (5). For the 2D oscillator without disk the exci-
tation is significantly weaker then for the Sinai oscillator
with S(E) values being very far form the theory both for
β = 0.5; 4. In contrast to that, for the GPE Sinai oscilla-
tor at β = 4 our numerical data for S(E) are close to the
theoretical thermalization ansatz. For the time interval
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t ∈ [500, 1500] (Fig. 3 top panel) the obtained S values
for 35 < m ≤ 50 (10.5 < E < 13 are somewhat below the
theoretical curve. We attribute this to the fact that for
large m the effective amplitude of nonlinear term in (2) is
reduced |ψ|2 ∼ 1/x2 ∼ 1/E ∼ 1/

√
m and hence, it takes

a longer time for dynamical chaos to establish dynam-
ical thermalization. Indeed, the nonlinear energy shift
δEβ ∼ β|ψ|2 ∼ β/

√
m so that the thermalization time tT

should be at least proportional to tT ∼ 1/δEβ ∼
√
m/β.

Indeed, at large times t ∈ [1500, 2500] (Fig.3 bottom
panel) we find the values of S being significantly more
close to the thermalization ansatz for 35 < m ≤ 50
(10.5 < E < 13). Thus the results of Fig. 3 show the
onset of dynamical thermalization for moderate values of
β > βc ∼ 1.

FIG. 6: (Color online) Momentum probability distributions
|ψ(px, py)|2 shown for the same cases as in 6 panels of Fig.5.
Probability is shown by color bar changing from zero (black)
to maximum (yellow/gray).

As for the case of Bunimovich stadium [7], we ex-
pect that the thermalizaiton border βc ∼ 1 (definitely
0.5 < βc < 4) is independent of m. Indeed, the non-
linear energy shift δEβ ∼ β/

√
m and the level spacing

∆E ∼ 1/
√
m scale with m in a similar way (see Fig. 2

for the dependence Em) so that we can expect chaos and

thermalization to be set in at δEβ > ∆E, thus leading
to βc ∼ 1. Indeed, similar estimates have been confirmed
in systems of coupled nonlinear oscillators [24, 35, 36]).

Another confirmation of the onset of dynamical ther-
malization is shown in Fig. 4. Indeed, according to (5)
the temperature can be determined from an initial en-
ergy E, giving T1(E), or from an average value of S,
giving T2(S). In a similar way we can determine µ1(E)
and µ2(S). The dependence of average numerical values
T = (T1 +T2)/2, µ = (µ1 +µ2)/2 on energy E are shown
in Fig. 4 being in a good agreement with the thermaliza-
tion ansatz (5). Again, we attribute certain deviations
for 35 < m ≤ 50 to not sufficiently large times reached
in numerical simulations.

The transition from nontermalized (quasi-integrable)
regime to dynamical thermalization is also visible from
the spacial probability distributions shown in Fig. 5. We
start from a typical initial state m = 24 shown in panel
(b). For β = 0.5 < βc a snapshot distribution at t = 2000
(panel c)) remains very similar to the initial state show-
ing the absence of thermalization and dominance of ini-
tial mode. In contrast to that for β = 4 > βc a snap-
shot at t = 2000 (panel d)) shows that the distribution
have a dominant component at the ground state mode
shown in panel a). The distribution averaged over a
large time interval, assumed to be close to a steady-
state, is shown in panel f). It is indeed very similar
to the theoretical steady state probability distribution
|ψst(x, y)|2 =

∑
m ρm|φm(x, y)|2 where ρm are given by

the Bose-Einstein distribution (5) (see Fig. 5 panel e)).
The probability distributions in the momentum space

(px, py), corresponding to cases of Fig. 5, are shown in
Fig. 6. These data also show a clear absence of thermal-
ization for β = 0.5 (panels b), c)) and close similarity
between the theoretical distribution (panel e)) and aver-
age distribution (panel f)).

FIG. 7: (Color online) Time evolution of probabilities ρm(t)
in the basis of linear eigenmodes for the initial state m = 24
at β = 4. The probabilities ρm(t) are averaged over time
δt = 10 to reduce fluctuations. Color bar shows probabilities
from zero (black) to maximum (white).

Thus the results of this Section provide a good confir-
mation of onset of dynamical thermalization at moderate
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nonlinearity β ≈ 4 > βc ∼ 1. However, it is also impor-
tant to analyze the larger scale evolution on times being
larger than those considered here with t ≤ 2500. This
consideration is presented in next Section.

V. LARGE TIME SCALES AND NUMERICAL
METHODS

The question about long time scale evolution of system
(2) requires further extensive studies with improved accu-
racy on numerical simulations. Indeed, at times t > 2500
we see a tendency of probability accumulation at the
ground state φ1 of linear system. First signs of this trend
are seen in Fig. 7 showing evolution ρm(t) with appear-
ance of large values of ρ1 at t ≈ 2300.

FIG. 8: (Color online) Time evolution of probabilities ρm(t)
in the basis f of linear eigenmodes for the initial state m = 24
at β = 4. The probabilities ρm(t) are averaged over time
δt = 10 to reduce fluctuations. Ten panels show ρm(t) for
m = 1, 2, 3, 4, 5, 6, 7, 8, 9 and m = 24; red dashed lines show
the theoretical values of ρm from the thermalization ansatz of
Bose-Einstein distribution (5).

A more detailed view of dependence of ρm(t) on time
t for several selected m values is presented in Fig. 8 up
to t = 5000. For m > 1 there are large fluctuations in
time and it is clear that averaging on large time scales is
required to obtain statistically stable values of ρm. For
the extensive variables like energy E and entropy S these
fluctuations are reduced and that is the reason due to
which the data for the curve S(E) are less fluctuating.
However, form = 1 in Fig. 8 there is a steady growth with
a apparent saturation at t ≈ 4500 at the value ρ1 ≈ 0.4
which is by a factor 10 larger then the theoretical value
shown by the dashed line. The spacial distribution of
probability at such large times also demonstrates a strong
accumulation of probability at the ground state as it is
shown in Fig. 9. A video of evolution on large times is
available at [23]. A similar probability accumulation at

FIG. 9: (Color online) Long time average probability distribu-
tion < |ψ(x, y)|2 >t shown in coordinate space. The evolution
starts from the initial linear eigenstate m = 24 (see Fig. 5),
the average is done over the time interval t ∈ [4000, 5000]; here
β = 4 (to compare with panels of Fig. 5 with same colors).

the ground state is seen for other initial states with ψ(t =
0) = φ40;φ60. We note that we had no such accumulation
of probability in the ground state in the studies of GPE
Bunimovich billiard [7].

We also considered the time evolution for a different
initial state taken as initial coherent wave packet centered
at certain position (x0, y0) (of course the packet is only
approximately Gaussian since the probability is zero at
the disk border). The initial distribution and snapshots
at a few moments of time are shown in Fig. 10 (panels
a), b), c)). The time evolution video is available at [23]
for β = 0 and β = 4 on short and long time scales. The
probability averaged over time interval t ∈ [4000, 5000]
is shown in panels f) and d) β = 0 and β = 4 respec-
tively. The case with interactions shows a tendency of
accumulation of probability at low m modes in a qual-
itative agreement with the thermal ansatz distribution
shown in panel e). However, it is visible that the GPE
case has a larger probability on low energy modes m. In
contrast, the case with β = 0 (panel f)) has large proba-
bility in initial high modes m.

The average probability distributions over linear
modes are shown at large times in Fig. 11. For the initial
state in a form of coherent packet there is a clear dis-
placement of highest probabilities from initial energies
Em ≈ 14.7 to modes with m = 1, 2, 4. In this case there
is no strong accumulation of probability at the ground
state. In fact, the average value of ρ1 ≈ 0.22 is com-
parable with the thermalization ansatz value. Also for
this state with energy E ≈ 14.7 we find numerically the
average entropy value S = 4.96 being close to the theo-
retical value of (5) with S = 5.47. However, the fluctua-
tions of average ρm probabilities are too strong and the
comparison with the thermalization ansatz curve is only
qualitative. For the initial state with φ24 the probability
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FIG. 10: (Color online) Space probability distributions
|ψ(x, y)|2 for the case of an initial state given by a coherent
wave packet centered at (x0, y0) = (3, 3) (and zero probabili-
ties on the disk). Panel a) shows the initial state distribution
with E = 14.707; panels b) and c) show distributions with
β = 4 at t = 2.9 and t = 8 respectively. Long time averages
over the interval t ∈ [4000, 5000] are shown in panel d) and f)
for β = 4 and β = 0 (linear evolution) respectively. Panel e)
shows the theoretical space probability from the Bose-Einstein
distribution (5) for energy E = 14.707.

ρ1 is significantly larger then the theoretical value (by a
factor 10), then the decay of ρm with Em approximately
follows the thermalization ansatz but also the fluctua-
tions are large. We think that the fluctuations are larger
for the case of coherent state due to a larger number of
initially exited linear eigenmodes compared to the case
with ψ(t = 0) = φ24. Also the initial energy of the coher-
ent state is E = 14.71 being larger than energy of m = 24
with E = 9.16 and hence longer times are required for
complete thermalization of the coherent state.

To check the validity of numerical integration for large
time scales we performed a number of checks shown in
Fig. 12 and Fig. 13. With this aim we varied the inte-
gration time step ∆t, the number of lattice points Ns in
the coordinate space (−xmin, xmax;−ymin, ymax) and the

FIG. 11: (Color online) Probability ρm vs. energy of linear
eigenstate Em. Top panel shows the case of initial state given
by a coherent state localized at (x0, y0) = (3, 3) from Fig.10;
bottom panel shows the case of initial linear eigenstate m =
24 (semi-logarithmic scale). Black circles and blue squares
show ρm for initial state and for long time average with β = 4
and t ∈ [4000, 5000] respectively. Solid red line shows the total
energy, while dashed orange line represents the theoretical
distribution ρm (5) for corresponding energy E = 14.71 and
E = 9.16 (top and bottom panels respectively).

spacial range of the lattice determined by these min/max
values of x, y. The integration scheme gives a slow de-
crease of norm W and energy E with time indicating that
there are some effective dissipation induced by numeri-
cal integration. These checks show that the most sensi-
tive parameter is the number of eigenstates Ne used in
the transformation matrix Aj,m from coordinate space to
linear eigenmodes. Up to time t ≈ 800 the all numerical
curves in Fig. 13 give the same results showing the va-
lidity of numerical integration. However, for Ne = 1000
the non-conservation of W and E becomes significant at
large times giving significantly different values of ρ1, ρ4
at t ≈ 1000− 1500 for Ne = 1000 and Ne = 2000. Thus
we use the numerical parameters with Ne = 2000 for all
results presented in above Figs. 1- 11 since this choice
provides the best conservation of W and E.

The above verification show that our integration
scheme introduces a hidden intrinsic effective dissipation
and due to this reason we consider that this can be the
reason of probability accumulation at the ground state
(or a few states with low m values) at large times. Due
to this reasons we consider that our numerical results are
reliable only up to finite times t ≤ tnum ≈ 2500. We be-
lieve that better symplectic integration schemes should
be invented to allow to extend numerical studies of sys-
tem (2) at larger time scales.
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FIG. 12: (Color online) Time evolution of energy and norm
conservation for different parameters of numerical simula-
tions with the initial linear eigenstate m = 24 and β = 4.
Top panel and bottom panel show the evolution of ∆E =
E − E24 and ∆W = 1 −

∑
m ρm. The simulation param-

eters are: Ne = 2000,∆t = 0.01 and number of spacial
lattice of Ns = 201 × 141 points in the rectangle given by
(xmin, ymin) = (−

√
234 ≈ −15.3,−

√
117 ≈ −10.82) and

(xmax, ymax) = (
√

234 ≈ 15.3,
√

117 ≈ 10.82) (black solid
curves); Ne = 1000,∆t = 0.01 with Ns = 201 × 141 (red
dashed curves); Ne = 1000,∆t = 0.005 with Ns = 201 × 141
(green dot-dashed curves); Ne = 1000,∆t = 0.01 with
Ns = 361 × 255 lattice points in the same region (blue dot-
ted curves); red and blue curves practically coincide in the
bottom panel.

VI. DISCUSSION

The results of this work demonstrate the emergence of
dynamical thermalization of BEC described by the GPE
equation of wave function time evolution in Sinai oscilla-
tor trap. The classical dynamics of rays in such a trap is
chaotic and the quantum properties of this system in ab-
sence of interactions are described by well known results
of the field of quantum chaos. The dynamical thermal-
ization appears above a certain critical strength of inter-
action β > βc. In this thermalized phase the probability
distribution ρm over linear eigenmodes (at β = 0) is well
described by the standard statistical Bose-Einstein dis-
tribution. We stress that the dynamical thermalization
appears in a completely isolated system without any ex-
ternal noise. We point that this thermal distribution is
drastically different from energy equipartition over modes
which is usually expected for nonlinear oscillator lattices,
including the Fermi-Pasta-Ulam problem, leading to the
ultra-violet catastrophe. Thus our results show that en-

ergy is redistributed only over certain low energy modes
and that there is no energy flow to high energy modes.

FIG. 13: (Color online) Time evolution of probabilities ρm(t)
for parameters of Fig. 12 shown for m = 1, 4, 6, 24 with the
same colors as in Fig. 12.

We think that this result may have interesting implica-
tions to the dynamical consideration of Kolmogorov tur-
bulence which assumes the presence of energy flow from
large (low energy) to small (high energy) spacial scales
in presence of noise [29, 30]. Our results indicate that
in absence of noise such energy flow can be absent due
to absence of energy equipartition. Of course, further
investigations of this system in numerical simulations on
larger time scales are highly desirable in view of numeri-
cal difficulties discussed in the previous Section.

The trap configuration considered here had been al-
ready realized experimentally in 3D [1] and we believe
that further experimental investigations of dynamical
thermalization in the Sinai oscillator trap are within
reach of modern experiments with cold atoms and BEC.
The variation of interaction strength between atoms by
means of Feshbach resonance should be able to detect a
transition from quasi-integrable phase at β < βc to the
phase of dynamical thermalization at β > βc. The case
of Litium 6 atoms, where the interactions can be changed
in a broad range (see e.g. [37]), can be a good test bed
for the studies of dynamical thermalization in the Sinai
oscillator trap and fundamental origins of thermalization
in isolated systems.

We thank Pavel Chapovsky and David Guéry-Odelin
for useful discussions of cold atom physics.
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