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Dynamics and thermalization of Bose-Einstein condensate in Sinai oscillator trap
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We study numerically the evolution of Bose-Einstein condensate in the Sinai oscillator trap de-
scribed by the Gross-Pitaevskii equation in two dimensions. In the absence of interactions this
trap mimics the properties of Sinai billiards where the classical dynamics is chaotic and the quan-
tum evolution is described by generic properties of quantum chaos and random matrix theory. We
show that, above a certain border, the nonlinear interactions between atoms lead to the emergence
of dynamical thermalization which generates the statistical Bose-Einstein distribution over eigen-
modes of the system without interactions. Below the thermalization border the evolution remains
quasi-integrable. Such a Sinai oscillator trap, formed by the oscillator potential and a repulsive
disk located in the vicinity of the center, had been already realized in first experiments with the
Bose-Einstein condensate formation by Ketterle group in 1995 and we argue that it can form a
convenient test bed for experimental investigations of dynamical of thermalization. Possible links

and implications for Kolmogorov turbulence in absence of noise are also discussed.

PACS numbers: 05.45.-a, 05.45.Mt, 67.85.Hj

I. INTRODUCTION

One of the first experimental realizations of Bose-
Einstein condensate (BEC) has been done with sodium
atoms trapped in a novel trap that employed both mag-
netic and optical forces [I]. In this trap, the repulsive
optical potential is created by tightly focusing an intense
blue-detuned laser that generates a repulsive optical plug
bunging a hole in a center of magnetic trap where nona-
diabatic spin flips lead to a loss of atoms. Further devel-
opments of BEC traps, and remarkable progress of BEC
experimentstheory are reviewed in [2H5].

In spite of these achievements, the fundamental ques-
tion about interplay of dynamics, interactions and ther-
malization of BEC in a concrete trap configuration still
waits its clarification. In this work we address this ques-
tion in the frame of the Gross-Pitaevskii equation (GPE)
[, 5] for the two-dimensional (2D) version of the trap
used in the experimental setup [I]. Thus the trap po-
tential is represented by a 2D harmonic potential and
a rigid disk which center is located in a vicinity of the
center of harmonic potential. If the harmonic potential is
replaced by rigid walls forming a square or rectangle then
the classical dynamics in such a Sinai billiard is proven
to be completely chaotic [6]. The recent analysis of the
trap with the walls formed by a harmonic potential shows
that the dynamics remains chaotic with a very small mea-
sure of integrable dynamics [7]. This trap was called the
Sinai oscillator [7] due to a similarity with a Sinai billiard.
Since the realization of rigid walls is rather difficult for
experimental realization the case of Sinai oscillator trap
becomes much more attractive for combined theoretical
and experimental investigations. In fact a Sinai oscilla-
tor trap in three-dimensions (3D) had been implemented
in [I]. Here we restrict our investigations to the 2D case

expecting that its main features will be preserved in 3D.

The quantum properties of Sinai oscillator are charac-
terized within random matrix theory [9] by the Wigner-
Dyson statistics of energy levels [§]. The properties of the
eigenstates are typical for those of systems of quantum
chaos and now are well understood (see e.g. [10, 11]).

Below we show that the Sinai oscillator trap in 2D is
also characterized by the properties of quantum chaos:
the quantum eigenstates of Sinai oscillator are ergodic
and the level spacing statistic is described by the random
matrix theory, in agreement with the Bohigas-Giannoni-
Schmit conjecture [8 [10]. However, still there is no ther-
malization in this system since the eigenstates are pre-
served in absence of interactions. Thus, in this work we
analyze the dynamics and thermalization conditions for
BEC in the Sinai oscillator in the frame of the GPE equa-
tion. The GPE description is valid in the regime where
the BEC temperature T is below the critical tempera-
ture of Bose-Einstein condensation T, [12] and when the
validity of GPE description is well justified [4} [5].

Even though from the mathematical view point the
question about existence of solutions of the GPE in such
a trap, at moderate nonlinearity and large times, remains
an open problem (see e.g. [13,[14]). Indeed, the GPE can
be rewritten in the basis of linear eigenstates (modes)
where the coupling between modes takes place only due
to the nonlinearity in GPE. In this representation each
mode can be considered as an independent oscillator de-
gree of freedom and in case of thermalization, induced by
nonlinearity, one should expect energy equipartition over
all modes [12] leading to ultra-violet catastrophe and en-
ergy transfer to high energy modes. In fact, the Planck
constant and the Planck law had been introduced for
a black-body radiation to avoid such a divergence [I5].
However, the Planck distribution is valid for quantum



systems while in our case of the GPE Sinai oscillator
there is no second quantization. Thus due to classical
nonlinear interactions between modes one would expect
to have a classical ergodicity with equipartition of energy
between modes.

Indeed, such an equipartition expectation was at the
origin of the studies of the Fermi-Pasta-Ulam (FPU)
problem [16, 17]. Nevertheless its absence is consequence
of the proximity to the integrable Toda lattice (see e.g.
18, 19] and Refs. therein). Thus the FPU oscillator
chain has certain specific features which break system
ergodicity in energy. However, it is natural to expect
that in a generic case, when eigenstates of a linear sys-
tem are ergodic and dynamical chaos of classical trajec-
tories takes place, the energy equipartition over modes
should appear above certain border of nonlinear interac-
tion strength between modes.

In spite of these expectations of energy equipartition
over modes, the recent studies of the GPE in Bunimovich
stadium showed that the nonlinearity produces an effec-
tive dynamical thermalization in a completely isolated
system, without any contact with external thermal bath,
with the probabilities over linear modes described by the
Bose-Einstein (BE) distribution [7]. Thus the probabil-
ities on high energy modes drop rapidly and the ultra-
violet catastrophe is absent. An experimental realization
of the Bunimovich billiard with cold atoms is possible but
is not so simple. Due to this reason we consider here the
GPE Sinai oscillator trap which in fact has been already
built in [TH3] but without investigation of phenomenon of
dynamical thermalization. Our results show the presence
of dynamical thermalization with BE distribution in this
system even if some aspects still should be clarified for
time evolution of very large time scales.

The model description, the quantum chaos features of
linear system are described in Section II. The thermaliza-
tion equations and the formalism are presented in Section
III. The obtained numerical results for the GPE evolution
are presented and discussed in the Section IV. Numerical
methods and behavior on large time scales are discussed
in Section V. The discussion of the main results is pre-
sented in Section VI.

II. MODEL DESCRIPTION AND QUANTUM
CHAOS PROPERTIES

The dynamics of the classical Sinai oscillator is de-
scribed by the Hamiltonian:

1
H=_—(p2+p))+

m
2m 2

(wiz® +wyy?) + Va(z,y) , (1)

with the first two terms being 2D oscillator with fre-
quencies wy,wy, while the last term describes the po-
tential wall of elastic disk of radius r4. In our studies
we fixed the mass m = 1, frequencies w, = 1, w, = V2
and disk radius rq; = 1. The disk center is placed at

FIG. 1:

(Color online) Left panels show Poincaré section
given by canonical variables ¢ and k, taken at the disk bounce;
points show trajectories evolving up to time ¢ = 10000 with 5
random initial conditions at initial energies ¥ = 1.5;3;10 in
top, center and bottom panels respectively. Right panels show
dynamics of one trajectory in (z,y) plane evolving up to time
t = 300 with initial energy as in left panels F = 1.5;3;10

in top, center and bottom panels respectively. In the top
right panel an example of canonical variables (gray color) is
shown with ¢ = —0.757 (green/gray lines) and x = sinw/18
(violet/black lines), these variables are represented in the top
left panel by the orange (gray) point. Disk border is shown
in right panels by red (gray) circle.

(x4, ya) = (—=1/2,—1/2) so that the disk bungs a hole in
the center as it was the case in the experiments [IJ.

It is convenient to describe the classical dynamics on
the Poincaré section using the canonical variables at the
moment of the bounce with the disk. We take the phase
¢, given by the angle measured from z-axis, and the
conjugated dimensionless orbital momentum x = sin 6,
where 6 is the angle of momentum p counted from the
normal to the circle (see Fig. . Such a pair of conju-
gated variables represents a standard choice for the de-
scription of dynamics in billiards (see e.g. [10} [1T]).

Figure |1| shows that almost all phase space, accessible
at a given energy, is chaotic (see e.g. [20, 21] on proper-
ties of dynamical chaos). Only very tiny isands of regular
motion are found at E = 3 (practically not visible on the
Poincaré section). At the energy £ = 1.5 the dynam-
ics exists only on one side of the disk (variation of ¢ is
bounded, —0.4 < /7 < 1) due to symmetry breaking
of the system. At larger energies the trajectories make
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FIG. 2: (Color online) Nearest-neighbor spacing distribution

P(s) for the first 2500 unfolded eigenenergies of the Sinai oscil-
lator . The red dashed curve represents the Wigner surmise
P(s) = (ms/2) exp(—ms?/4). Insert panel shows energy eigen-
values E = E,, as a function of m for the first 50 eigenvalues
1 < m < 50. Dashed blue curve represents the theoretical
Weyl law m(E) = E?/(2v/2) — E/2.

complete rotations around the disk. The amplitude of os-
cillations grows with energy approximately in the same
way as in a usual 2D oscillator in absence of disk. How-
ever, the scattering on disk makes the dynamics chaotic
in a similar manner as for a standard Sinai billiard [6].

The BEC evolution in the Sinai oscillator trap is de-
scribed by the GPE, which reads:

. 87/)(7770 _ hz 2 -
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Here in , we use the same oscillator and disk param-
eters as in and take A = 1. The wave function is
normalized to unity W = [ [¢(z,y)|*dzdy = 1. Then
the parameter S describes the nonlinear interactions of
atoms in BEC. All the results presented in the paper are
expressed in these dimensionless units. Thus the energy
E is expressed in units of E, = h%/(mr4?) = 1; the dis-
tance is measured in units of ry = 1; time is measured
in units of ¢, = A/E, = 1; B is measured in units of
571 = 1/7"(12 =1.

Since the classical dynamics is chaotic and the measure
of integrable islands is very small it is natural to expect
that at zero nonlinearity f = 0 the Sinai oscillator be-
longs to systems of quantum chaos [§], 10, 11]. Indeed,
using the advanced methods of quantum chaos on nu-
merical computation of eigenenergies and eigenstates in
chaotic billiards (see e.g. [22]), we find numerically sev-
eral thousands of eigenenergies F,, and eigenstates ¢,,
(linear modes) at 8 = 0.

The level spacing statistics P(s) for the first 2500 en-
ergy levels with the unfolding procedure (see e.g. [10])
is shown in Fig. The results are in good agreement

with the Wigner surmise confirming the validity of the
Bohigas-Giannoni-Schmit conjecture [§), [I0]. The system
energy E,, grows with the level number m in agreement
with the Weyl law as it is shown in the insert of Fig.

The linear eigenstates ¢,, have a rather complex struc-
ture covering the accessible area in (x,y) plane with
chaotic fluctuations. The probability distributions in the
(x,y) plane are shown for first 100 eigenstates in [23]; in
addition, some eigenstates are also shown below.

The GPE (2) can be also rewritten in the basis of lin-
ear eigenstates ¢,, using the completeness of this ba-
sis and presenting the wave function by the expansion
P(x,y,t) = >, Crn(t)dm(2z,y), where C,(t) are time
dependent probability amplitudes in this basis. Then in
this basis the GPE reads:

’L% = EmCm + 6 Z Umm1m2m3cm1 C:;lzcmg ’

ot
(3)
Here the transitions between eigenmodes appear only due
to the nonlinear [-term and the transition matrix ele-
ments are

Ummlmgmg = /dxdy ¢:n¢m1 ¢Til2¢m3 : (4)

mimams

In our case, in absence of a magnetic field, the eigenstates
o are real, but we keep the general expression valid also
for complex eigenstates.

A similar type of representation was used for the
analysis of effects of nonlinearity on the Anderson lo-
calization in disordered lattices [24] known also as the
DANSE model [25] 26]. In this model it was found that
a moderate nonlinearity leads to a destruction of the An-
derson localization of linear eigenmodes and a subdiffu-
sive spreading of wave packet over lattice sites with time.
Such a spreading has been studied by different groups
(see e.g. [24H28] and Refs. therein). Even if the repre-
sentations for the GPE Sinai oscillator (4) and DANSE
models are similar there are significant differences: (a) in
DANSE the eigenenergies are bounded in a finite energy
band while here E,, < y/m are growing with m (we note
that for the Bunimovich billiard we have E,, x m [1]);
(b) in DANSE the transitions Upm,mams give coupling
mainly between states inside the same localization length
while here there are transitions even between very differ-
ent m values. At the same time we should say that the
properties of matrix elements Uy, moms are still waiting
their detailed analysis for the cases of Sinai oscillator and
Bunimovich billiard.

We also note that the question of energy transfer to
high energy modes has certain links with the Kolmogorov
turbulence which is based on the concept of energy flow
from large to small scales via the inertial interval (see
[29, 30] and Refs. therein). The energy is injected at
large scale and absorbed on small scales and a presence
of some small noise is assumed to induce thermalization.
In such an approach the “quantum” turbulence in GPE
(or nonlinear Schédinger equation (NLS)) has been stud-
ied in a rectangular 2D billiard [31] and in 3D cube [32].



Due to the billiard shape chosen there, the ray dynam-
ics is integrable and it is not obvious if the dynamical
thermalization takes place in such a billiard in absence
of noise. Below we will see that at moderate nonlinearity
and absence of noise there is no dynamical thermaliza-
tion in oscillator trap and billiards of rectangular shape
(see the later case in [7]). In fact, in purely dynamical
systems (without external noise) it is possible that the
Kolmogorov flow to high modes can be stopped by KAM
integrability and Anderson localization [33].

Our results show that the quantum chaos for linear
eigenmodes facilitates onset of dynamic thermalization,
appearing in an isolated system without any noise, when
the strength of nonlinear term is above a certain dynam-
ical thermalization border 8 > f..

III. THERMODYNAMIC FORMALISM

The dynamical thermalization in nonlinear chains with
disorder has been studied in [34], B5] where it was shown
that the quantum Gibbs distribution appears in an iso-
lated system above a certain border of nonlinearity g >
Be.  The dynamical thermalization for the GPE in a
chaotic Bunimovich billiard has been established in [7].

Below for a reader convenience we present the thermal-
ization formalism which directly follows from the stan-
dard statistical description of Bose gas [12]. Indeed, we
assume that the nonlinearity is moderate and that the
nonlinear term provides a small energy shift which can
be neglected. Then the energy levels are those of the
quantum Sinai oscillator with the usual quantum chaos
properties and the energy levels E,, at 5 = 0. As the
energy and the norm of the system are conserved for the
quantum evolution of the system (Eq. , the thermal-
ization ansatz gives the steady-state probabilities p,, on
energy levels:

m = 1/[exp|(E —w)/T]=1], ()

where where E; = 1.685 is the energy of the ground
state, T is the temperature of the system, u(T) is the
chemical potential dependent on temperature. The pa-
rameters T and p are determined by the norm conser-
vation > °_ pm = 1 (we have only one particle in the
system) and the initial energy ) E,,pm = E. The en-
tropy S of the system is determined by the usual relation
02]: S= -3, pmInpy,. The relation , with normal-
ization condition and equation of energy, determines the
implicit dependencies on temperature E(T"), S(T), u(T).

As it is pointed in [7, [34] [35], the advantage of energy
E and entropy S is that both are extensive variables, thus
they are self-averaging and due to that they have reduced
fluctuations. Due to this feature S and E are especially
convenient for verification of the thermalization ansatz
(b)) which gives the theoretical dependence S(E) in the
assumption that the dynamical thermalization emerges
in the GPE Sinai oscillator due to dynamical chaos in
absence of any external noise or thermostat.
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FIG. 3: (Color online) Dependence of entropy S on energy

E, obtained from the GPE time evolution for initial states
taken as first 50 eigenstates ¢,, of the quantum Sinai oscil-
lator. Blue (black) and red (gray) symbols show the cases
of nonlinearity 8 = 0.5 and 8 = 4 respectively, while cir-
cles and crosses represent the system with and without the
elastic disk r4 respectively. The entropy S is computed from
pm = ([{m]¥)|?); averaged over time intervals ¢ € [500, 1500]
(top panel), and ¢ € [1500, 2500] (bottom panel). The dashed
curve shows the theoretical thermalization ansatz of Bose-
Einstein distribution .

IV. NUMERICAL RESULTS

The numerical integration of GPE follows the ap-
proach used for the Bunimovich billiard in [7]: we in-
troduce a space grid with size N, = n; X n, = 201 x
141 = 28.341 spacial points. The time step is performed
with the Trotter decomposition of linear and nonlinear
terms with a time step At = 0.01. Thus, the nonlin-
ear term gives the wave function transformation in co-
ordinate space (,y) — exp(~iAtBJ(z, y) 2 z, ),
which is then transformed from coordinate space to the
linear eigenbasis ¢,, (we use N, = 2000 linear eigen-
states). The transformation from space grid to linear
eigenfuntion index m is done via a precomputed trans-
fer matrix A;,, (here 1 < j < N; is an index of space
grid). After that the linear propagation step is per-
formed with expansion coefficients in the eigenstate ba-
sis C(t + At) = exp(—iAtE,,)Cy,(t). Then the back
transformation from linear basis ¢,, to coordinate basis
finally gives ¢(t + At). In addition to the space repre-
sentation v (z,y, t) we also compute the wave function in
the momentum representation using the standard rela-
tion ¢(p,t) = [(F,t)exp(—irp/h)dr?/2wh with a dis-
crete Fourler transform The time evolution computed
in this way gives an approximate energy F and norm W
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FIG. 4: (Color online) Dependence of temperature 7' and

chemical potential u on energy shown in top and bottom
panels respectively. Black curves represent the theoretical
ansatz given by the Bose-Einstein distribution , while red
circles represent numerical data T' = (T1(E) + T2(S))/2 and
w= (1 (E) + p2(S))/2 (T1,2 and p1,2 values are computed
from E and S respectively) for initial states given by first 50
linear eigenstates and probabilities p,, = (|(m1)|*); averaged
over interval ¢ € [500, 1500]. Here 8 = 4.

conservation. Typically we have at time t = 2000 the
variation of these integrals being éW/W = 0.001(0.004)
and 0E/E = 0.002(0.004) for initial state at m = 10(40)
respectively. We return to a more detailed discussion of
the accuracy of computations in Section V.

During the time evolution we determine the proba-
bilities of wave function in the linear eigenmodes p,, =
{[{m|)[*)s = (|Cm|?|)+ averaged over a certain time in-
terval. Usually we choose this time interval as approxi-
mately last half (or similar to that) of the whole evolution
range to obtain approximate steady-state values of py,.
From these averaged values we determine the entropy
S =—>,, PmInp,. Thus starting from different initial
states, chosen as linear eigenstates ,,, we obtain nu-
merically the dependence S(E) which is compared with
the prediction of the Bose-Einstein thermalization ansatz
B).

The comparison of numerical data with the theoret-
ical curve obtained from is shown in Fig. It is
clear that for small = 0.5 the nonlinear term leads
to excitation of certain eignemodes of the Sinai oscilla-
tor but the numerical data for S(E) are pretty far from
the theoretical dashed curve given by the Bose-Einstein
distribution . For the 2D oscillator without disk the

0 0.05 0.1

FIG. 5: (Color online) Spacial probability distributions
[¢(z,y)|? for the GPE Sinai oscillator. Panels a) and b) show
the linear eigenstates m = 1 (ground state) and m = 24 with
eigenergies E1 = 2.417 and F24 = 9.16 respectively. Panels c)
and e) have the initial state m = 24 of panel b) and show the
average distributions at long times with averaging over large
interval ¢ € [1500,2500] for 3 = 0.5 and 8 = 4 respectively.
Panel d) shows the average distribution for short time interval
(snapshot) t € [2000, 2005] for 3 = 4. Panel f) shows the ther-
mal Bose-Einstein distribution for energy Eou = 9.16 (to
be compared with panel e)). Probability is shown by color
bar changing from zero (black) to maximum (yellow/gray).
Numbers in horizontal and vertical axes show the scales in x
and y respectively.

excitation is significantly weaker than for the Sinai os-
cillator with S(E) values being very far form the theory
both for 8 = 0.5,4. In contrast to that, for the GPE
Sinai oscillator at 8 = 4 our numerical data for S(FE)
are close to the theoretical thermalization ansatz. For
the time interval ¢ € [500,1500] (Fig. |3| top panel) the
obtained S values for 35 < m < 50 (10.5 < E < 13 are
somewhat below the theoretical curve. We attribute this
to the fact that for large m the effective amplitude of non-
linear term in (2)) is reduced |¢|? ~ 1/2%2 ~ 1/E ~ 1//m
and hence, it takes a longer time for dynamical chaos to



establish dynamical thermalization. Actually, the nonlin-
ear energy shift as §Ez ~ BJ1|* ~ 3//m and therefore,
the thermalization time t7 should be at least propor-
tional to t7 ~ 1/0Eg ~ /m/B. Indeed, at large times
t € [1500,2500] (Fig.3 bottom panel) we find the values
of S being significantly more close to the thermalization
ansatz for 35 < m < 50 (10.5 < E < 13). Thus the re-
sults of Fig. [3|show the onset of dynamical thermalization
for moderate values of 5 > . ~ 1.
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FIG. 6: (Color online) Momentum probability distributions
[¢)(ps, py)|* shown for the same cases as in 6 panels of Fig
Probability is shown by color bar changing from zero (black)
to maximum (yellow/gray). Numbers in horizontal and ver-
tical axes show the scales in  and y respectively.

As for the case of Bunimovich stadium [7], we ex-
pect that the thermalizaiton border 5. ~ 1 (definitely
0.5 < B, < 4) is independent of m. Indeed, the non-
linear energy shift 6Eg ~ 3//m and the level spacing
AE ~ 1//m scale with m in a similar way (see Fig.
for the dependence F,;,) so that we can expect chaos and
thermalization to be set in at 6E3 > AFE, thus leading
to B. ~ 1. Indeed, similar estimates have been confirmed
in systems of coupled nonlinear oscillators [24] [35], [36] ).

Another confirmation of the onset of dynamical ther-
malization is shown in Fig. |4l According to the tem-

perature can be determined from an initial energy FE, giv-
ing Ty (E), or from an average value of S, giving T5(.5).
In a similar way we can determine p;(E) and po(S). The
dependence of average numerical values T' = (11 +1%)/2,
p = (1 + p12)/2 on energy E are shown in Fig. [4 being
in a good agreement with the thermalization ansatz ().
The observed deviations for 35 < m < 50 are related
with the lack of sufficiently large time evolution in the
simulations .

The transition from nontermalized (quasi-integrable)
regime to dynamical thermalization is also visible from
the spacial probability distributions shown in Fig. |5l We
start from a typical initial state m = 24 shown in panel
(b). For 8 = 0.5 < . a snapshot distribution at ¢ = 2000
(panel ¢)) remains very similar to the initial state show-
ing the absence of thermalization and dominance of the
initial mode. In contrast to that for 5 = 4 > (5. a
snapshot at ¢ = 2000 (panel d)) shows that the distri-
bution have a dominant component at the ground state
mode shown in panel a). The distribution averaged over
a large time interval, assumed to be close to a steady-
state, is shown in panel f). It is indeed very similar
to the theoretical steady state probability distribution
[, )2 = 5,0 pralom ()| where p,, are given by
the Bose-Einstein distribution (see Fig. 5| panel ¢)).

The probability distributions in the momentum space
(pz, py), corresponding to cases of Fig. 5| are shown in
Fig.[6] These data also show a clear absence of thermal-
ization for 8 = 0.5 (panels b), ¢)) and close similarity
between the theoretical distribution (panel e)) and aver-
age distribution (panel f)).
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FIG. 7: (Color online) Time evolution of probabilities py, (t)
in the basis of linear eigenmodes for the initial state m = 24
at 8 = 4. The probabilities p,,(t) are averaged over time
6t = 10 to reduce fluctuations. Color bar shows probabilities
from zero (black) to maximum (white).

Thus the results of this Section provide a good confir-
mation of onset of dynamical thermalization at moderate
nonlinearity 8 ~ 4 > 8. ~ 1. However, it is also impor-
tant to analyze the larger scale evolution on times being
larger than those considered here with ¢ < 2500. This
consideration is presented in next Section.



V. LARGE TIME SCALES AND NUMERICAL
METHODS

The question about long time scale evolution of Eq.
requires further extensive studies with improved accuracy
on numerical simulations. Indeed, at times ¢t > 2500 we
see a tendency of probability accumulation at the ground
state ¢, of linear system. First signs of this trend are
seen in Fig. |7 showing evolution p,,(t) with appearance
of large values of p; at t = 2300.
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FIG. 8: (Color online) Time evolution of probabilities py, (t)
in the basis f of linear eigenmodes for the initial state m = 24
at B = 4. The probabilities p,,(t) are averaged over time
0t = 10 to reduce fluctuations. Ten panels show pn,(¢) for
m=1,2,3,4,5,6,7,8,9 and m = 24; red dashed lines show
the theoretical values of p,, from the thermalization ansatz of
Bose-Einstein distribution .

A more detailed view of dependence of p,,(t) on time
t for several selected m values is presented in Fig. [§| up
to t = 5000. For m > 1 there are large fluctuations in
time and it is clear that averaging on large time scales is
required to obtain statistically stable values of p,,. For
the extensive variables like energy E and entropy S these
fluctuations are reduced and that is the reason due to
which the data for the curve S(E) are less fluctuating.
However, for m = 1 in Fig. [§] there is a steady growth
with a the apparent saturation at ¢ =~ 4500 at the value
p1 =~ 0.4 which is by a factor 10 larger than the theoretical
value shown by the dashed line. The spacial distribution
of probability at such large times also demonstrates a
strong accumulation of probability at the ground state as
it is shown in Fig.[9] A video of evolution on large times
is available at [23]. A similar probability accumulation at
the ground state is seen for other initial states with (¢t =
0) = d40; deo- We note that we had no such accumulation
of probability in the ground state in the studies of GPE
Bunimovich billiard [7].

We also considered the time evolution for a different
initial state taken as initial coherent wave packet centered
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y 0.075
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0.025
_5 0
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X

FIG. 9: (Color online) Long time average probability distribu-
tion < |¢(z,y)|* >+ shown in coordinate space. The evolution
starts from the initial linear eigenstate m = 24 (see Fig. ,
the average is done over the time interval ¢ € [4000, 5000];
here 8 = 4 (to compare with panels of Fig. [5| with same col-
ors). Numbers in horizontal and vertical axes show the scales
in x and y respectively.

at certain position (zg,yo) (of course the packet is only
approximately Gaussian since the probability is zero at
the disk border). The initial distribution and snapshots
at a few moments of time are shown in Fig. (panels
a), b), ¢)). The time evolution video is available at [23]
for B =0 and 8 = 4 on short and long time scales. The
probability averaged over time interval ¢ € [4000, 5000]
is shown in panels f) and d) 8 = 0 and 3 = 4 respec-
tively. The case with interactions shows a tendency of
accumulation of probability at low m modes in a qual-
itative agreement with the thermal ansatz distribution
shown in panel e¢). However, it is visible that the GPE
case has a larger probability on low energy modes m. In
contrast, the case with 8 = 0 (panel f)) has large proba-
bility in initial high modes m.

The average probability distributions over linear
modes are shown at large times in Fig. For the initial
state in a form of coherent packet there is a clear dis-
placement of highest probabilities from initial energies
E,, =~ 14.7 to modes with m = 1,2,4. In this case there
is no strong accumulation of probability at the ground
state. In fact, the average value of p; ~ 0.22 is com-
parable with the thermalization ansatz value. Also for
this state with energy F =~ 14.7 we find numerically the
average entropy value S = 4.96 being close to the theo-
retical value of with S = 5.47. However, the fluctua-
tions of average p,, probabilities are too strong and the
comparison with the thermalization ansatz curve is only
qualitative. For the initial state with ¢24 the probability
p1 is significantly larger then the theoretical value (by a
factor 10), then the decay of p,, with E,, approximately
follows the thermalization ansatz but also the fluctua-
tions are large. We think that the fluctuations are larger



FIG. 10: (Color online) Space probability distributions
|4(x,y)|? for the case of an initial state given by a coherent
wave packet centered at (zo,yo) = (3,3) (and zero probabili-
ties on the disk). Panel a) shows the initial state distribution
with E = 14.707; panels b) and c¢) show distributions with
B =4 att =29 and t = 8 respectively. Long time averages
over the interval ¢ € [4000, 5000] are shown in panel d) and f)
for 8 =4 and 8 = 0 (linear evolution) respectively. Panel e)
shows the theoretical space probability from the Bose-Einstein
distribution for energy E = 14.707. Numbers in horizontal
and vertical axes show the scales in « and y respectively.

for the case of coherent state due to a larger number of
initially exited linear eigenmodes compared to the case
with ¥ (¢t = 0) = ¢o4. Also the initial energy of the coher-
ent state is £ = 14.71 being larger than energy of m = 24
with £ = 9.16 and hence longer times are required for
complete thermalization of the coherent state.

To check the validity of numerical integration for large
time scales we performed a number of checks shown in
Fig. [12] and Fig. With this aim we varied the inte-
gration time step At, the number of lattice points Ny in
the coordinate space (—Zmin, Tmaz; —Ymins Ymaz) and the
spacial range of the lattice determined by these min/max
values of z,y. The integration scheme gives a slow de-
crease of norm W and energy E with time indicating
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FIG. 11: (Color online) Probability pm, vs. energy of linear

eigenstate F,,. Top panel shows the case of initial state given
by a coherent state localized at (zo,y0) = (3,3) from Fig[I0}
bottom panel shows the case of initial linear eigenstate m =
24 (semi-logarithmic scale). Black circles and blue squares
show p,, for initial state and for long time average with 8 = 4
and ¢ € [4000, 5000] respectively. Solid red line shows the total
energy, while dashed orange line represents the theoretical
distribution py, for corresponding energy F = 14.71 and
E =9.16 (top and bottom panels respectively).

that there are some effective dissipation induced by nu-
merical integration. These checks show that the most
sensitive parameter is the number of eigenstates N, used
in the transformation matrix A; ,, from coordinate space
to linear eigenmodes. Up to time ¢ =~ 800 all numerical
curves in Fig. give the same results showing the va-
lidity of numerical integration. However, for N, = 1000
the non-conservation of W and E becomes significant at
large times giving significantly different values of p1, p4
at t &~ 1000 — 1500 for N, = 1000 and N, = 2000. Thus
we use the numerical parameters with N, = 2000 for all
results presented in above Figs. since this choice
provides the best conservation of W and FE.

The above verification show that our integration
scheme introduces a hidden intrinsic effective dissipation
and due to this reason we consider that this can be the
reason of probability accumulation at the ground state
(or a few states with low m values) at large times. Due
to this reasons we consider that our numerical results are
reliable only up to finite times ¢ < ¢, ~ 2500. We be-
lieve that better symplectic integration schemes should
be developed to extend numerical studies for larger time
scales.

Finally, in Fig. we present data for the variation
of entropy S with the nonlinear parameter [ obtained
for different initial states m. The data are averaged over
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FIG. 12: (Color online) Time evolution of energy and norm
conservation for different parameters of numerical simula-
tions with the initial linear eigenstate m = 24 and 8 = 4.
Top panel and bottom panel show the evolution of AE =
E — Eyy and AW =1 — Zm pm. The simulation param-
eters are: N. = 2000,At = 0.01 and number of spacial
lattice of N; = 201 x 141 points in the rectangle given by
(Tmin, Ymin) = (—V234 ~ —15.3,—/117 ~ —10.82) and
(Tmax, Ymax) = (V234 ~ 15.3,4/117 =~ 10.82) (black solid
curves); N. = 1000, At = 0.01 with Ny = 201 x 141 (red
dashed curves); N. = 1000, At = 0.005 with N, = 201 x 141
(green dot-dashed curves); N. = 1000, At = 0.01 with
N, = 361 x 255 lattice points in the same region (blue dot-
ted curves); red and blue curves practically coincide in the
bottom panel.

a certain time interval. The ratio of numerical S val-
ues to the expected theoretical values Sipeo, given by the
Bose-Einstein ansatz , has a sharp growth at a cer-
tain 8 = B, ~ 1.5 indicating a thermalization transition
at this S.. At the same time there is a certain spread-
ing of curves which we attribute to fluctuations and the
fact that longer time intervals are required for larger m
values where nonlinear frequencies become smaller (see
discussion of this point in Sections above). Thus due to
a restricted time of our numerical simulations we cannot
exclude that instead of a sharp transition to thermaliza-
tion there is a crossover in a certain 3 interval. In any
case the data of Fig.[14]show that for 5 > 3 the values of
entropy S become close to the expected theoretical values
with §/S¢heo = 1. Thus we conclude that the dynamical
thermalization is reached for 5 > 2 — 3.

VI. DISCUSSION

The results of this work demonstrate the emergence of
dynamical thermalization of BEC described by the GPE
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FIG. 13: (Color online) Time evolution of probabilities py, (t)
for parameters of Fig. shown for m = 1,4,6,24 with the
same colors as in Fig.

0.6

04+
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FIG. 14: (Color online) Entropy S/Stheo as a function of non-
linear parameter 8. The entropy S is computed numerically
in linear basis with probability average p., over the time inter-
val t € [1000 —2000]. Initial states are linear eigenstates with
m = 12,18,24 and 30 represented with circles, squares, dia-
monds and triangles respectively. The values of S are normal-
ized by the theoretical values Sipeo given by the Bose-Einstein
ansatz for the corresponding initial state m.

equation of wave function time evolution in Sinai oscil-
lator trap. The classical dynamics of rays in such a trap
is chaotic and the quantum properties of this system in
absence of interactions are described by well known re-
sults of the field of quantum chaos. The dynamical ther-
malization appears above a certain critical strength of
interaction 5 > (.. In this thermalized phase the proba-



bility distribution p,, over linear eigenmodes (at 8 = 0)
is well described by the standard statistical Bose-Einstein
distribution. We stress that the dynamical thermaliza-
tion appears in a completely isolated system without
any external noise. We point that this thermal distri-
bution is drastically different from energy equipartition
over modes which is usually expected for nonlinear oscil-
lator lattices, including the Fermi-Pasta-Ulam problem,
leading to the ultra-violet catastrophe. Thus our results
show that the energy is redistributed only over certain
low energy modes and that there is no energy flow to
high energy modes. We think that this result may have
interesting implications to the dynamical consideration
of Kolmogorov turbulence which assumes the presence of
energy flow from large (low energy) to small (high en-
ergy) spacial scales in presence of noise [29, B0]. Our
results indicate that in absence of noise such energy flow
can be absent due to absence of energy equipartition. Of
course, further investigations of this system in numerical
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simulations on larger time scales are highly desirable in
view of numerical difficulties discussed in the previous
Section.

The trap configuration considered here had been al-
ready realized experimentally in 3D [I] and we believe
that further experimental investigations of dynamical
thermalization in the Sinai oscillator trap are accesible
for modern experiments with cold atoms and BEC. The
variation of interaction strength between atoms by means
of Feshbach resonance should be able to detect a transi-
tion from quasi-integrable phase at § < . to the phase
of dynamical thermalization at 8 > (.. The case of
Litium 6 atoms, where the interactions can be changed
in a broad range (see e.g. [37]), can be a good test bed
for the studies of dynamical thermalization in the Sinai
oscillator trap and fundamental origins of thermalization
in isolated systems.

We thank Pavel Chapovsky and David Guéry-Odelin
for useful discussions of cold atom physics.
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