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Abstract – We study numerically a model of quantum dot with interacting fermions. At strong
interactions with small conductance the model is reduced to the Sachdev-Ye-Kitaev black-hole
model while at weak interactions and large conductance it describes a Landau-Fermi liquid in a
regime of quantum chaos. We show that above the Åberg threshold for interactions there is an
onset of dynamical themalization with the Fermi-Dirac distribution describing the eigenstates of
an isolated dot. At strong interactions in the isolated black-hole regime there is also the onset of
dynamical thermalization with the entropy described by the quantum Gibbs distribution. This
dynamical thermalization takes place in an isolated system without any contact with a thermostat.
We discuss the possible realization of these regimes with quantum dots of 2D electrons and cold
ions in optical lattices.

Copyright c© EPLA, 2017

Introduction. – Recently it has been shown that there
is a duality relation between an isolated quantum dot with
infinite-range strongly interacting fermions and a quan-
tum black-hole model in 1 + 1 dimensions [1–3]. This
system, called the Sachdev-Ye-Kitaev (SYK) model, at-
tracted great interest of the quantum gravity community
(see, e.g., [4–7]). A possible realization of the SYK model
with ultracold atoms in optical lattices has been proposed
recently in [8]. An important element of the SYK model is
an emergence of many-body quantum chaos with a max-
imal Lyapunov exponent for dynamics in a semiclassical
limit [5,9].

It should be noted that in fact the SYK model first ap-
peared in the context of nuclear physics where the strongly
interacting fermions had been described by the two-body
random interaction model (TBRIM) with all random two-
body matrix elements between fermions on degenerate en-
ergy orbitals [10–13]. The majority of the matrix elements
of the TBRIM Hamiltonian is zero since the two-body
interactions impose selective transition rules. Thus, this
case is rather different from the case of the random matrix
theory (RMT) introduced by Wigner for the description
of complex nuclei, atoms and molecules [14,15]. In spite

of this difference, it had been shown that the level spac-
ing statistics P (s) in TBRIM is described by the Wigner-
Dyson distribution PW (s) typical for the RMT [11,13].
A similar situation appeared later for the models of quan-
tum chaos also characterized by sparse matrices being
rather far from the RMT type but also characterized by
the Wigner-Dyson statistics for matrices of a specific sym-
metry class [16–18]. The validity of RMT for the SYK
model at different symmetries has been demonstrated
in the recent fundamental and detailed studies reported
in [19]. Transport properties of SYK and its extensions
have also been discussed recently [20].

In this letter we present the studies of the SYK-type
model extending parallels between physics of quantum
dots and black holes. Indeed, the TBRIM and SYK sys-
tems have degenerate non-interacting orbitals while for
quantum dots it is natural to have non-degenerate orbitals
characterized by a certain average one-particle level spac-
ing Δ. This spacing Δ can be much smaller than a typical
interaction strength U between fermions and then we have
the usual SYK or TBRIM degenerate regime (Δ ≪ U).
In the opposite limit we have the regime of weak interac-
tions typical for metallic dots (Δ ≫ U ≈ Δ/g) where the
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interaction is determined by a dimensionless dot conduc-
tance g = Ec/Δ with Ec being the Thouless energy [21,22].
Even if the average spacing between excited levels drops
exponentially with the number of fermions, the mixing of
levels takes place only at interactions U being much larger
than this spacing since the two-body selection rules con-
nect directly only a polynomial number of states. The
border for the emergence of the RMT PW (s) statistics is
determined by the Åberg criterion [23,24] telling that the
transition to RMT takes place when the average two-body
matrix elements become larger than the average spacing
between directly coupled states. This criterion has been
confirmed in extensive numerical simulations with inter-
acting fermions and spin systems [25–28]. Thus, at g ≫ 1
the RMT statistics appears only for relatively high exci-
tation above the quantum dot Fermi energy EF [23–25]:

δE = E − EF > δEch ≈ g2/3Δ. (1)

This border is in good agreement with the spectroscopy
experiments of individual mesoscopic quantum dots [29].
Of course, an exact check of the Åberg criterion via nu-
merical simulations is not an easy task since the matrix
size grows exponentially with the number of fermions.
Thus, the validity of the Åberg border (1) is still under ac-
tive discussions in relation to the many-body localization-
delocalization (MBL) transition (see [30,31] and references
therein). We also note that the quantum chaos and RMT
statistics in the interacting Bose systems has been studied
in [32].

In fact the border (1) assumes also that the emergence of
RMT statistics appears as a result of the onset of quantum
ergodicity which, in its turn, leads to a dynamical thermal-
ization in an isolated system [25]. Thus, the relation (1) is
based on a rather general dynamical thermalization con-
jecture (DTC). According to the DTC individual eigen-
states of an isolated system are described by the standard
Fermi-Dirac thermal distribution. The examples of ther-
malized individual eigenstates have been presented in [27].
This individual eigenstate thermalization is more strik-
ing than the thermal distribution of probabilities averaged
over a group of eigenstates which had been seen earlier in
the numerical simulations of TBRIM with Δ > U [33]. At
present, the dynamical thermalization of individual eigen-
states is known as the eigenstate thermalization hypothe-
sis (ETH) and attracts great interest of the scientific com-
munity (see, e.g., [34–36]).

The direct check of DTC from the filling factors of one-
particle orbitals is possible but it requires diagonalization
of large matrices and still the fluctuations are significant
even for sizes N ∼ 107 (see, e.g., fig. 6 in [27]). In fact
it has been found that the fluctuations are significantly
reduced if we determine numerically the dependence of
entropy S on energy E computed for individual eigen-
states. The reduction of fluctuations is due to the fact
that both S and E are extensive self-averaging charac-
teristics. The numerically obtained dependence S(E) can

be directly compared with those of the theoretical Fermi-
Dirac or Bose-Einstein distributions [37]. The power of
this approach for a verification of DTC has been con-
firmed in the numerical simulations of classical nonlinear
disordered chains [38], the Gross-Pitaevski equation for
the Bose-Einstein condensate in chaotic billiards [39,40]
and quantum many-body Bose-Hubbard rings with disor-
der [41]. Here we use this approach for the investigation
of dynamical thermalization in isolated quantum dots and
black holes described by TBRIM and SYK-type models.

Model description. – The model is described by the
Hamiltonian for L spin-polarized fermions on M energy
orbitals ǫk (ǫk+1 ≥ ǫk):

Ĥ = Ĥ0 + Ĥint, Ĥ0 =
1√
M

M∑

k=1

vk ĉ†
k ĉk,

Ĥint =
1√

2M3

∑

ijkl

Jij,klĉ
†
i ĉ

†
j ĉk ĉl. (2)

Here the fermion operators ĉ†
i , ĉi satisfy the usual anti-

commutation relation. The interaction matrix elements
Jij,kl are random complex variables with a standard devi-

ation J and zero average value. The interacting part Ĥint

is the same as those used in [8] (see eq. (1) there). As in [8]
we consider the model with complex fermions (complex
matrix elements Jij,kl) [3] which is slightly different from
the case with real fermions (real Jij,kl) [2]. However, in
our model (2), in addition to the interaction Hamiltonian

Ĥint, there is also the unperturbed part Ĥ0 describing
one-particle orbitals ǫk = vk/

√
M in a quantum dot of

non-interacting fermions. The average of one-orbital en-
ergies is taken to be v2

k = V 2 with vk = 0. Thus, the
unperturbed one-particle energies ǫk are distributed in an
energy band of size V and the average level spacing be-
tween them is Δ ≈ V/M3/2, while the two-body coupling
matrix element is U ≈ J/M3/2. Hence, in our model the
effective dimensionless conductance in (1) is g = Δ/U ≈
V/J . The total matrix size of the Hamiltonian (2) is
N = M !/L!(M − L)! and each multi-particle state is cou-
pled with K = 1+L(M−L)+L(L−1)(M−L)(M−L−1)/4
states [25,33,36]. Here we consider the case of approximate
half-filling with L ≈ M/2.

Dynamical thermalization ansatz. – We start from
the case of g ≫ 1 when one-particle orbitals are well de-
fined. If the DTC is valid, then weak or moderate inter-
actions should lead to the standard Fermi-Dirac thermal
distribution over M one-particle orbitals with energies ǫk

and filling factors [37]:

nk =
1

eβ(ǫk−μ) + 1
, β = 1/T, (3)

with the chemical potential μ determined by the conser-
vation of number of fermions

∑M
k=1 nk = L. Then follow-

ing [37], at a given temperature T , the system energy E
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Fig. 1: (Color online) Top row: density of states ρ(E) =
dN(E)/dE for the model (2). Bottom row (c), (d): integrated
level spacing statistics I(s) =

∫
s

0
ds′P (s′) for the Poisson

statistics PP (s) (dashed green curve), for the Wigner surmise
PW (s) (dashed red curve) and numerical data P (s) for the
central energy region comprising 80 percent of the states (blue
curve, almost superposed with the red dashed curve). Here
M = 14, L = 6, N = 3003, and J = 1, V = 0 ((a), (c)) and
J = 1, V =

√

14 ((b), (d)).

and von Neumann entropy S are given by

E(T ) =

M∑

k=1

ǫknk, S(T ) = −
M∑

k=1

nk lnnk. (4)

The Fermi gas entropy is SF = − ∑M
k=1(nk lnnk + (1 −

nk) ln(1−nk)) [37]. The relations (3), (4) determine an im-
plicit functional dependence S(E) which is very convenient
for numerical checks since both quantities S and E are ex-
tensive and self-averaging. The numerical computation of
S and E from the eigenstates ψm and eigenenergies Em

of H is straightforward by using nk(m) = 〈ψm|ĉ†
k ĉk|ψm〉.

With (4) this gives the entropy Sm of the eigenstate ψm.
Of course, the DTC is based on a quantum ergodicity of

eigenstates that can appear only in the regime of Wigner-
Dyson statistics PW (s) = 32 s2 exp(−4 s2/π)/π2 (Wigner
surmise corresponding to the Gaussian unitary ensemble
(GUE) symmetry of our model). Indeed, in the absence
of ergodicity the statistics is described by the Poisson dis-
tribution PP (s) = exp(−s) of independent uncorrelated
eigenenergies. As usual, here the level spacing s, between
adjacent eigenenergies Em, Em+1 of the whole system, is
measured in units of average level spacing assuming spec-
trum unfolding [17,18]).

Indeed, our results, presented in fig. 1, show that
the RMT is valid for the SYK black-hole regime
(g = V/J ≪ 1) and for the quantum dot regime (g =
V/J > 1) when the relation (1) is satisfied. We note that
the Wigner-Dyson statistics at V = 0 had been also ob-
tained in [11,13,19] for corresponding symmetries.
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Fig. 2: (Color online) Dependence of filling factors nk on
energy ǫ for individual eigenstates obtained from exact di-
agonatization of (2) (red circles) and from the Fermi-Dirac
ansatz with one-particle energy ǫ (3) (full blue curve; blue
stars are shown at one-particle energy positions ǫ = ǫk). Here
M = 14, L = 6, N = 3003, J = 1, V =

√

14 and eigenener-
gies (2) are E = −4.4160 (left panel), −3.0744 (right panel);
the theory blue curves (3) are drawn for the temperatures cor-
responding to these energies β = 1/T = 20 (left panel), 2 (right
panel), see fig. 3(b) below.

For the parameters of fig. 1 (right column) we indeed
find that the DTC provides a good description of filling
factors in agreement with (3) as is shown for two specific
eigenstates in fig. 2. However, the fluctuations are signif-
icant and also the DTC should be verified for all eigen-
states at a given set of parameters. Due to that we test
the DTC validity using the approach developed for bosons
in [39–41] based on the numerical computation of the de-
pendence S(E) from eigenstates of the Hamiltonian (2).

Quantum dot regime. – First of all we remark that,
since the energy spectrum of our system (2) is inside a
finite energy band, it is possible to have also negative
temperatures for energies being in the upper half of the
energy band. Such a regime of negative temperatures is
well known for spin systems [42]. The relation between
the temperature T and the energy E and the dependence
of the chemical potential μ on T , obtained from the Fermi-
Dirac ansatz (3), are shown in fig. 3. The center of the
energy band at E = 0 corresponds to infinite tempera-
ture and β = 0. Here the entropy takes its maximal value
S(E = 0) = −L ln(L/M) corresponding to equipartition
of L fermions over M orbitals. With the increase of |β|
the entropy obviously decreases towards zero, which cor-
responds to the unit filling factor for L lowest (T = +0)
or highest (T = −0) energy orbitals.

The dependence S(E) for DTC in the quantum dot
regime at g = V/J > 11, is shown in figs. 4(a)–(c).
Here the conductance of the dot is not very large (g =
V/J ≈ 3.7) and practically all eigenstates are well ther-
malized with numerical points following the DTC theoreti-
cal curve. This is in agreement with the estimate (1) which
gives the thermalization at rather low energy excitation
δE ≈ 0.17. In contrast, for J = 0.1 (panel (d)) we have a
significant increase of g = 37 with a larger border for the
RMT statistics δE ≈ 0.8. As a result the numerical data
have entropy S significantly below the theoretical value.
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Fig. 3: (Color online) Dependence of the inverse temperature
β = 1/T on energy E (right panel) and chemical potential μ
on β (left panel) given by the Fermi-Dirac ansatz (3) for the
set of one-particle energies ǫk as in fig. 2.
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Fig. 4: (Color online) Dependence of the entropy on energy
S(E) for (a) M = 12, L = 5, N = 792, J = 1; (b) M = 16,
L = 7, N = 3003, J = 1; (c) M = 14, L = 6, N = 11440,
J = 1; (d) M = 16, L = 7, N = 3003, J = 0.1. Blue points
show the numerical data Em, Sm for all eigenstates, the red
curves show the theoretical Fermi-Dirac thermal distribution
(3). Here V =

√

14.

For each eigenstate with eigenenergy E it is possible
to determine the occupation probabilities nk(E) on one-
particle orbitals with orbital energies ǫk. In the DTC
regime the dependence nk(E) is given by the Fermi-Dirac
distribution (3) shown in fig. 5 (bottom left panel). The
numerically obtained values nk(E), shown in fig. 5 (bot-
tom right panel), demonstrate good agreement with the
theory (3). This confirms the validity of the DTC for prac-
tically all eigenstates in the quantum dots with moderate
values of conductance (g = 4 in fig. 5).

Here we presented results for one specific disorder re-
alization. Similar results have been obtained for other
disorder realizations. However, we do not present averag-
ing over disorder since it is much more striking that the
dynamical thermalization takes place even for one specific
quantum dot with a given disorder realization.

SYK black-hole regime. – This regime corresponds
to g = V/J ≪ 1. In this case we find rather different

-5 50
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Fig. 5: (Color online) Top panel: dependence of the normal-
ized density of states ρ(E) on energy E (

∫
ρ(E)dE = 1), ρ(E)

is averaged inside each energy cell. Bottom panels: occupa-
tion probabilities nk(E) of one-particle orbitals ǫk given by the
theoretical Fermi-Dirac distribution (3) in the left panel, and
by their numerical values obtained by exact diagonalization
of (2) in the right panel; nk is averaged over all eigenstates
inside a given energy cell. The color changes from black for
nk = 0 via red, yellow to white for nk = 1; orbital number k
and eigenenergy E are shown on the x and y axes, respectively.
Here M = 16, L = 7, N = 11440, V = 4, J = 1.

dependence S(E) shown in fig. 6 (left panel) for several
system sizes. In fact, here the entropy has its maximal
value S = −L ln(L/M) ≈ L ln 2 remaining practically in-
dependent of energy E in a broad energy interval in the
center of the energy band. Only at the spectrum edges
there is a small decrease of the entropy approximately by
10% of its maximal value. Here, as before, the values of S
are obtained from nk filling factors computed numerically
from eigenstates ψm of (2) by their projection on non-
interacting orbitals of H0. The obtained dependence S(E)
is in a striking contrast with those of the quantum dot
regime shown in the right panel of fig. 6 for comparison.

The fact that in the SYK model the entropy is practi-
cally independent of the energy E is not so surprising: the
interactions are much stronger than the energies of one-
particle orbitals so that many-body eigenstates are spread
over all orbitals giving for them almost constant filling
factors nk and, hence, a constant entropy.

The distinguished feature of the SYK model is the ab-
sence of quasi-particles with natural orbital energies so
that it is not possible to use the Fermi-Dirac ansatz (3)
which worked so well for the quantum dot regime. Thus,
to handle this case in the spirit of DTC we assume that
there are some hidden quasi-particles which have certain
one-particle orbitals ǫk and relatively weak interactions.
For unknown ǫk values we require that the many-body
density of states ρ(E) found numerically at V = 0 is re-
produced by many-body eigenenergies of non-interacting
fermions located on ǫk orbitals (see, e.g., fig. 1(a)). As
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Fig. 6: (Color online) Dependence S(E) for the SYK black-
hole regime at V = 0 (left panel) and the quantum dot regime
V =

√

14 (right panel). Here M = 16, L = 7, N = 11440
(black points), M = 14, L = 6, N = 3003 (blue points),
M = 12, L = 5, N = 792 (red points), M = 10, L = 4, N = 210
(magenta points); in all cases J = 1. Points show numeri-
cal data Em, Sm for all eigenstates, the full red curve shows
the theoretical Fermi-Dirac distribution (3) in the right panel.
Dashed gray curves in both panels show the Fermi-Dirac distri-
bution (3) for a semi-empirical model of non-interacting quasi-
particles for the case of black points (see text).

a first approximation we take equidistant values ǫk in a
certain interval so that minimal and maximal energies of
many-body Hamiltonian (2) at V = 0 are Emin =

∑L
k=1 ǫk

and Emax =
∑M

k=M−L ǫk with equidistant ǫk values. Then
with these ǫk values and the Fermi-Dirac ansatz (3), (4) we
find that the many-body density of states ρ(E), obtained
from the exact diagonalization of (2), is well reproduced.
Such an approach can be applied both with well-defined
quasi-particles (g > 1) and hidden quasi-particles (g ≪ 1).
The obtained ρ(E) is not sensitive to a randomization of
ǫk at the fixed energy range (Emin, Emax).

The obtained dependence S(E) is shown in fig. 6 (right
panel) for the quantum dot regime and we see that such a
semi-empirical dashed gray curve is rather close to the the-
oretical distribution (3) obtained with one-particle orbitals
at g = 3.74. Thus, we find that this semi-empirical ap-
proach works well in the regime g > 1. The semi-empirical
results for the SYK black hole are shown in fig. 6 (left
panel, dashed gray curve). Here the semi-empirical curve
correctly describes the maximal value of S at E ≈ 0 but
it does not reproduce the large plateau obtained with nu-
merical data from nk = 〈ψm|ĉ†

k ĉk|ψm〉 and (4). We explain

this difference by the fact that ĉ†
k, ĉk operators are written

in the initial degenerate basis with ǫk = vk/
√

M = 0. This
original basis does not correspond to the basis and ener-
gies of hidden quasi-particles which are non-degenerate.
We expect that a certain linear transformation can create
a basis of new hidden quasi-particles with the filling factors
that give the curve S(E) being close to the semi-empirical
curve in fig. 6 (left panel). However, the determination of
such a basis remains a further challenge.

For the SYK model we obtain numerically that the
entropy of the ground state is approximately S(T =
0) ≈ L ln 2 ≈ 0.69L corresponding to our approximate

half-filling L/M ≈ 0.5 with nk ≈ 1/2 and SF ≈ 2S ≈
2L ln 2. This SF value also corresponds to the loga-
rithm of quantum number of states N = (2L)!/[L!]2 at
half-filling L ≈ M/2. The S(T = 0) value is approx-
imately by a factor 3 larger than the numerical value
S(T = 0) = 0.21L obtained in [19] which is close to
the theoretical value S(T = 0) = 0.23L obtained in [5]
for the Majorana SYK model [2] (there the number of
states is 2L/2 that gives a simple states count entropy
S(T = 0) = (L/2) ln 2 ≈ 0.34L which differs from the
final theoretical value 0.23L due to interaction effects).
We note that the maximal entropy value, obtained in [8]
for complex fermions, is close to the value we find here
S = L ln 2.

For the quantum dot regime a direct comparison of nu-
merical nk values with the theoretical Fermi-Dirac dis-
tribution (3) is possible as is shown in figs. 2 and 5.
A determination of nk values hidden quasi-particles in the
SYK regime remains an open problem. We note that, in
a certain sense, the thermodynamic computations done
in [8,19] assume the thermal distribution over many-body
levels Em produced by a certain thermostat with temper-
ature T being in contact with the quantum dot or the
SYK black hole. We think that a bath thermostat is not
realistic for the case of black holes which are well-isolated
objects (at least in a first approximation). At the same
time the DTC is well defined for isolated systems.

Discussion. – We demonstrate that the dynamical
thermalization takes place for interacting fermions in a
quantum dot for interactions being above a certain thresh-
old. We argue that this threshold is given by the Åberg
criterion (2) [23–25]. Above the threshold we directly
show that the DTC is valid and the eigenstates of the
many-body Hamiltonian (2) are described by the Fermi-
Dirac thermal distribution (3) over one-particle orbitals
in the quantum dot regime (g = V/J > 1). For the SYK
black-hole regime with the DTC we reproduce the max-
imal entropy values and argue that hidden quasi-particle
states reproduce the dependence of entropy S on energy
E. We show that the verification of the DTC validity
is done in a most optimal way by the comparison of the
numerically obtained entropy on the energy dependence
S(E) with the theoretical Fermi-Dirac distribution (3) in
the quantum dot regime and in the SYK black-hole case
where the semi-empirical quasi-particle basis is still to be
found. We point out that in previous studies [8,19] the
thermodynamic characteristics have been obtained in an
assumption of a contact between the system and an ex-
ternal bath thermostat that is opposite to the dynamical
thermalization concept.

Even if we are not able to find suitable quasi-modes
for the SYK regime at g ≪ 1 we think that the prob-
lem risen here about the dynamical thermalization of a
black hole and the validity of DTC (or ETH) for isolated
black holes is important for the further understanding of
quantum black holes. Indeed, in a good approximation a
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Fig. 7: (Color online) Dependence of the integrated number
of states N(E) from ground state E0 up to energy E for the
SYK black-hole regime at V = 0 (left panel) and the quantum
dot regime V =

√

14 (right panel). Here M = 14, L = 6, N =
3003 with average over Nr = 10 disorder realizations (blue
symbols), M = 12, L = 5, N = 792, Nr = 38 (red symbols),
M = 10, L = 4, N = 210, Nr = 150 (magenta symbols); in
all cases J = 1. Only the vicinity of ground-state energy is
shown.

black hole can be considered as an isolated object with
strongly interacting components. Thus, the DTC descrip-
tion of such objects should play an important role for the
thermodynamics of black holes proposed in [43].

The extension of the SYK model (g ≪ 1) to the quan-
tum dot regime (g > 1) described by the Hamiltonian (2)
raises several new questions. Indeed, excitations at g > 1
have an energy gap ΔE ∝ 1/L3/2 which drops only alge-
braically with the number of fermions L. In contrast it is
expected that the low energy excitations at g ≪ 1 have
excitation energy δE ∝ exp(−CL) which drops exponen-
tially with L (C is some constant). Indeed, the results
of fig. 7, showing the average integrated number of states
N(E) above the ground energy E0, confirm that the low
excitation energies are by an order of magnitude smaller
for g ≪ 1 compared to the case of g > 1. However, much
larger values of L and better averaging over many disorder
realizations Nr are required to distinguish firmly algebraic
and exponential dependences on a number of fermions. At
the same time the numerical results for the SYK model
with Majorana fermions confirms the exponential drop of
δE with L for g ≪ 1 [19] while the Landau theory of
Fermi liquid guarantees an algebraic drop of δE with L for
g ≫ 1. We expect that a quantum phase transition can
take place between these two regimes at a certain critical
conductance gc of a quantum dot. The interesting ques-
tion on the interpretation of negative temperatures for the
SYK black holes remains for further studies.

Our results show that quantum dots with moderate con-
ductance values g ∼ 1 can be close for the SYK black-
hole regime. Thus, an experimental investigations of such
quantum dots can open new perspectives for studies of the
SYK model. Such solid-state systems with g ≪ 1 have
been already studied with a 2D lattice of coupled Sinai
billiards [44]. Another possibility to investigate strongly
interacting fermions is to consider the regime of Ander-
son localization where the conductance takes values g ∼ 1

inside Thouless blocks and interactions are strong near the
Fermi level [21,22,45].

Finally extending the suggestion of SYK modeling with
cold atoms [8] we propose to consider a case of the Wigner
crystal in a periodic potential which, as SYK, is charac-
terized by exponentially small energy excitation inside the
pinned Aubry phase [46]. Such an Aubry phase has been
recently realized with cold ions in optical lattices [47].

We hope that our results will stimulate further research
of duality between SYK black holes and quantum dots
with strongly interacting fermions. We note that the dy-
namical thermalization concept is especially interesting for
black holes which can be naturally considered as isolated
objects without any contact with a thermostat.
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