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We study the dynamics of a Bose-Einstein condensate in a Sinai-oscillator trap under a monochro-
matic driving force. Such a trap is formed by a harmonic potential and a repulsive disk located in the
center vicinity corresponding to the first experiments of condensate formation by Ketterle group in
1995. We argue that the external driving allows to model the regime of weak wave turbulence with
the Kolmogorov energy flow from low to high energies. We show that in a certain regime of weak
driving and weak nonlinearity such a turbulent energy flow is defeated by the Anderson localization
that leads to localization of energy on low energy modes. A critical threshold is determined above
which the turbulent flow to high energies becomes possible. We argue that this phenomenon can be
studied with ultra cold atoms in magneto-optical traps.
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The Kolmogorov turbulence [1, 2] is based on a concept
of energy flow from large spacial scales, where an energy
is pumped by an external force, to small scales where it
is absorbed by dissipation. As a result a polynomial en-
ergy distribution over wave modes is established which
has been obtained first from scaling arguments for hy-
drodynamics turbulence [1, 2]. Later the theory of weak
turbulence, based on diagrammatic techniques and the
kinetic equation, demonstrated the emergence of polyno-
mial distributions for various types of weakly interact-
ing nonlinear waves [3–5]. However, this theory is based
on a fundamental hypothesis directly stated in the sem-
inal work of Zhakharov and Finonenko: “In the theory
of weak turbulence nonlinearity of waves is assumed to
be small; this enables us, using the hypothesis of the ran-
dom nature of the phase of individual waves, to obtain
the kinetic equation for the mean square of the wave am-
plitudes”. But in finite systems the dynamical equations
for waves do not involve Random Phase Approximation
(RPA) and the question of RPA validity, and hence of the
whole concept of energy flow from large to small scales,
remains open.

Indeed, it is known that in a random media with a
fixed potential landscape the phenomenon of Anderson
localization [6] breaks a diffusive spreading of probability
in space due to quantum interference effects, even if the
underline classical dynamics of particles produces an un-
limited spreading. At present the Anderson localization
has been observed for a large variety of linear waves in
various physical systems [7]. A similar phenomenon ap-
pears also for quantum systems in a periodically driven
ac-field with a quantum dynamical localization in energy
and number of absorbed photons [8–12]. This dynamical
localization in energy has been observed in experiments
with Rydberg atoms in a microwave field [12, 13] and

cold atoms in driven optical lattices [14, 15]. Thus in
the localized phase the periodic driving is not able to
pump energy to a system even if the classical dynamics
is chaotic with a diffusive spreading in energy.

Of course, the Anderson localization takes place for lin-
ear waves. The question about its robustness in respect
to a weak nonlinearity attracted recently a significant in-
terest of nonlinear science community [16–20] with the
first experiments performed in nonlinear media and op-
tical lattices [21, 22]. These studies show that below a
certain threshold the Anderson localization remains ro-
bust in respect to a weak nonlinearity while above the
threshold a subdiffusive spearing over the whole system
size takes place. However, the studies are done for con-
servative systems without external energy pumping. The
numerical simulations for a simple model of kicked non-
linear Schrödinger equation on a ring gave indications
that an energy flow to high energies is stopped by the
Anderson localization for a weak nonlinearity [23] but
such a model is rather far from real experimental possi-
bilities with nonlinear media or cold atoms.

In this Letter we consider a realistic system of Bose-
Einstein condensate (BEC) of cold atoms captured in a
Sinai-oscillator trap under a monochromatic force. In
fact this system in three dimensions (3D) had been used
for a pioneering realization of BEC reported in [24] (see
also [25, 26]). It represents a harmonic trap with a repul-
sive potential in a vicinity of the trap center created by a
laser beam. The repulsive potential can be well approx-
imated by a rigid disk which creates scattering of atoms
and instability of their classical dynamics. In two dimen-
sions (2D) with a harmonic potential replaced by rigid
rectangular walls the systems represents the well-known
Sinai billiard where the mathematical results guaranty
that the whole system phase space is chaotic with a pos-
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itive Kolmogorov entropy [27]. Recently is was shown
that the classical phase space remains practically fully
chaotic if the rigid walls are replaced by a harmonic po-
tential which is much more suitable for BEC experiments
[28]. The corresponding quantum system is characterized
by the level spacing statistics of random matrix theory
[29] satisfying the Bohigas-Giannoni-Schmit conjecture
[30] and thus belonging to the systems of quantum chaos
[31].

The effects of nonlinearity for BEC evolution in a Sinai-
oscillator trap has been studied in [28] in the frame of the
Gross-Pitaevskii equation (GPE) [32]. It was shown [28]
that at weak nonlinearity the dynamics of linear modes
remains quasi-integrable while above a certain thresh-
old there is onset of dynamical thermalization leading
to the usual Bose-Einstein distribution [33] over energies
of linear eigenmodes. Even if being chaotic this system
has energy conservation and there is no energy flow to
high energy modes. However, a monochromatic driving
force breaks the energy conservation leading for a classi-
cal dynamics to a diffusive energy growth and probability
transfer to high energy modes typical for the Kolmogorov
turbulence. Here we show that there is a regime where
such an energy transfer to waves with high wave vectors
is suppressed by the dynamical localization being similar
to the Anderson localization in disordered solids.

We note that the Kolmogorov turbulence for BEC in
2D rectangular and 3D cubic billiards has been studied
numerically in [34, 35]. However, the integrable shape of
these billiards does not allow to realize a generic case of
random matrix spectrum of linear modes typical for our
billiard belonging to the class of quantum chaos systems
[31].

For our model the classical dynamics and quantum
evolution in absence of interactions are described by the
Hamiltonian

Ĥ0 = (p̂x
2+p̂y

2)/2m+m(ω2
xx̂

2+ω2
y ŷ

2)/2+Vd(x̂, ŷ)+fx̂ sinωt .
(1)

Here the first two terms describe 2D oscillator with fre-
quencies ωx, ωy, the third term represents the potential
of rigid disk of radius rd and the last term gives a driven
monochromatic field of amplitude f . Here we fixed the
mass m = 1, frequencies ωx = 1, ωy =

√
2, ω = (1 +

√
5)

and disk radius rd = 1. The disk center is placed at
(xd, yd) = (−1/2,−1/2) so that the disk bangs a hole in
a center vicinity as it was the case in the experiments
[24]. In the quantum case we have the usual commutator
relations [p̂xx̂] = [p̂y ŷ] = −i~ with ~ = 1 for dimensional
units.

The BEC evolution in the Sinai oscillator trap is de-
scribed by the GPE, which reads:

i~
∂ψ(x, y, t)

∂t
= Ĥ0ψ(x, y, t) + β|ψ(x, y, t)|2ψ(x, y, t) , (2)

where β describes nonlinear interactions for BEC. Here
we use the same Sinai oscillator parameters as in [28] with

FIG. 1: (Color online) Classical time evolution of average
energy < E > and its standard deviation σ for f = 0.4. The
data are obtained from 104 trajectories with random initial
conditions at < E >= 1 and σ = 0.5. Top panel: < E(t) >
and σ(t) are shown by black and red/gray curves respectively.
Bottom panels show probability distribution of trajectories
ρ(E, t) for (a) t = 10, 50 (blue/black, orange/gray curves) and
(b) t = 500, 1000 (yellow/gray, violet/black curves). Vertical
dashed lines in main panels mark snapshot times correspond-
ing to bottom panels.

normalization
∫
|ψ|2dxdy = 1. The numerical integration

of (2) is done in the same way as in [11, 28] with a Trotter
time step (∆t = 0.005) evolution for noninteracting part
of Ĥ0 followed by the nonlinear term contribution.

The results for energy E growth with time for classical
dynamics (1) are shown in Fig. 1. The energy E and its
dispersion σ are steadily growing with time. We expect
that at large times the energy increases diffusively with
a rate (∆E)2/t = D ≈ Cf2ωx

2rd
√
E/ω2 assuming that

ωx ∼ ωy and ω > ωx. The data of Fig. 1 give us C ≈ 0.5
at t = 103.

We note that the estimate for D comes from the fact
that an oscillating velocity component vosc = f cos(ωt)/ω
gives a velocity change at disk collision (like with oscil-
lating wall) ∆vx = 2vosc and an energy change ∆E ≈
vx∆vx so that the diffusion is D ∼ (∆E)2/tc where an
average time between collisions tc is defined from the
ergodicity relation ∆tc/tc ∼ rd

2ωx
2/E of ratio of disk

area and area of chaotic motion at energy E, where
∆tc ∼ rd/E

1/2; thus at large times E ∝ t2/3. The fit
for E ∼ σ ∝ tα in Fig. 1 gives α = 0.98 ± 0.06 (for E)
and 0.58± 0.08 (for σ) being comparable to the theoreti-
cal value α = 2/3. We attributed a deviation from theory
to not sufficiently large amplitude of motion

√
2E/ωx re-

quired for tc expression at reached energies.

We also introduce cells of finite energy size δE and
determine the probability distribution ρk over k energy
cells counting a relative number of trajectories inside each
cell. The results of Fig. 1 show that the width of proba-
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FIG. 2: (Color online) Time evolution of M (top panel)
and energy E (bottom panel) for GPE (2) averaged over time
intervals ∆t = 1. The initial state is the ground state of (2)
at β = 0, f = 0 (see Fig.5a in [28]). Both panels show the
cases of f = 0.4, β = 0 (black solid lines), f = 0.4, β = 1.5
(red/gray dotted lines), f = 0.4, β = 5 (orange/gray dashed
lines), f = 2, β = 0 (blue/gray dot-dashed lines),

bility distribution ρ(E) in energy is growing in time cor-
responding to increase of E.

The situation is drastically different in the quantum
case at β = 0. Here, at small f , the dynamical local-
ization leads to a complete suppression of energy E and
average mode number M =

∑
k kρk growth with their

restricted oscillations in time (see Fig. 2). The probabil-
ity distribution ρk over eigenstates ψk with eigenenergies
Ek of (1) (for stationary case f = 0) is shown in Fig. 3.
For small f < fc, on average there is a clear exponential
decay of probability ρk ∝ exp(−2Ek/ω`φ) with a number
of absorbed photons Nφ = Ek/ω and a photonic local-
ization length `φ. Such a localization decay is similar to
those discussed for atoms [12, 13] and quantum dots [11]
in a microwave field. However, above a certain fc, e.g.
at f = 2; 3, we obtain delocalized probabilities ρk with a
flat plateau distribution at high energies.

According to the theory of dynamical localization de-
scribed in [11, 12, 36] we have `φ ≈ 2π(D/ω2)ρc where
ρc = dk/dEk is the density of Ek states. According to
[28] we have k ≈ E2/2

√
2 and ρc ≈ E/

√
2. With the

above expression for the classical diffusion in energy D
we obtain `φ ≈ 2f2ωx

2E3/2/ω4. Similar to the quantum
chaos model [36] we have `φ significantly growing with

FIG. 3: (Color online) Top panel shows M as a function
of driven force f for linear case (β = 0). Bottom panels
show probability distribution ρk, averaged over time interval
∆t = 5, as a function of eigenenergies Ek with t = 10 in black
solid lines, t = 50 in red/gray dashed lines, and t = 250 in
blue/gray dotted lines; Left, center and right bottom panels
show the cases of f = 0.4, 2, 3 respectively (highlighted with
orange/gray circles in top panel).

the number of absorbed photons Nφ so that the delocal-
ization of quantum chaos takes place at `φ > Nφ. As in
[36] this leads to a delocalization above a certain border
f > fc with a flat probability distribution on high ener-
gies as it is seen in Fig. 3. This gives the delocalization
border for quantum states: fcrd/~ωx ≈ 0.7(ω/ωx)3/2 ≈ 4
for the initial ground state at E ≈ ~ωx = 1 and ω ≈ 3.2.
The data for M in Fig. 3 give the critical value fc ≈ 1.5
being somewhat smaller than the value given by the
above estimate. We attribute this difference to the fact
that the above estimate for D, and hence for `φ, is valid
in the limit of large spacial oscillations being larger than
rd. The delocalization transition at f > fc is similar to
the Anderson transition, or metal-insulator transition, in
disordered systems [6, 7].

The results for β > 0 are presented in Figs. 2, 4. For
f = 0.4, when the steady-state probability is well local-
ized at β = 0, they clearly show that at β = 1.5 there is
no growth of energy E and mode number M . Thus there
is no energy flow to high energies and the Anderson local-
ization remains robust for weak nonlineary perturbation.
This is also well confirmed by a stable in time probability
distribution over energies Ek shown in Fig. 4 (left panel).
For larger nonlinearity β = 5 and f = 0.4 there appears
a growth of M,E with time (Fig. 2). At larger f = 1 and
β = 5 there is emergence of energy flow to high energies
and increasing probability ρk at high energies Ek (Fig. 4
right panel).

The global dependence of average mode number M
on driving amplitude f and nonlinearity β is shown in
Fig. 5. We see that there is a stability region of small f, β
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FIG. 4: (Color online) Same as in bottom panels of Fig. 3
for f = 0.3, β = 1.5 (left panel), f = 0.5, β = 5 (center panel)
f = 1, β = 5 (right panel).

values where the values M remain small even at large
times. This region corresponds to the localized insula-
tor phase (I), from the view point of Anderson localiza-
tion, of quasi-integrable (or laminar) phase from the view
point of nonlinear dinamics (or turbulence). Outside of
this region we have large values of number of populated
states M so that this regime corresponds to the delocal-
ized metallic or turbulence phase (M-TB). According to
the obtained results we conclude that this quasi-stable
(or insulator) regime (f < fc, β < βc) (see Fig. 5) is
approximately described by the relation

fcrd/~ωx ≈ 1.5(1− βc/(6~ωxrd2)) (3)

assuming that ωx ∼ ωy ∼ ω. Inside the I-region the
turbulent Kolmogorov flow of energy to high modes
is suppressed by the Anderson localization. At small
nonliniarity β we expect a validity of the Kolmogorov-
Arnold-Moser theory (KAM) [37, 38] leading to a quasi-
integrable dynamics and trapping of energy on large
length modes. At the same time we should note that
the mathematical prove of KAM for nonlinear perturba-
tion of pure-point spectrum of Anderson localization and
the GPE (2) still remains an open challenge [18, 39, 40].

Outside of the stability region (3) a microwave driving
transfers the energy flow from low to high energy modes
generating the Kolmogorov energy flow. We expect that
the energy dissipation and high modes leads to the the
Kolmogorov spectrum of energy distribution [4, 5] over
modes. Our results show that the RPA is definitely not
valid and that, at small amplitudes of a monochromatic
driving and small nonlinearity, the Kolmogorov turbu-
lent flow to high modes is defeated by the Anderson
localization and the KAM integrability. The transition
from KAM phase to turbulence phase corresponds to the
insulator-metal transition in disordered systems with the
energy axis corresponding to the spatial distance respec-
tively. The KAM or insulator phase corresponds to a
usual observation that a small wind (small f amplitude)
is not able to generate turbulent waves.

The experimental realization of our system with BEC
in a magneto-optical trap corresponds to the experimen-
tal conditions described in [24]. A monochromatic per-

FIG. 5: (Color online) Number of modes M is shown by
color/grayness in the plane of parameters f and β (average is
done in the time intervals 100 ≤ t ≤ 150 and 250 ≤ t ≤ 300 in
left and right panel respectively. The approximate separation
of KAM or insulator phase (KAM) and delocalized turbulent
or metallic phase (TB) is shown by the white line (3).

turbation can be created by oscillations of the center of
harmonic potential or effectively by oscillations of the
disk position created by the laser beam. We note that
the experimental investigations of turbulent cascades in
quantum gases become now possible [41] as well as a ther-
mometry of energy distribution in ultra cold atom ensem-
bles [42]. Thus we hope that the interesting fundamental
aspects of nonlinear dynamics and weak turbulence will
be tested with cold atom experiments.
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