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Floquet theory of microwave absorption by an impurity in the two-dimensional electron gas
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We investigate the dynamics of a two-dimensional electron gas (2DEG) under circular polarized microwave
radiation in the presence of dilute localized impurities. Inspired by recent developments on Floquet topological
insulators we obtain the Floquet wave functions of this system which allow us to predict the microwave absorption
and charge density responses of the electron gas; we demonstrate how these properties can be understood from
the underlying semiclassical dynamics even for impurities with a size of around a magnetic length. The charge
density response takes the form of a rotating charge density vortex around the impurity that can lead to a significant
renormalization of the external microwave field which becomes strongly inhomogeneous on the scale of a cyclotron
radius around the impurity. We show that this inhomogeneity can suppress the circular polarization dependence
which is theoretically expected for microwave induced resistance oscillations but which was not observed in
experiments on semiconducting 2DEGs. Our explanation for this so far unexplained polarization independence
has close similarities with the Azbel’-Kaner effect in metals where the interaction length between the microwave
field and conduction electrons is much smaller than the cyclotron radius due to skin effect generating harmonics
of the cyclotron resonance.
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I. INTRODUCTION

The topological properties of condensed matter systems
have been the focus of intense theoretical and experimental
research starting from the discovery of the quantum Hall effect
[1,2]. Recently it has been suggested that some systems can
develop new topological properties under external periodic
driving, leading to the concept of Floquet topological insulators
[3–5] and to their realization in photonic systems [6–8]. In
parallel an active research on the effect of microwave irradi-
ation of ultrahigh mobility two-dimensional systems revealed
striking microwave induced resistance oscillations (MIRO) at
weak nonquantizing magnetic fields [9]. These oscillations are
characterized by a periodic dependence on the ratio between
the microwave and cyclotron frequencies. At sufficiently high
microwave power the oscillations grow in amplitude leading to
the formation of zero-resistance states [10,11]. This effect has
now been observed in several systems [12–16], and it has been
shown that the zero-resistance regime can lead to the onset of
new thermodynamic properties like an incompressible behav-
ior usually associated with the quantum Hall effect [17]. The
theoretical understanding of MIRO has attracted considerable
attention stimulating several approaches. Semiclassical and
quantum kinetic equation formalisms have been used to derive
an analytic description for the magnetic field dependence
of microwave induced oscillations due to interactions with
residual impurities in the two-dimensional electron gas in a
Born approximation limit where recollision or memory effects
were treated perturbatively [18–22]. Classical dynamics has
been used to analyze memory effects in the nonperturbative
limit and to derive in a transparent manner the results from
kinetic equation calculations [23,24]. These theories provide

a good description of the experimental magnetic field depen-
dencies. However they are intrinsically linked to the cyclotron
resonance and share its strong dependence on the polarization
of the radiation. This simulated careful polarization dependent
experiments [25–29]; in particular it was shown that contrarily
to cyclotron resonance MIRO is not sensitive to the orientation
of circularly polarized microwave irradiation [25,28]. This
disagreement stimulated the development of extrinsic theories
where the influence of edges and contacts was considered
as the main mechanism behind MIRO [30,31]. But recent
experiments with a spatially resolved THz excitation [28,29]
have confirmed the bulk origin of MIRO leaving the circularly
polarized radiation dependence unexplained.

Here we address this issue by developing a Floquet descrip-
tion of the interaction between a local impurity and a two-
dimensional electron gas (2DEG) under circularly polarized
radiation. We show that the properties of quantum Floquet
wave functions can be understood from classical dynamics
even in the limit where the radius of the impurity is of the
order of the magnetic length. We then use this theory to
compute the absorbed microwave power using both quantum
and semiclassical formalisms and show the appearance of a
rotating redistribution of electron density around the impurity
that locally enhances the external electromagnetic field. We
argue that the inclusion of this screening correction suppresses
the dependence on polarization chirality and discuss analogies
with the cyclotron resonance oscillations in metals known as
the Azbel’-Kaner effect [32,33] (see also overview of this effect
in Ref. [34]).

Appearance of rare isolated impurities in 2DEG can have
various origins, interface roughness, impurity atoms, or growth
induced inhomogeneities [35]. There seems to be no consensus
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at the moment on the type of impurities that determine the
transport time scales in ultrahigh quality samples; in our studies
we thus consider a generic impurity model as a circular positive
or negative potential on a radius rd being smaller than the
cyclotron radius Rc. All other scattering contributions are
incorporated into an effective scattering time τ . We consider
the limit of an isolated impurity; this assumption is reasonable
as long as the cyclotron radius Rc is smaller than the average
distance between impurities n

−1/2
i where ni is the density of

impurities. Assuming that all the scattering originates from
such localized impurities we obtain an upper bound (as other
sources of scattering are present) ni � (λF �e)−1 where we
assumed that the Fermi wavelength λF gives the scattering
cross section impurities and �e is the elastic mean free path.
Taking the parameters for ultrahigh mobility sample used in
Refs. [10,11] we find that the isolated impurity condition
Rc(λF �e)−1/2 < 1 is then met when the magnetic field B is
larger than 0.03 T; if we take on the other hand high density
samples [13] we find instead B > 0.25 T. Interestingly in both
cases this calculation gives a correct estimate of the lowest
magnetic field at which zero resistance states were observed
in the experiments.

II. MODEL DESCRIPTION AND DYNAMICS:
QUANTUM AND CLASSICAL THEORY

We consider an isolated impurity with a rotation invariant
potential Vi(r) embedded in a surrounding 2DEG under a mag-
netic field B giving rise to cyclotron motion with a frequency
ωc = qB/m and a cyclotron radius Rc = vF /ωc (m and q are
the carrier effective mass and charge, vF and EF = mv2

F /2 are
the Fermi velocity and energy, r is the radial distance from the
impurity center). A circularly polarized irradiation induces an
additional time-dependent potential Vac(t) = −qEacr cos(θ −
ωt) where ω is the microwave frequency and θ is the polar
angle. The system Hamiltonian is the sum of static and time-
dependent contributions and reads:

Ĥ (t) = Ĥ0 + Vi(r) − qEacr cos(θ − ωt), (1)

where Ĥ0 is the charge kinetic energy in a magnetic field. This
time dependent Hamiltonian can be analyzed using general
Floquet-states theory, however as the static part of the Hamil-
tonian has rotational invariance it is more convenient to move
first to the rotating frame where the Hamiltonian becomes
stationary. This transformation is analogous to the rotating
frame approximation in spin resonance or in atomic physics
which becomes exact for a circularly polarized excitation.
For this purpose we introduce the rotating frame angle θR =
θ − ωt and seek the solutions of the Schrödinger equation
in the form ψ = |ψR(r,θR)〉e−iεt/h̄. The wave function ψR
then obeys a stationary Schrödinger equation with a modified
Hamiltonian ĤR:

ĤR = Ĥ0 + Vi(r) − qEacr cos θR − ωl̂z, (2)

where l̂z is the orbital momentum operator defined from
the position of center of the impurity; by construction it
is conjugated to the phase θR. The eigenfunctions ψn of
this Hamiltonian ĤR give the Floquet wave functions in the
laboratory frame ψ = ψn(r,θR = θ − ωt); they correspond to
wave functions rotating at frequency ω. Since the rotating

frame Hamiltonian is stationary it is possible to analyze
the properties of the Floquet eigenstates using the technique
of Wigner functions and associated Husimi representations
[36] that allows us to draw a parallel between the quantum
evolution and conceptually simpler classical dynamics. For
example, we will show that the classical description leads
to a straightforward description of the periodic dependence
of transport properties on the frequency ratio J = ω/ωc. The
methods of numerical solution of the Schrödinger equation and
Newton dynamics of the Hamiltonian (2) are described in the
Appendix Sec. 1, Sec. 2, Sec. 3, and Sec. 4.

We note that in the rotation frame the initial time dependent
Hamiltonian (1) is transformed to the stationary conservative
Hamiltonian (2). The transformation is exact and simplifies the
numerical studies of this system. However, the time dependent
effects directly present in the initial laboratory frame play
a very important role. Indeed, as we will see below, the
microwave field leads to emergence of chaos and kinetic
energy growth of electron in a vicinity of impurity. This energy
growth is stabilized by the dissipative effects present in 2DEG.
Due to these reasons the time dependent perturbation is of
principal importance and this justifies the Floquet theory term
used in this paper. The stationary form of the Hamiltonian
(2) is rather formal since due to the possibility of unlimited
positive values of orbital momentum lz the kinetic electron
energy can be arbitrary high. The use of circular polarization
allows us to perform efficient numerical analysis of classical
and quantum evolution being rather complicated for numerical
analysis with nonlinear dynamics and many quantum levels.
Within our Floquet analysis we are able to model numerically
the dissipative processes of the kinetic classical theory and
quantum master equation for density matrix. The progress with
numerical simulations allows us to understand the nontrivial
features of polarization dependence established experimen-
tally in Refs. [25,28,29].

Figure 1(a) shows the Husimi representation of a typical
eigenstate of ĤR for a hard disk potential with radius rd/�B =
1 (we introduce the magnetic length �B = √

h̄/mωc) under
microwave irradiation at J = 2.7 and microwave excitation
amplitude qEac�B/h̄ωc = 0.3. It gives the semiclassical prob-
ability density in the phase space lz,θR in the vicinity of the
impurity at r ≈ rd . It is computed by numerical diagonalization
of the Hamiltonian ĤR and using the approach described in
Refs. [37,38] and Appendix Sec. 2. The Husimi density high-
lights a resonant structure with a significant variation of orbital
momentum lz with the conjugated phase θR . The variation of
orbital momentum is due to the action of the microwave field
which spoils orbital momentum conservation existing at Eac =
0. On top of the quantum Husimi distribution we have overlaid
the corresponding Poincaré section of classical orbits [39]
obtained from the classical dynamics described by HR. The re-
sults demonstrate that the resonant structure in the lz,θR plane is
accurately reproduced by classical dynamics even if the radius
of the disk is comparable with the quantum magnetic length.

The resonant structure in phase space revealed by the
Husimi distribution and associated Poincaré section can be
understood by computing the change in dynamical variables
after each free evolution cyclotron period and subsequent
collision with the impurity. We assume that the impurity
potential Vi(r) vanishes outside a characteristic typical radius
rd � vF /ωc and note by α the polar angle of the velocity in
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FIG. 1. Left panel (a): density of Husimi function at the disk radius r = rd shown by color (maximum for yellow/white; minimum zero for
violet/black), Poincaré section for classical Hamiltonian dynamics of (2) is drawn at the moment of collision with disk and is shown by green
dots; here J = 2.7, rd/�B = 1, qEac�B/h̄ωc = 0.3 at energy εF /h̄ωc ≈ 40. Middle panel (b): classical Poincaré section of the collision map
(5) at parameters of panel (a). Right panel (c): geometry of collision.

the laboratory frame when an electron leaves the interaction
region r � rd . The images of typical trajectory collisions with
the disk can be found in Ref. [23] [see also Fig. 1(c) and Fig. 8
in Appendix]. Without microwaves the change of α to its value
ᾱ, taken after a cyclotron orbit rotation and a recollision event
with the impurity, can be expressed as

ᾱ = α + σ (lz), (3)

where σ is a function depending on the impurity potential and
on the orbital momentum giving the impact parameter with the
impurity (the geometry of collision is shown in Fig. 1(c)). For a
hard disk impurity ᾱ = α + 2χ − π , where χ = α − θ is the
relative angle between the velocity and the impact position; χ

is related to orbital momentum through lz = mvF rd sin χ . A
more general expression of σ (lz) valid for a step potential of
fixed height Ui is given in Appendix Sec. 4.

Without microwaves the orbital momentum lz and the total
energy H0 are conserved. In the presence of microwaves
however HR is the only integral of motion. The change of
orbital momentum during the free-evolution time between two
successive collisions can thus be expressed as:

δlz = δH0

ω
= 1

ω

∫ 2π/ωc

0
qEac(t)v(t)dt

= qvF Eac

ω(ω − ωc)
[sin αR − sin(αR − 2πJ )], (4)

where we introduced αR the velocity polar angle in the rotating
frame αR = α − ωt, J = ω/ωc. During the short collision
with the impurity we can neglect the microwave field so that in
this approximation the orbital momentum is conserved in the
interaction region. Combining the two previous equations we
find a symplectic map [39,40] describing the evolution of the
velocity polar angle αR and conjugated orbital momentum lz
from one collision to another:

l̄z = lz + F [sin αR − sin(αR − 2πJ )],

ᾱR = αR + σ (l̄z) − 2πJ, F = qvF Eac/[ω(ω − ωc)]. (5)

Here bars mark the dynamical values of variables after one
map iteration (one collision) and σ is a function describing

the change in the angle of the velocity after collision with
an impurity with an impact parameter given by lz. For col-
liding trajectories, the orbital momentum is given by lz =
mvF rd sin χ where χ is the angle between the impact position
on the impurity and the impact velocity (see Appendix Sec.
4). For a hard disk potential we find σ = 2χ − π whereas
for a strong attractive potential σ is π shifted and is given
by σ = 2χ . The behavior of the map then depends on the
dimensionless force ε = qEac/[mrdω(ω − ωc)] which can be
strong even for weak amplitudes of the microwave field since
rd appears in the denominator. More details on map derivation
are presented in Appendix Sec. 4.

This map gives a good description of the dynamics leading
to practically the same Poincaré section as exact Hamiltonian
evolution [see Fig. 1(b)] and allows us to understand the
physical origin of the oscillatory dependence on the parameter
J = ω/ωc. In the frame of the free-particle moving under mag-
netic and microwave fields, the microwave leads effectively
to a vibration of the impurity position; the change in orbital
momentum thus depends on the position of the impurity at
the moment of recollisions. In the limit of a small impurity
rd � Rc = vF /ωc the time between recollisions will be given
by the cyclotron period, and the position of the impurity
in the vibrating frame will depend periodically on J . For
integer values of J the position of the impurity does not
change from collision to collision leading to a vanishing kick
δlz ∝ [sin αR − sin(αR − 2πJ )] as derived in Eq. (4).

This result may seem surprising from a quantum point of
view, since one could expect a strong effect of microwave
at integer harmonics of the cyclotron resonance as it would
to correspond to resonant absorption of photons between
separated Landau levels. This issue can be elucidated through
the computation of the absorbed microwave power in both
quantum and semiclassical cases using the quantum Floquet
master equation and classical kinetic equation and approxi-
mate map calculations. This calculation will also reveal the
connection between the absorbed microwave power and an
effective rotating dipole that appears due to the formation of a
charge density vortex around the impurity in the rotating frame.
This will then give some insight on the possible origin of the
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so far unexplained circular polarization dependence in MIRO
experiments.

III. MASTER AND KINETIC EQUATIONS

The Floquet eigenstates form a natural basis to write the
master equation which describes excitation of the 2DEG by
microwaves and relaxation to equilibrium [41,42]. As we
would like to focus on the physical properties of the Floquet
eigenstates around an impurity, we assume a simplified master
equation in a relaxation time approximation (more sophisti-
cated relaxation models have been studied in the limit of semi-
classical quantum kinetic theory but without computing the
exact Floquet states [22]). The master equation for the density
matrix ρ̂(t) in the relaxation time approximation then reads:

∂ρ̂

∂t
= − i

h̄
[Ĥ (t),ρ̂] − ρ̂ − ρ̂eq

τ
. (6)

The equilibrium density matrix ρ̂eq is the equilibrium
Fermi-Dirac distribution for the Hamiltonian without mi-
crowaves. Following general Floquet theory, we write this
equation in the basis of the Floquet eigenstates. In our problem
those are the eigenfunctions |ψ (n)

R 〉 of the rotating frame
Hamiltonian ĤR. We find that the matrix elements ρ̂nm =
〈ψ (n)

R |ρ̂|ψ (m)
R 〉 obey the following equation:

∂

∂t
ρnm + i

h̄
εnmρnm = −ρnm − ρeq,nm

τ
, (7)

where εnm = εn − εm is the difference of associated quasiener-
gies.

The quantity ρeq,nm = 〈ψ (n)
R |ρ̂eq |ψ (m)

R 〉 can a priori depend
on time due to the time dependence of the Floquet states
ψR. However these states are stationary in the rotating frame
θR = θ − ωt and the steady state Hamiltonian Ĥ0 is rotation
invariant. Thus, as it can be shown by an explicit calculation,
the matrix elements ρeq,nm are actually independent of time.

At large times t � τ , the density matrix ρ̂ converges to a
stationary solution in the rotating frame basis:

ρnm = ρeq,nm

1 + i
h̄
εnmτ

. (8)

This steady state density matrix can be used to compute several
physical properties: microwave absorption, redistribution of
charges around the impurity, induced rotating dipole appearing
near the impurity due to the charge redistribution in the rotating
frame.

To deepen our understanding of the link between quantum
and classical dynamics, we also solve the associated kinetic
Vlasov equation for the distribution function in the classical
phase space:

∂f

∂t
+ {f,H (t)} = −f − feq

τ
, (9)

where we introduced the Poisson brackets defined as

{f,H } = ∂f

∂r
∂H

∂p
− ∂f

∂p
∂H

∂r
. (10)

As in the quantum case, the kinetic equation becomes time
independent in the rotating frame. In the rotating frame the
distribution function fR is found numerically by integrating

lo
g 1

0
P

J = ω/ωc

ωcτ = 10

ωcτ = 100

Udisc = −90h̄ωc
Udisc = 90h̄ωc

Udisc = −90h̄ωc
Udisc = 90h̄ωc

FIG. 2. Absorption power P (in arbitrary units) is shown as
a function of J = ω/ωc for rd/�B = 2 at qEac�B/h̄ωc = 0.1 and
εF /h̄ωc = 60. Data are shown for two relaxation times with ωcτ =
10,100 (different signs of J correspond to different signs of circular
polarization, ωcτ = 10 and 100 datasets are vertically shifted for
clarity). Quantum results are obtained from the master equation on
the density matrix; they are compared with classical results from
the kinetic equation. An excellent agreement between quantum and
classical results is observed for a repulsive potential. For an attractive
potential the agreement is only qualitative for the kinetic equation
giving the same phase of microwave absorption oscillations as the
quantum calculation.

the characteristic equation dfR
dt

= − fR−feq

τ
along trajectories in

this frame. The details of numerical simulations of the quantum
master equation and the classical kinetic equation are given in
Appendix Secs. 1,3,5.

IV. MICROWAVE POWER ABSORPTION BY ELECTRONS
INTERACTING WITH AN IMPURITY

The microwave power absorbed by electrons interacting
with an isolated impurity can be obtained by averaging the
operator v · qEac in the rotating frame. In the quantum case,
this is done by computing the trace:P = Tr(ρ̂v · qEac), for the
Vlasov equation a similar procedure, described in Appendix,
is employed.

The dependence of the absorbed power P on J is shown in
Fig. 2 for a strongly repulsive (Udisc > EF > 0) and attractive
(Udisc < −EF < 0) impurity potential; different signs of J

correspond to different signs of circular polarization. The
absorbed power shows a resonance at J = 1 which corre-
sponds to cyclotron resonance (which appears only for the
active polarization J > 0), P then decays as expected from
an usual Drude model but presents additional oscillations
with a period �J = 1 which become more pronounced as
ωcτ grows. These oscillations appear due to the periodic
structure in J in Eq. (5) and correspond to MIRO like
oscillations of the absorbed microwave power; they are related
to consecutive collisions between an electron and impurity
(memory effects) [23,24,43]. As expected at small amplitudes
of microwave field the absorbed power P(J ) is proportional to
Eac

2, we also checked that the envelope of the oscillations
is well approximated by the classical Drude formula P =
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(q2/m)τ/[1 + τ 2(ω − ωc)2]Eac
2 (see Fig. 13 in Appendix

Sec. 6 and discussion of parameter scaling dependence given
there; details of numerical computations of absorption power
are given in Appendix Sec. 6). For the repulsive impurity
the results of the quantum master equation and the classical
kinetic theory are in quantitative agreement; the agreement
is less accurate for attractive impurities but the correct peak
positions are reproduced by the kinetic equation even in this
case. It is likely that the quantum dynamics inside an attractive
impurity has stronger deviations from the classical behavior
when its depth is comparable with the Fermi energy EF .
The good overall agreement between quantum and classical
simulations holds even if the impurity radius rd is only two
times larger than the magnetic length (in Appendix we show
that this trend continues even for smaller rd ). An interesting
property that appears in Fig. 2 is that the oscillations in
microwave absorption are phase shifted between the repulsive
and attractive potentials; this shift is related to the additional π

contribution that appears in Eq. (5) for the attractive potential.
According to this equation the change of orbital momentum
due to the action of the microwave field over a cyclotron period
vanishes for integer values of J . This leads to an absorption
dip at integer J values with different lineshapes depending
on the sign of the potential of the impurity. For a repulsive
potential (at ωcτ = 100) integer J correspond to an absorption
minimum with maxima occurring close to half integerJ values.
For the attractive potential, the phase π shift in the map due to
the interaction sign tends to move the position of the maxima
near integer values which leads to a characteristic lineshape
with a double peak structure centered around integer values.
We note that earlier calculations of the absorbed power in
the MIRO regime for the case of a repulsive potential gave
similar results [43] for the position of absorption peaks/dips;
Eq. (5) allows us to generalize these results to the case of an
arbitrary electron/impurity interaction. We also note that the
results for the absorption dependence on J obtained from the
kinetic equation are also well reproduced by the symplectic
map description (5) (see Fig. 9 in Appendix Sec. 5). The
dependence P(J ) is not sensitive to variation of rd/�B as
long as rd is larger than �B ; in the limit rd � �B additional
quantum oscillations appear around the average semiclassical
absorption curve but those will probably ensemble average to
zero in a macroscopic sample (see Fig. 10 in Appendix Sec. 5).

In Fig. 2 we choose to keep the cyclotron frequency ωc

constant and to vary the microwave frequency ω. This is
more convenient for quantum numerical simulations since
the variation of ωc change the number of Landau levels at
the Fermi energy producing additional complications. The
classical results are sensitive to the ratio ω/ωc, as well as the
experimental MIRO results (see, e.g., Ref. [22]) also show
the dominance of the dependence on the ration ω/ωc. A
good agreement between classical and quantum numerical
simulations gives the additional justification for variation of
ω with fixed ωc.

V. CHARGE DENSITY DISTRIBUTION INDUCED
BY MICROWAVE FIELD

The absorbed power P from the external microwave field
creates a charge redistribution around an impurity. To see this

δn
e
/n

e
(%

)

x/�B, y/�B

FIG. 3. Charge density ρ(x,y) dependence on x (at y = 0) and
on y (at x = 0) obtained from the quantum master equation and the
classical kinetic equation presented in the rotation frame. Here the
system parameters are the same as for the repulsive case in Fig. 2
with J = 2.7 for rd/�B = 2 at qEac�B/h̄ωc = 0.1 and εF /h̄ωc = 40
with a relaxation time ωcτ = 10.

it is convenient to present this power P(Eac) in the following
form (see also Appendix Sec. 5):

P = Tr(ρ̂v · qEac) ≈ ωTr(ρ̂r) · (ez × qEac) . (11)

This formula clearly shows that in the rotating frame there is an
appearance of a stationary dipole moment of charge induced
by Eac. Thus in the laboratory frame we have a rotating dipole
which creates a correction to the field acting on electrons.

The stationary solutions of the master equation (8) and the
kinetic equation (9) allow us to compute the charge density
variation induced by Eac. The charge density distribution in
the presence of microwave field is shown as a function of x and
y coordinates in the rotating frame in Fig. 3. In the vicinity of
the impurity we have strong quantum Friedel like oscillations
of density [44]. The average density lineshape from the master
equation (6) calculation is well approximated by results from
the classical kinetic equation (9). We note that the amplitude
of density variation increases near the impurity in both cases
reaching rather high values of 1–2 percent of the total electron
density. The steady-state relative variation of charge density
δn/n0 in the whole (x,y) plane is shown in the rotating frame
in Fig. 4 revealing the formation of a charge density vortex.
Since this structure is accurately reproduced from the classical
dynamics, we attribute it to a nonlinear resonance between
the microwave frequency and collision frequency with the
impurity which is well described by the Poincaré section of
Fig. 1.

The results of Fig. 3 show that in the laboratory frame
microwave driving creates a rotating charge density vortex
that forms a rotating dipole moment. This dipole moment will
create a rotating electric field that leads to a renormalization
of the external field in the vicinity of the impurity. We now
address the issue of the calculation of this renormalized field
from the rotating density profiles.
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FIG. 4. Relative charge density variation ρ(x,y) = δn/n0 (expressed in percent) shown in (x,y) plane in the rotation frame where a
microwave field is directed along the x axis. Left panel shows the results of quantum simulations with the master equation; left panel show the
results of the classical kinetic equation. The parameters are the same as in Fig. 3.

VI. MIRO OF SHORT RANGE FIELD NEAR IMPURITY

In the absence of screening, the rotating charge density
vortex δn(r) around the impurity creates an electric field that
is simply given by the Coulomb integral

Eee(r) = q

4πε0εr

∫
δn(r′)

r − r′

|r − r′|3 d2r ′. (12)

Within a weakly-interacting electron approximation, this cor-
responds to a Hartree type contribution to the rescaled external
field. We developed our Floquet theory for noninteracting
electrons; it is thus difficult to estimate the exact form of the
interaction related corrections. Qualitatively the strength of
this Coulomb field may be reduced by screening from other
electrons, however the characteristic length scale of the rotating
charge density vortex is of the order of the cyclotron radius. A
full-screening scenario seems thus unlikely as it is difficult to
justify how the electron gas could provide a complete screening
on this length scale at a frequency ω which is several times
larger than ωc, we thus neglect screening effects here and we
present numerical results for the unscreened Coulomb integral
given by Eq. (12).

To characterize the strength of the field renormalization
we introduce the enhancement factor η = Eee/Eac, which is
the ratio between the amplitude of the correction field from
Eq. (12) to the amplitude of the external driving Eac. The
logarithm of this enhancement factor is shown in Fig. 5 on
the (x,y) plane using the data for the master equation density
distribution from Fig. 4. These results clearly show that the
field can be enhanced by an order of magnitude in the vicinity
of impurity, while far from the impurity the enhancement
factor goes to zero as expected. The strongest enhancement
is obtained at the boundary of the impurity and reaches two
orders of magnitude.

Checking the parametric dependence of the rotating den-
sity vortex in the semiclassical model, we find that δn(r)
depends only weakly on rd/Rc and ωτ in a broad parameter
range. This allows us to estimate the typical value of the
enhancement as η = Eee/Eac ∼ q2ne/(mωεvF ) � 6 for typ-
ical values ω = 2π × 100 GHz, ne = 3.5 × 1011 cm−2, and
dielectric constant εd = 10ε0. The obtained order of magnitude
is consistent with the values of η in Fig. 4 at a distance of

around a cyclotron radius away from the impurity, an even
larger enhancement occurs at smaller distances. The estimate
for η can be cast in a form that highlights its dependence
on rs the usual interaction strength parameter in 2DEG η ∼
rsEF /h̄ω [we remind that rs = (πnea

2
0)−1/2 where a0 = 4πεd h̄2

mq2

is the Bohr radius, and q is the electron charge]. A detailed
discussion of scaling dependence on system parameters is
given in Appendix Sec. 6 with Figs. 11–14.

The large values of the field enhancement parameter η

show that a full interacting electron calculation is required to
obtain consistently the field acting on the electrons. Our results
suggest however the following qualitative picture: The external
microwave field Eac generates a strong effective circular
polarized microwave field in the vicinity of the impurity which
is significantly larger than the external field Eeff � Eac. This
field Eeff is maximal at r = rd and decays to the external field
on a typical scale reff � Rc. It has the same circular polarization
as the driving microwave field since it is created by a charge
density vortex that rotates at the microwave frequency ω.

FIG. 5. Variation of the enhancement factor Eee/Eac of the
amplitude of effective field acting on an electron due to the density
variation in the (x,y) plane (see Fig. 4 left panel) induced by the
external microwave field. The results, shown in the rotating frame, are
obtained from the quantum master equation and the relations given
by Eq. (12).
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FIG. 6. Dependence of resistivity Rxx (in arbitrary units a.u.) on J = ω/ωc. Left panel: the case of initial external microwave field; right
panel: the case of screened renormalized field acting on a length scale reff/Rc = 0.3. The results are obtained from the numerical simulation of
classical Hamiltonian dynamics of electrons in the presence of impurities with Gaussian potential Uamp exp(−r2r−2

d ) with a density nir
2
d = 10−3,

an amplitude Uamp/εF = 1.5, and a characteristic radius rdω/vF = 0.1. Here LH and RH correspond to left and right hand microwave (MW)
polarization, respectively.

We are thus justified to consider a model where the driving
microwave field is localized around the impurity instead of
being homogeneous in space as considered so far in most
models (with the exception of work [31] which also considered
a strongly inhomogeneous field but only close to metallic
contacts). We show through numerical simulations that taking
into account the nonhomogeneity of the microwave field can
indeed solve the puzzle of the polarization independence
[25,28]. For this purpose we use the approach of Ref. [24]
computing the resistivity Rxx for a sample of finite size with a
fixed density of impurities using the Hamiltonian dynamics
for electrons. The details of these simulations are given in
Appendix Sec. 6.

In Fig. 6 we compare the dependence of resistivity Rxx ,
on J for the case of microwave field homogeneous in the
whole space Eac (left panel) and for the case of a model
screened microwave field Eac exp(−r2r−2

eff ) which decays with
a Gaussian profile as function of the distance from the impurity
with a characteristic range reff ≈ Rc/5. The main result of
these simulations is a qualitatively different dependence of
Rxx on positive and negative J values. For a microwave field
homogeneous in space there is a strong asymmetry between
positive and negative circular polarization. In contrast, to a
screened microwave field localized in a vicinity of impurity
in a range reff ∼ rd � Rc there is no dependence of the sign
of polarization (sign of J ) in agreement with the experimental
results reported in Refs. [25,28].

The origin of the absence of sign dependence on J for a
localized field is rather simple: The range of the field is much
smaller then the cyclotron radius (reff ∼ rd � Rc) so that the
energy change takes place only near impurity and the cyclotron
resonance appearing in the kick amplitude F ∝ 1/(ω − ωc) in
(5) is absent. In fact the kick amplitude is determined only by a
time interval �teff = reff/vF of interaction of change with the
field Eeff near impurity. It can be estimated as in (5) with F ≈
qEeffreff/vF being independent of the sign of polarization. In
a certain sense we obtain a screened field near impurity. This
situation is similar to the Azbel’-Kaner effect for cyclotron
resonance absorption in metals. Due to the skin effect, the
microwave field is screened in the bulk of the metal on a length

scale much smaller than the cyclotron radius. The electron
energy change induced by the interaction with the microwave
field then takes place only in a vicinity of the metal surface
[32,33]. In this case cyclotron resonance occurs not only at
the cyclotron frequency but at integer harmonics (similarly
to MIRO) and there is no polarization dependence since the
interaction range is much smaller than the cyclotron radius.

We have shown that the rotating charge density vortex
around the impurity strongly renormalizes the external mi-
crowave field since it rotates at the frequency of the external
excitation. It is interesting to know if a renormalization of the
static potential created by the impurity is present as well. In a
mean field Hartree type approximation, such a renormalization
could be created by the time averaged density profile of the
rotating vortex. The time average in the laboratory frame
corresponds to an average over the polar angle in the rotating
frame. For the semiclassical calculation in Fig. 4(b) the charge
redistribution δne seems antisymmetric with respect to the
origin and numerical integration over angles gives a vanishing
result within numerical accuracy. The situation is different in
the quantum case where a closed form analytic expression for
the angle averaged density can be derived (see Appendix). The
time (angle) averaged density distribution 〈δne(r)〉 obtained
from the quantum calculation for the parameters of Fig. 4(a) is
shown in Fig. 7, while the time average value of 〈δne(r)〉/ne

are smaller compared to the typical values for the charge
density vortex they grow with microwave power. Compared
to regular equilibrium Friedel oscillations that decay on the
scale of the Fermi wavelength, the time averaged density
profile 〈δne(r)〉/ne induced by microwave irradiation spreads
over a much larger scale given by the cyclotron radius. In
principle it is thus possible to enter a regime where the collision
cross section of the impurity is mainly determined by the
long range electrostatic potential created by 〈δne(r)〉 rather
that by the bare short range potential of the impurity. A
quantitative treatment of this scenario is beyond the scope of
this paper where electron-electron interactions are not taken
into account at the quantum level. In Ref. [23] we suggested
an alternative scenario to the macroscopic domain formation
for ZRS in semiconducting heterostructures, where the charge
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FIG. 7. Relative variation of the time averaged electron charge
density 〈δne(r)〉/ne induced by a microwave irradiation, as a func-
tion of radial distance r from the impurity. The results are shown
two microwave fields εac = 0.1 and 0.2 (εac = qEac�B/h̄ωc). Other
parameters are as in Fig. 3 (rd/�B = 2, EF /h̄ωc = 40). ωcτ = 100.

redistribution around an isolated sharp impurity would create
a smooth cloaking potential around the impurity allowing an
adiabatic passage around the impurity in which the momentum
scattering would be strongly suppressed. An advantage of such
a scenario compared to the more conventional macroscopic
domain formation is that charges do not have to overcome
macroscopic distances to create the electric field domains since
the charge redistribution takes place on the scale of Rc around
short range impurities. These calculations thus show that
this scenario is plausible within the noninteracting electrons
quantum model. We note that the experimental and theoretical
results obtained in Ref. [45] also point to the importance of
electron-electron interactions for the MIRO effect.

VII. DISCUSSION

We preformed extensive numerical simulations of electron
dynamics in a vicinity of impurity in the presence of a circular
polarized microwave irradiation. Our studies demonstrate that
a description based on the classical Newton dynamics provides
a good approximate description being close to the exact
solution of the Schrödinger equation in the regime when the
size of impurity rd is larger than the magnetic length �B and
the Fermi energy contains many quanta of cyclotron frequency
(EF � h̄ωc). We also show that the classical dynamics is well
described by the collision symplectic map which allows us to
understand the origin of periodic dependence of MIRO on the
frequency ratio J = ω/ωc and disappearance of microwave
effect at integer J values.

The absorption power of charges in an impurity vicinity
is obtained from the numerical solution of quantum master
equation and the classical kinetic, or Vlasov, equation which
have approximately similar average dependence on system
parameters, a part of Friedel like oscillations present in the
quantum case. The results obtained from the master and kinetic
equations show the emergence of a strong charge redistribution
created by a microwave irradiation taking the form of a
rotating charge density vortex. Thus the irradiation generates
a rotating dipole field localized near impurity. The strength
of this induced localized field is significantly larger than the

external microwave field, enhancing the external field near the
impurity. This strong inhomogeneity of the microwave field
results in the absence of polarization dependence and absence
of the cyclotron resonance in agreement with the experimental
results reported in Refs. [25,28]. This effect is similar to the
Azbel’-Kaner effect [32,33] for resistance magneto-oscillation
induced microwave screened in a vicinity of metal surface.

At the final stage of this work there appeared the MIRO
results for electrons on a liquid helium under circularly
polarized microwave excitation [46]. These experimental re-
sults show that the resistivity changes significantly with the
sign of polarization in contrast to the results for 2DEG in GaAs
[25,28,29] where MIRO are almost independent on the sign
of the circular polarization. Since the electron densities for
electrons on helium are several orders of magnitude smaller
than in GaAs 2DEG, the field amplification effects discussed
here are expected to be negligible. The difference in circular
polarization dependence between the two systems could thus
be a hint of the importance of external field renormalization in
high density electron systems.
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APPENDIX

1. Numerical solution of quantum master equation

a. Stationary Schrödinger equation without microwaves

The classical Lagrangian/Hamiltonian read:

L = m

2
(ṙ2 + r2θ̇2) − mωc

2
r2θ̇ − Uw(r) (A1)

H0 = p2
r

2m
+ 1

2mr2

(
pθ + mωcr

2

2

)2

+ Uw(r) (A2)

= p2
r

2m
+ p2

θ

2mr2
+ ωc

2
pθ + mω2

c r
2

8
+ Uw(r), (A3)

where r,θ are polar coordinates,Uw(r) is the impurity potential,
and

pθ = mr2θ̇ − mωcr
2

2
. (A4)

In the absence of disk potential, the angular momentum can be
related with the geometrical parameters of the trajectory:

pθ = mωc

R2
L − L2

c

2
, (A5)

where RL is the Larmor radius and Lc is the distance from the
guiding center to the coordinates origin.

We note that we cannot obtain the Schrödinger equation
directly from quantization of this Hamiltonian; this seems due
to the ill-defined nature of the operator p̂r in two dimensions
[47]. Instead the eigenvalue equation takes the following form
which comes from rewriting the Schrödinger equation in
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cylindrical coordinates [48]:

Ĥ0ψ = − h̄2

2m

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂θ2

]

− ih̄ωc

2

∂ψ

∂θ
+ mω2

c r
2

8
ψ + Uw(r)ψ (A6)

= Eψ. (A7)

We introduce

ψ(r,θ ) = χ (r)√
r

eiLzθ

√
2π

. (A8)

This leads to a 1D-Schrödinger equation on χ (r):

− h̄2

2m

[
d2χ

dr2
+ 1 − 4L2

z

4r2
χ

]
+ h̄ωcLz

2
χ

+ mω2
c r

2

8
χ + Uw(r)χ = Eχ. (A9)

We introduce dimensionless units: for length r = x�B =
x
√

h̄
mωc

and for energy E = εh̄ωc. In these units

−1

2

d2χ

dx2
+ 4L2

z − 1

8x2
χ + Lz

2
χ + x2

8
χ + Uw(x)χ = εχ.

(A10)

We want to express this equation as a function of the quasi-
classical parameters; we thus use the relation:

pθ = mωc

R2
L − L2

c

2
= h̄Lz (A11)

Lz = nL(1 − S2), (A12)

where we used RL = �B

√
2nL and introduced the parameter

S = Lc

RL

. (A13)

The Schrödinger equation then becomes:

−1

2

d2χ

dx2
+ 4n2

L(1 − S2)2 − 1

8x2
χ + nL(1 − S2)

2
χ

+ x2

8
χ + Uw(x)χ = εχ, (A14)

where nL is the Landau level and S = Lc/RL. The minimum
Xm of the effective potential energy in Eq. (A10) reads X4

m =
4L2

z − 1. Using Eq. (A11) we find that collisions with the
impurity (in a semiclassical approximation) occur only for
orbital momenta lz in the range:

lmin = 2nL − (√
2nL + rd�

−1
B

)2

2
(A15)

lmax = 2nL − (√
2nL − rd�

−1
B

)2

2
, (A16)

where nL = εF /h̄ωc; this result is useful to estimate the range
of orbital momenta that have to be included in the quantum
calculation.

b. Schrödinger equation in the rotating frame

The time dependent potential for a linearly polarized field
reads:

Vac = −Facr cos θ cos ωt. (A17)

In a circularly polarized field we find:

Vac = −Facr cos (θ − ωt) = −Facr cos φ, (A18)

where φ = θ − ωt , since the potential then depends only on φ

we first concentrate on the circularly polarized case.
We now seek solutions of the Schrödinger equation in the

rotating wave form:

ψ = ψ(r,φ)e−iEt/h̄. (A19)

The Schrödinger equation reads:

ih̄
dψ

dt
= −ih̄ω

∂ψ

∂φ
+ Eψ = Ĥψ (A20)

Ĥψ = − h̄2

2m

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂φ2

]
− ih̄ωc

2

∂ψ

∂φ

+ mω2
c r

2

8
ψ + Uw(r)ψ − (Facr cos φ)ψ (A21)

which has the form of a stationary Schrödinger equation. We
seek the solution in the form:

ψ =
∑
n,Lz

an,Lz

χn,Lz
(r)√
r

eiLzφ

√
2π

e−iEt/h̄, (A22)

where χn,Lz
(r) are the eigenfunctions of the stationary part of

the Hamiltonian introduced in the first section. This leads to
the Schrödinger equation for an,Lz

:

(h̄ωLz + E)an,Lz

= εn,Lz
an,Lz

−
∑
n′

[F (n,Lz; n
′,Lz + 1)an′,Lz+1

+F (n,Lz; n
′,Lz − 1)an′,Lz−1], (A23)

where we introduced the coefficients

F (n,Lz; n
′,L′

z) = F

2

∫
dr χn,Lz

(r)χn′,L′
z
(r)r. (A24)

The transformation to the rotating frame can also be done
in the classical Hamiltonian:

H = p2
r

2m
+ p2

θ

2mr2
+ ωc

2
pθ + mω2

c r
2

8
+Uw(r) − Facr cos(θ − ωt). (A25)

We introduce the generating function for the canonical trans-
formation:

�(r,Pr,θ,Pφ ; t) = rPr + (θ − ωt)Pφ. (A26)

Then:

Pr = pr , φ = ∂�

∂Pφ

= θ − ωt , pθ = ∂�

∂θ
= Pφ (A27)

H ′ = H + ∂�

∂t
(A28)

= P 2
r

2m
+ P 2

φ

2mr2
+ ωc

2
Pφ + mω2

c r
2

8
+Uw(r) − Facr cos φ − ωPφ (A29)
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which is consistent with the result from quantum mechanics.

c. Quantum master equation

We now consider the following master equation:

∂ρ̂

∂t
= − i

h̄
[Ĥ (t),ρ̂] − ρ̂ − ρ̂eq

τ
. (A30)

The solution of the Schrödinger equation takes the form:

|ψ(t)〉 = ψ(r,θ − ωt)e−iεt/h̄ (A31)

= |u(t)〉e−iεt/h̄, (A32)

where in the last line we recognize ψ(r,θ − ωt) as the time
periodic Floquet wave function |u(t) > and ε is the associated
quasienergy. We now write the master equation in the basis of
the Floquet functions〈

un

∣∣∣∣∂ρ̂

∂t

∣∣∣∣um

〉

= − i

h̄

(
εn〈un(t)| − ih̄

∂

∂t
〈un(t)|

)
ρ̂|um〉

+ i

h̄
〈un(t)|ρ̂

(
εm|um(t)〉 + ih̄

∂

∂t
|um(t)〉

)

−
〈
un

∣∣∣∣ ρ̂ − ρ̂eq

τ

∣∣∣∣um

〉
(A33)

∂

∂t
(〈un|ρ̂|um〉) = −i(εn − εm)〈un|ρ̂|um〉

− 〈un| ρ̂ − ρ̂eq

τ
|um〉, (A34)

where we used

Ĥ (t)|un(t)〉 = ih̄eiεnt/h̄
∂

∂t
(|un(t)〉e−iεnt/h̄) (A35)

=
(

εn|un(t)〉 + ih̄
∂

∂t

∣∣∣∣un(t)〉
)

. (A36)

Introducing more compact notations ρnm =
〈un|ρ̂|um〉, ρeq,nm(t) = 〈un|ρ̂eq |um〉, and εnm = εn − εm,
the master equation becomes:

∂

∂t
ρnm + i

h̄
εnmρnm = −ρnm − ρeq,nm(t)

τ
. (A37)

Writing the expression for ρeq,nm(t):

ρeq,nm(t)

=
∑

ε0(i,Lz)<εF

(∫
(drdθ r)un(r,θ − ωt)∗

χi,Lz
(r)√
r

eiLzθ

√
2π

)

×
(∫

(dr ′dθ ′ r ′)um(r ′,θ ′ − ωt)
χi,Lz

(r ′)∗√
r ′

e−iLzθ
′

√
2π

)

(A38)

=
∑

ε0(i,Lz)<εF

ai,Lz
(n)∗ai,Lz

(m), (A39)

where ai,Lz
(n) are the projections of the Floquet wave function

on the eigenstates of the unperturbed Hamiltonian which were

introduced in the previous section, their expression is:

ai,Lz
(m) =

∫
(dr ′dθ ′ r ′)um(r ′,θ ′ − ωt)

χi,Lz
(r ′)∗√
r ′

e−iLzθ
′

√
2π

.

(A40)

We find thatρeq,nm(t) is time independent; this is a consequence
of the stationary nature of the problem in the rotating frame
and of the isotropic character of the equilibrium density
matrix.

We thus find that in the rotating frame the density matrix
converges to

ρnm = ρeq,nm

1 + i
h̄
εnmτ

. (A41)

The charge density distribution in the rotating frame can be
expressed through the density matrix

ne(r,θR) =
∑
mn

u∗
m(r,θR)ρmnun(r,θR). (A42)

d. Angle (time) averaged density distribution

To simplify notations we note ne(r) = 〈ne(r,θ )〉θ (where we
have omitted the index in θR). We are interested in the mean
electron density averaged over angles/time

ne(r) =
∑
nm

ρnm〈un(r,θ )um(r,θ )∗〉θ . (A43)

For convenience we introduce the notation:

Umn(r) = 〈um(r,θ )∗un(r,θ )〉θ . (A44)

Using the decomposition of the Floquet waves in the
stationary eigenbasis we find:

Umn(r) = <
∑
i,Lz

ai,Lz
(n)

χi,Lz
(r)√
r

eiLzθ

√
2π

×
∑
j,L′

z

aj,L′
z
(m)∗

χj,L′
z
(r)∗√
r

e−iL′
zθ

√
2π

〉θ (A45)

= 1

2π

∑
i,j ;Lz

aj,Lz
(m)∗ai,Lz

(n)
χj,Lz

(r)∗χi,Lz
(r)

r
.

(A46)

With the notation

ne(r) =
∑
nm

ρnmUmn(r) (A47)

and using Eq. (A41) we find a closed form expression for the
angle/time averaged density:

ne(r) =
∑
nm

Umn(r)

1 + i
h̄
εnmτ

∑
ε0(i,Lz)<εF

ai,Lz
(n)∗ai,Lz

(m). (A48)

For a consistency check, we set τ = 0 then

ne(r) =
∑

ε0(i,Lz)<εF

∑
nm

ai,Lz
(m)Umn(r)ai,Lz

(n)∗ (A49)

=
∑

ε0(i,Lz)<εF

1

2π

|χi,Lz
(r)|2

r
(A50)
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due to orthogonality relations
∑

n ai,Lz
(n)∗aj,L′

z
(n) =

δij δLz,L′
z
. Another check is that we must recover the equilibrium

density if there is no microwave, in this case ai,Lz
(n) = δi,Lz;n,

which leads to

∑
ε0(i,Lz)<εF

ai,Lz
(n)∗ai,Lz

(m) = δnm

∑
ε0(i,Lz)<εF

δi,Lz;n (A51)

Unn(r) = 1

2π

∑
i,Lz

δi,Lz;n
|χi,Lz

(r)|2
r

. (A52)

We then have:

ne(r) =
∑

n

Unn(r)
∑

ε0(i,Lz)<εF

δi,Lz;n (A53)

=
∑

ε0(i,Lz)<εF

1

2π

|χi,Lz
(r)|2

r
. (A54)

The previous form is not so convenient for the efficient
calculation of the dependence on r:

ne(r) = 1

2πr

∑
nm

1

1 + i
h̄
εnmτ

∑
ε0(i ′,L′

z)<εF

ai ′,L′
z
(n)∗ai ′,L′

z
(m)

×
∑
i,j ;Lz

aj,Lz
(m)∗ai,Lz

(n)χj,Lz
(r)∗χi,Lz

(r) (A55)

ne(r) = 1

2πr

∑
i,j,Lz

Ni,j,Lz
χj,Lz

(r)∗χi,Lz
(r), (A56)

where

Ni,j,Lz
=

∑
nm

aj,Lz
(m)∗ai,Lz

(n)

1 + i
h̄
εnmτ

∑
ε0(i ′,L′

z)<εF

ai ′,L′
z
(n)∗ai ′,L′

z
(m).

(A57)

e. Typical numerical parameters

We provide a complete list of the numerical parameters
for the charge density vortex calculation in Fig. 4(a) from
the main paper; physical parameters are J = 2.7, rd/�B =
2, Udisc = 90h̄ωc, qEac�B/h̄ωc = 0.1, and εF /h̄ωc = 40 with
a relaxation time ωcτ = 10. We select a finite set of Landau
levels n � NL (NL = 100) and of orbital momenta Lmin �
lz � Lmax with Lmin = −550 and Lmax = 650; for all lz in this
range the one-dimensional Schrödinger Eq. (A10) is solved
using a discretization with a space step (in dimensionless units)
0.02 with a total of 8000 steps. This allows us to find the
NL lowest eigenvalues ε

(0)
n,lz

and eigenvectors χn,lz for each
lz. We then filter the states depending on their distance to
the Fermi level selecting only states with |ε(0)

n,lz
− εF |〈= 8h̄ωc;

this gives a basis with a total of 9400 states. The Schrödinger
Eq. (A23) is then expressed in this basis and diagonalized using
full diagonalization routines from the eigen++ packages. This
allows us to find the density matrix using Eq. (A41) and the
charge distribution in the rotating frame using Eq. (A42). We
have checked that the numerical results are not changed when
the basis is expanded to include more states in the calculation;
another independent check is the good agreement we find with
semiclassical calculations.

2. Husimi distribution

The Husimi function is defined via

H (lz,θ ) =
∑

n

∫ π

−π

dθ ′e−(θ−θ ′−2πn)2/2eilzθ
′
ψrd

(θ ′), (A58)

where ψrd
(θ ′) describes the orbital harmonics of the wave

function near the disk (with radius rd ). For a hard disk potential
the wave function ψ(r,θ ) tends to vanish for r → rd ; we have
thus followed the approach of Refs. [37,38] where ψrd

is given
(up to normalization) by:

ψrd
(θ ) = ∂rψ(r = rd,θ ). (A59)

This expression does not separate incoming and outcoming
plane waves incident on the disk, an approximate separation
can be achieved by defining ψrd

as:

ψrd
(θ ) =

∑
nl ,lz

anl ,lz

1

klz,nl

dRlZ,nl
(r = rd )

dr
eilzθ , (A60)

where the coefficients anl,lz give the components of the wave
function in the eigenbasis RlZ,nl

(r)eilzθ of the system without
microwave field:

ψ(r,θ ) =
∑
nl ,lz

anl ,lzRlZ,nl
(r)eilzθ (A61)

and gives the semiclassical momentum at the collision

klz,nl
= √

2(Elz,nl
− U (lz,rd ))/m (A62)

with Elz,nl
the laboratory frame energy (without microwaves)

corresponding to eigenfunction RlZ,nl
(r)eilzθ . We have checked

that the two approaches give similar results in the limit
rd � rc. In Fig. 1(a) we use the representation (A60) which
captures the separate contribution of the ingoing wave. This
can be seen from the representation of two ingoing/out-going
waves ψ(r) ∝ Ak(exp(ik(r − rd )) − exp(−ik(r − rd ))) with a
certain amplitude Ak and the condition ψ(r = rd ) = 0.

3. Solution of the kinetic equations

The kinetic equation in the laboratory frame reads:

∂f

∂t
+ v · ∂f

∂r
+

[
ωc × v − 1

m
∂rUw + 1

m
F(t)

]
· ∂f

∂v

= −f − f0

τ
(A63)

∂f

∂t
+ {f,H (t)} = df

dt
= −f − feq

τ
, (A64)

where d/dt is the derivative along a trajectory in phase
space. By moving to the rotating frame, the kinetic equation
becomes stationary in the same way as the quantum master
equation; this can be seen for example by making the canonic
transform Eq. (A29) on Eq. (A64). The distribution function
f thus converges to a steady state value f (r̃ ,ṽ) in the rotating
frame coordinates r̃ = re−iωt and ṽ = ve−iωt (r and v are the
position coordinates/velocity in the laboratory frame in the
complex notation r = x + iy and v = vx + ivy). We find the
distribution function by integrating the equation df

dt
= − f −f0

τ

along trajectories in the rotating frame.
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vF eiαc

vF eiᾱ

vF eiᾱ

rde
iθc•

FIG. 8. Geometry of reflection during collision with a disk in case
of attractive and repulsive potentials.

Trajectories outside the impurity are found by exact integra-
tion of the free equations motion in magnetic and microwave
fields, they give the following expression for the change of
charge velocity from ṽi at time ti to ṽf at time tf after a time
interval �t = tf − ti .

ṽf = iFac

ωc − ω
+

(
ṽi − iFac

ωc − ω

)
ei(ωc−ω)�t (A65)

r̃f = r̃ie
−iω�t + iṽi

ωc

e−iω�t (1 − eiωc�t )

+Fac

(
e−i(ω−ωc)�t

ωc(ω − ωc)
− e−iω�t

ωωc

− 1

ω(ω − ωc)

)
(A66)

The time step in the stepping algorithm is adapted as function
of the distance to the impurity and collision times are found
with a Newton method. For repulsive impurities a specular
reflection occurs at the interface, for an attractive potential the
particle is propagated inside the impurity using Eq. (A66) hold
inside the impurity for a box potential.

This procedure allows us to find the distribution function for
energies close to the Fermi energy on a four dimensional grid
of size Nr × Nθ × Nχ × NE where Nr = 160 is the number of
entries for the discretization along the polar distance r,Nθ =
100 the number of entries for the polar angle θ,Nχ = 30
the number of entries for the angle χ between position and
velocity vectors and NE = 30 the number of entries for energy
dicretization centered around the Fermi energy (parameters are
given for calculation of Fig. 4(b) in the main text).

4. Derivation of the collision map

The geometry of elastic collision with a hard disk is shown
in Fig. 1(a) and Fig. 8. The collision angles shown in these
figures are defined as

θc = 2α − θ − 2β + π

αc = α + 2π − 2β, (A67)

where

β = arg

(
1 + i

rd

rc

e−i(θ−α)

)
. (A68)

After the collision r = |r|eiθ , v = |v|eiα, χ = α − θ .
Without microwaves: conservation of angular momentum and
energy implies that χ is conserved during a collision: χ̄ = χ .

New values for α can be found from geometrical arguments

ᾱ = α + σ (lz) (A69)

lz = rdvF sin χ (A70)

σ = 2χ − 2 arctan

⎛
⎝ tan χ√

1 − 2U

mv2
F cos2 χ

⎞
⎠ (A71)

with U the amplitude of the impurity potential [σ,χ ∈
(−π/2,π/2)].

In the special case of a collision with a hard disk repulsive
potential (U → ∞):

σ = 2χ − π (A72)

for an attractive disk potential with a large amplitude (ampli-
tude U → −∞) this gives instead

σ = 2χ. (A73)

The change in kinetic energy during a period due to microwaves
is

Ē − E =
∫ 2π/ωc

0
FacRe(vF eiαR ei(ωc−ω)t )dt

= vF Fac

sin αR − sin(αR − 2πJ )

ω − ωc

, (A74)

however

E � H + ωrd

√
2mH sin χ, (A75)

where H � εF is conserved during the time evolution we thus
find

sin χ̄ − sin χ = Fac

rdω(ω − ωc)
[sin αR − sin(αR − 2πJ )].

(A76)

This leads to the following map:

sin χ̄ = sin χ + Fac

rdω(ω − ωc)
[sin αR − sin(αR − 2πJ )]

ᾱR = αR + 2χ̄ − 2σ (χ̄) − 2πJ. (A77)

Under the approximation sin χ � χ, σ (χ ) = π/2 (hard disk)
we recover the previous (approximate map) for J > 0 (check
J < 0).

We now determine the kinetic energy from the standard map
using the energy conservation in the rotating frame:

H = mv2

2
− FacRd cos φ − ωPφ, (A78)

where mv2/2 is the kinetic energy, φ the angle in the rotating
frame, and Pφ its conjugate momentum. We need to express
the rotating frame variables from the standard map variables,
we find:

φ = αR − χ (A79)

Pφ = mvRd sin χ − mR2
dωc

2
. (A80)
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We thus find an equation on v:

H = mv2

2
− (mωRd )v sin χ − FacRd cos φ + mR2

dωωc

2
.

(A81)

To zero order in Rd,E = mv2/2 = H , going to first order in
Rd we find:

E = H + ωRd

√
2mH sin χ + FacRd cos φ (A82)

at the Fermi energy Fac/(mωvF ) � 1 so we can approximate:

E � H + ωRd

√
2mH sin χ. (A83)

The exact solution is

v = mωRd sin χ +
√

2H + 2FacRd cos(αR − χ ) + m2R2
dω

2 sin2 χ − R2
dωωc. (A84)

We can also determine the trajectory parameters RL,Lc:

RL = 1

|ωc|

√
P 2

r

m2
+

(
Pφ

mr
+ ωcr

2

)2

(A85)

Lc = 1

|ωc|

√
P 2

r

m2
+

(
Pφ

mr
− ωcr

2

)2

, (A86)

where K is the kinetic energy.

5. Calculations of absorbed microwave power

We first provide the derivation of the approximate relation
between absorbed microwave power and the rotating dipole
moment around the impurity.

P = Tr(ρ̂v · qEac) (A87)

= − i

h̄
Tr(ρ̂[r,Ĥ0] · qEac) (A88)

= − i

h̄
Tr(ρ̂[r,ĤR + ωl̂z] · qEac) (A89)

= − i

h̄
Tr(ρ̂[r,ωl̂z] · qEac) + i

h̄
Tr(r[ρ̂,ĤR] · qEac) (A90)

= ωTr(ρ̂r) · (ez × qEac) + O(1/τ ) . (A91)
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FIG. 9. Dependence of the average absorbed microwave power
Pabs for electrons colliding with an impurity for parameters:
qEac/(mωvF ) = 0.013, rd/Rc = 0.13, ωcτ = 100, Udisc = ±2εF , a
good agreement is observed between results from the kinetic equation
and from the collision map (A77).

In numerical quantum master equation calculations the power
was estimated using

P = −qEac · i

h̄
Tr(ρ̂[r,Ĥ0]); (A92)

for high values of ωcτ we found a good agreement between
exact calculations using Eq. (A92) and estimations from the
dipole moment Eq. (A91).

For the semiclassical kinetic equation we can compute the
average absorbed power using the relation:

P =
〈∫

d2v
∫

d2r[H0(v,r) − EF ]
f (r,v,t) − f0(r,v)

τ

〉
t

(A93)

=
〈∫

d2v
∫

d2r
[
mv2

2
+ Uw(r)

]
f (r,v,t) − f0(r,v)

τ

〉
t

(A94)
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FIG. 10. Dependence of the microwave absorption Pabs on J

(arbitrary units) for different values of impurity radius rd obtained
from the quantum master equation Eq. (A92) (full curves) and the
classical kinetic equation Eq. (A93) (dashed curves). Here Udisc =
2εF , qEac�B/h̄ωc = 0.1 and ωcτ = 100. The semiclassical curves
reproduce correctly the results from the quantum master equation. For
rd/�B = 0.5 additional fluctuations appear in the quantum calculation
around an average lineshape which is still well described by the semi-
classical calculation. We attribute those to interference effects which
become more pronounced when the size of the impurity becomes
closer to the Fermi wavelength. In a real sample such fluctuations
would probably be suppressed by ensemble average leaving only an
average value which would correspond to the semiclassical result.
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FIG. 11. Scaling dependence of the microwave absorption Pabs

rescaled by incident microwave power ∝E2
ac on J (arbitrary units) for

different amplitudes of microwave field Eac. The results are obtained
from the quantum master equation Eq. (A92) for a repulsive impurity
potential (Ud = 90h̄ωc) at ωcτ = 100 and 0.01 � Eac � 0.1. The
data show that the scaling Pabs ∝ E2

ac is highly accurate. At the
lowest microwave powers the data become more noisy and start to
show individual resonances; we think that the sharp peaks come from
contributions of individual levels trapped around the impurity that
lead to sharp resonances due to the high ωcτ = 100 value. At higher
microwave power the individual resonances are broadened giving the
semiclassical absorption curve.

= −
〈∫

d2v
∫

d2r
[
mv2

2
+ Uw(r)

]
df

dt

〉
t

(A95)

=
〈∫

d2v
∫

d2r
d

dt

[
mv2

2
+ Uw(r)

]
f

〉
t

(A96)

=
〈∫

d2v
∫

d2r[v · F(t)]f

〉
t

, (A97)

where H0 is the Hamiltonian without microwaves. The ad-
vantage of equation Eq. (A93) is that the function that is
integrated is always positive as opposed to Eq. (A97) which has
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FIG. 12. Dependence of δne(x = 0,y)/ne on y/Rc for differ-
ent impurity diameters, results are shown for the kinetic equation
calculation.
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FIG. 13. Dependence of δne(x = 0,y)/ne on y/Rc for different
values of J = ω/ωc.

cancellations between positive and negative terms; Eq. (A93)
is thus more suited to Monte-Carlo type of evaluation.

Finally it is possible to estimate the absorbed power from the
standard map Eq. (A77), in this case the exact dynamics over
one period is replaced by the approximate map; the distribution
function is then computed by integrating df

dt
= − f −feq

τ
for free

evolution with the map parameters during time 2π/ωc which
separates successive collision events (in the approximation
rd � Rc). The absorbed power is then also computed from
Eq. (A92). The results presented in Fig. 9 show that the
absorbed power obtained from the kinetic equation is in good
agreement with the results based on the approximate collision
map Eq. (A77). This shows how physically relevant quantities
can be computed from the simplified map dynamics. We note
the significant difference between the case of attractive and
repulsive impurity potentials.

The dependence P(J ) at various sizes of repulsive impurity
potential rd is shown in Fig. 10. These data show good
agreement between the quantum and classical simulations until
the impurity diameter 2rd remains larger than the magnetic
length �B .

The results obtained from the quantum master equation (6)
show that at small microwave driving the absorption power
scales as P ∝ Eac

2 (see Fig. 11). The results of numerical
simulations of classical kinetic equation give the same scaling.

6. Estimates for charge density variation

In general we can write the following scaling form for the
charge density vortex:

δne

ne

= f7

(
xR−1

c ,yR−1
c ,rdR

−1
c ,

qEac

mωcvF

,
ω

ωc

,ωcτ,
εF

h̄ωc

)
,

(A98)

where f7 is a dimensionless function of its seven dimensionless
arguments. In the semiclassical limit the parameter εF

h̄ωc
is not

relevant; this parameter describes the amplitude of microwave
induced Friedel oscillations. Also in the linear response regime
δne

ne
∝ qEac

mωcvF
(due to the connection between the rotating dipole

and microwave power absorption this scaling is related to
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the ∝E2
ac scaling for the absorbed power, its accuracy is shown

in Fig. 11). This leads to the following scaling form:

δne

ne

= qEac

mωcvF

f5

(
xR−1

c ,yR−1
c ,rdR

−1
c ,

ω

ωc

,ωcτ

)
, (A99)

where f5 is a dimensionless function of the remaining five
arguments.

Figures 12–14 show the scaling dependence on the re-
maining parameters rdR

−1
c , ω

ωc
, and ωcτ . Figure 12 shows

that δne only weakly depends on rdR
−1
c ; this is perhaps the

most surprising result since the number of electrons colliding
with a given impurity during a cyclotron period is ∼neRcrd ,
this would suggest that δne ∝ neRcrd . Our simulations show
that at least in the semiclassical limit, this argument does not
hold when the map parameter is small ε = qEac

rdω(ω−ωc) � 1 [see

Eq. (A77)]; in this case it seems that the ∝r−1
d dependence

from the kick amplitude in the standard map equations partially
cancels the ∝rd dependence from the collision cross section.
Of course in the limit rd → 0 the map parameter ε diverges so
that this cancellation holds only for sufficiently small excitation
field Eac. Other figures show an approximate 1/J dependence
(for a fixed value of mod1J) in Fig. 13 and a weak dependence
on ωcτ in Fig. 14. Combining these results together we find
the following scaling relation:

δne

ne

= qEac

mωvF

f2
(
xR−1

c ,yR−1
c

)
(A100)

which is the result given in the main text.
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