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We perform time-dependent analysis of quantum dynamics of dark matter particles in the Solar
System. It is shown that this problem has similarities with a microwave ionization of Rydberg atoms
studied previously experimentally and analytically. On this basis it is shown that the quantum
effects for chaotic dark matter dynamics become significant for dark matter mass ratio to electron
mass being smaller than 2 × 10−15. Below this border multiphoton diffusion over Rydberg states
of dark matter atom becomes exponentially localized in analogy with the Anderson localization in
disordered solids. The life time of dark matter in the Solar System is determined in dependence
on mass ratio in the localized phase and a few photon ionization regime. Various implications of
these quantum results are discussed for the capture of dark matter from Galaxy and its steady-state
density distribution.
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Introduction.– The properties of dark matter are now
actively discussed by the astronomy community (see e.g.
[1]). Recently, a necessity of correct description of galac-
tic structures, in particularly singular density cusp prob-
lem, attracted a growing interest to the ultralight dark
matter particles (DMP) of bosons with a mass md ∼
10−22eV (see e.g. [2–5] and Refs. therein). However, the
mass md of light DMP is unknown and possibilities of
its detection are under active discussions [2, 6]. At small
values of md (or its ratios to electron mass me) the quan-
tum effects start to be dominant [4, 5, 7]. Till present the
quantum effects have been studied in the frame of static
solutions of Schrödiner and Poisson equations.

In this Letter we perform a time-dependent analysis
of quantum effects for light DMP which dynamics takes
place in binary rotating systems. The properties of quan-
tum dynamics of such DMP in the Solar System (SS),
its atomic Rydberg structure (similar to hydrogen atom)
and multiphoton ionization (escape from SS) are ana-
lyzed here for SS and more generic binary systems. For
the SS we consider the model of Sun with Jupiter which
creates a time periodic perturbation leading to dynamical
chaos and diffusion of DMP energy with eventual escape
(or ionization) from the SS. It is shown that for a light
DMP mass with md/me < 2×10−15 the quantum effects
start to play a dominant role and that they lead to a dy-
namical localization of diffusive chaotic motion of DMP
in binary system being similar to the Anderson localiza-
tion in disordered solids (see [8–10]). Due to localization
a DMP escape from SS is strongly suppressed and DMP
life time in SS is increased enormously. A similar dy-
namical localization of chaotic diffusion of multiphoton
transitions has been predicted for microwave ionization
of excited hydrogen and Rydberg atoms and observed in
experiments (see [11–15] and Refs. therein). We show
that the DMP ionization from SS induced by Jupiter
has many similarities with physics of multiphoton ion-
ization of atoms in strong laser fields [16] and properties

of Rydberg atoms in external fields [17]. Since the classi-
cal DMP dynamics in SS is mainly chaotic the quantum
evolution of DMP has many properties of quantum chaos
[18]. We show that one of the consequences of classical
and quantum chaos in binary systems is an absence of
singular density cusp in center of a binary.
Kepler map description of classical DMP dynamics.–

We consider the restricted three-body problem [19] with
a DMP of light mass md, Sun of mass M and a planet
(Jupiter) of mass mp moving around Sun over a circular
orbit of radius rp with velocity vp and frequency ωp =
vp/rp. For the Jupiter case we have vJ = vp = 13.1km/s,
rJ = rp = 7.78 × 108km, orbital period Tp = 2π/ωp =
11.8yrs and mp/M = 1/1047 [20]. The studies of DMP
dynamics in a binary system with mp �M showed that
the dynamics of comets or DMP is well described by the
generalized Kepler map [21–28]:

En+1 = En + F (φn) , (1)

φn+1 = φn + 2π|2En+1/(mdvp
2)|−3/2 ,

where En is DMP energy, φn is Jupiter phase taken
at n-th passage of DNP through perihelion on a dis-
tance q from Sun. This symplectic map descrip-
tion is well justified for q > rp where the kick
function F (φ) = f0(mp/M)mdvp

2 sinφ and f0 ≈
2(rp/q)

1/4 exp(−0.94(q/rp)
3/2). For q ∼ rp, like for the

comet Halley case, the function F (φ) contains also higher
harmonics with a maximal kick amplitude f0 ≈ 2.5 for
the comet Halley [22, 27]. The map is valid when the or-
bital DMP period is larger than the planet period. This
map generates a chaotic DMP dynamics similar to those
of the Chirikov standard map [29, 30] for energy being
below the chaos border |E| < Ech = wchmdvp

2/2 with
wch ≈ 2.5(2f0mp/M)2/5. Examples of Poincaré sections
for the generalized Kepler map are given in [22, 27, 28].
For the case of Jupiter with sin−kick function we have
wch ≈ 0.3 while for the comet Halley case with a few
harmonics one finds wch ≈ 0.45. In the chaotic phase
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the energy is growing in a diffusive way with number of
DMP orbital periods torb: (∆E)2 ≈ Dtorb. The diffusion
coefficient D is approximately given by the random phase
approximation for phase φ:

D ≈< F 2(φ) >≈ f02(mp/M)2md
2vp

4/2 . (2)

For a DMP orbit with initial energy about −mdvp
2/2

the ionization energy is EI = mdv
2
p/2 and a diffusive

ionization time (escape from SS) is approximately tD ≈
2πrpEI

2/(vpD) that gives for SS with Jupiter tD ≈ 3 ×
106yrs. More detailed numerical simulations with many
DMP trajectories, including the case of comet Halley,
give a typical time scale tI ≈ tH ≈ 107yrs ∼ tD [22, 26].
For an external galactic DMP flow scattering on SS, DPM
are captured and accumulated during the time scale tH .
After this time scale the DMP distribution in SS reaches
a steady-state when the capture process is compensated
by escape on a time scale tI . The capture process and
its cross-section are discussed in detail in [26, 31, 32].

It is also useful to note that a rotating planet cor-
responds to a rotating dipole in the Coulomb prob-
lem which can be transformed to a circular polarized
monochromatic field appearing in the problem of mi-
crowave ionization of Rydberg atoms and autoionization
of molecular Rydberg states [33].

“Hydrogen” atom of dark matter.– Since the gravi-
tational interaction is similar to the Coulomb interac-
tion we directly obtain from [34] the levels of dark mat-
ter atom with the Bohr radius aBd = ~2/(κmd

2M) =
1.01×10−26cm(me/md)

2 for SS and energy levels Edn =
−EBd/(2n2) where κ is the gravitational constant.
Here we have the dark matter atomic energy EBd =
κmdM/aBd = 7.47×1036(md/me)

3ev and related atomic
frequency ωBd = EBd/~ = κ2md

3M2/~3. For the SS we
have the Bohr radius aBd = 1.30× 10−40(me/md)

2rJ so
that aBd = rJ at md/me = 1.14× 10−20. Thus we have
EBd = 1.10 × 10−23ev = ~ωJ when aBd = rJ and one
photon energy of Jupiter frequency ωJ = ωp = vp/rp
is ~ωJ . Hence one needs NJ = EBd/(2~ωJ) = 3.38 ×
1059(md/me)

3 = 0.5 photons to ionize the ground state
of DMP atom at this mass ratio.

Quantum Kepler map and Anderson localization.– In
analogy with the microwave ionization of excited hydro-
gen and Rydberg atoms [12, 15] the quantum dynamics of
DPM is described by the quantum Kepler map obtained
from (2) by replacing the classical variables (E, φ) by op-

erators Ê = ~ωpN̂ , φ̂ with a commutator [N̂ , φ̂] = −i.
Here N has the meaning of a number of photons absorbed
or emitted due to interaction with periodic perturbation
of planet. The quantum Kepler map has the form [12, 15]:

ˆ̄N = N̂ + k sin φ̂ , ˆ̄φ = φ̂+ 2πω(−2ω ˆ̄N)−3/2 , (3)

where bars mark new values of operator variables af-
ter one orbital period of DMP and a kick ampli-
tude k = f0mpmdvp

2/(~ωpM) = 2f0(mp/M)NI =

FIG. 1: (Color online) Dependence of number of photons NI

of Jupiter frequency required for ionization (escape) of DMP
on its mass md rescaled by electron mass me (blue/black
line), dependence of Anderson localization length of quan-
tum chaos `φ on md/me (red/gray line); vertical dashed lines
mark regimes of different ionization mechanisms of DMP: one
photon escape (left), Anderson localization (middle), classi-
cal chaos with diffusive ionization (right); here initial DMP
energy is Ed = −mdvJ

2/2.

2.10 × 1017(md/me) gives the maximal number of ab-
sorbed/emitted photons after one kick (numbers are
given for Jupiter case). Here we express the planet fre-
quency ωp in atomic units of dark matter atom with
ω = ωp/ωBd = 1.48 × 10−60(me/md)

3. The correspond-
ing wavefunction evolution in the basis of photons N is
described by the map which is similar to the quantum
Chirikov standard map [12, 15]:

¯ψNφ
= exp(−k cosφ) exp(−iH0(Nφ))ψNφ

(4)

with H0(Nφ) = 2π(−2ω(N0 + Nφ))−1/2 and N = N0 +
Nφ, where N0 is the number of photons of DMP ini-
tial state. For the initial DMP state with energy Ed =
−mdv

2
p/2 we have the number of photons required for

DMP ionization being

NI = mdv
2
p/(2~ωp) = 4.39× 1019md/me (5)

with N0 = −NI and the right equality given for the
Jupiter case at f0 = 2.5. In this expression for NI we
use wch ≈ 1 and assume that aBd < rJ . For aBd > rJ
the minimal energy of DMP is given by the ground state
E = −EBd/2.

The quantum interference effects lead to exponential
localization of chaotic diffusion being similar to the An-
derson localization in disordered solids [9, 10]. In analogy



3

with the microwave ionization of hydrogen atoms, the lo-
calization length expressed in the number of photons is
[12, 15]:

`φ ≈ D/(~ωp)2 ≈ k2/2 = 2f0
2(mp/M)2NI

2 (6)

≈ f0
2mp

2md
2vp

4/2(~ωpM)2

≈ 2.20× 1034(md/me)
2

where the last equality is given for the Jupiter case at
f0 = 2.5.

The wavefuction ψNφ
is exponentially localized giv-

ing a steady-state probability distribution over photonic
states:

< |ψNφ
|2 >= W (Nφ) ≈ (1+2|Nφ|/`φ) exp(−2|Nφ|/`φ)/2`φ.

(7)
The above expression for `φ is valid for `φ > 1 while for
`φ < 1 we enter in the regime of perturbative localization.
The steady-state localized distribution (7) is settled on a
quantum time scale tq ≈ Tp`φ [11, 12, 15].

The localization takes place for the photonic range
|Nφ| < NI and it is well visible for `φ < NI . For
`φ > NI a delocalization takes place and DMP escape
is well described by the classical chaotic dynamics and
diffusion. For Jupiter case and DMP at initial energy
Ed = −mdv

2
p/2, with the corresponding NI (we assume

here the chaos border wch ≈ 1, for wch < 1 we should
multiply NI by wch). Thus we find that the delocaliza-
tion takes place at

md/me > ~ωp(M/mp)
2/(f0

2mevp
2) = 2× 10−15 , (8)

with the last equality given for the Jupiter case. For
smaller ratios md/me < 2.0 × 10−15 we have Anderson
like localization of DMP probability on the photonic lat-
tice. At the delocalization border with `φ = NI we have
NI = 8.78×104 at the above value of md/me so that the
DMP ionization goes via highly multiphoton process.

An example of probability distribution for a localized
state at `φ = 1.39 and md/me = 7.95 × 10−18 corre-
sponds to Fig.3 in [15]. The number of photons NI re-
quired for ionization of an initial DMP state with energy
Ed also depends on the mass ratio md/me so that one
photon ionization takes place for NI < 1 corresponding
to md/me < 2.28× 10−20.

The different regimes of quantum DMP dynamics are
shown in Fig. 1. The classical description is valid for
`φ > NI corresponding to md/me > 2 × 10−15, the
Anderson photonic localization takes place in the range
2.28× 10−20 < md/me < 2× 10−15 and one photon ion-
ization appears for md/me < 2.28× 10−20.

Even if the quantum Kepler map gives an approximate
description of quantum excitation, it was shown that it
provides a good description [35] of microwave ionization
of real three-dimensional excited hydrogen atoms in delo-
calized and localized regimes [13, 14]. This result justifies
the given description of quantum DMP dynamics in SS.

FIG. 2: (Color online) Dependence of DMP escape (ioniza-
tion) time I from the SS as a function of mass ration md/me

for initial DMP energy Ed = −mdvJ
2/2. The blue/black

horizontal line shows regime of classical escape due to chaos,
red/gray curve shows tI (9) in the regime of Anderson lo-
calization of quantum photonic transitions, violet line shows
ti (10) in the regime of 1,2 and 3 photon escape; horizontal
dashed line marks the life time of Universe tU .

Ionization times.– The typical time scales of ioniza-
tion (escape) for these three regimes can be estimated
as follows. In the delocalized phase `φ > NI the ion-
ization time is determined by a diffusive process with
tI ≈ tH ≈ 107yrs as obtained from extensive numerical
simulations of comet Halley [22] and classical chaotic dy-
namics of DMP [26]. This regime tI is independent of
md.

In the localized phase `φ < NI the ionization takes
place only from the exponentially small tail of the steady-
state probability distribution (7) with the escape rate
Γ ∼W ∼ (NI/`φ) exp(−2|NI |/`ψ) so that we obtain the
estimate for ionization time tI ∼ 1/Γ:

tI ≈ tH exp(2|NI |/`φ − 2)/(2|NI |/`φ − 1) . (9)

The above expression assumes that `φ > 1 and NI ≥ `φ
giving tI = tH at delocalization border NI = `φ.

In the case when NI < 1 an absorption of one pho-
ton with energy ~ωp is sufficient to give to DMP pos-
itive energy leading to its escape on infinity or ioniza-
tion. In this regime the one-photon ionization rate is
Γ ≈ (ωp/2π)(J1(k))2 where J1(k) is Bessel function. This
simple estimate, following from the quantum Kepler map
(4), is in a good agreement with the exact computation
of one-photon ionization rate as it is demonstrated in
[11, 12]. Hence, the one-photon ionization time is

tI ≈ 1/Γ ≈ Tp(2/k)2 ≈ 1.07×10−33(me/md)
2yrs . (10)
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Thus at one-photon border NI = 1 and md/me = 2.28×
10−20 we have tI = 2.05 × 106yrs. For 2.28 × 10−20 <
md/me < 4.56×10−20 two photons are required for DMP
ionization with Γ = (ωp/2π)(J2(k))2 and slightly above
one photon ionization border we obtain tI ≈ Tp(2/k)4 ≈
3.6× 1012yrs being much larger than the age of universe
tU ≈ 1.38 × 1010yrs (at the 3-photon border we have
tI ≈ 4(2/k)6Tp ≈ 4× 1015yrs).

The global dependence of escape time tI on DMP mass
md is shown in Fig. 2. The life time is larger than the
life time of Universe for the mass ratio 2.2 × 10−20 <
md/me < 3.4 × 1016 where the left inequality is at the
transition from 2-photon to 1-photon ionization. For
md/me < 2.8×10−22 the one-photon ionization becomes
very slow and we also have tI > tU . In this range we have
the atomic size of DMP atom aBd � rJ and the above
ionization time is given for ionization from the ground
state. The time tI for one-photon process becomes so
large because in the quantum Kepler map (4) the kick
amplitude k ∝ md becomes very small.

It would be interesting to varify the above estimates
for ionization rates Γ and life times tI by the numerical
simulation methods developed for computation of these
quantities in microwave ionization of Rydberg atoms [36].

DMP capture.– For the classical DMP of Galactic
wind flying through SS the capture cross-section is σ ≈
8πrp

2(vp/v)2 being diverging at low positive DMP ener-
gies E = mdv

2/2 > 0 in a continuum [26, 31]. The cap-
tured DMP diffuse in the chaotic region up to the chaos
border wch = 2|E|/(mdvp

2) as discussed above (see also
[26]). Due to Anderson photonic localization (7) the dif-
fusion is localized and, comparing to the classical border
wch, DMP can reach only significantly smaller quantum
border values:

wq ≈ 2~ωp`φ/(mdvp
2) ≈ 5.× 1014(md/me) . (11)

This dependence is valid in the range 2.28 × 10−20 <
md/me < 2× 10−15. For md/me becoming smaller than
the left inequality we have `φ < 1 and only one photon
energy is absorbed with wq = 1.14 × 10−5; above the
right border we obtain the classical chaos border with
wq ≈ wch ∼ 1 independent of DMP mass.

According to analysis given in [26] the classical cap-
ture process of DMP continues during time tH ∼ tD
after which DMP start to escape from SS. Assuming
that the Galactic DMP velocity distribution has a usual
Maxwell form f(v)dv =

√
54/πv2/u3 exp(−3v2/u2)dv

with u ≈ 220km/s we can estimate the captured DMP
mass as [26] : Mcap ∼ 100(vp/u)3(mp/M)ρgrp

2vptH ,
where ρg ≈ 4 × 10−25g/cm3 is the Galactic mass den-
sity of dark matter. In the quantum case with photonic
localization we should use tq < tH since the accumula-
tion continues only during time on which a steady-state
distribution is reached while after it the escape of DMP
from SS starts to compensate ingoing DMP flow. Thus
Mcap is significantly reduced by the factor tq/tH .

In the above estimate we have Mcap ∝ EH ∝
mdvp

2wH/2 where wH ∼ 2f0(mp/M) and EH has a
meaning of DMP energy which can be captured by a
kick from Jupiter. In the one-photon regime with k < 1
at md/me < 4.76 × 10−18 only DMP energies with
E = mdv

2/2 < ~ωJ can be captured that provides an
additional reduction of Mcap.

Finally, the Kepler map approach allows to perform ex-
tensive simulations of DMP capture process for SS and
other binaries up to time scales of SS life time [26, 28]
with a steady-state DMP distribution reached at such
times. The obtained DMP steady-state distribution has
maximal volume density on a distance comparable with
a size of binary without cusp singularity at r � rp. The
physical reason is rather clear: DMP diffuse only up to
the chaos border wch ∼ 1 corresponding to hallo dis-
tances from the binary center rh ∼ rp/wch ∼ rp. In the
regime of quantum localization we should replace wch by
wq < wch so that rh ∼ rp/wq � rp becomes even larger.
Thus in presence of time-dependent effects in binaries
there is no cusp singularity at the binary center.

Discussion.– We performed analysis of time-dependent
effects for DMP quantum dynamics in binary systems.
On the basis of results obtained for multiphoton ion-
ization of Rydberg atoms we show the emergence of
Anderson photonic localization for DMP with masses
md/me < 2 × 10−15. The life times of DMP in SS are
determined in the localized regime and a few photon ion-
ization regime. It is shown that there is no singular den-
sity cusp in the steady-state density distribution of DMP
in binary systems.
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