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Abstract. We study the dynamical decoherence of a qubit weakly coupled to a two-body random interac-
tion model (TBRIM) describing a quantum dot of interacting fermions or the Sachdev—Ye-Kitaev (SYK)
black hole model. We determine the rates of qubit relaxation and dephasing for regimes of dynamical ther-
malization of the quantum dot or of quantum chaos in the SYK model. These rates are found to correspond
to the Fermi golden rule and quantum Zeno regimes depending on the qubit—fermion coupling strength.
An unusual regime is found where these rates are practically independent of TBRIM parameters. We push
forward an analogy between TBRIM and quantum small-world networks with an explosive spreading over
exponentially large number of states in a finite time being similar to six degrees of separation in small-world
social networks. We find that the SYK model has approximately two—three degrees of separation.

1 Introduction

The problem of qubit decoherence is crucial for the
process of quantum measurement [1] and the field of quan-
tum information and computation [2]. The experimental
realization of superconducting qubits [3,4] extended this
problem to a world of large objects due to a macro-
scopic size of superconducting qubits (see e.g. [5-7]). In
theoretical considerations, the decoherence of a qubit is
usually due to the contact with a thermal bath, weak
measurements or other statistical systems characterizing a
detector (or sensor) being in a contact with the qubit [5-7].
A model of a deterministic detector, whose evolution takes
place in a regime of quantum chaos, was studied in [§]
demonstrating the emergence of dynamical decoherence of
a qubit in absence of any thermal bath, noise, and external
randomness. We extend this research line [8] considering
as a deterministic detector a quantum dot with interact-
ing fermions or the Sachdev—Ye-Kitaev (SYK) black hole
model.

The question about dynamical decoherence is closely
related to the problem of quantum dynamical thermal-
ization and random matrix theory (RMT) invented by
Wigner [9-11] for the description of complex atoms and
nuclei. At present, the properties of one-particle quantum
chaos and their link with RMT are now mainly understood
(see e.g. [12-14]). Thus, such systems are characterized
by RMT level spacing statistics and ergodicity of quan-
tum eigenstates on the energy surface (we address the
reader to Refs. [12-14] to learn more details about the field
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of quantum chaos). However, the analysis of many-body
quantum systems is more difficult due to the complexity
of quantum many-body systems (QMBS). Furthermore,
RMT is only an approximation to QMBS since in nature
we have only two-body interactions and hence the expo-
nentially large Hamiltonian matrix of QMBS has only a
small fraction of non-zero matrix elements. To capture this
feature a two-body random interaction model of fermions
(TBRIM) was proposed in [15-18] and it was shown that
at strong interactions this model is characterized by RMT
level spacing statistics. The first numerical results and
analytical arguments for a critical interactions strength in
TBRIM with a finite level spacing A between one-particle
orbitals was proposed by Sven Eberg in [19,20]. For the
TBRIM, the Aberg criterion for onset of quantum chaos
and dynamical thermalization has the form

SE=E—E,>0Eq~g?%A, g=A4/U, (1)

where U is a typical strength of two-body interactions, A
the average one-particle level spacing in a finite size quan-
tum dot with interacting fermions, £, the ground state
energy of the quantum dot when all electrons are below
the Fermi energy EFr and FE is the energy of an excited
eigenstate. The dimensional parameter g > 1 is assumed
to be large playing the role of the conductance of a quan-
tum dot with weakly interacting electrons. The validity
of the Aberg criterion (1) for the emergence of RMT
level statistics was confirmed in first numerical simulations
[19,20] and in independent more extensive analytical and
numerical studies for 3 particles in a quantum dot [21],
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TBRIM [22], spin glass shards [23], and quantum com-
puters with imperfections [24-26]. Advanced theoretical
arguments developed in [27,28] confirm the relation (1)
for interacting fermions in a quantum dot.

While the validity of the Aberg criterion for emergence
of RMT in TBRIM and other models is satisfactory con-
firmed by numerical and analytical studies, a dynamical
thermalization conjecture (DTC), which is used for the
derivation of (1), is more difficult for the numerical ver-
ification since it requires the knowledge not only of the
eigenvalues but also the computation of eigenstates that is
more difficult. The TBRIM numerical results [29] for the
probability distribution over one-particle orbitals, aver-
aged over many random realizations, showed a certain
proximity to the Fermi—Dirac distribution expected from
the quantum statistical mechanics [30]. The validity of
the Fermi—Dirac distribution for a single eigenstate was
demonstrated numerically for eigenstates of a quantum
computer with imperfections and residual inter-qubit cou-
plings [26]. We stress that, the DTC is proposed for a
purely isolated system without any contact to an external
thermostat and the dynamical thermalization is only due
to internal many-body quantum chaos.

However, for a single eigenstate the fluctuations of
probabilities mj on one-particle orbitals are significant
requiring heavy large matrix diagonalizations to obtain a
reasonable agreement with the Fermi—Dirac distribution
[26]. Another method was developed for nonlinear disor-
dered chains described by classical Hamiltonian equations
[31,32]. It is based on the computation of entropy S and
energy F tracing the dependence S(E) which is obtained
as an implicit function from S(T") and E(T') where T is
the system temperature appearing due to dynamical ther-
malization in a completely isolated system without any
contact to an external thermostat. Since the quantities S
and E are extensive [30] their fluctuations are reduced due
to self-averaging. The dependence S(FE) for many-body
quantum systems was computed for bosons in disordered
Bose—Hubbard model in 1D [33] and for spinless fermions
in the TBRIM [34]. These studies demonstrated the sta-
bility and efficiency of S(F)-computations confirming
validity of the DTC for many-body interacting quantum
systems. The dynamical thermalization of an individual
eigenstate was also demonstrated in [33,34]. At present the
interest of many-body interacting quantum systems is also
growing in the context of many-body localization (MBL)
and the eigenstate thermalization hypothesis (ETH) (see
e.g. [35-38]).

Another bust of interest to the TBRIM type models
appeared due to the recent results of SYK for a strange
metal and its links to a quantum black hole model in 1 + 1
dimensions (coordinate plus time) known now as the SYK
black hole [39-41]. In fact, the SYK model, in its fermionic
formulation, corresponds to the TBRIM considered in
the limit of very strong interactions with a conductance
close to zero g — 0. The analogy between physical rep-
resentations of the SYK model attracted a significant
interest of researchers in quantum gravity, many-body sys-
tems, RMT, and quantum chaos (see e.g. [42-44]). Recent
advanced numerical and analytical results on the validity
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of RMT for the SYK model with Majorana fermions are
reported in [45-47].

In this work, we study the dynamical decoherence of
a qubit coupled to the TBRIM model. This is a com-
pletely isolated system in absence of noise, thermal bath
and external decoherence. At g > 1, the qubit is coupled
to a quantum dot of weakly interacting fermions with our
main interest being focused on the regime of dynamical
thermalization when the Aberg criterion (1) is satisfied.
At g < 1, our model becomes equivalent to the SYK
black hole model with a qubit coupled to it. We note
that the decoherence of a qubit coupled to a quantum
black hole is extensively discussed in the context of the
black hole problem of information loss for the infalling
observer (see [48] and references therein). We expect that
the dynamical qubit decoherence considered here will be
useful for a better understanding of this problem. Thus,
the main aim of this work is to understand the properties
of dynamical qubit decoherence induced by its interac-
tions with many-body quantum system and determine the
links of this decoherence with different regimes of quantum
many-body features of this effective many-body detector.

The paper is composed as follows: in Section 2, the
TBRIM is introduced and some of its properties are
reminded while in Section 3, the additional qubit—fermion
coupling is introduced. The qubit relaxation rates are
studied in Section 4, and in Section 5, the link to a
quantum small-world networks is discussed. In Section 6,
results of the residual level of qubit density matrix relax-
ation at long times are described and Section 7 concludes
with the discussion. In Appendix A, a rather detailed ana-
lytical and numerical study for the approximate Gaussian
form of the average density of states of the TBRIM is pre-
sented while Appendices B and C deal with the specific
issues of weakly excited initial states of the TBRIM, where
it is difficult to obtain clear relaxation rates, and initial
states with negative temperatures.

2 TBRIM construction and properties

As in reference [34], we consider the TBRIM [22] with
M one-particle orbitals and 0 < L < M spinless fermions
with the Hamiltonian:

H[ Z Jij,kl Czc;rclckv (2)

1 M . 4

=— Vg CLC+ —F——
VM ; v 2M3i<j,k<l

where 02, ¢, are fermion operators for the M orbitals
satisfying the usual anticommutation relations. Here, vy
(Jij}kl) are real Gaussian random variables with zero mean
and variance (v7) = V? ((J3 ;) = J*(1 + dixdj1)) such
that the non-interacting orbital one-particle energies are
given by €, = v/v/M. The variance of the interaction
matrix elements is chosen such they correspond to a Gaus-
sian orthogonal ensemble-matrix (GOE) of size My x My
with My = M(M —1)/2. The number of nonzero elements
for a column (or row) of Hy is K =1+ L(M — L) +
L(L-1)(M—-L)(M—-L—1)/4 [22,29].
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As shown in Appendix A, the DOS of the TBRIM
Hamiltonian (2) is approximately Gaussian

L(M — L)

M(M* 1) V:sﬂa

(3)
which is normalized to d = M!/(L/(M — L)!) being the
dimensionality of the Hilbert space for M orbitals and L
particles and

Ve = /V2+a(M,L)J2, (4)

is a rescaled effective energy scale taking into account the
increase of o due to finite values of J. The coefficient
a(M, L) is computed in Appendix A from the average of
(Tr(H?%)) with the result:

a(M,L)= 2(M —

1)(L-1) 4
2 (ML+M L+3).(5)
The expression (3) fits numerically quite well the DOS
for sufficiently large values of M and L and even in the
SYK-case, i.e. when J # 0 but V' = 0, it is quite accurate.
The corresponding average many-body level spacing (at
the band center) is Ay = V27 0/d. For later use we also
define an effective rescaled average one-particle level spac-
ing by Ay = V21 Veg/M3/2. At J <V, we have Vog =~ V
and A; is just the average distance of the one-particle
energies ¢, (in the band center). Thus, the effective dimen-
sionless conductance of our TBRIM (see Ref. [22]) is
g A JUs = \/7Veg /2T = V/J > 1for J < Vandg~ 1
for J >V at M =~ L/2 (U, = 2v/2J/M?/? is an effective
interaction strength).

Since we are using only a small number of statistical
realizations, we have chosen realizations of v; such that
exactly >, vp =0 and Y, et = (1/M) >, vi = V2

We have numerically diagonalized H; and done fur-
ther numerical computations described below for the cases
M=12, M =14,and M =16 with L = M/2—1 ~ M/2.
In this work, we only show the results for the case of
largest matrix size M = 16 and L = 7 corresponding to
d = 11440 (for this case the coefficient in (4) and (5) is
just a(16,7) = 8.75 and the number of nonzero matrix ele-
ments per row/column of Hy is K = 820). Unless stated
otherwise, all results presented below, especially in the fig-
ures apply to this case. We have, however, verified that
the physical interpretation of the results also apply to
the cases of smaller matrix size (with some restrictions
concerning reduced times scales for the long time behav-
ior, more limited parameter range, etc.). We present the
results for one specific disorder realization but we checked
that, apart from fluctuations, the results remain stable for
other realizations.

First we diagonalize numerically one realization of Hj
for M =16, L =7, V = /14 ~ 3.74166, various values
of J or the SYK-case (i.e. V =0, J =1). Similar to [34]
we determine for each many body eigenstate the occupa-

tion numbers ny = (czck> with the corresponding fermion
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entropy [30]:

M
Z(nk Inng + (1 —ng) In(1 — nk)) (6)

k=1
and the effective one-particle total energy

M

Elp = Z €L Nk, (7)

k=1

based on the assumption on non- or weakly-interacting
fermions. These energies are rather close to the exact
many body energies Eqx ~ Eq, provided J < V.

In Figure 1, we compare the dependence of S on
both energy scales with the theoretical fermionic behav-
ior where ny in (6) is replaced by the usual thermal
Fermi-Dirac distribution (or ansatz) over one-particle
orbitals [30]:

np =1/(1+exp[f(ex —p)]), B=1/T (8)
with the inverse temperature § and chemical poten-
tial p determined by the implicit conditions (7) and
L =", n, with the given set of diagonal one-particle
energies €. For the SYK case with V =0 and J =1, we
choose for the “theoretical” curve the case of one-particles
energies equidistant values €, such that ), e, = 0 and
> €t = V& with the effective rescaled energy scale (4)
at V=0 and J =1 (a similar procedure was used in [34]
for this SYK case).

At V = V14 = 3. 74166, one can observe in Figure 1
the onset of thermahzatlon with increasing interaction
strength J. At very weak interaction J = 0.025 the
entropy is typically below the theoretical behavior indi-
cating that the system is not thermalized. We can also
mention that for this case the level spacing distribution
of H; does not obey the Wigner surmise (for the GOE
case) and is closer to the Poisson distribution (with some
small level-repulsion for very short energy differences). At
J = 0.25 (this value corresponds to the case J =1 in [34]
due to a difference in the normalization), the system is
well thermalized but the interaction is still sufficiently
low so that E;, ~ Ee. Here and also for larger values
of J the level spacing distribution clearly corresponds to
the Wigner surmise (this was also seen in [34] and we do
not show these data here). Thus, at J = 0.25 we have
onset of the dynamical thermalization induced by weak
many-body interactions. At J = 1 the data points for £y,
coincide very well with the theoretical fermionic curve con-
firming the onset of dynamical thermalization induced by
interactions. However, here due the stronger interaction
values the ratio Fex/FE1, is considerably larger than unity.

For the SYK case V =0, J = 1, the entropy is close
to its maximal value S = 11 for nearly all eigenstates and
the theoretical model of equidistant one-particle energies
is not confirmed. This value of S is actually consistent
with np ~ 0.5 for all orbitals k& which gives due (6)
S ~ 161n(2) ~ 11.1. For the SYK case the numerical
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Fig. 1. Top and center panels: dependence of the fermion entropy S given by (6) on the effective one-particle total energy
E1p defined in (7) (blue cross symbols) and the exact many body energy Eex (red plus symbols). The green curve shows the
theoretical Fermi-Dirac thermalization ansatz (8) as explained in the text. All panels correspond to M = 16 orbitals, L = 7
particles and Hamiltonian matrix size d = 11440. Both top and center left panels correspond to V = /14 ~ 3.74166 and
J =0.025 (top left), J = 0.25 (top right), and J = 1 (center left). Center right panel corresponds to the SYK case at V =10
and J = 1 with the green curve computed from a model of equidistant one-particle energies of non-interacting fermions. Bottom
panels: dependence of the inverse temperature 5 = 1/7 on energy E (bottom right panel) and chemical potential ;1 on 8 (bottom
left panel) corresponding to the Fermi-Dirac ansatz for the set of one-particle energies e used for the chosen realization of H;

at V =14 = 3.74166.

level spacing distribution also corresponds to the Wigner
surmise.

The results of this section show that at moderate
interactions with g < 1 the DTC is well working (e.g.
J =025V = /14,9 ~ 15) and the dependence S(E) is
well described by the thermal Fermi—Dirac distribution
(8). Of course, at very small interactions (e.g. J = 0.025,
V = /14, g ~ 150) the DTC is not valid in qualita-
tive agreement with the Aberg criterion (1). Here, we do
not investigate the exact numerical values for the Aberg
criterion since our main aim is the investigation of the
interaction of a qubit with the TBRIM in the regimes of
a thermalized quantum dot (e.g. g &~ 15) or SYK black

hole (e.g. g = 1,V =0,J = 1). As discussed in [34], the
question about thermal description of quantum chaos via
effective hidden modes in the SYK regime remains open.

3 Qubit interacting with TBRIM

In order to study the decoherence of one qubit cou-
pled to the fermionic system described by the TBRIM
Hamiltonian H; defined in (2) we consider the total
Hamiltonian

v M-1

it t t

;0 o, Z (ckc,€+1 + ckﬂck) + Hy, (9)
k=1

H=6 -0,+c¢
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Fig. 2. Time dependence of p11(t) (red plus symbols) and |po1(t)| (green crosses) for the initial state being the ground state of
Hy with the level number m = 0 and qubit state (10) for V' = 3.74166, J = 0.25 (V =0, J = 1) in left (right) panel at coupling
strength € = 0.01. The time is measured in units of At = 1/(A; M) where A; is the rescaled effective one-body level spacing

defined in the text.

where o, and o, are the usual Pauli matrices in qubit
space and 4 is (half) the unperturbed energy separation of
the two qubit levels introducing Rabi oscillations with fre-
quency wr = 25. We typically choose § = A;/2 (or a sim-
ple multiple of this) with A; being the effective rescaled
one-particle level spacing given above in terms of the effec-
tive energy scale Veg. In (9), we have chosen the orbital
indices k such that the one-particle energies are ordered,
i.e. €x41 > €k, implying that the qubit—fermion coupling
term creates transitions between adjacent orbitals with
approximate energy difference ~A;. The quantity e is
the coupling parameter which will take various values in
the interval 0.005 < ¢ < 1 and the ratio Veg/Vy (with

Vo = \/ﬁ) ensures that at different values of V and J
the coupling parameter is measured in units of the overall
bandwidth o ~ Vg such that results at different values
of V and J at same ¢ are indeed comparable. We men-
tion that the Hamiltonian (9) is similar in structure to
the Hamiltonian studied in reference [8] where the qubit
was coupled to a quantum kicked rotor model. As already
mentioned we present below results for M = 16 orbitals
and L = 7 particles corresponding to a combined qubit—
fermion Hilbert space dimension of 22880 but we have
also verified the smaller cases at M = 12 or M = 14 with
L = M/2 — 1 obtaining there similar results.

Explicitly, we compute numerically the exact time evo-
lution of a state [¢),,(t)) = exp(—iHt) |ty (0)) with the
initial vector

[$m(0)) = ém) (10) +2 [1))/V5,

(10)
where |¢,,) is an exact eigenstate of Hy at level number
m with many body energy E,,, i.e. Hy |¢pm) = Em |Om),
and |0), |1) denote the two qubit states with bottom and
upper energies. The time evolution operator exp(—iHt)
is computed exactly by diagonalizing H and expressing
the matrix exponential using the exact eigenvalues and
eigenvectors of H. For M = 16 and L = 7, this corre-
sponds to a numerical diagonalization in the combined
fermion—qubit Hilbert space of dimension 22880. As in
reference [8], we determine the 2 x 2 density matrix p;;(t),
i,7 = 0,1 from the partial trace over the fermionic states
bY: 95 (8) = (il Trrerm. ([ (1)) (Y (8)]) 17)- In absence of

qubit—fermion coupling, i.e. ¢ = 0, the density matrix
p(t) does not depend on the choice of |¢,,) and a simple
standard calculation gives the result:

(11)

(12)

1 3
- —|— — cos(wgt),

p11(t) =1 — poo(t 10

)=
por(t) = pio(0) = 2

3
+ 0 i sin(wgt),

41 9

1 1/2
= |po1(t)| = B (50 50005(2th)> ,  (13)

where wr = 26 is the Rabi frequency.

For practical reasons, we compute the density matrix
p(t) at t = 7 At with integer values of 7 and the ele-
mentary time unit At = 1/(A; M) where A; is the
rescaled effective one-body level spacing. This time
step corresponds roughly to the inverse one-particle
band-width and represents the shortest quantum time
scale in the system. We consider the maximal time value

tmax = (4/2) At = 5720 At = /20—ty ~ ty with

L~ M/2 and ty = 1/Ayp being the Heisenberg time.

In Figure 2, we show the time dependence of p11(t) and
|po1(t)] for a weak coupling strength ¢ = 0.01, an initial
state (10) with level number m = 0, corresponding to the
ground state of Hy, and two cases for different values of V'
and J. For € = 0.01, the dependence p11(¢) is close to the
analytical result (11). However, for |pg1(t)| the situation
is more complicated with the appearance of a further fre-
quency leading to a quasi-periodic structure. Apparently,
the ground state |¢g) of Hy is also weakly coupled to the
next state |¢1) due to the indirect qubit—fermion coupling
leading to an additional frequency. The results of Figure 2
show that there is no qubit decoherence when it is cou-
pled with a quantum dot or SYK system when they are
in their ground state.

For higher level numbers m the situation changes and
for many eigenstates |¢,,) of H; an exponential relax-
ation is found for pgo(t) tending to the equilibrium value
1/2 and |po1(t)| tending to a value ~1/y/n where n is
roughly the number of eigenstates of H; contributing in
|t (t)). Therefore, motivated by the analytic expressions
at € = 0, we use the following fit functions for small values
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Fig. 3. As in Figure 2, but for level number m = 5720 of the initial state (10) corresponding to an energy in the center of the
spectrum of Hy. The fit functions f11(¢) (thin black line) to approximate p11(t) and fo1(¢) (thin blue line) to approximate |po1 (¢)|
are given by (14) and (15) with the fit parameters: A; = 0.49593 £ 0.00005, B; = 0.3070 £ 0.0002, I'1 = 0.002195 =+ 0.000003,
w1 = 0.063423 -+ 0.000003, a1 = 6.2492 & 0.0006 and A = 0.0063 + 0.0001, By = 0.194 4 0.001, I = 0.00435 4 0.00004, wy =
0.12641 + 0.00004, a2 = 3.232 £ 0.007, B2 = 0.800 £ 0.001, I = 0.00713 £ 0.00002 for V = 3.74166, J = 0.25 (left panel)
and A; = 0.5008 +0.0001, By = 0.2897 4+ 0.0004, Iy = 0.000449 £ 0.000002, w1 = 0.062552 4 0.000002, oy = 6.228 4 0.0002 and
Ao =0.0391+0.0004, B2 = 0.172+£0.002, > = 0.00094 £ 0.00002, we = 0.12508 £+ 0.00002, cva = 3.06 £0.02, By = 0.8254+0.002,

I'; = 0.00209 £ 0.00001 for V =0, J =1 (right panel).

D<ex
f11(TAt) = Ay + Bre 7 cos(wi T + o), (14)
for(TAt) = % (Az + Bye 7 cos(wat + )
+B; e‘F”) 7 (15)

to approximate p11(t) by fi1(t) and |po1(t)] by fo1(t).
The parameter 7 = /At is the rescaled time in units
of At=1/(Ay M) where A; is the rescaled effec-
tive one-body level spacing introduced above. These
fits work very well for the two cases shown in Fig-
ure 3 with level number m = 5720 (corresponding to
the band center of Hj) and ¢ = 0.01. From (11),
(12), and for the choice 6 = Ay, M = 16 we expect
that w; = wr At =20/(MA;) =1/M = 0.0625 and wy =
2wy = 0.125 which is indeed well confirmed by the fits
shown in Figure 3.

For larger values of the coupling strength € > 0.1 the fits
with the oscillatory terms do not work very well and have
to be simplified to simple exponential fits, i.e. by omitting
the term ~By in (15) or replacing cos(wiT + a;) — 1 in
(14). In Appendix B, we discuss certain cases, with low
values of the level number m of the initial state (10) where
the fit procedure is also problematic. However, in global
the fits of the relaxation of the density matrix components
work well and allow to determine the dependence of the
relaxation rates Iy, I'5 on system parameters.

4 Qubit relaxation rates

4.1 Dependence on coupling strength

The relaxation rates are computed by the methods
described in the previous section. Here, we analyze the
dependence of these rates on system parameters. We note

that according to usual cases of superconducting qubit
relaxation [5-8] the rate Iy describes the dephasing of
qubit while I} describes the population relaxation.

The obtained dependence of I7 on the qubit cou-
pling strength e is shown in Figure 4 for the ini-
tial state m = 5720 taken in the middle of the total
energy band and the TBRIM values J = 0.15, 0.25, 1
at V = 3.74166 (Vog/Vo = 1.0070, 1.0193, 1.2747, and
A =0.1475, 0.1494, 0.1868, respectively) correspond-
ing to the quantum dot regime and J =1 at V=0
(Ve /Vo = 0.7905, A; =0.1158) corresponding to the
SYK black hole regime. For small coupling € < 0.1 the
results are well described by the quadratic dependence on
coupling, typical for the Fermi golden rule regime:

I = Cye% (16)
The fit value of the exponent is p = 2.00 4+ 0.02 being
compatible with the quadratic dependence.

The dimensionless constant C; in (16) is practically
independent of .J (at fixed V = 4/14) when the system is
in the regime of dynamical thermalization being C; ~ 23
for J = 0.15, 0.25 and C ~ 8 for J = 1. For the SYK case
we find C4y = 4.6 +0.3 at J =1, V = 0. We consider that
this variation of C'y is not significant since it changes only
by a factor 5 while J? is changed by a factor 44 and in
addition the model is changed from quantum dot to SYK
regime. At such changes the total energy band width is
also changed by a factor 2 (see Fig. 1) but we remind
that due to the definition of the model and parameters in
Sections 2 and 3 both € and the relaxation rates are mea-
sured in units of effective energy (or inverse time) scales
that take into account the modification of total energy
band width due to different values of V' and J. We note
that the dependence (16) was also found for the dynamical
relaxation of a qubit coupled to a deterministic detector
described by the quantum Chirikov standard map [8] with
C1 ~ 0.5 corresponding to regime of the phase damping
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noise channel [2,8]. Here, we obtain C being by a factor 10
larger but in our model (9) the qubit is coupled with sev-
eral TBRIM states and we assume that this is the reason
for the increase of C.

For € > . = 0.1, we obtain a decrease of the relaxation
rate described by the dependence

I = Cye?,p = —1.15 £ 0.02 (17)

with C; = 0.002. As in [8], we attribute this decrease of
I with increase of € to the quantum Zeno effect [49,50]:
repeated measurements produced by a coupled detector,
represented by TBRIM in the regime of quantum chaos,
reduce the relaxation rate. In the so called ohmic relax-
ation regime it is expected that I'y ~ §2/Ty ~ B§? /<2 [6,8]
(here 6 = A;/2). For the model of quantum chaos detec-
tor it was found that B =~ 2.7 [8]. Instead, here we find
that the exponent |p| = 1.15+0.02 ~ 1 being significantly
different. We attribute this difference to the fact that in
TBRIM the qubit is coupled to many one-particle states
represented by a sum over k in (9). For the numerical value
C1 =~ 0.002 we find that it is still approximately given by
the relation C; ~ B§? with B ~ 0.4 being smaller than
those in [8]. A surprising feature of the obtained quan-
tum Zeno regime is that here I'; is practically independent
of parameter choice presented in Figure 4 corresponding
to DTC for the quantum dot and SYK quantum chaos
regimes.

The transition between the Fermi golden mean regime
(I't < £?) and the quantum Zeno regime (I} o< 1/¢) takes
place at €. =~ 0.07—1. This corresponds to the relaxation
rate I'. = I'(e.) = 0.05 which remains practically the
same for all parameter regimes presented in Figure 4.
According to the results and arguments presented in
[8,51,52] it is expected that I is given by the Lyapunov
exponent /A of an underlined classical dynamics of the
detector coupled to qubit. Indeed, this was the case for
the dynamical detector considered in [8], however, for
the TBRIM it is more difficult to establish what is the
Lyapunov exponent of the corresponding classical TBRIM
dynamics. It would be possible to expect that I'. can be
related to the Breit-Wigner width I' ~ J%p. appearing
in the TBRIM in the Fermi golden rule for the transition
between directly coupled states with the density p. [53].
However, the independence of I, of system parameters
presented in Figure 4 excludes this expectation.

We make the conjecture that for given parameters I, is
determined by an effective time T, of spreading over the
network of exponentially large size d (Ind ~ M at large
M, L values) with a very small number of links (nonzero
transition matrix elements): Ny = K = 820 < d = 11440
(for M =16 and L = 7). Such a network is similar to the
small-world networks appearing in many cases of social
relations [54,55]. It is known that a very rapid spread-
ing takes place on such networks for classical [55] and
quantum spreading [56] with a time scale T, being only
logarithmic in system size d (effect of siz degrees of sepa-
ration described in [54,55]). Thus, about six transitions
(links) are required to connect on average any pair of
nodes on such networks (for the Facebook network there
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Fig. 4. Dependence of the relaxation rate I1 on the cou-
pling strength ¢ at level number m = 5720 for the initial state
(10) for V = 3.74166, J = 0.15 (red plus symbols), J = 0.25
(green crosses), J = 1 (dark blue stars), and V. =0, J =1
(pink squares) in a double logarithmic representation. The two
lines correspond to the power law fits I7 = C1 &P for V =0,
J =1 with C; =4.6 £0.3, p=2.00+0.02 for ¢ < 0.1 (light
blue line) and C; = 0.00219 + 0.00006, p = —1.15 £ 0.02 for
e > 0.1 (black line).

is only four degrees of separation [57]). For typical net-
works like Wikipedia or www of universities there are only
about Ny ~ 10—20 nonzero links per row/column in the
full matrix of the network of size d ~ 10° [58].

In the TBRIM case, we have a much larger number of
links per row/column and thus we expect that only about
2—-4 transitions are sufficient to connect any two nodes
(levels) of the system. Due to this we can expect that
in this quantum small-world regime we have I, ~ Cy4,
with a numerical constant Cy =~ 0.5. The proportionality
I'. o< Ay appears since Ay plays a role of oscillator fre-
quency (as for an oscillator) determining the time scale
in the regime of explosive spreading over network, Cy is
inversely proportional to the degree of separation of the
network which is of the order of 2—4 transitions for TBRIM
since the number of links per column is much larger than
for Wikipedia or Facebook networks. Thus, we assume
that this kind of explosive spreading, already discussed in
[56], is at the origin of the independence of I, of system
parameters (for the range visible in Fig. 4). We note that
this kind of explosive spreading, with exponentially many
states populated in a finite time, was also observed for the
emergence of quantum chaos in a quantum computer core
[59] (see e.g. Fig. 6 there).

The dependence of the dephasing rate I's on the cou-
pling strength ¢ is shown in Figure 5 for the parameters
considered in Figure 4. In agreement with the usual
expectations [6,8] we find

Iy =Che?, Oy =24+8. (18)
Indeed, the numerical fit gives the exponent
p=2.02+0.09 being very close to the Fermi golden
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Fig. 5. Dependence of the relaxation rate I obtained

from the fit (15) on the coupling strength € at level number
m = 5720 for the initial state (10) for V = 3.74166, J = 0.15
(red plus symbols), J = 0.25 (green crosses), J = 1 (dark blue
stars) and V' = 0, J = 1 (pink squares) in a double logarithmic
representation. The black line corresponds to the power law fit
Iy = Cy eP for the case V = 3.74166, J = 1 with Cy = 24 + 8,
p = 2.02 £0.09 and fit range ¢ < 0.1. The data points with
small full circles correspond to the relaxation rate I» of the
oscillatory term for € < 0.1 in (15) (same colors as other data
points for different cases of V and J). For £ > 0.1 the relaxation
rate I> is obtained from a simplified exponential fit without
oscillatory term.

rule value p = 2. For the range € < ¢, = 0.7 we have the
approximate relation Iy &~ I'; as it was also found in [§]
corresponding to the general results of reference [6]. We
note that the fit results give for the other exponential
decay rate I of the oscillatory term in (12) (see full
color circles in Fig. 5) comparable values and parameter
dependence as for I5.

4.2 Dependence on excitation level number

The dependence of decay rates on the initial eigenvalue
number m (with eigenstate energy Fex(m)) is shown for
Il in Figure 6 and I% in Figure 7. All data are given
for a weak qubit coupling ¢ = 0.01 corresponding to the
Fermi golden rule regime in Figure 4. The independence
of m is surprising since we know that the density of
coupled states for effectively interacting electrons excited
above the Fermi level er on energy e ~ T' < ep growth
with energy as p, ~ T°/ At (number of effectively inter-
acting electrons is on ~ T/A; and the effective density
of interacting two-particle states is paeg ~ T/A; with
pe ~ paex(6n)?) and the interaction induced transition
rate also grows with energy as I, ~ J%p, ~ J2T3/A14
[19,22]. Thus one could expect an increase of Iy, I with
an increase of m. The results presented in Figures 6
and 7 clearly show no increase with m for the range
500 < m < 5720, for the range 100 < m < 500 there is
also no increase with m but the data is more fluctuat-
ing. These fluctuations become even stronger for the range
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Fig. 7. Dependence of the relaxation rate I obtained from
the fit (15) on the level number m used for the initial state
(10) at coupling strength ¢ = 0.01 for V = 3.74166, J = 0.15
(red plus symbols), J = 0.25 (green crosses), J = 1 (dark blue
stars), and V =0, J = 1 (pink squares) in a double loga-
rithmic representation. The data points with small full circles
correspond to the relaxation rate I> of the oscillatory term in
(15) (same colors as other data points for different cases of V'
and J).

0 < m < 100 so that the fits of relaxation decay in this
range become not reliable (this is discussed in detail in
Appendix B). The increase of fluctuations at low excita-
tion numbers m is natural since for lower m values we
have a decrease of number of states effectively coupled to
the qubit. We note that the values of I, shown by full
circles in Figure 7, show a similar behavior as Iy (with
somewhat larger fluctuations at low m values since the
corresponding fit (15) is more sensitive to errors).

Thus, even if the variation of m is rather large (fac-
tor 10 or 50) the variation of I, I remains in the same
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range as in Figures 4 and 5 being restricted approxi-
mately by a factor 5. We explain this independence of
m in the same manner as in previously arguing that
for m > 100 the transitions between non-interacting
many-body states proceed in an explosive spreading typ-
ical on small-world networks in a regime I} ~ Iy ~
3041 > Aq. In fact for m ~ 100, J = 0.15 we find 0F =~
T?/A; ~ 1.4 with Ay = 0.1475 that gives T ~ 0.45 (see
Fig. 1) and from above estimates we obtain I./A; & 30.
This ratio becomes even larger for other parameters of
Figures 4 and 6.

5 TBRIM as a quantum small-world network

Above, we proposed an analogy between the TBRIM and a
quantum small-world networks studied in [56,60], tracing
parallels with the small-world networks in social relations
[54,55]. On a first glance this analogy may look to be
strange since for TBRIM the number of nonzero matrix
elements per row/column of the Hamiltonian matrix is
fixed being K while the small-world networks are charac-
terized by a broader distribution of links [55]. However,
for the TBRIM the physical relevant quantity is not the
formal number of nonzero elements but the number of
effectively directly coupled states. As was discussed above
and in [19,22] the density and number of such states
depends on energy (this is especially visible in proximity
of the Fermi energy). According to quantum perturba-
tion theory we need to count only transitions for which
the transition matrix element is at least comparable to
the energy detuning between the states involved in the
transition. For the states with large energy detunings the
effective probabilities (weights) of the transitions become
small and their influence can be neglected, at least in a
first approximation.

Therefore, we construct from the TBRIM Hamiltonian
Hj defined in (2) an effective (symmetric undirected) net-
work where two many-body states ¢ and j are coupled
by a link if the condition |(H;)i;| > C|(Hr)i — (Hr)jjl
is met where C' is a parameter of order unity which we
either choose C = 0.1 or C' = 1. This can be consid-
ered as a numerical selection following the Aberg criterion
[19,22]. A similar procedure has been considered in [61]
for spin chains. We emphasize that the diagonal matrix
elements (Hy);; are constituted of two contributions: the
first term in (2) given by the sum of energies of occupied
orbitals and certain non-vanishing diagonal contributions
from the interaction which have, according to the discus-
sion in Appendix A, a variance which is L(L — 1) larger
than the variance of the non-diagonal interaction matrix
elements (for the case where two occupied orbitals dif-
fer between the two states). For the limit J < V, the
diagonal matrix elements are of course dominated by the
orbital energy contribution but even for the SYK case
with vanishing orbital energies (V =0, J = 1) the diag-
onal terms have a considerable size due to the diagonal
interactions.

Using this kind of network model we determine the fre-
quency distribution Ny (N;) of number of links per node
N; for the four cases V =0, J =1 (SYK case with

Page 9 of 19

strongest interactions and quantum chaos), V = /14,
J = 0.025 (weak interactions without dynamical ther-
malization), V = /14, J = 0.25 (moderate interactions
with dynamical thermalization) and V = \/ﬁ, J=1
(strong interactions with dynamical thermalization). Fur-
thermore, we choose our standard parameters L = 7,
M = 16 giving a matrix dimension d = 11440 of Hj
and the number of non-zero couplings elements per state
K = 820 which is an obvious upper bound for N;. As can
be seen in Figure 8 the frequency distribution of N; is not
a power law and not scale free. Essentially, the criterion
in terms of diagonal energy differences implies that the
typical link number N; is a certain fraction of K which
does not fluctuate too strongly for different initial states.
However, this fraction is smallest for V = /14, J = 0.025
with a maximal value Nfmax = 16 (if C =0.1) or 7 (if
C = 1) and largest for the SYK case V =0, J = 1 with
Nimax = 687 (if C =0.1) or 217 (if C = 1). According
to Figure 8, the frequency distribution of N; provides
largest values for the case of strongest coupling (SYK,
V =0, J =1) and smallest values for the case of weak-
est coupling (V = v/14, J = 0.025). The choice C' =1 as
compared to C' = 0.1 provides a general shift to smaller
values. Actually, for V = /14 the case C' =1, J = 0.25
is rather comparable to C' = 0.1 and J = 0.025 which is
rather obvious since reducing the constant C' by a certain
factor corresponds to reducing the typical interaction cou-
plings by the same factor. However, these two cases are not
perfectly identical and the remaining small differences are
due to complications from the diagonal interaction matrix
elements in (Hry)q;.

In global, we see that the frequency distribution of links
N¢(IV;) is peaked near a certain average value that can
be viewed as a broadening of the delta-function distribu-
tion of random graphs introduced by Erdés—Rényi [62],
known as the Erdés—Rényi model [55]. Below, we check if
our quantum network possesses the small-world property
typical for the social networks [54,55,57].

With this aim we compute a more interesting quantity
which we call the Erdés number Ng. This number rep-
resents the minimal number of links necessary to connect
indirectly a specific node via other intermediate nodes to
a particular node called the hub.

We choose as hub two example states at index values
0 and 5720 in the many body Hilbert space of dimen-
sion d = 11440 (at M =16 and L = 7). In our numerical
mapping of states (i.e. the way the many-states are enu-
merated), the hub = 0 corresponds to the state where
the first L of the M (i.e. first 7 of 16) orbitals are occu-
pied. Since we have chosen the orbital energies ordered
with respect to the orbital index number (see text below
Eq. (9)) this state corresponds to the non-interacting
ground state, i.e. the Fermi sea, for the case V > 0
and J = 0. According to the Gaussian DOS this implies
that typical energy differences of this state with the next
excited states are rather large and therefore this hub
is quite “badly” coupled to other nodes in our network
model.

The other hub = 5720 corresponds roughly to a state
in the middle of the non-interacting energy spectrum (for
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