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Abstract. We study the dynamical decoherence of a qubit weakly coupled to a two-body random interac-
tion model (TBRIM) describing a quantum dot of interacting fermions or the Sachdev–Ye–Kitaev (SYK)
black hole model. We determine the rates of qubit relaxation and dephasing for regimes of dynamical ther-
malization of the quantum dot or of quantum chaos in the SYK model. These rates are found to correspond
to the Fermi golden rule and quantum Zeno regimes depending on the qubit–fermion coupling strength.
An unusual regime is found where these rates are practically independent of TBRIM parameters. We push
forward an analogy between TBRIM and quantum small-world networks with an explosive spreading over
exponentially large number of states in a finite time being similar to six degrees of separation in small-world
social networks. We find that the SYK model has approximately two–three degrees of separation.

1 Introduction

The problem of qubit decoherence is crucial for the
process of quantum measurement [1] and the field of quan-
tum information and computation [2]. The experimental
realization of superconducting qubits [3,4] extended this
problem to a world of large objects due to a macro-
scopic size of superconducting qubits (see e.g. [5–7]). In
theoretical considerations, the decoherence of a qubit is
usually due to the contact with a thermal bath, weak
measurements or other statistical systems characterizing a
detector (or sensor) being in a contact with the qubit [5–7].
A model of a deterministic detector, whose evolution takes
place in a regime of quantum chaos, was studied in [8]
demonstrating the emergence of dynamical decoherence of
a qubit in absence of any thermal bath, noise, and external
randomness. We extend this research line [8] considering
as a deterministic detector a quantum dot with interact-
ing fermions or the Sachdev–Ye–Kitaev (SYK) black hole
model.

The question about dynamical decoherence is closely
related to the problem of quantum dynamical thermal-
ization and random matrix theory (RMT) invented by
Wigner [9–11] for the description of complex atoms and
nuclei. At present, the properties of one-particle quantum
chaos and their link with RMT are now mainly understood
(see e.g. [12–14]). Thus, such systems are characterized
by RMT level spacing statistics and ergodicity of quan-
tum eigenstates on the energy surface (we address the
reader to Refs. [12–14] to learn more details about the field
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of quantum chaos). However, the analysis of many-body
quantum systems is more difficult due to the complexity
of quantum many-body systems (QMBS). Furthermore,
RMT is only an approximation to QMBS since in nature
we have only two-body interactions and hence the expo-
nentially large Hamiltonian matrix of QMBS has only a
small fraction of non-zero matrix elements. To capture this
feature a two-body random interaction model of fermions
(TBRIM) was proposed in [15–18] and it was shown that
at strong interactions this model is characterized by RMT
level spacing statistics. The first numerical results and
analytical arguments for a critical interactions strength in
TBRIM with a finite level spacing ∆ between one-particle
orbitals was proposed by Sven Åberg in [19,20]. For the
TBRIM, the Åberg criterion for onset of quantum chaos
and dynamical thermalization has the form

δE = E − Eg > δEch ≈ g2/3∆ , g = ∆/U, (1)

where U is a typical strength of two-body interactions, ∆
the average one-particle level spacing in a finite size quan-
tum dot with interacting fermions, Eg the ground state
energy of the quantum dot when all electrons are below
the Fermi energy EF and E is the energy of an excited
eigenstate. The dimensional parameter g � 1 is assumed
to be large playing the role of the conductance of a quan-
tum dot with weakly interacting electrons. The validity
of the Åberg criterion (1) for the emergence of RMT
level statistics was confirmed in first numerical simulations
[19,20] and in independent more extensive analytical and
numerical studies for 3 particles in a quantum dot [21],
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TBRIM [22], spin glass shards [23], and quantum com-
puters with imperfections [24–26]. Advanced theoretical
arguments developed in [27,28] confirm the relation (1)
for interacting fermions in a quantum dot.

While the validity of the Åberg criterion for emergence
of RMT in TBRIM and other models is satisfactory con-
firmed by numerical and analytical studies, a dynamical
thermalization conjecture (DTC), which is used for the
derivation of (1), is more difficult for the numerical ver-
ification since it requires the knowledge not only of the
eigenvalues but also the computation of eigenstates that is
more difficult. The TBRIM numerical results [29] for the
probability distribution over one-particle orbitals, aver-
aged over many random realizations, showed a certain
proximity to the Fermi–Dirac distribution expected from
the quantum statistical mechanics [30]. The validity of
the Fermi–Dirac distribution for a single eigenstate was
demonstrated numerically for eigenstates of a quantum
computer with imperfections and residual inter-qubit cou-
plings [26]. We stress that, the DTC is proposed for a
purely isolated system without any contact to an external
thermostat and the dynamical thermalization is only due
to internal many-body quantum chaos.

However, for a single eigenstate the fluctuations of
probabilities nk on one-particle orbitals are significant
requiring heavy large matrix diagonalizations to obtain a
reasonable agreement with the Fermi–Dirac distribution
[26]. Another method was developed for nonlinear disor-
dered chains described by classical Hamiltonian equations
[31,32]. It is based on the computation of entropy S and
energy E tracing the dependence S(E) which is obtained
as an implicit function from S(T ) and E(T ) where T is
the system temperature appearing due to dynamical ther-
malization in a completely isolated system without any
contact to an external thermostat. Since the quantities S
and E are extensive [30] their fluctuations are reduced due
to self-averaging. The dependence S(E) for many-body
quantum systems was computed for bosons in disordered
Bose–Hubbard model in 1D [33] and for spinless fermions
in the TBRIM [34]. These studies demonstrated the sta-
bility and efficiency of S(E)-computations confirming
validity of the DTC for many-body interacting quantum
systems. The dynamical thermalization of an individual
eigenstate was also demonstrated in [33,34]. At present the
interest of many-body interacting quantum systems is also
growing in the context of many-body localization (MBL)
and the eigenstate thermalization hypothesis (ETH) (see
e.g. [35–38]).

Another bust of interest to the TBRIM type models
appeared due to the recent results of SYK for a strange
metal and its links to a quantum black hole model in 1 + 1
dimensions (coordinate plus time) known now as the SYK
black hole [39–41]. In fact, the SYK model, in its fermionic
formulation, corresponds to the TBRIM considered in
the limit of very strong interactions with a conductance
close to zero g → 0. The analogy between physical rep-
resentations of the SYK model attracted a significant
interest of researchers in quantum gravity, many-body sys-
tems, RMT, and quantum chaos (see e.g. [42–44]). Recent
advanced numerical and analytical results on the validity

of RMT for the SYK model with Majorana fermions are
reported in [45–47].

In this work, we study the dynamical decoherence of
a qubit coupled to the TBRIM model. This is a com-
pletely isolated system in absence of noise, thermal bath
and external decoherence. At g � 1, the qubit is coupled
to a quantum dot of weakly interacting fermions with our
main interest being focused on the regime of dynamical
thermalization when the Åberg criterion (1) is satisfied.
At g � 1, our model becomes equivalent to the SYK
black hole model with a qubit coupled to it. We note
that the decoherence of a qubit coupled to a quantum
black hole is extensively discussed in the context of the
black hole problem of information loss for the infalling
observer (see [48] and references therein). We expect that
the dynamical qubit decoherence considered here will be
useful for a better understanding of this problem. Thus,
the main aim of this work is to understand the properties
of dynamical qubit decoherence induced by its interac-
tions with many-body quantum system and determine the
links of this decoherence with different regimes of quantum
many-body features of this effective many-body detector.

The paper is composed as follows: in Section 2, the
TBRIM is introduced and some of its properties are
reminded while in Section 3, the additional qubit–fermion
coupling is introduced. The qubit relaxation rates are
studied in Section 4, and in Section 5, the link to a
quantum small-world networks is discussed. In Section 6,
results of the residual level of qubit density matrix relax-
ation at long times are described and Section 7 concludes
with the discussion. In Appendix A, a rather detailed ana-
lytical and numerical study for the approximate Gaussian
form of the average density of states of the TBRIM is pre-
sented while Appendices B and C deal with the specific
issues of weakly excited initial states of the TBRIM, where
it is difficult to obtain clear relaxation rates, and initial
states with negative temperatures.

2 TBRIM construction and properties

As in reference [34], we consider the TBRIM [22] with
M one-particle orbitals and 0 ≤ L ≤M spinless fermions
with the Hamiltonian:

HI =
1√
M

M∑
k=1

vk c
†
kck+

4√
2M3

∑
i<j,k<l

Jij,kl c
†
ic
†
jclck, (2)

where c†k, ck are fermion operators for the M orbitals
satisfying the usual anticommutation relations. Here, vk
(Jij,kl) are real Gaussian random variables with zero mean
and variance 〈v2

k〉 = V 2 (〈J2
ij,kl〉 = J2(1 + δikδjl)) such

that the non-interacting orbital one-particle energies are
given by εk = vk/

√
M . The variance of the interaction

matrix elements is chosen such they correspond to a Gaus-
sian orthogonal ensemble-matrix (GOE) of size M2 ×M2

with M2 = M(M −1)/2. The number of nonzero elements
for a column (or row) of HI is K = 1 + L(M − L) +
L(L− 1)(M − L)(M − L− 1)/4 [22,29].
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As shown in Appendix A, the DOS of the TBRIM
Hamiltonian (2) is approximately Gaussian

ρ(E)≈ d√
2πσ2

exp

(
− E

2

2σ2

)
, σ=

√
L(M − L)

M(M − 1)
Veff ,

(3)
which is normalized to d = M !/(L!(M − L)!) being the
dimensionality of the Hilbert space for M orbitals and L
particles and

Veff =
√
V 2 + a(M,L) J2, (4)

is a rescaled effective energy scale taking into account the
increase of σ due to finite values of J . The coefficient
a(M,L) is computed in Appendix A from the average of
〈Tr(H2

I )〉 with the result:

a(M,L)=
2(M − 1)(L− 1)

M2

(
4

M − L
+M − L+ 3

)
. (5)

The expression (3) fits numerically quite well the DOS
for sufficiently large values of M and L and even in the
SYK-case, i.e. when J 6= 0 but V = 0, it is quite accurate.
The corresponding average many-body level spacing (at

the band center) is ∆MB =
√

2π σ/d. For later use we also
define an effective rescaled average one-particle level spac-
ing by ∆1 =

√
2πVeff/M

3/2. At J � V , we have Veff ≈ V
and ∆1 is just the average distance of the one-particle
energies εk (in the band center). Thus, the effective dimen-
sionless conductance of our TBRIM (see Ref. [22]) is
g ≈ ∆1/Us ≈

√
πVeff/2J ≈ V/J � 1 for J � V and g ≈ 1

for J � V at M ≈ L/2 (Us = 2
√

2J/M3/2 is an effective
interaction strength).

Since we are using only a small number of statistical
realizations, we have chosen realizations of vk such that
exactly

∑
k vk = 0 and

∑
k ε

2
k = (1/M)

∑
k v

2
k = V 2.

We have numerically diagonalized HI and done fur-
ther numerical computations described below for the cases
M = 12, M = 14, and M = 16 with L = M/2− 1 ≈M/2.
In this work, we only show the results for the case of
largest matrix size M = 16 and L = 7 corresponding to
d = 11 440 (for this case the coefficient in (4) and (5) is
just a(16, 7) = 8.75 and the number of nonzero matrix ele-
ments per row/column of HI is K = 820). Unless stated
otherwise, all results presented below, especially in the fig-
ures apply to this case. We have, however, verified that
the physical interpretation of the results also apply to
the cases of smaller matrix size (with some restrictions
concerning reduced times scales for the long time behav-
ior, more limited parameter range, etc.). We present the
results for one specific disorder realization but we checked
that, apart from fluctuations, the results remain stable for
other realizations.

First we diagonalize numerically one realization of HI

for M = 16, L = 7, V =
√

14 ≈ 3.74166, various values
of J or the SYK-case (i.e. V = 0, J = 1). Similar to [34]
we determine for each many body eigenstate the occupa-

tion numbers nk = 〈c†kck〉 with the corresponding fermion

entropy [30]:

S = −
M∑
k=1

(
nk lnnk + (1− nk) ln(1− nk)

)
, (6)

and the effective one-particle total energy

E1p =

M∑
k=1

εk nk, (7)

based on the assumption on non- or weakly-interacting
fermions. These energies are rather close to the exact
many body energies Eex ≈ E1p provided J � V .

In Figure 1, we compare the dependence of S on
both energy scales with the theoretical fermionic behav-
ior where nk in (6) is replaced by the usual thermal
Fermi–Dirac distribution (or ansatz) over one-particle
orbitals [30]:

nk = 1/(1 + exp[β(εk − µ)]) , β = 1/T (8)

with the inverse temperature β and chemical poten-
tial µ determined by the implicit conditions (7) and
L =

∑
k nk with the given set of diagonal one-particle

energies εk. For the SYK case with V = 0 and J = 1, we
choose for the “theoretical” curve the case of one-particles
energies equidistant values εk such that

∑
k εk = 0 and∑

k ε
2
k = V 2

eff with the effective rescaled energy scale (4)
at V = 0 and J = 1 (a similar procedure was used in [34]
for this SYK case).

At V =
√

14 ≈ 3.74166, one can observe in Figure 1
the onset of thermalization with increasing interaction
strength J . At very weak interaction J = 0.025 the
entropy is typically below the theoretical behavior indi-
cating that the system is not thermalized. We can also
mention that for this case the level spacing distribution
of HI does not obey the Wigner surmise (for the GOE
case) and is closer to the Poisson distribution (with some
small level-repulsion for very short energy differences). At
J = 0.25 (this value corresponds to the case J = 1 in [34]
due to a difference in the normalization), the system is
well thermalized but the interaction is still sufficiently
low so that E1p ≈ Eex. Here and also for larger values
of J the level spacing distribution clearly corresponds to
the Wigner surmise (this was also seen in [34] and we do
not show these data here). Thus, at J = 0.25 we have
onset of the dynamical thermalization induced by weak
many-body interactions. At J = 1 the data points for E1p

coincide very well with the theoretical fermionic curve con-
firming the onset of dynamical thermalization induced by
interactions. However, here due the stronger interaction
values the ratio Eex/E1p is considerably larger than unity.

For the SYK case V = 0, J = 1, the entropy is close
to its maximal value S ≈ 11 for nearly all eigenstates and
the theoretical model of equidistant one-particle energies
is not confirmed. This value of S is actually consistent
with nk ≈ 0.5 for all orbitals k which gives due (6)
S ≈ 16 ln(2) ≈ 11.1. For the SYK case the numerical
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Fig. 1. Top and center panels: dependence of the fermion entropy S given by (6) on the effective one-particle total energy
E1p defined in (7) (blue cross symbols) and the exact many body energy Eex (red plus symbols). The green curve shows the
theoretical Fermi–Dirac thermalization ansatz (8) as explained in the text. All panels correspond to M = 16 orbitals, L = 7
particles and Hamiltonian matrix size d = 11 440. Both top and center left panels correspond to V =

√
14 ≈ 3.74166 and

J = 0.025 (top left), J = 0.25 (top right), and J = 1 (center left). Center right panel corresponds to the SYK case at V = 0
and J = 1 with the green curve computed from a model of equidistant one-particle energies of non-interacting fermions. Bottom
panels: dependence of the inverse temperature β = 1/T on energy E (bottom right panel) and chemical potential µ on β (bottom
left panel) corresponding to the Fermi–Dirac ansatz for the set of one-particle energies εk used for the chosen realization of HI

at V =
√

14 ≈ 3.74166.

level spacing distribution also corresponds to the Wigner
surmise.

The results of this section show that at moderate
interactions with g � 1 the DTC is well working (e.g.

J = 0.25, V =
√

14, g ≈ 15) and the dependence S(E) is
well described by the thermal Fermi–Dirac distribution
(8). Of course, at very small interactions (e.g. J = 0.025,

V =
√

14, g ≈ 150) the DTC is not valid in qualita-
tive agreement with the Åberg criterion (1). Here, we do
not investigate the exact numerical values for the Åberg
criterion since our main aim is the investigation of the
interaction of a qubit with the TBRIM in the regimes of
a thermalized quantum dot (e.g. g ≈ 15) or SYK black

hole (e.g. g ≈ 1, V = 0, J = 1). As discussed in [34], the
question about thermal description of quantum chaos via
effective hidden modes in the SYK regime remains open.

3 Qubit interacting with TBRIM

In order to study the decoherence of one qubit cou-
pled to the fermionic system described by the TBRIM
Hamiltonian HI defined in (2) we consider the total
Hamiltonian

H = δ · σx + ε
Veff

V0
σz

M−1∑
k=1

(
c†kck+1 + c†k+1ck

)
+HI , (9)
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Fig. 2. Time dependence of ρ11(t) (red plus symbols) and |ρ01(t)| (green crosses) for the initial state being the ground state of
HI with the level number m = 0 and qubit state (10) for V = 3.74166, J = 0.25 (V = 0, J = 1) in left (right) panel at coupling
strength ε = 0.01. The time is measured in units of ∆t = 1/(∆1 M) where ∆1 is the rescaled effective one-body level spacing
defined in the text.

where σx and σz are the usual Pauli matrices in qubit
space and δ is (half) the unperturbed energy separation of
the two qubit levels introducing Rabi oscillations with fre-
quency ωR = 2δ. We typically choose δ = ∆1/2 (or a sim-
ple multiple of this) with ∆1 being the effective rescaled
one-particle level spacing given above in terms of the effec-
tive energy scale Veff . In (9), we have chosen the orbital
indices k such that the one-particle energies are ordered,
i.e. εk+1 > εk, implying that the qubit–fermion coupling
term creates transitions between adjacent orbitals with
approximate energy difference ∼∆1. The quantity ε is
the coupling parameter which will take various values in
the interval 0.005 ≤ ε ≤ 1 and the ratio Veff/V0 (with

V0 =
√

14) ensures that at different values of V and J
the coupling parameter is measured in units of the overall
bandwidth σ ∼ Veff such that results at different values
of V and J at same ε are indeed comparable. We men-
tion that the Hamiltonian (9) is similar in structure to
the Hamiltonian studied in reference [8] where the qubit
was coupled to a quantum kicked rotor model. As already
mentioned we present below results for M = 16 orbitals
and L = 7 particles corresponding to a combined qubit–
fermion Hilbert space dimension of 22 880 but we have
also verified the smaller cases at M = 12 or M = 14 with
L = M/2− 1 obtaining there similar results.

Explicitly, we compute numerically the exact time evo-
lution of a state |ψm(t)〉 = exp(−iHt) |ψm(0)〉 with the
initial vector

|ψm(0)〉 = |φm〉 (|0〉+ 2 |1〉)/
√

5, (10)

where |φm〉 is an exact eigenstate of HI at level number
m with many body energy Em, i.e. HI |φm〉 = Em |φm〉,
and |0〉, |1〉 denote the two qubit states with bottom and
upper energies. The time evolution operator exp(−iHt)
is computed exactly by diagonalizing H and expressing
the matrix exponential using the exact eigenvalues and
eigenvectors of H. For M = 16 and L = 7, this corre-
sponds to a numerical diagonalization in the combined
fermion–qubit Hilbert space of dimension 22 880. As in
reference [8], we determine the 2× 2 density matrix ρij(t),
i, j = 0, 1 from the partial trace over the fermionic states
by: ρij(t) = 〈i|Trferm. (|ψm(t)〉 〈ψm(t)|) |j〉. In absence of

qubit–fermion coupling, i.e. ε = 0, the density matrix
ρ(t) does not depend on the choice of |φm〉 and a simple
standard calculation gives the result:

ρ11(t) = 1− ρ00(t) =
1

2
+

3

10
cos(ωRt), (11)

ρ01(t) = ρ∗10(t) =
2

5
+

3

10
i sin(ωRt), (12)

⇒ |ρ01(t)| = 1

2

(
41

50
− 9

50
cos(2ωR t)

)1/2

, (13)

where ωR = 2δ is the Rabi frequency.
For practical reasons, we compute the density matrix

ρ(t) at t = τ ∆t with integer values of τ and the ele-
mentary time unit ∆t = 1/(∆1M) where ∆1 is the
rescaled effective one-body level spacing. This time
step corresponds roughly to the inverse one-particle
band-width and represents the shortest quantum time
scale in the system. We consider the maximal time value

tmax = (d/2) ∆t = 5720 ∆t =
√

L(M−L)
4(M−1) tH ≈ tH with

L ≈M/2 and tH = 1/∆MB being the Heisenberg time.
In Figure 2, we show the time dependence of ρ11(t) and

|ρ01(t)| for a weak coupling strength ε = 0.01, an initial
state (10) with level number m = 0, corresponding to the
ground state of HI , and two cases for different values of V
and J . For ε = 0.01, the dependence ρ11(t) is close to the
analytical result (11). However, for |ρ01(t)| the situation
is more complicated with the appearance of a further fre-
quency leading to a quasi-periodic structure. Apparently,
the ground state |φ0〉 of HI is also weakly coupled to the
next state |φ1〉 due to the indirect qubit–fermion coupling
leading to an additional frequency. The results of Figure 2
show that there is no qubit decoherence when it is cou-
pled with a quantum dot or SYK system when they are
in their ground state.

For higher level numbers m the situation changes and
for many eigenstates |φm〉 of HI an exponential relax-
ation is found for ρ00(t) tending to the equilibrium value
1/2 and |ρ01(t)| tending to a value ∼1/

√
n where n is

roughly the number of eigenstates of HI contributing in
|ψm(t)〉. Therefore, motivated by the analytic expressions
at ε = 0, we use the following fit functions for small values

https://epjb.epj.org/
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Fig. 3. As in Figure 2, but for level number m = 5720 of the initial state (10) corresponding to an energy in the center of the
spectrum of HI . The fit functions f11(t) (thin black line) to approximate ρ11(t) and f01(t) (thin blue line) to approximate |ρ01(t)|
are given by (14) and (15) with the fit parameters: A1 = 0.49593± 0.00005, B1 = 0.3070± 0.0002, Γ1 = 0.002195± 0.000003,

ω1 = 0.063423± 0.000003, α1 = 6.2492± 0.0006 and A2 = 0.0063± 0.0001, B̃2 = 0.194± 0.001, Γ̃2 = 0.00435± 0.00004, ω2 =
0.12641 ± 0.00004, α2 = 3.232 ± 0.007, B2 = 0.800 ± 0.001, Γ2 = 0.00713 ± 0.00002 for V = 3.74166, J = 0.25 (left panel)
and A1 = 0.5008± 0.0001, B1 = 0.2897± 0.0004, Γ1 = 0.000449± 0.000002, ω1 = 0.062552± 0.000002, α1 = 6.228± 0.0002 and
A2 = 0.0391±0.0004, B̃2 = 0.172±0.002, Γ̃2 = 0.00094±0.00002, ω2 = 0.12508±0.00002, α2 = 3.06±0.02, B2 = 0.825±0.002,
Γ2 = 0.00209± 0.00001 for V = 0, J = 1 (right panel).

0 < ε� 1:

f11(τ∆t) = A1 +B1 e
−Γ1τ cos(ω1τ + α1), (14)

f01(τ∆t) =
1

2

(
A2 + B̃2 e

−Γ̃2τ cos(ω2τ + α2)

+B2 e
−Γ2τ

)1/2

, (15)

to approximate ρ11(t) by f11(t) and |ρ01(t)| by f01(t).
The parameter τ = t/∆t is the rescaled time in units
of ∆t = 1/(∆1M) where ∆1 is the rescaled effec-
tive one-body level spacing introduced above. These
fits work very well for the two cases shown in Fig-
ure 3 with level number m = 5720 (corresponding to
the band center of HI) and ε = 0.01. From (11),
(12), and for the choice δ = ∆1, M = 16 we expect
that ω1 = ωR ∆t = 2δ/(M∆1) = 1/M = 0.0625 and ω2 =
2ω1 = 0.125 which is indeed well confirmed by the fits
shown in Figure 3.

For larger values of the coupling strength ε ≥ 0.1 the fits
with the oscillatory terms do not work very well and have
to be simplified to simple exponential fits, i.e. by omitting
the term ∼B̃2 in (15) or replacing cos(ω1τ + α1) → 1 in
(14). In Appendix B, we discuss certain cases, with low
values of the level number m of the initial state (10) where
the fit procedure is also problematic. However, in global
the fits of the relaxation of the density matrix components
work well and allow to determine the dependence of the
relaxation rates Γ1, Γ2 on system parameters.

4 Qubit relaxation rates

4.1 Dependence on coupling strength

The relaxation rates are computed by the methods
described in the previous section. Here, we analyze the
dependence of these rates on system parameters. We note

that according to usual cases of superconducting qubit
relaxation [5–8] the rate Γ2 describes the dephasing of
qubit while Γ1 describes the population relaxation.

The obtained dependence of Γ1 on the qubit cou-
pling strength ε is shown in Figure 4 for the ini-
tial state m = 5720 taken in the middle of the total
energy band and the TBRIM values J = 0.15, 0.25, 1
at V = 3.74166 (Veff/V0 = 1.0070, 1.0193, 1.2747, and
∆1 = 0.1475, 0.1494, 0.1868, respectively) correspond-
ing to the quantum dot regime and J = 1 at V = 0
(Veff/V0 = 0.7905, ∆1 = 0.1158) corresponding to the
SYK black hole regime. For small coupling ε < 0.1 the
results are well described by the quadratic dependence on
coupling, typical for the Fermi golden rule regime:

Γ1 = C1ε
2. (16)

The fit value of the exponent is p = 2.00 ± 0.02 being
compatible with the quadratic dependence.

The dimensionless constant C1 in (16) is practically

independent of J (at fixed V =
√

14) when the system is
in the regime of dynamical thermalization being C1 ≈ 23
for J = 0.15, 0.25 and C1 ≈ 8 for J = 1. For the SYK case
we find C1 = 4.6± 0.3 at J = 1, V = 0. We consider that
this variation of C1 is not significant since it changes only
by a factor 5 while J2 is changed by a factor 44 and in
addition the model is changed from quantum dot to SYK
regime. At such changes the total energy band width is
also changed by a factor 2 (see Fig. 1) but we remind
that due to the definition of the model and parameters in
Sections 2 and 3 both ε and the relaxation rates are mea-
sured in units of effective energy (or inverse time) scales
that take into account the modification of total energy
band width due to different values of V and J . We note
that the dependence (16) was also found for the dynamical
relaxation of a qubit coupled to a deterministic detector
described by the quantum Chirikov standard map [8] with
C1 ≈ 0.5 corresponding to regime of the phase damping
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noise channel [2,8]. Here, we obtain C1 being by a factor 10
larger but in our model (9) the qubit is coupled with sev-
eral TBRIM states and we assume that this is the reason
for the increase of C1.

For ε > εc ≈ 0.1, we obtain a decrease of the relaxation
rate described by the dependence

Γ1 = C1ε
p, p = −1.15± 0.02 (17)

with C1 ≈ 0.002. As in [8], we attribute this decrease of
Γ1 with increase of ε to the quantum Zeno effect [49,50]:
repeated measurements produced by a coupled detector,
represented by TBRIM in the regime of quantum chaos,
reduce the relaxation rate. In the so called ohmic relax-
ation regime it is expected that Γ1 ∼ δ2/Γ2 ∼ Bδ2/ε2 [6,8]
(here δ = ∆1/2). For the model of quantum chaos detec-
tor it was found that B ≈ 2.7 [8]. Instead, here we find
that the exponent |p| = 1.15± 0.02 ≈ 1 being significantly
different. We attribute this difference to the fact that in
TBRIM the qubit is coupled to many one-particle states
represented by a sum over k in (9). For the numerical value
C1 ≈ 0.002 we find that it is still approximately given by
the relation C1 ≈ Bδ2 with B ≈ 0.4 being smaller than
those in [8]. A surprising feature of the obtained quan-
tum Zeno regime is that here Γ1 is practically independent
of parameter choice presented in Figure 4 corresponding
to DTC for the quantum dot and SYK quantum chaos
regimes.

The transition between the Fermi golden mean regime
(Γ1 ∝ ε2) and the quantum Zeno regime (Γ1 ∝ 1/ε) takes
place at εc ≈ 0.07−1. This corresponds to the relaxation
rate Γc = Γ1(εc) ≈ 0.05 which remains practically the
same for all parameter regimes presented in Figure 4.
According to the results and arguments presented in
[8,51,52] it is expected that Γc is given by the Lyapunov
exponent Λ of an underlined classical dynamics of the
detector coupled to qubit. Indeed, this was the case for
the dynamical detector considered in [8], however, for
the TBRIM it is more difficult to establish what is the
Lyapunov exponent of the corresponding classical TBRIM
dynamics. It would be possible to expect that Γc can be
related to the Breit–Wigner width Γ ∼ J2ρc appearing
in the TBRIM in the Fermi golden rule for the transition
between directly coupled states with the density ρc [53].
However, the independence of Γc of system parameters
presented in Figure 4 excludes this expectation.

We make the conjecture that for given parameters Γc is
determined by an effective time Tc of spreading over the
network of exponentially large size d (ln d ∼ M at large
M,L values) with a very small number of links (nonzero
transition matrix elements): Nl = K = 820� d = 11 440
(for M = 16 and L = 7). Such a network is similar to the
small-world networks appearing in many cases of social
relations [54,55]. It is known that a very rapid spread-
ing takes place on such networks for classical [55] and
quantum spreading [56] with a time scale Tc being only
logarithmic in system size d (effect of six degrees of sepa-
ration described in [54,55]). Thus, about six transitions
(links) are required to connect on average any pair of
nodes on such networks (for the Facebook network there

Fig. 4. Dependence of the relaxation rate Γ1 on the cou-
pling strength ε at level number m = 5720 for the initial state
(10) for V = 3.74166, J = 0.15 (red plus symbols), J = 0.25
(green crosses), J = 1 (dark blue stars), and V = 0, J = 1
(pink squares) in a double logarithmic representation. The two
lines correspond to the power law fits Γ1 = C1 ε

p for V = 0,
J = 1 with C1 = 4.6 ± 0.3, p = 2.00 ± 0.02 for ε ≤ 0.1 (light
blue line) and C1 = 0.00219 ± 0.00006, p = −1.15 ± 0.02 for
ε > 0.1 (black line).

is only four degrees of separation [57]). For typical net-
works like Wikipedia or www of universities there are only
about N` ∼ 10−20 nonzero links per row/column in the
full matrix of the network of size d ∼ 106 [58].

In the TBRIM case, we have a much larger number of
links per row/column and thus we expect that only about
2–4 transitions are sufficient to connect any two nodes
(levels) of the system. Due to this we can expect that
in this quantum small-world regime we have Γc ∼ Cd∆1

with a numerical constant Cd ≈ 0.5. The proportionality
Γc ∝ ∆1 appears since ∆1 plays a role of oscillator fre-
quency (as for an oscillator) determining the time scale
in the regime of explosive spreading over network, Cd is
inversely proportional to the degree of separation of the
network which is of the order of 2–4 transitions for TBRIM
since the number of links per column is much larger than
for Wikipedia or Facebook networks. Thus, we assume
that this kind of explosive spreading, already discussed in
[56], is at the origin of the independence of Γc of system
parameters (for the range visible in Fig. 4). We note that
this kind of explosive spreading, with exponentially many
states populated in a finite time, was also observed for the
emergence of quantum chaos in a quantum computer core
[59] (see e.g. Fig. 6 there).

The dependence of the dephasing rate Γ2 on the cou-
pling strength ε is shown in Figure 5 for the parameters
considered in Figure 4. In agreement with the usual
expectations [6,8] we find

Γ2 = C2ε
2 , C2 = 24± 8 . (18)

Indeed, the numerical fit gives the exponent
p = 2.02± 0.09 being very close to the Fermi golden
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Fig. 5. Dependence of the relaxation rate Γ2 obtained
from the fit (15) on the coupling strength ε at level number
m = 5720 for the initial state (10) for V = 3.74166, J = 0.15
(red plus symbols), J = 0.25 (green crosses), J = 1 (dark blue
stars) and V = 0, J = 1 (pink squares) in a double logarithmic
representation. The black line corresponds to the power law fit
Γ2 = C2 ε

p for the case V = 3.74166, J = 1 with C2 = 24± 8,
p = 2.02 ± 0.09 and fit range ε ≤ 0.1. The data points with
small full circles correspond to the relaxation rate Γ̃2 of the
oscillatory term for ε < 0.1 in (15) (same colors as other data
points for different cases of V and J). For ε ≥ 0.1 the relaxation
rate Γ2 is obtained from a simplified exponential fit without
oscillatory term.

rule value p = 2. For the range ε < εc ≈ 0.7 we have the
approximate relation Γ1 ≈ Γ2 as it was also found in [8]
corresponding to the general results of reference [6]. We
note that the fit results give for the other exponential
decay rate Γ̃2 of the oscillatory term in (12) (see full
color circles in Fig. 5) comparable values and parameter
dependence as for Γ2.

4.2 Dependence on excitation level number

The dependence of decay rates on the initial eigenvalue
number m (with eigenstate energy Eex(m)) is shown for
Γ1 in Figure 6 and Γ2 in Figure 7. All data are given
for a weak qubit coupling ε = 0.01 corresponding to the
Fermi golden rule regime in Figure 4. The independence
of m is surprising since we know that the density of
coupled states for effectively interacting electrons excited
above the Fermi level εF on energy ε ≈ T � εF growth
with energy as ρc ≈ T 3/∆1

4 (number of effectively inter-
acting electrons is δn ∼ T/∆1 and the effective density
of interacting two-particle states is ρ2,eff ∼ T/∆1 with
ρc ∼ ρ2,eff(δn)2) and the interaction induced transition

rate also grows with energy as Γc ∼ J2ρc ∼ J2T 3/∆1
4

[19,22]. Thus one could expect an increase of Γ1, Γ2 with
an increase of m. The results presented in Figures 6
and 7 clearly show no increase with m for the range
500 ≤ m ≤ 5720, for the range 100 ≤ m < 500 there is
also no increase with m but the data is more fluctuat-
ing. These fluctuations become even stronger for the range

Fig. 6. Dependence of the relaxation rate Γ1 on the level
number m used for the initial state (10) at coupling strength
ε = 0.01 for V = 3.74166, J = 0.15 (red plus symbols),
J = 0.25 (green crosses), J = 1 (dark blue stars), and V = 0,
J = 1 (pink squares) in a double logarithmic representation.

Fig. 7. Dependence of the relaxation rate Γ2 obtained from
the fit (15) on the level number m used for the initial state
(10) at coupling strength ε = 0.01 for V = 3.74166, J = 0.15
(red plus symbols), J = 0.25 (green crosses), J = 1 (dark blue
stars), and V = 0, J = 1 (pink squares) in a double loga-
rithmic representation. The data points with small full circles
correspond to the relaxation rate Γ̃2 of the oscillatory term in
(15) (same colors as other data points for different cases of V
and J).

0 ≤ m < 100 so that the fits of relaxation decay in this
range become not reliable (this is discussed in detail in
Appendix B). The increase of fluctuations at low excita-
tion numbers m is natural since for lower m values we
have a decrease of number of states effectively coupled to
the qubit. We note that the values of Γ̃2, shown by full
circles in Figure 7, show a similar behavior as Γ2 (with
somewhat larger fluctuations at low m values since the
corresponding fit (15) is more sensitive to errors).

Thus, even if the variation of m is rather large (fac-
tor 10 or 50) the variation of Γ1, Γ2 remains in the same
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range as in Figures 4 and 5 being restricted approxi-
mately by a factor 5. We explain this independence of
m in the same manner as in previously arguing that
for m > 100 the transitions between non-interacting
many-body states proceed in an explosive spreading typ-
ical on small-world networks in a regime Γ1 ≈ Γ2 ∼
30∆1 � ∆1. In fact for m ≈ 100, J = 0.15 we find δE ≈
T 2/∆1 ≈ 1.4 with ∆1 = 0.1475 that gives T ≈ 0.45 (see
Fig. 1) and from above estimates we obtain Γc/∆1 ≈ 30.
This ratio becomes even larger for other parameters of
Figures 4 and 6.

5 TBRIM as a quantum small-world network

Above, we proposed an analogy between the TBRIM and a
quantum small-world networks studied in [56,60], tracing
parallels with the small-world networks in social relations
[54,55]. On a first glance this analogy may look to be
strange since for TBRIM the number of nonzero matrix
elements per row/column of the Hamiltonian matrix is
fixed being K while the small-world networks are charac-
terized by a broader distribution of links [55]. However,
for the TBRIM the physical relevant quantity is not the
formal number of nonzero elements but the number of
effectively directly coupled states. As was discussed above
and in [19,22] the density and number of such states
depends on energy (this is especially visible in proximity
of the Fermi energy). According to quantum perturba-
tion theory we need to count only transitions for which
the transition matrix element is at least comparable to
the energy detuning between the states involved in the
transition. For the states with large energy detunings the
effective probabilities (weights) of the transitions become
small and their influence can be neglected, at least in a
first approximation.

Therefore, we construct from the TBRIM Hamiltonian
HI defined in (2) an effective (symmetric undirected) net-
work where two many-body states i and j are coupled
by a link if the condition |(HI)ij | > C|(HI)ii − (HI)jj |
is met where C is a parameter of order unity which we
either choose C = 0.1 or C = 1. This can be consid-
ered as a numerical selection following the Åberg criterion
[19,22]. A similar procedure has been considered in [61]
for spin chains. We emphasize that the diagonal matrix
elements (HI)ii are constituted of two contributions: the
first term in (2) given by the sum of energies of occupied
orbitals and certain non-vanishing diagonal contributions
from the interaction which have, according to the discus-
sion in Appendix A, a variance which is L(L − 1) larger
than the variance of the non-diagonal interaction matrix
elements (for the case where two occupied orbitals dif-
fer between the two states). For the limit J � V , the
diagonal matrix elements are of course dominated by the
orbital energy contribution but even for the SYK case
with vanishing orbital energies (V = 0, J = 1) the diag-
onal terms have a considerable size due to the diagonal
interactions.

Using this kind of network model we determine the fre-
quency distribution Nf (Nl) of number of links per node
Nl for the four cases V = 0, J = 1 (SYK case with

strongest interactions and quantum chaos), V =
√

14,
J = 0.025 (weak interactions without dynamical ther-

malization), V =
√

14, J = 0.25 (moderate interactions

with dynamical thermalization) and V =
√

14, J = 1
(strong interactions with dynamical thermalization). Fur-
thermore, we choose our standard parameters L = 7,
M = 16 giving a matrix dimension d = 11 440 of HI

and the number of non-zero couplings elements per state
K = 820 which is an obvious upper bound for Nl. As can
be seen in Figure 8 the frequency distribution of Nl is not
a power law and not scale free. Essentially, the criterion
in terms of diagonal energy differences implies that the
typical link number Nl is a certain fraction of K which
does not fluctuate too strongly for different initial states.
However, this fraction is smallest for V =

√
14, J = 0.025

with a maximal value Nf,max = 16 (if C = 0.1) or 7 (if
C = 1) and largest for the SYK case V = 0, J = 1 with
Nf,max = 687 (if C = 0.1) or 217 (if C = 1). According
to Figure 8, the frequency distribution of Nl provides
largest values for the case of strongest coupling (SYK,
V = 0, J = 1) and smallest values for the case of weak-

est coupling (V =
√

14, J = 0.025). The choice C = 1 as
compared to C = 0.1 provides a general shift to smaller
values. Actually, for V =

√
14 the case C = 1, J = 0.25

is rather comparable to C = 0.1 and J = 0.025 which is
rather obvious since reducing the constant C by a certain
factor corresponds to reducing the typical interaction cou-
plings by the same factor. However, these two cases are not
perfectly identical and the remaining small differences are
due to complications from the diagonal interaction matrix
elements in (HI)ii.

In global, we see that the frequency distribution of links
Nf (Nl) is peaked near a certain average value that can
be viewed as a broadening of the delta-function distribu-
tion of random graphs introduced by Erdös–Rényi [62],
known as the Erdös–Rényi model [55]. Below, we check if
our quantum network possesses the small-world property
typical for the social networks [54,55,57].

With this aim we compute a more interesting quantity
which we call the Erdös number NE . This number rep-
resents the minimal number of links necessary to connect
indirectly a specific node via other intermediate nodes to
a particular node called the hub.

We choose as hub two example states at index values
0 and 5720 in the many body Hilbert space of dimen-
sion d = 11 440 (at M = 16 and L = 7). In our numerical
mapping of states (i.e. the way the many-states are enu-
merated), the hub = 0 corresponds to the state where
the first L of the M (i.e. first 7 of 16) orbitals are occu-
pied. Since we have chosen the orbital energies ordered
with respect to the orbital index number (see text below
Eq. (9)) this state corresponds to the non-interacting
ground state, i.e. the Fermi sea, for the case V > 0
and J = 0. According to the Gaussian DOS this implies
that typical energy differences of this state with the next
excited states are rather large and therefore this hub
is quite “badly” coupled to other nodes in our network
model.

The other hub = 5720 corresponds roughly to a state
in the middle of the non-interacting energy spectrum (for
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Fig. 8. Frequency distributions Nf (Nl) of link number Nl per node (right panels) and Nf (NE) of Erdös number NE (left
panels) for an effective network constructed from HI where states/nodes i and j are connected by a link if the condition
|(HI)ij | > C|(HI)ii − (HI)jj | with the cut value C = 0.1 (top panels) or C = 1 (bottom panels) is met. The Erdös number
NE of a node represents the minimal number of links necessary to connect indirectly this node via other intermediate nodes
to the hub = 0 corresponding to the many-body state where first 7 out of 16 orbitals are occupied. The hub itself has NE = 0
and the value NE = −1 indicates that a node cannot be indirectly connected to the hub. Color of curves/data points is red
(SYK, V = 0, J = 1), green (V =

√
14, J = 0.025), blue (V =

√
14, J = 0.25) and pink (V =

√
14, J = 1). For these four cases

respectively the mean and the width of the distribution of Nl are: 532 ± 61, 3.35 ± 1.87, 33.7 ± 7.3, 129 ± 20 (C = 0.1, top
right panel) and 91.8± 25.2, 0.346± 0.586, 3.36± 1.89, 13.4± 4.09 (C = 1, bottom right panel); also the mean and the width
of the distribution of NE (not counting NE = −1 cases) are: 2.24± 0.53, 0.211± 0.464, 16.1± 4.86, 4.63± 1.12 (C = 0.1, top
left panel) and 3.40± 1.09, 0± 0, 0.469± 1.10, 41.2± 13.7 (C = 1, bottom left panel). In bottom left panel the green curve is
completely hidden by the blue curve and contains only two values Nf (−1) = 11439 and Nf (0) = 1 meaning that the hub is not
connected to any other node. All curves were obtained from an average of 100 different random realizations of HI for M = 16,
L = 7, and d = 11440. The vertical axis represents the number Nf of nodes having the link number Nl (right panels) or having
the Erdös number NE (left panels).

V > 0 and J = 0) and in our numerical mapping this cor-
responds to the state where the 7 orbitals: 3, 4, 8, 9, 12, 14,
and 15 are occupied. Here, the typical energy differences
with respect to neighbor states are quite small.

Therefore, for the three cases with V =
√

14 we expect
there will be a considerable difference in the connectivity
between both hubs. However, for the SYK case with V = 0
and J = 1 the residual diagonal energies in HI of these
states (due to the interaction) are really fully random and
both hubs are statistically expected to be equivalent and
rather well connected.

The Erdös number corresponds roughly to the ergodic
time scale (in units of link-iterations) for the classical
stochastic dynamics induced by the network. Depending
on the typical coupling strength of the network it is possi-
ble that certain or even many nodes are not at all coupled
to the hub by indirect links, especially for the hub = 0
(if V > 0). In this case, we attribute artificially the value
NE = −1 to such topologically separated nodes from the

hub, while the hub itself has NE = 0 and the remaining
nodes (indirectly coupled to the hub) have values NE > 0.

The frequency distribution Nf (NE) of the Erdös num-
ber NE for hub = 0 is shown in the left panels of Figure 8.
For the SYK case (strongest coupling) the distribution is
strongly peaked with typical values at∼2 (∼3) for C = 0.1
(C = 1). Then with decreasing coupling (or increasing
value of C) the width and mean values of the distribution
increase provided there is still a sufficient fraction of nodes
(indirectly) coupled to the hub. For the cases of weakest

coupling V =
√

14, J = 0.025 (if C = 0.1) or J ≤ 0.25
(if C = 1) nearly all nodes are not at all coupled to the
hub as can be seen from the strong peaks at NE = −1.
The mean and width of the distribution of the few number
of remaining nodes (eventually only the hub itself) is very

small. For the two cases V =
√

14, J = 0.25 (if C = 0.1) or
J = 1 (if C = 1) there is a large fraction of isolated nodes
but there are still enough remaining nodes coupled to the
hub providing a non-trivial distribution of largest values
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Fig. 9. Frequency distribution Nf (NE) of Erdös number NE for the same effective network of Figure 8 for the hub = 5720
corresponding to the many-body state where orbitals: 3, 4, 8, 9, 12, 14, 15 out of 16 orbitals are occupied. The signification
of NE is as in Figure 8 and the value of NE = −1 corresponds to the case of nodes not connected to the hub. Top (bottom)
panels correspond to the cut value C = 0.1 (C = 1). Left panels correspond to the range −2 ≤ NE ≤ 500 and a logarithmic
representation for Nf (NE) and right panels correspond to a zoomed range −2 ≤ NE ≤ 15 and normal representation for
Nf (NE). Color of curves/data points is red (SYK, V = 0, J = 1), green (V =

√
14, J = 0.025), blue (V =

√
14, J = 0.25)

and pink (V =
√

14, J = 1). For these four cases respectively the mean and the width of the distribution of NE (not counting
NE = −1 cases) are: 2.24 ± 0.53, 96.5 ± 74.9, 6.22 ± 3.03, 2.90 ± 0.74 (C = 0.1, top panels) and 3.42 ± 1.10, 0.371 ± 0.622,
91.7± 64.7, 15.1± 9.5 (C = 1, bottom panels). All curves were obtained from an average over the same 100 different random
realizations of HI (M = 16, L = 7, d = 11440) used in Figure 8.

∼40 or ∼90, respectively. Apart from the SYK cases only
the case V =

√
14, J = 1 at C = 0.1 provides a strongly

peaked distribution with typical value at 4.6± 1.
Figure 9 shows the frequency distribution Nf (NE)

of the Erdös number NE for the other hub = 5720.
As expected the two SYK cases are very similar to
the first hub = 0 of Figure 8. However, for the cases
with V =

√
14 the connectivity is indeed “better” as

compared to Figure 8, i.e. either the typical values are
smaller or there are less isolated nodes (lower or absent
peaks at NE = −1). Especially the two cases J = 0.025
(if C = 0.1) or J = 0.25 (if C = 0), with nearly only iso-
lated nodes in Figure 8, provide now a non-trivial rather
large distribution for a modest fraction of non isolated
nodes. Furthermore, these two cases are actually quite
comparable as already discussed above for the frequency
distribution of links.

The last two cases correspond to a (partial) ergodic-
ity but only after a large number of network iterations.
This observation may be related to a diffusive dynam-
ics in energy space where it takes some time to explore
different energy layers such that the networks are not
really of small-world type. Therefore, we also consider a
reduced network where we keep only nodes/states whose

diagonal energies are relatively close to the diagonal
energy of the hub, i.e. such that the energy condition
|(HI)ii − (HI)hub,hub| < 1.5∆1 for the hub = 5720 is sat-
isfied and where ∆1 is the effective rescaled average
one-particle level spacing introduced in Section 2 (see
text below Eq. (5)). We remind that ∆1 is small com-
pared to the overall energy band width but typically large
compared to the many body level spacing and also with
respect to the effective level spacing of directly interaction
coupled states [22,53]. As a consequence of this condi-
tion the effective dimension or network size of remaining
nodes/states is considerably reduced to values ∼4000 for

the SYK case or ∼1000 for the three cases with V =
√

14.
The modified distributions for this reduced network of
link number Nl and Erdös number NE are shown in
Figure 10. The frequency distribution Nf (Nl) is similar
as in Figure 8 with a clear ordering of typical sizes from
strongest coupling (SYK) to weakest coupling (V =

√
14

and J = 0.025) and an overall shift from C = 0.1 to C = 1.
The distribution of Erdös numbers for SYK is not changed
(apart from the modified normalization) while the cases

with V =
√

14 are now generally closer to a small-world
situation. Here, J = 1 is now identical (close) to SYK,
J = 0.25 provides typical Erdös numbers ∼2−3 (∼10),
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Fig. 10. Frequency distribution Nf (Nl) of link number Nl per node (right panels) and probability distribution wf (NE) of
Erdös number NE (left panels) for an effective network constructed from HI as in Figure 8 but only using nodes/states satisfying
the energy condition: |(HI)ii − (HI)hub,hub| < 1.5∆1 for hub = 5720. Color of curves/data points is red (SYK, V = 0, J = 1),
green (V =

√
14, J = 0.025), blue (V =

√
14, J = 0.25), and pink (V =

√
14, J = 1). For these four cases respectively the

mean and the width of the distribution of Nl are: 323± 67, 3.50± 1.87, 28.8± 7.0, 69.9± 10.4 (C = 0.1, top right panel) and
89.3 ± 23.4, 0.368 ± 0.603, 3.50 ± 1.90, 13.4 ± 4.0 (C = 1, bottom right panel); the mean and the width of the distribution of
NE (not counting NE = −1 cases) are: 2.18± 0.56, 12.0± 6.1, 2.54± 0.63, 2.23± 0.58 (C = 0.1, top left panel) and 2.51± 0.55,
0.371± 0.622, 10.2± 4.5, 3.41± 0.85 (C = 1, bottom left panel); the average effective dimension/reduced network size is: 4107,
869, 883, 1102 (all panels). Left panels show the probability distribution wf (NE) normalized to unity for a better visibility as
compared to Nf (NE) (shown in Figs. 8 and 9) with different normalizations due to different network sizes. As in Figure 8 the
case NE = −1 represents nodes which cannot be reached by the hub. All curves were obtained from an average over the same
100 different random realizations of HI (M = 16, L = 7, d = 11 440) used in Figure 8.

and the case J = 0.025 corresponds to a typical Erdös
number ∼12 (majority of nodes isolated from hub) all for
C = 0.1 (C = 1). This clearly confirms that large Erdös
numbers ∼102 of the full network before correspond to
diffusion to other energy layers.

The data of Figures 8–10 clearly show that the TBRIM
is characterized by small-world properties provided the
interaction strength is sufficiently large. Especially the
SYK case with an average Erdös number 〈NE〉 = 2.2± 0.5
(3.4 ± 1) for C = 0.1 (C = 1) shows very strong
small-world properties. However, for modest interaction
strength there are some complications due to diffusion in
energy space leading to possible Erdös numbers ∼102.
We think that the further development of the analogy
between quantum many-body interacting systems and
small-world networks will bring a better understanding
of these quantum systems.

We note that the small-world network constructed for
an energy layer of a finite width (we use the width of
3∆1) is more relevant for the qubit relaxation analyzed in
previous sections: the coupling of the qubit with the states
inside this layer leads to its rapid relaxation on the time
scale related to Γc ∼ ∆1, while slow transitions from one

energy layer to another layer describe the residual level of
density matrix relaxation analyzed in the next section.

6 Residual level of density matrix relaxation

Our TBRIM model contains a finite number of states d
and hence the relaxation of density matrix components
stops at a certain residual level of density matrix elements
|ρ01| determined by quantum deterministic fluctuations
and noise. In fact since the spectrum of our system is dis-
crete and the system is bounded we will always have the
Poincaré recurrences to the initial state in agreement with
the Poincaré recurrence theorem [63]. However, the time tr
of such a recurrence grows exponentially with the system
size ln tr ∝ d being enormously large even for our case
with L = 7 particles. However, depending on the initial
state and parameters it is possible that the effective num-
ber deff of excited states contributing in the exact time
evolution is much smaller than d implying that for these
cases tr is strongly reduced. Therefore, we compute the
deterministic residual level of quantum fluctuations given
by |ρ01| averaged over long times for d/4 ≤ t/∆t ≤ d/2
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Fig. 11. Density plot of residual level of quantum fluc-
tuations determined as the time average of |ρ01(t)| at
long times for d/4 ≤ /∆t ≤ d/2. The horizontal axis cor-
responds to the level number m = 0, 1, 2, 3, 4, 7, 11, 18, 29,
47, 76, 122, 198, 320, 517, 836, 1353, 2187, 3537, 5720 of the ini-
tial state (10) and the vertical axis corresponds to the value
of the interaction strength J at V =

√
14 ≈ 3.74166 except for

the top row (with symbol “J =∞”) representing the SYK case
J = 1 and V = 0. The coupling strength is ε = 0.03. The colors
red, green or blue correspond to maximum |ρ01(t)| = 0.4353,
intermediate or minimum (zero) fluctuation values (they are
shown by color bar on top with numbers showing the percent-
age of maximal value).

roughly corresponding to tH/2 ≤ t ≤ tH (or |ρ00 − 1/2|
with similar results).

The dependence of the residual level of quantum fluctu-
ations on J,m is shown in Figure 11. The lowest level is at
the middle of energy band with m = 5720 corresponding
to infinite temperature T , The highest level is found for
the ground state m = 0 and first excited states m = 1, 2
with J < 1 at V =

√
14. The amplitude of residual fluc-

tuations decreases with increase of J but it is difficult to
establish a clear border in (J,m) plane. We attribute this
to the fact that the Åberg border (1) works mainly for
small J values with g � 1 so that a special analysis of
this region is required that was not the main aim of this
work.

We note that the residual fluctuations are rather similar
for the SYK regime at J > 10 and the quantum dot regime
above the Åberg border (1) with 0.15 ≤ J < 10 (except
very low excited levels m < 7 and J < 0.5). We attribute
this to the fact that in this region Γc � ∆1 leading to the
explosive spreading over the quantum small-world.

In analogy with [8], we expect that in the regime of
developed quantum chaos the residual level Rq of quan-
tum fluctuations of qubit drops as a square-root of the
states of a detector Rq ∝ 1/

√
d. However, the quantum

computations for TBRIM detector are more complicated
compared to the kicked rotator case and we did not per-
formed detailed numerical checks of this relation which

is however in a qualitative agreement with the results of
Figure 11.

Finally, we make a note on the relaxation dependence of
the qubit energy given by 2δ. Above we presented results
for a fixed value δ = ∆1 but we checked that the relaxation
of density matrix components goes in a similar manner for
other values of the ratio 0.3 ≤ 2δ/∆1 < 3 as it is shown
in Figure 12. The changes of the decay curves start to be
visible for 2δ/∆1 ≥ 3 but in this range the qubit energy
becomes comparable to the energy size of the TBRIM
band that corresponds to another physical regime where
the qubit cannot be considered as a weak perturbation.

We also mention that our above discussion of the prop-
erties of qubit relaxation concern the range of positive
temperatures with m ≤ d/2. The regime of negative tem-
peratures is briefly discussed in Appendix C where we
find comparable results for the qubit relaxation as in the
regime of positive temperatures. This is also in agreement
with spin relaxation at negative temperatures considered
in [64].

7 Discussion

We presented results for a dynamical decoherence of a
qubit weakly coupled to the TBRIM system in the regime
of dynamical thermalization induced by interactions and
quantum many-body chaos, corresponding to the quan-
tum dot of interacting fermions and the SYK black hole
model. The relaxation rates of qubit population Γ1 and
dephasing Γ2 are determined as a function of qubit cou-
pling strength ε with Γ1 ∝ ε2 in the Fermi golden rule
regime and Γ1 ∝ 1/ε in the quantum Zeno regime with
Γ2 ∝ ε2 for the whole considered range. These results are
in a satisfactory agreement with the usual thermal bath
qubit decoherence considered in the literature (see e.g.
[6]). The surprising finding of our studies is that the values
of Γ1, Γ2 remain practically unchanged in a broad range
of parameters of the quantum dot or the SYK model. We
propose a tentative explanation of this effect by tracing an
analogy between TBRIM system and quantum small-wold
networks with appearance of explosive spreading over
exponential number of sites (states) in a finite time. This
explosive spreading appears in both regimes of quantum
dot and SYK when the transition rates between directly
coupled states become larger than an effective level spac-
ing between one-particle states. We hope that our results
will stimulate further investigations of dynamical deco-
herence in quantum many-body interacting systems and
a further development of parallels between these systems
and the small-world networks.

Note added in proof : We note that recently other groups
started to study models similar to the TBRIM in the
context of the SYK model (see e.g. [65]).

This work was supported in part by the Pogramme Investisse-
ments d’Avenir ANR-11-IDEX-0002-02, reference ANR-10-
LABX-0037-NEXT (project THETRACOM); it was granted
access to the HPC resources of CALMIP (Toulouse) under the
allocation 2017-P0110.
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Fig. 12. Time dependence of |ρ01(t)| at level number m = 5720 for the initial state in (10) for various values of the parameter δ
according to: 0.3 ≤ 2δ/∆1 ≤ 6. The horizontal axis for the time is shown in logarithmic representation for a better visibility. Top
(bottom) panels correspond to coupling strength ε = 0.1 (0.01). Left (right) panels correspond to V = 3.74166, J = 1 (V = 0,
J = 1).

Appendix A: Gaussian density of states

A.1 Analytical computation of the variance

The TBRIM Hamiltonian HI given by (2) exhibits in
the limit M → ∞ at a fixed value of particle number
L an average density of states (DOS) which is obviously
Gaussian in absence of interaction (J = 0) since in this
case the many body energy levels are given by E({nj}) =∑
j nj εj with nj ∈ {0, 1} which is a sum of random

Gaussian variables with vanishing average and variance:

σ2
ε =

〈
E({nj})2

〉
=

M∑
j,j′=1

nj nj′ 〈εj εj′〉

=
1

M

M∑
j=1

n2
jV

2 =
L

M
V 2 . (A.1)

However, the expression (A.1) requires to take the ensem-
ble average over the one-particle energies εj , i.e. the
numerical verification of the variance requires an aver-
age over many realizations and from a pure mathematical
point of view the Gaussian form of the distribution of
E({nj}) requires indeed the limit M →∞ at fixed value
L (and of V 2/M → const.) providing a sum of independent
Gaussian variables.

On the other hand, we find numerically that the density
of states is very close to a Gaussian distribution already

for one sample of HI at the values of M and L we con-
sidered. To understand this let us first consider J = 0
and let εj be one sample of one-particle energies initially
drawn from a Gaussian distribution (with zero mean and
variance V 2/M) and then slightly modified by a small
universal shift and rescaling factor to ensure exactly that∑
j εj = 0 and

∑
j ε

2
j = V 2. Now we consider this set

of one-particle energies fixed and perform the average of
E({nj}) not with respect to εj but with respect to all con-
figurations nj ∈ {0, 1} such that L =

∑
j nj . In this case

we have obviously 〈nj〉 = L/M . Furthermore we find:

L2 =

M∑
j,j′=1

〈nj nj′〉=M〈nj〉+M(M − 1)〈nj nj′〉j 6=j′ ,

(A.2)
where we have separated the terms with j = j′ from those
with j 6= j′. From (A.2) we immediately find:

〈nj nj′〉j 6=j′ =
L(L− 1)

M(M − 1)
, (A.3)

and therefore we get, for J = 0, a different variance with
respect to (A.1):

σ2(0) =
〈
E({nj})2

〉
=

L

M

M∑
j=1

ε2j +
L(L− 1)

M(M − 1)

M∑
j 6=j′

εj εj′
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=
L

M

(
1− L− 1

M − 1

) M∑
j=1

ε2j =
L(M − L)

M(M − 1)
V 2 .(A.4)

To obtain (A.4) we have used that:

M∑
j 6=j′

εj εj′ =

 M∑
j=1

εj

2

−
M∑
j=1

ε2j = −
M∑
j=1

ε2j , (A.5)

since
∑
j εj = 0 by choice.

Now we consider a non-vanishing interaction strength
J 6= 0. In the limit for sufficiently small J we expect that
the DOS is not affected by J . If we assume that the DOS
remains Gaussian, also for larger values of J , (see below
for the numerical confirmation of this) we can compute
the variance σ2 from the average:

σ2 =
1

d

∫ ∞
−∞

E2 〈ρ(E)〉 dE =
1

d

〈
d−1∑
m=0

E2
m

〉

=
1

d
〈Tr(H2

I )〉 = σ2(0) +
1

d
〈Tr(H2

J)〉, (A.6)

where Em are the exact many body energies, σ2(0) is the
variance at J = 0 given in (A.4) and

HJ =
4√

2M3

∑
i<j,k<l

Jij,kl c
†
i c
†
jcl ck (A.7)

is the interaction contribution in (2). In (A.6), the aver-
age is done at fixed one-particle energies with respect
to the different configurations of the occupation num-
bers nj (satisfying

∑
j nj = L) and with respect to

the Gaussian interaction matrix elements Jij,kl. To
evaluate (1/d)〈Tr(H2

J)〉 let us consider one particular
many body state where exactly L of the M orbitals
are occupied. This state is coupled by the interaction
to three groups of other states: (i) “itself”, i.e. with
identical occupation numbers nj , (ii) L(M − L) states
that differ exactly for one particle occupying another
orbital, and (iii) L(L − 1)(M − L)(M − L − 1)/4 states
that differ exactly for two particles occupying other
orbitals. This corresponds to a total number of coupled
states 1 + L(M − L) + L(L− 1)(M − L)(M − L− 1)/4,
an expression already given in [22,29].

However, in order to evaluate the contributions of the
corresponding interaction matrix elements in 〈Tr(H2

j )〉
this (global) number is not relevant since the average vari-
ance of the interaction matrix element differs between
these three groups. The interaction matrix element of
the state with itself, corresponding to the group (i), uses
L(L − 1)/2 terms of (A.7) since there are L(L − 1)/2
possibilities to destroy a pair of particles in the set of
given L particles and to recreate them afterwards in
their same original orbitals. This corresponds to a sum
of L(L− 1)/2 independent Gaussian variables Jij,ij with

variance1 2J2, giving a contribution in 〈Tr(H2
j )〉 being

(8/M3) J2L(L− 1).
Concerning the group (ii), we need to consider in (A.7)

the index pairs i < j and k < l where one index of the
first pair is identical to one index of the other pair and
the other one is different. This gives L− 1 possibilities to
destroy the pair of particles and recreate them afterwards
such that one of the two particles stays in the same orbital
and the other one has changed its orbital. Therefore, the
total contribution of all states of the group (ii) to 〈Tr(H2

j )〉
is (8/M3) J2L(M − L)(L− 1).

Concerning the group (iii) both indices must be dif-
ferent and there is only one term in (A.7) contributing
to the interaction matrix element. Hence the total con-
tribution of all states of the group (iii) to 〈Tr(H2

j )〉 is

(8/M3) J2L(L− 1)(M − L)(M − L− 1)/4.
This argumentation does not depend on the choice of

initial state giving a factor d canceling the factor 1/d in
(A.6). Putting this all together, we obtain from (A.6) the
expressions (3), (4) and (5) given in the main text for σ in
terms of the effective energy scale Veff and the coefficient
a(M,L) which measures the global energy rescaling due
to finite values of J/V .

A.2 Numerical verification

In order to verify numerically the Gaussian density of
states with the theoretical variance given in (3) it is more
convenient to determine the integrated DOS:

P (E) =
1

d

∫ E

−∞
ρ(Ẽ) dẼ . (A.8)

The prefactor 1/d assures the limit limE→∞ P (E) = 1
since ρ(E) is chosen to be normalized to d and not unity.
In case of an ideal Gaussian DOS, as in (3), we have:

P (E) = Pgauss(E) =
1

2

(
1 + erf

(
E√
2σ

))
(A.9)

with erf(x) = (2/
√
π)
∫ x

0
exp(−y2) dy.

If Em represent the numerically computed eigenvalues
(of one sample of HI and ordered in increasing order
with level number m = 0, . . . , d − 1) the integrated den-
sity of states is simply obtained by drawing the quantity
zm = (m+ 0.5)/d versus Em which gives the appearance
of a rather smooth curve for a sufficiently large value of d
which can be compared to the expression (A.9). In order
to perform a more sophisticated fit analysis we generalize
(A.9) to:

Pk(E) =
1

2

(
1 + erf

(
qk(E)/

√
2
))

, (A.10)

1 It is mathematically also possible to consider other symmetry
classes GUE or GSE for the interaction matrix which would imply a
variance of 2J2/β (with β = 1 for GOE, 2 for GUE and 4 for GSE)
for the variables Jij,ij if we keep the non-diagonal variance J2 of
Jij,kl for (ij) 6= (kl).
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Fig. A.1. Integrated density of states P (E) of the TBRIM Hamiltonian (2) represented by the curve zm = (m+ 0.5)/d versus
energy level Em (red curve) with m = 0, . . . , d− 1 being the level number. The Hilbert space dimension is d = 11 440 for L = 7
particles and M = 16 orbitals. Shown are the curves for one individual spectrum at V = 3.74166, J = 0.25 (top left panel)
and the SYK-case V = 0, J = 1 (top right panel). The functions Pk(E) correspond to the fit (A.10). Shown are the cases
k = 1 (green curve) and k = 5 (blue curve). The case k = 1 corresponds to the (integrated) Gaussian density of states with
two fit parameters for the width σfit and center Ec. The fits for k = 1 provide for V = 3.74166, J = 0.25 (V = 0, J = 1) the
values Ec = −0.008± 0.001 (−0.032± 0.001), and σfit = 1.951± 0.001 (1.508± 0.001) giving the ratio σfit/σ = 0.9983± 0.0006
(0.9952± 0.0008) where σ = 1.954 (1.516) is the theoretical value obtained from (3). For comparison the quantity σTr, obtained
numerically from the trace of H2

I , gives for both cases σTr = 1.947 (1.503). In top panels the blue curves for P5(E) coincide
with the red curves for P (E) on graphical precision while the green curves for P1(E) are slightly above (below) the red curve
for E > 0 (E < 0). Bottom panels show the difference Pk(E)− P (E) of the fit functions with respect to the numerical function
P (E) for k = 1 (green curve) and k = 5 (blue curve) using an increased scale.

where qk(E) is a polynomial of degree k. The case k = 1
with q1(E) = (E − Ec)/σfit corresponds to a Gaussian
DOS with variance σfit and center Ec. Choosing larger
values of k > 1 we may analyze deviations with respect
to the ideal Gaussian distribution. From the practical
point of view a direct fit of zm with Pk(Em) is a bit
tricky because it is non-linear and it is easier to per-
form the least-square minimization not in the vertical
but in the horizontal axis. To do this explicitly let, for
0 < x < 1, the function inverf(x) be defined as the inverse
of erf(x) such that erf(inverf(x)) = x. Then we apply the

fit qk(Em) =
√

2 inverf(2zm − 1) which is linear in the
coefficients of the polynomial qk(E) and provides a unique
well defined solution.

We have applied this fit for the two cases k = 1 and
k = 5, for many different values the ratio J/V covering
many orders of magnitude and our standard choice M =
16, L = 7 with d = 11 440. In all cases the hypothesis of an
approximate Gaussian DOS is well confirmed with a value
of σfit confirming the theoretical expression in (3) with an
error below 1%. As an additional verification, we have
also numerically determined the variance from the trace,
i.e. the quantity σ2

Tr = (1/d)Tr(H2
I ) = (1/d)

∑
mE

2
m (the

last equality is valid with numerical precision ∼10−14). In
all cases σTr also coincides with σfit and the theoretical
expression with an error below 1%.

However, a careful comparison of the numerical curve
of P (E) with P1(E) shows small but systematic devi-
ations which can be significantly reduced by increasing
the degree of the fit polynomial qk(E). For k = 5, it is
already nearly impossible to distinguish the numerical
curve from P5(E) on graphical precision. This is clearly
illustrated in Figure A.1 where we compare the numeri-
cal curve P (E) with P1(E) and P5(E) for the two cases
= 3.74166, J = 0.25 and V = 0, J = 1 (SYK-case). In
order to see the differences between the two fits it is actu-
ally necessary to draw the difference of P (E)− Pk(E) in
an increased scale as it is done in the lower panels of
Figure A.1.

We attribute the small deviations to the Gaussian den-
sity of states to the finite values of M and L and also
to the fact that we used only one numerical sample of
HJ . Actually, for finite values of J it is to our knowledge
still an open problem if the average DOS of HI is indeed
Gaussian even for the limit M →∞ and L finite (previous
analytical results [44,45] apply to the SYK-case with
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Fig. B.1. Time dependence of ρ11(t) (red plus symbols), |ρ01(t)| (green crosses) and the two fit functions f11(t) (thin black
line) and f01(t) (thin blue line), defined in (14) and (15), for level number m = 7 of the initial state (10) and V = 3.74166,
J = 0.25 (V = 0, J = 1) in left (right) panels at coupling strength ε = 0.01 (0.02) in top (bottom) panels. As in Figures 2, 3
the time is measured in units of ∆t and the number of particles (orbitals) is L = 7 (M = 16).

Majorana fermions that is different from our model at
V = 0 and J = 1).

Appendix B: Weakly excited initial states

The fit procedure using the fit functions (14), (15) to
approximate ρ11(t) and |ρ01(t)| are very often quite prob-
lematic. First the non-linear fits with a considerable
number of parameters depend rather strongly on “good”
initial values, especially for the frequencies ω1,2, for the
Levenberg–Marquardt iteration. Furthermore it is typi-
cally necessary to attribute stronger weights on the initial
times. For this we typically perform a first simple expo-
nential fit of the survival probability p(t) = |〈ψ(0)|ψ(t)〉|2
which provides a smooth simplified decay time which
we use to fix exponentially decaying weights in time
for the more precise fits using the fit functions (14),
(15). For larger values of the couplings strength, typically
at ε ≥ 0.1, the periodic structure with the frequencies
ω1,2 also disappears and the fits have to be simplified
accordingly as mentioned in the main text.

Even, taking all this into account, for weakly excited
initial states, with small values of the level number m in
(10), the quality of the fits may be rather poor due to the
absence of exponential decay, presence of a quasi-periodic
structure or the effect that after an initial decrease |ρ01(t)|
re-increases at sufficiently long times.

In Figure B.1, we show some examples of this type for
the level number m = 7 at our usual standard parameters
V = 3.74166, J = 0.25 or V = 0, J = 1 and the coupling

strengths ε = 0.01 or 0.02. The quantity ρ11(t) exhibits
a structure with beats introducing a second smaller fre-
quency which is only captured by f11(t) at the initial times
and even here the deviations due the non-exponential
decay are quite well visible. For |ρ01(t)| there are fluctu-
ations with long correlation times for larger time scales
which are not well captured by the periodic saturated
form of f01(t) at long times. In one case at J = 0.25,
V = 3.74166, and ε = 0.02, the frequency ω2 is consid-
erably reduced to fit the long range form of |ρ01(t)| but
this effect does not reflect the physical reality and provides
poor values of the two decay rates Γ2 and Γ̃2.

Due to these effects, we do not show any fit functions
in Figure 2, which applies to the level number m = 0, and
in Figures 4 and 5 we show the decay rate for the largest
level number m = 5720 which is not problematic as can
be seen in Figure 3. Furthermore in Figures 6 and 7, we
only show data points for m > 100.

Appendix C: Initial state with negative
temperature

In Figure C.1, we present the results for qubit relax-
ation in the regime of negative temperature (initial
state is above the half of energy band width). Here the
dynamical temperature of the initial state is T = 1/β;
β = −0.5424. We see that the relaxation is practically the
same as for the initial state with positive temperature at
β = 0.5443 = 1/T . This effect is due to symmetry between
negative (positive derivative of the DOS) and positive
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Fig. C.1. Time dependence of ρ11(t) (red plus symbols), |ρ01(t)| (green crosses) and the two fit functions f11(t) (thin black line)
and f01(t) (thin blue line), defined in (14) and (15), for coupling strength ε = 0.01 and V = 3.74166, J = 0.25 (V = 0, J = 1)
in left (right) panels at level numbers m = 2187 (9252) in top (bottom) panels. The initial state for V = 3.74166, J = 0.25 at
level number m = 2187 (9252) corresponds to the inverse temperature β = 0.5443 (−0.5424). As in Figures 2 and 3 the time is
measured in units of ∆t and the number of particles (orbitals) is L = 7 (M = 16).

energies (negative derivative of the density of states). The
former correspond to positive and the latter to negative
temperatures as can also be seen in the bottom panels of
Figure 1.
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