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We introduce and study the extension of the Chirikov standard map when the kick potential has two and
three incommensurate spatial harmonics. This system is called the incommensurate standard map. At small
kick amplitudes, the dynamics is bounded by the isolating Kolmogorov-Arnold-Moser surfaces, whereas above
a certain kick strength, it becomes unbounded and diffusive. The quantum evolution at small quantum kick
amplitudes is somewhat similar to the case of the Aubru-André model studied in mathematics and experiments
with cold atoms in a static incommensurate potential. We show that for the quantum map there is also a metal-
insulator transition in space whereas in momentum we have localization similar to the case of two-dimensional
Anderson localization. In the case of three incommensurate frequencies of the space potential, the quantum
evolution is characterized by the Anderson transition similar to the three-dimensional case of the disordered
potential. We discuss possible physical systems with such a map description including dynamics of comets and
dark matter in planetary systems.
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I. INTRODUCTION

The investigation of dynamical symplectic maps allows
for understanding the fundamental deep properties of Hamil-
tonian dynamics. The map description originates from the
construction of Poincaré sections of continuous dynamics
invented by Poincaré [1]. The mathematical foundations for
symplectic maps are described in Refs. [2,3]. Their physical
properties and applications including numerical studies are
given in Refs. [4,5]. The renormalization features of criti-
cal Kolmogorov-Arnold-Moser (KAM) invariant curves are
analyzed in Ref. [6] with the transport properties through
destroyed KAM curves investigated in Refs. [4,7].

The seminal example of a symplectic map is the Chirikov
standard map [4],

p̄ = p + K sin x, x̄ = x + p̄, (1)

where p and x are canonically conjugated variables of mo-
mentum p and coordinate x and bars mark the values of
variables after a map iteration. It is argued that, for K >

Kc = 0.9716 · · · , the last KAM curve is destroyed and the
dynamics is characterized by a global chaos and diffu-
sion in momentum 〈p2〉 = Dt p with a diffusion rate D
where the time t is measured in the number of map itera-
tions and the diffusion coefficient is D ≈ K2/2 at large K
values [4,6,7].

The important feature of map (1) is its universality related
to an equidistant spacing between resonance frequencies so
that a variety of symplectic maps and periodically driven
Hamiltonian systems can be locally described by the map (1)
in a certain domain of the phase space. The Chirikov standard
map finds applications for the description of various physical
systems including plasma confinement in open mirror traps,

microwave ionization of hydrogen atoms, comets, and dark
matter dynamics in the solar system and behavior of cold
atoms in kicked optical lattices (see, e.g., Refs. [4,8–11] and
references therein).

The quantum version of map (1) is obtained by consid-
ering p and x as the Heisenberg operators with the com-
mutation relation [ p̂, x̂] = −ih̄. The corresponding quantum
evolution of the wave function ψ (x) is described by the
map [12,13],

ψ̄ = exp(−ik cos x) exp(−i p̂2/2h̄)ψ, (2)

where p̂ = h̄n̂ = −ih̄ ∂/∂x, k = K/h̄, T = h̄, K = kT (T
can be also considered as a rescaled time period between
kicks). Here, the wave function is defined in the domain
0 � x � 2π corresponding to the quantum rotator case, or
it can be considered on the whole interval −∞ < x < ∞
corresponding to motion of cold atoms in an optical lattice.
The later case has been realized in experiments with cold
atoms in a kicked optical lattice [14]. At K > Kc, the classical
diffusion in p becomes localized by the quantum interference
effects with an exponential decay of probability over the
momentum states n = p/h̄,

〈|ψn|2〉 ∝ exp(−2|n − n0|/�), � ≈ D/h̄2, (3)

with the localization length � and n0 being an initial state
[12,15]. This dynamical quantum localization is analogous
to the Anderson localization in disordered solids as pointed
out in Ref. [16]. However, the role of the spacial coordinate
is played by momentum state level index n, and diffusion
appears due to dynamical chaos in the classical limit and not
due to disorder (see more details in Refs. [13,15,17]).

The important feature of the Chirikov standard map is
its periodicity in spacial coordinate (of phase) x. The cases
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with several kick harmonics have been considered for vari-
ous map extensions (see, e.g., Refs. [4,5,12,18]), but all of
them had periodicity in x. The important example of the
map with several harmonics is the generalized Kepler map
which provides an approximate description of Halley’s map
dynamics in the solar system [19] (see also Ref. [11] for
references and extensions). In this system, Jupiter gives an
effective kick in the energy of Halley’s comet when it passes
through its perihelion. This kick function contains several
sine harmonics of Jupiter’s rotational phase since the comet
perihelion distance is inside the Jovian orbit. However, other
planets, especially Saturn, also give a kick change in comet
energy. Since the frequencies of other planets are generally
not commensurate with the Jovian rotation frequency, we
have a situation where the kick function depends, at least,
on two phases with incommensurate frequencies. Thus, it is
important to analyze the incommensurate extensions of the
Chirikov standard map.

The simplest model is the incommensurate standard (i-
standard) map which we investigate in this paper,

p̄ = p + K1 sin x + K2 sin νx,
(4)

x̄ = x + p̄,

where ν is a generic irrational number and K1, K2 are
amplitudes of two incommensurate kick harmonics. Here,
the coordinate domain is −∞ < x < ∞ corresponding to
dynamics of atoms in an incommensurate optical lattice.
For K1 = 0 or K2 = 0, the model is reduced to the map
(1). We consider here the case of the golden mean value of
ν = (

√
5 − 1)/2 = 0.618 · · · .

The incommensurate standard map (5) describes the dy-
namics of cold atoms in a kicked optical lattice with an
incommensurate potential. The static incommensurate optical
lattice can be created by laser beams with two incommen-
surate wavelengths. In fact, such an incommensurate optical
lattice had been already realized in cold atoms experiments
[20] where the evolution of atomic wave function can be
approximately described [21] by the Aubry-André model on
a discrete incommensurate integer lattice with the Aubry-
André transition from localized to delocalized states [22]. At
present, the investigation of interactions between atoms on
such a lattice attracts a significant interest of the cold atom
community (see, e.g., Ref. [23]).

Due to the above reasons, we think that the incommen-
surate standard map will capture new features of dynamical
chaos with possible application to various physical systems.
We also note that the quantum evolution of this map may
have localization or delocalization properties with a certain
similarity with the Anderson transition in disordered solids.

We note that the studies on incommensurate tori and re-
lated dynamics had been investigated by different groups (see,
e.g., Refs. [24–26]) but the models considered there are not
directly reducible to the incommensurate standard map and
thus are different from the model considered here.

The paper is constructed as follows: Sec. II describes
the properties of classical dynamics; quantum map evolution
is analyzed in Sec. III, effective two-dimensional (2D) and
three-dimensional (3D) features of quantum evolution are

FIG. 1. Diffusion rate in momentum D = 〈p2〉/t vs K1 and K2.
Data are averaged over 1000 trajectories with random initial con-
ditions in the interval x, p ∈ [0, 10−6) for the number of iterations
t = 104. The color bar shows the values of D, and the resolution in
(K1, K2) space is given by �K1 = �K2 = 0.003.

considered in Sec. IV, and a discussion of the results is given
in Sec. V.

II. CLASSICAL MAP DYNAMICS

To study the properties of classical dynamics of the map
(5), we launch a bunch of trajectories in a vicinity of unstable
fixed point x = 0, p = 0 and compute an effective diffusion
coefficient D = 〈p2〉/t averaged over all initial trajectories.
The dependence of D on K1 and K2 is shown in Fig. 1.
These data show that there is a critical curve Kc2 = f (Kc1)
below which the momentum oscillations are bounded and
above which p grows diffusely with time. At K1 = K2 = K ,
we obtain Kc = Kc1 = Kc2 ≈ 0.65 (see below). Of course,
the time t used in Fig. 1 is not very long (due to many
trajectories and many K1, K2 values) so that we obtain only an
approximate position of the critical curve. Thus, for K2 = 0
we know that Kc = 0.9716 · · · [6], that is, a bit below than
the blue domain with a finite diffusion rate D. This happens
due to not very large t = 104 value and a small diffusion near
Kc being D ≈ 0.3(K − Kc)3 for the map (1) [4,15].

To represent trajectories in the Poincaré section, it is con-
venient to use variables x1 = x(mod 2π ), x2 = νx(mod 2π ),
and p. We show two sections for K = K1 = K2 below the
critical value at K = 0.2 < Kc and above the critical value at
K = 0.7 > Kc (see Fig. 2 ). For K = 0.2, there are smooth
invariant KAM surfaces bounding p variations, whereas,
for K = 0.7, there is a chaotic unbounded dynamics in
momentum.

When the last KAM surface is destroyed, we have a dif-
fusive growth of momentum as is shown in Fig. 3 for K =
K1 = K2 = 0.7 > Kc. For K = K1 = K2 = 0.2 < Kc, the nu-
merically obtained values of p remain bounded for all compu-
tational times.

From the time dependence of 〈p2〉 on time t , we compute
the diffusion rate D. The dependence of D on K = K1 = K2 is
shown in Fig. 4. We find that this dependence is satisfactorily
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FIG. 2. The Poincaré section in the phase space (x1, x2, p) for (a)
K = K1 = K2 = 0.2 and (b) K = K1 = K2 = 0.7. (a) The data are
obtained from two trajectories with t = 5000 map iterations for the
initial values of p = x1 = 0.01, x2 = 0.01 × ν with p = 0.01 and
p = π/

√
2; (b) the initial phases x1, x2 are the same as in (a) and

p = 0.01. Color bars show p values.

FIG. 3. The dependence of 〈p2〉 on time t for K1 = K2 = 0.2 in
the black (bottom) and K1 = K2 = 0.7 in the red (gray) (top) solid
curves. The average is performed over 1000 trajectories with random
initial conditions in the range of x, p ∈ [0, 10−6) (similar to initial
conditions as in Fig. 1).

FIG. 4. Dependence of diffusion rate D = 〈p〉/t on K = K1 =
K2 shown by the green (gray) curve where the vertical black and
red (gray) dashed lines mark values K = K1 = K2 = 0.2 and K =
K1 = K2 = 0.7, respectively. The fit dependence D = D0(K − Kc )α

is shown by the blue (dark gray) curve with the fit values of D0 =
0.95 ± 0.04, kc = 0.65 ± 0.02, and α = 2.5 ± 0.03. The inset plot
shows the same curve for the linear scale on the D axis. Data are
obtained from 1000 trajectories and t = 105 iterations.

described by the relation D = D0(K − Kc)α with D0 ≈
0.95, Kc ≈ 0.65, and α ≈ 2.5. The value of the exponent
α is close to the one for the Chirikov standard map with
α ≈ 3 [4,7,15]. Of course, the number of iterations t = 105

is not very large, and due to that, we have only approximate
values of the fit parameters D0, Kc, α. It is possible that the
real value of Kc is a bit smaller then its numerically obtained
value of Kc = 0.65 but a more exact determination of this
value requires separate studies.

With the obtained global properties of the classical i-
standard map, we go to the analysis of its quantum evolution
in the next sections.

III. QUANTUM MAP EVOLUTION

The quantum evolution of the i-standard map is described
by the following transformation of the wave function on one
map period:

ψ̄ = exp{−i[k1 cos x + (k2/ν) cos νx]}
× exp[−i p̂2/2h̄]ψ, (5)

with k1 = K1/h̄, k2 = K2/h̄, and normalization condition∫ ∞
−∞ |ψ (x)|2dx = 1. Here, the wave function ψ evolution is

considered on infinite domain −∞ < x < ∞ corresponding
to dynamics of cold atoms in kicked optical lattices; the first
multiplier describes a kick from the optical lattice, and the
second one gives a free propagation in empty space. The kick
potential is V (x) = k1 cos x + (k2/ν) cos νx.

To perform numerical simulations of the quantum map
(5), we approximate ν by its Fibonacci series with νm =
rm/qm = 144/233 considering the time evolution on a ring of
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size [0, 2πqm) with periodic boundary conditions. Here, rm =
fm−1 and qm = fm are the (m − 1)th and the mth Fibbonaci
numbers given by fm = fm−1 + fm−2 with f1 = f2 = 1, and
therefore limm→∞ νm = ν. We use the Fibonacci series since
they give the best rational approximants to the golden mean;
they are usually used to investigate incommensurate effects
in finite size systems (see, e.g., Refs. [5–7,21]). Then, one
iteration of the map is obtained as

ψ̄ = F̂−1 exp

{
−i

[
k1 cos

(
2πxn

N0

)
+ k2

νm
cos

(
2πνmxn

N0

)]}
F̂

× exp

[
−i

T

2

(
pn

qm

)2
]
ψ, (6)

where T = h̄ and the Hilbert space dimension is N = N0 × qm

with qm (rm) periodic space cells of internal dimension N0 for
the k1 (k2) harmonic of V (x). Here, positions and momentum
have integer values of xn = n and pn = (n − 
N/2�) with
n = 0, . . . , N − 1; and F̂ and F̂−1 are the operators of discrete
Fourier transform from momentum to coordinate representa-
tion and back. We introduce these Fourier operators to indicate
the way in which the numerical simulations are performed
[of course, it is possible to present (6) in an operator form
with operators for position and momentum]. For numerical
simulations, we have chosen N0 = 35 = 243, rm = 144, and
qm = 233 with h̄ = 76π

35 � 0.983. We verified that the in-
crease in rational approximants does not affect the results
obtained.

We choose as an initial configuration a Gaussian wave
packet centered at stable (or unstable) point of the kick po-
tential V (x) = k1 cos x + (k2/ν) cos νx. On a discrete lattice
of xn = n (0 � n < N ), this distribution is

ψ (xn) = A exp{−(xn − X0)2/[2(N0/5)]2)} with 〈x〉 = X0

and A as a normalization factor. The corresponding distri-
bution, in momentum space pn, is obtained by the discrete
Fourier transform where, in this case, 〈p〉 = P0 = 0.

We define P3,x (t ) and P3,p(t ) as the probability to stay in
three cells centered at initial X0 and P0 values, respectively,

P3,x (t ) =

⌊
X0+ 3N0

2

⌋∑
n=

⌊
X0− 3N0

2

⌋ |ψ (xn)|2, (7)

P3,p(t ) =

⌊
P0+ 3N0

2

⌋∑
n=

⌊
P0− 3N0

2

⌋ |ψ (pn)|2, (8)

where 
x� is the integer part of x.
The initial probability distributions placed in the vicinity

of stable and unstable fix points of the kick potential V (x)
are shown in Fig. 5. We note that, for small k1 ∼ k2 � 1, the
map approximately describes a continuous time evolution in
a static potential. In Ref. [21], it is shown that, in this case,
the quantum evolution is approximately reduced to the Aubry-
André model on a discrete lattice with the eigenstates of the
stationary Schrödinger equation,

λ cos(h̄n + β )φn + φn+1 + φn−1 = Eφn. (9)

FIG. 5. Probability distribution in a coordinate. Panel (a) shows
the probability distribution in a coordinate for the initial state given
by a Gaussian centered at stable (black curves) and unstable [red
(gray) curves] conditions. The blue (dark gray) curves show the
potential energy V (x) for k1 = k2 = 0.2 where the scale is shown
on the right side. Panels (b)–(d) (from top to bottom), respectively,
show the distributions for k1 = k2 = 0.05, k1 = k2 = 0.2, and k1 =
k2 = 0.8 after t = 104 iterations with black and red curves showing
the cases of stable and unstable initial conditions. In each panel, the
top-right insets show the same distribution on the logarithmic scale
and for the whole Hilbert space. In all cases, T = 76π/35 ≈ 0.983.

Here, λ is an effective dimensional energy of the quasiperiodic
potential and the hopping amplitude being unity; here β is
a real number related to quasimomentum [21]. A metal-
insulator transition (MIT) takes place from localized states
at λ > 2 to delocalized eigenstates at λ < 2 [22]. A review
of the properties of the Aubry-André model can be found
in Ref. [27], and the mathematical proof of the MIT is
given in Ref. [28]. An estimate obtained in Ref. [21] shows
that λ ∝ k2 exp(−C1/k1

C2 + 2C3
√

k1) for an irrational ν ∼
1 with C1,C2,C3 being numerical constant orders of unity.
This approximate reduction of the Schrödinger equation in a
continuous quasiperiodic potential V (x) to the discrete lattice
Aubry-André model have been used in experiments with cold
atoms where the MIT was found at λ = 2 [20,23].

The signs of the MIT are visible in Fig. 5 with a delocaliza-
tion of probability in space at k1 = k2 = 0.05 and localization
at k1 = k2 = 0.2; 0.8. At the same time, the results of Fig. 6
show that the probability distribution in momentum remains
exponentially localized for the above the k1, k2 values.

The time evolution of probabilities of stay in a vicinity of
initial cell P3,x and P3,p are shown in Figs. 7 and 8. We see
that, at k1 = k2 = 0.05, only a small fraction of probability
(about 10%) remains in a vicinity of initial space cell whereas
in contrast it is rather large for k1 = k2 = 0.2; 0.8. In contrast
for the distribution in momentum about 99% remains in a
vicinity of the initial cell for k1 = k2 = 0.05; 0.2 and 65%
for k1 = k2 = 0.8. Thus, these data confirm localization in
momentum and the MIT transition is space similar to the MIT
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FIG. 6. Probability distribution in momentum for the same pa-
rameter values than Fig. 5. The top panel shows the probability
distribution in momentum for the initial state given by a Gaussian
centered at zero (the same for stable and unstable conditions). In the
second, third, and fourth panels (from top to bottom) the distribution
is shown for k1 = k2 = 0.05, k1 = k2 = 0.2, and k1 = k2 = 0.8 after
t = 104 iterations where black and red dots illustrate the cases of
stable and unstable conditions. In each panel, the top-right insets
show the same distribution on the logarithmic scale and for the whole
Hilbert space. In all cases, T = 76π/35 ≈ 0.983.

FIG. 7. Time evolution of the probability to stay in the first three
space cells P3,x for the cases of Figs. 5 and 6 with N0 = 243 and
qm = 233. Top (a) and bottom (b) panels show the stable and unstable
conditions, respectively, of Fig. 5 for k1 = k2 = 0.05 (black circles),
k1 = k2 = 0.2 [red (gray) circles], and k1 = k2 = 0.8 [blue (dark)
gray circles] ordered from bottom to top in each panel [close to t ∼ 0
for panel (b)].

FIG. 8. Time evolution of the probability to stay in the first three
momentum cells P3,p for the cases of Figs. 5 and 6 with N0 = 243
and qm = 233. Top (a) and bottom (b) panels show the stable and
unstable conditions, respectively, of Fig. 6 for k1 = k2 = 0.05 (black
circles), k1 = k2 = 0.2 [red (gray) circles], and k1 = k2 = 0.8 [blue
(dark gray) circles] ordered from top to bottom in each panel.

discussed in Ref. [21] in the limit of the energy conservative
system corresponding to the dynamics of our kicked model at
small k1, k2 values.

The global dependence of probabilities P3,x (t ) and P3,p(t )
on kick amplitudes k1, k2 are shown in Figs. 9 and 10 for
the initial packet centered in the vicinity of the stable or
unstable point. For P3,x (t ), there is a clear region on the
k1, k2 plane where the probability P3,x (t ) drops significantly
corresponding to delocalization in space (see Fig. 9). In
contrast, the probability P3,p(t ) remains always rather high
showing that the classical chaotic diffusion in momentum is
localized by quantum interference effects.

In Fig. 11, we consider a case with a smaller value of
T = 0.2 so that the system becomes closer to the case of
the stationary potential analyzed in Ref. [21]. These data are
similar to the case at larger T = 0.983 · · · with a domain of
small probability P3,x(t ) values at small k1, k2 indicated the

FIG. 9. Probability P3,x (t ) averaged in time within interval t ∈
(9000, 10 000] is shown as a function of k1 and k2. Here, T =
0.983 · · · , and the initial condition is centered at stable and unstable
points of the potential in (a) and (b) panels, respectively.
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FIG. 10. Probability P3,p(t ) in momentum averaged in time
within interval t ∈ (9000, 10 000] is shown as a function of k1 and
k2. Here, T = 0.983 · · · , and the initial condition is centered at stable
and unstable points of the potential in the left (a) and right (b) panels,
respectively.

delocalization of probability in space. At the same time, the
probability P3,p(t ) in momentum remains always localized.

The obtained results show the presence of certain space
delocalizations of the quantum incommensurate map at small
kick amplitudes, whereas at large amplitudes the probability
remains localized. The probability in momentum remains
localized for all k1, k2 values at irrational T/2π values.

At the same time, we note that the rigorous proof of prob-
ability delocalization in our model remains a mathematical
challenge since the map of our system (or even its stationary
version considered in Ref. [21]) on the Aubry-André model
(9) works only approximately. Indeed, in our model it is
possible to have excitation of high energy states (even if
the numerical results indicate localization in momentum) that
complicates the dynamics. We hope that the skillful mathe-
matical tools developed in Ref. [28] will allow for obtaining
mathematical results for the quantum incommensurate stan-
dard map.

Below, we consider the localization properties in momen-
tum in more detail.

IV. TWO-DIMENSIONAL AND 3D MODELS
OF THE I-STANDARD MAP

To analyze the localization properties in momentum, we
note that the kick with k1 generates integer harmonics of

FIG. 11. Probability P3,x (t ) in (a) space and P3,p(t ) in (b) momen-
tum averaged in time within interval t ∈ (9000, 10 000] are shown as
a function of k1 and k2. The initial condition in x is centered at stable
points of the potential and T = 0.2.

exp(−i jix) whereas the kick with k2 generates only harmonics
exp(−i j2νx) with integer j1, j2 values. Due to the fact that the
wave function contains only these two types of harmonics and
the system evolution is described by

ψ̄ = F̂−1e−i[k1 cos x+k2 cos νx]F̂ e−iT ( j1+ν j2 )2/2ψ, (10)

where F̂ is the 2D fast-Fourier transformation from momen-
tum to space representation and F̂−1 gives a back transforma-
tion from space to momentum. The integers j1 and j2 number
the correspondent harmonic numbers with the energy phase of
free propagation between kicks being φE = T p2/2 = T ( j1 +
ν j2)2/2 with p = ( j1 + ν j2). If we would have φE ( j1, j2)
taking random values for each j1, j2, then we would have
a 2D kicked rotator with the Anderson type localization in
2D. In such a case, we would expect that the localization
length λ grows exponentially with the diffusion rate ln λ ∼
D ∼ (k2

1 + k2
2 )/2 (see, e.g., Refs. [15,29,30]). However, the

phases φE ( j1, j2) are not random but incommensurate, and
the appearance of 2D Anderson localization is not so obvious.

The fact that the model (10) corresponds to an effective
2D Anderson model is related to the fact that due to incom-
mensurability of the kick potential in space we are getting
two indices corresponding to two dimensions. The exact form
and structure of the mapping on the 2D solid state lattice with
effective disorder is discussed in detail for similar models in
Refs. [15–17,29], and we do repeat this mapping here.

For the investigation of this expected 2D localization, we
take N2 = 37 harmonics j1 and j2 so that the total num-
ber of states becomes N = N2

2 = 478 2969. The results of
the numerical fit show an exponential decay of probability
with momentum p as is shown in Fig. 12(a) for a few
k = k1 = k2 values. We fit this decay by an exponential
dependence |ψ (p)|2 ∼ exp(−|p|/λ) thus determining the lo-
calization length λ. The results presented in Fig. 12(b) show
the expected exponential growth of localization length ln λ ∼
2.3k. The fact that ln λ is proportional to k and not to expected
k2 can be attributed to the fact that we are still relatively close
to the chaos border (see Fig. 4) and that the diffusion rate
is small whereas the estimate ln λ ∼ D ∼ k2 assumes well
developed chaotic regime with a relatively high D [30].

There is no delocalization in 2D, but in 3D there is the
Anderson transition to delocalization [31] if a disorder is
below a critical value or chaotic diffusion rate is higher a
certain border (see, e.g., Ref. [30]). We argue that the 3D case
can be realized in our model if we add kick with one more
incommensurate potential V3(x) = k3 cos ν3x. Then, the wave
function additional harmonics exp(−i j3ν3x), and in analogy
with (10), the time evolution is described by

ψ̄ = F̂−1e−i[k1 cos x+k2 cos νx+k3 cos ν3x]

× F̂ e−iT ( j1+ν j2+ν3 j3 )2/2ψ, (11)

where momentum integer harmonics are j1, j2, j3 =
1, . . . , N3 and with the total dimension N = N3

3 = 5293 =
148 035 889 and p = j1 + j2/θ + j3/θ2 with irrational
θ = 1.324 717 957 244 75 · · · being the solution of equation
θ3 − θ − 1 = 0. Thus, ν = 1/θ, ν3 = 1/θ2.

The results for time evolution of probability are presented
in Fig. 13. They clearly show that, at k = k1 = k2 = 0.2,
there is exponential Anderson localization of probability over
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FIG. 12. (a) Probability distribution |ψ ( j1, j2)|2 in the model
(10) as a function of p = j1 + ν j2 shown at time t = 104. Here
T = 2 and N2 = 37 = 2187 (N = 478 2969). The black (internal do-
main), red (gray) (middle domain), and blue (dark) (external domain)
circles represent k = k1 = k2 = 0.5, 0.7, 1.2, respectively. Numeri-
cal fits of |ψ |2 ∼ e−(p/λ) with localization length values are shown
by the dashes lines with λ(k = 0.5) ≈ 0.656, λ(k = 0.7) ≈ 0.822,
and λ(k = 1.2) ≈ 3.22. Panel (b) shows the exponential dependence
of fitted values of λ as a function of k. The numerical fit is shown by
the straight line with the exponential growth λ ≈ 0.16 exp (2.44k).
The initial state is at j1 = j2 = 0.

FIG. 13. Probability distribution |ψ ( j1, j2, j3)|2 in the model
(11) as a function of p = j1 + j2/θ + j3/θ

2 where θ is the so-
lution of θ3 − θ − 1 = 0. Here, T = 2 and N3 = 529 (N = N3

3 =
148 035 889) at evolution times t = 200, 1000, 2000 with blue (top
dark points), red (middle gray points), and black (bottom) points,
respectively. Top (a), middle (b), and bottom (c) panels show
the cases of k1 = k2 = k3 = 0.2, k1 = k2 = k3 = 0.7, and k1 = k2 =
k3 = 1.3. The initial state is at j1 = j2 = j3 = 0. The Anderson
transition takes place at k = k1 = k2 ≈ 0.7.

momentum [31]. For k = k1 = k2 = 1.3, there is spreading
of probability in time over momentum states. The case
at k = k1 = k2 = 0.7 is close to a critical parameter value
where the Anderson transition takes place. Thus, the MIT
point is located in the range of 0.7 � kc < 1.3. Additional
studies should be performed to obtain the critical parame-
ter more exactly, but the presented results definitely show
that the transition takes place for the k parameter in this
range.

The results of this section show that in the model (10)
the wave functions are always exponentially localized in the
momentum space but their localization length grows expo-
nentially with the kick amplitude whereas for the model (11)
the localization takes place for relatively weak kick amplitude
whereas for the amplitude being larger than a certain threshold
a delocalization takes place in the momentum space being
similar to the Anderson transition in 3D.

Due to the similarity with the 2D and 3D Anderson lo-
calizations we can say that there is also a certain similarity
with the frequency modulated kicked rotator introduce in
Ref. [32] and further investigated in other works (see, e.g.,
Refs. [29,33,34]). However, there are also certain differences
since here we have incommensurability in space whereas in
the models of Refs. [29,32] there is incommensurability in
time. Also, in the 1D case, the presence of Aubry-Andre type
transition clearly shows the difference between two models of
incommensurability.

V. DISCUSSION

In our research, we determined the main properties of the
incommensurate standard map for its classical dynamics and
for its quantum evolution. In the classical case, the invariant
KAM surfaces are destroyed above certain kick amplitudes,
which gives us a critical curve on the plane of kick amplitudes
K1, K2 (see Fig. 1). We find that above the critical curve at
its vicinity the diffusion rate is characterized by a critical
exponent α ≈ 2.5 which is not so far from the case of the
Chirikov standard map.

The quantum evolution at small quantum kick amplitudes
k1 = K1/h̄, k2 = K2/h̄ is similar to the Aubry-André type
transition [22] as discussed in Ref. [21] and observed in
cold atom experiments with a static incommensurate potential
[20,23]. However, at larger values of k1, k2 the evolution
remain localized both in space and momentum. We show
that the localization in momentum is similar to the case of
Anderson localization in 2D. Whereas significant progress
has been reached with rigorous results for the Aubry-André
model [28], we point that the mathematical prove of space
and momentum localization for the quantum incommensurate
standard map represents a high challenge for mathematicians.

The quantum evolution for the quantum i-standard map is
always localized in momentum as in the case of 2D Anderson
localization. However, for three kick harmonics, the situation
becomes similar to the 3D Anderson localization with the MIT
from localized to delocalized evolution as the kick ampli-
tude is increased. We note that this behavior has similarities
with the frequency modulated kicked rotator introduced in
Ref. [32] which also demonstrates the Anderson localization
in effective two and three dimensions [29] observed in the

012215-7



LEONARDO ERMANN AND DIMA L. SHEPELYANSKY PHYSICAL REVIEW E 99, 012215 (2019)

cold atoms experiments [33,34]. Thus, the kicked rotator with
one additional modulation frequency in the time domain is
similar to the case of 2D Anderson localization in agreement
with predictions performed in 1983 [32]. The case of two
additional modulation frequencies is similar to the case of 3D
Anderson transition as discussed in Ref. [29]. We hope that
the results presented here will allow for investigating the An-
derson localization in 2D and 3D for the periodically kicked
rotator with a kicked incommensurate potential discussed in
this paper.

As was pointed in Sec. I, the incommensurate standard map
naturally appears for a description of dynamics of dark matter
or comets in the solar system and other planetary systems
with two or more planets rotating around the central star.
Recently, it has been shown that in the case of star and one
rotating planet the quantum effects can play a significant role
for escape of very light dark matter from the planetary system
due to the Anderson localization of energy transitions [35].
The obtained results show that the presence of a second planet
leads to the dynamics described by the incommensurate stan-
dard map with significant effects on the quantum localization
of dark matter. Indeed, in Ref. [19], it is shown that the dy-

namics of Halley’s comet is well described by the generalized
Kepler map with incommensurate kicks produced by Jupiter
and Saturn which give the energy change being similar to the
incommensurate standard map (incommensurability appears
due to incommensurability of rotation periods of Jupiter and
Saturn). The map derivation and dynamics description of dark
matter in a system of star with one planet is described in
Ref. [11]; in the presence of the second planet, there will be
two incommensurate kick functions similar to those studied
here.

Since the Chirikov standard map has many universal fea-
tures and appears in the description of evolution of many very
different physical systems, we argue that the incommensurate
standard map will also find a broad field of applications.

ACKNOWLEDGMENTS

This work was supported, in part, by the Programme
Investissements d’Avenir ANR-11-IDEX-0002-02, reference
ANR-10-LABX-0037-NEXT (Project THETRACOM). This
work was granted access to the HPC resources of CALMIP
(Toulouse) under Allocation No. 2018-P0110.

[1] H. Poincaré, Sur le problème des trois corps et les équations de
la dynamique, Acta Math. 13, 5 (1890).

[2] V. I. Arnold and A. Avez, Ergodic Problems of Classical
Mechanics (Benjamin, Paris, 1968).

[3] I. P. Cornfeld, S. V. Fomin, and Y. G. Sinai, Ergodic Theory
(Springer, New York, 1982).

[4] B. V. Chirikov, A universal instability of many-dimensional
oscillator systems, Phys. Rep. 52, 263 (1979).

[5] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic
Dynamics (Springer, Berlin, 1992).

[6] R. S. MacKay, A renormalisation approach to invariant circles
in area-preserving maps, Physica D 7, 283 (1983).

[7] J. D. Meiss, Symplectic maps, variational principles, and trans-
port, Rev. Mod. Phys. 64, 795 (1992).

[8] B. Chirikov and D. Shepelyansky, Chirikov standard map,
Scholarpedia 3, 3550 (2008).

[9] M. Raizen and D. A. Steck, Cold atom experiments in quantum
chaos, Scholarpedia 6, 10468 (2011).

[10] D. Shepelyansky, Microwave ionization of hydrogen atoms,
Scholarpedia 7, 9795 (2012).

[11] J. Lages, D. Shepelyansky, and I. I. Shevchenko, Kepler map,
Scholarpedia 13, 33238 (2018).

[12] B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky, Dy-
namical Stochasticity in Classical and Quantum Mechanics,
edited by S. P. Novikov, Soviet Scientific Reviews, Section C:
Mathematical Physics Reviews (Harwood Academic Publish-
ers, Switzerland, 1981), Vol. 2, p. 209.

[13] B. V. Chirikov, F. M. Izrailev and D. L. Shepelyansky, Quantum
chaos: localization vs. ergodicity, Physica D 33, 77 (1988).

[14] F. L. Moore, J. C. Robinson, C. F. Bharucha, B. Sundaram,
and M. G. Raizen, Atom Optics Realization of the Quantum
δ-Kicked Rotor, Phys. Rev. Lett. 75, 4598 (1995).

[15] D. L. Shepelyansky, Localization of diffusive excitation in
multi-level systems, Physica D 28, 103 (1987).

[16] S. Fishman, D. R. Grempel, and R. E. Prange, Chaos, Quantum
Recurrences and Anderson Localization, Phys. Rev. Lett. 49,
509 (1982).

[17] S. Fishman, Anderson localization and quantum chaos maps,
Scholarpedia 5, 9816 (2010).

[18] K. M. Frahm and D. L. Shepelyansky, Diffusion and localiza-
tion for the Chirikov typical map, Phys. Rev. E 80, 016210
(2009).

[19] B. V. Chirikov and V. V. Vecheslavov, Chaotic dynamics of
comet Halley, Astron. Astrophys. 221, 146 (1989).

[20] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M.
Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Ander-
son localization of a non-interacting Bose-Einstein condensate,
Nature (London) 453, 895 (2008).

[21] M. Modugno, Exponential localization in one-dimensional
quasi-periodic optical lattices, New J. Phys. 11, 033023 (2009).

[22] S. Aubry and G. André, Analyticity breaking and Anderson
localization in incommensurate lattices, Ann. Isr. Phys. Soc. 3,
18 (1980).

[23] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Luschen,
M. H. Fischer, R. Vosk, E. Altman, U. Schmeider, and I.
Bloch, Observation of many-body localization of interacting
fermions in a quasirandom optical lattice, Science 349, 842
(2015).

[24] F. Borgonovi and D. L. Shepelyansky, Breaking of analiticity
in 2 coupled Frenkel-Kontorova chains, Europhys. Lett. 21, 413
(1993).

[25] À. Haro and R. de la Llave, A parameterization method for
the computation of invariant tori and their whiskers in quasi-
periodic maps: Numerical algorithms, Discrete and Continuous
Dynamical Systems Series B 6, 1261 (2006).

[26] J.-L. Figueras and A. Haro, Different scenarios for hyperbol-
icity breakdown in quasiperiodic area preserving twist maps,
Chaos 25, 123119 (2015).

012215-8

https://doi.org/10.1007/BF02392506
https://doi.org/10.1007/BF02392506
https://doi.org/10.1007/BF02392506
https://doi.org/10.1007/BF02392506
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1016/0167-2789(83)90131-8
https://doi.org/10.1016/0167-2789(83)90131-8
https://doi.org/10.1016/0167-2789(83)90131-8
https://doi.org/10.1016/0167-2789(83)90131-8
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.4249/scholarpedia.3550
https://doi.org/10.4249/scholarpedia.3550
https://doi.org/10.4249/scholarpedia.3550
https://doi.org/10.4249/scholarpedia.3550
https://doi.org/10.4249/scholarpedia.10468
https://doi.org/10.4249/scholarpedia.10468
https://doi.org/10.4249/scholarpedia.10468
https://doi.org/10.4249/scholarpedia.10468
https://doi.org/10.4249/scholarpedia.9795
https://doi.org/10.4249/scholarpedia.9795
https://doi.org/10.4249/scholarpedia.9795
https://doi.org/10.4249/scholarpedia.9795
https://doi.org/10.4249/scholarpedia.33238
https://doi.org/10.4249/scholarpedia.33238
https://doi.org/10.4249/scholarpedia.33238
https://doi.org/10.4249/scholarpedia.33238
https://doi.org/10.1016/S0167-2789(98)90011-2
https://doi.org/10.1016/S0167-2789(98)90011-2
https://doi.org/10.1016/S0167-2789(98)90011-2
https://doi.org/10.1016/S0167-2789(98)90011-2
https://doi.org/10.1103/PhysRevLett.75.4598
https://doi.org/10.1103/PhysRevLett.75.4598
https://doi.org/10.1103/PhysRevLett.75.4598
https://doi.org/10.1103/PhysRevLett.75.4598
https://doi.org/10.1016/0167-2789(87)90123-0
https://doi.org/10.1016/0167-2789(87)90123-0
https://doi.org/10.1016/0167-2789(87)90123-0
https://doi.org/10.1016/0167-2789(87)90123-0
https://doi.org/10.1103/PhysRevLett.49.509
https://doi.org/10.1103/PhysRevLett.49.509
https://doi.org/10.1103/PhysRevLett.49.509
https://doi.org/10.1103/PhysRevLett.49.509
https://doi.org/10.4249/scholarpedia.9816
https://doi.org/10.4249/scholarpedia.9816
https://doi.org/10.4249/scholarpedia.9816
https://doi.org/10.4249/scholarpedia.9816
https://doi.org/10.1103/PhysRevE.80.016210
https://doi.org/10.1103/PhysRevE.80.016210
https://doi.org/10.1103/PhysRevE.80.016210
https://doi.org/10.1103/PhysRevE.80.016210
http://adsabs.harvard.edu/full/1989A%26A...221..146C
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1088/1367-2630/11/3/033023
https://doi.org/10.1088/1367-2630/11/3/033023
https://doi.org/10.1088/1367-2630/11/3/033023
https://doi.org/10.1088/1367-2630/11/3/033023
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1209/0295-5075/21/4/006
https://doi.org/10.1209/0295-5075/21/4/006
https://doi.org/10.1209/0295-5075/21/4/006
https://doi.org/10.1209/0295-5075/21/4/006
https://doi.org/10.3934/dcdsb.2006.6.1261
https://doi.org/10.3934/dcdsb.2006.6.1261
https://doi.org/10.3934/dcdsb.2006.6.1261
https://doi.org/10.3934/dcdsb.2006.6.1261
https://doi.org/10.1063/1.4938185
https://doi.org/10.1063/1.4938185
https://doi.org/10.1063/1.4938185
https://doi.org/10.1063/1.4938185


INCOMMENSURATE STANDARD MAP PHYSICAL REVIEW E 99, 012215 (2019)

[27] J. B. Sokoloff, Unusual band structure, wave functions and elec-
trical conductance in crystals with incommensurate periodic
potentials, Phys. Rep. 126, 189 (1985).

[28] S. Jitomirskaya, Metal-insulator transition for the almost Math-
ieu operator, Ann. Math. 150, 1159 (1999).

[29] F. Borgonovi and D. L. Shepelyansky, Two interacting particles
in an effective 2-3-d random potential, J. Phys. I (France) 6, 287
(1996)

[30] Y. Imry, Introduction to Mesoscopic Physics (Oxford University
Press, New York, 2002).

[31] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[32] D. L. Shepelyansky, Some statistical properties of simple clas-
sically stochastic quantum systems, Physica D 8, 208 (1983).

[33] J. Chabe, G. Lemarie, R. Cremaud, D. Delande, P. Szriftgiser,
and J. C. Garreau, Experimental Observation of the Anderson
Metal-Insulator Transition with Atomic Matter Waves, Phys.
Rev. Lett. 101, 255702 (2008).

[34] I. Manai, J.-F. Clement, R. Chicireanu, C. Hainaut, J. C. Gar-
reau, P. Szriftgiser, and D. Delande, Experimental Observation
of Two-Dimensional Anderson Localization with the Atomic
Kicked Rotor, Phys. Rev. Lett. 115, 240603 (2015).

[35] D. L. Shepelyansky, Quantum chaos of dark matter in the Solar
system, arXiv:1711.07815.

012215-9

https://doi.org/10.1016/0370-1573(85)90088-2
https://doi.org/10.1016/0370-1573(85)90088-2
https://doi.org/10.1016/0370-1573(85)90088-2
https://doi.org/10.1016/0370-1573(85)90088-2
https://doi.org/10.2307/121066
https://doi.org/10.2307/121066
https://doi.org/10.2307/121066
https://doi.org/10.2307/121066
https://doi.org/10.1051/jp1:1996149
https://doi.org/10.1051/jp1:1996149
https://doi.org/10.1051/jp1:1996149
https://doi.org/10.1051/jp1:1996149
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1016/0167-2789(83)90318-4
https://doi.org/10.1016/0167-2789(83)90318-4
https://doi.org/10.1016/0167-2789(83)90318-4
https://doi.org/10.1016/0167-2789(83)90318-4
https://doi.org/10.1103/PhysRevLett.101.255702
https://doi.org/10.1103/PhysRevLett.101.255702
https://doi.org/10.1103/PhysRevLett.101.255702
https://doi.org/10.1103/PhysRevLett.101.255702
https://doi.org/10.1103/PhysRevLett.115.240603
https://doi.org/10.1103/PhysRevLett.115.240603
https://doi.org/10.1103/PhysRevLett.115.240603
https://doi.org/10.1103/PhysRevLett.115.240603
http://arxiv.org/abs/arXiv:1711.07815

