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We introduce and study the extension of the Chirikov standard map when the kick potential
has two and three incommensurate spatial harmonics. This system is called the incommensurate
standard map. At small kick amplitudes the dynamics is bounded by the isolating Kolmogorov-
Arnold-Moser surfaces while above a certain kick strength it becomes unbounded and diffusive. The
quantum evolution at small quantum kick amplitudes is somewhat similar to the case of Aubru-
André model studied in mathematics and experiments with cold atoms in a static incommensurate
potential. We show that for the quantum map there is also a metal-insulator transition in space
while in momentum we have localization similar to the case of 2D Anderson localization. In the
case of three incommensurate frequencies of space potential the quantum evolution is characterized
by the Anderson transition similar to 3D case of disordered potential. We discuss possible physical
systems with such map description including dynamics of comets and dark matter in planetary
systems.

I. INTRODUCTION

The investigation of dynamical symplectic maps allows
to understand the fundamental deep properties of Hamil-
tonian dynamics. The map description originates from
the construction of Poincaré sections of continuous dy-
namics invented by Poincaré [1]. The mathematical foun-
dations for symplectic maps are described in [2, 3]. Their
physical properties and applications including numerical
studies are given in [4, 5]. The renormalization features
of critical Kolmogorov-Arnold-Moser (KAM) invariant
curves are analyzed in [6] with the transport properties
through destroyed KAM curves investigated in [4, 7].

The seminal example of a symplectic map is the
Chirikov standard map [4]

p̄ = p+K sinx , x̄ = x+ p̄ , (1)

where p and x are canonically conjugated variables of mo-
mentum p and coordinate x and bars mark the values of
variables after a map iteration. For K > Kc = 0.9716...
the last KAM curve is destroyed and the dynamics is
characterized by a global chaos and diffusion in momen-
tum < p2 >= Dt p with a diffusion rate D, where
the time t is measured in number of map iterations and
the diffusion coefficient is D ≈ K2/2 at large K values
[4, 6, 7].

The important feature of map (1) is its universality
related to an equidistant spacing between resonance fre-
quencies so that a variety of symplectic maps and peri-
odically driven Hamiltonian systems can be locally de-
scribed by the map (1) in a certain domain of the phase
space. The Chirikov standard map finds applications for
description of various physical systems including plasma
confinement in open mirror traps, microwave ionization
of hydrogen atoms, comet and dark matter dynamics in
the Solar System and behavior of cold atoms in kicked
optical lattices (see e.g. [4, 8–11] and Refs. therein).

The quantum version of map (1) is obtained by con-
sidering p and x as the Heisenberg operators with the
commutation relation [p̂, x̂] = −ih̄. The corresponding
quantum evolution of the wave function ψ(x) is described
by the map [12, 13]:

ψ̄ = exp(−ik cosx) exp(−ip̂2/2h̄)ψ , (2)

where p̂ = h̄n̂ = −ih̄∂/∂x, k = K/h̄, T = h̄, K =
kT (T can be also considered as a rescaled time period
between kicks). Here, the wave function is defined in
the domain 0 ≤ x ≤ 2π corresponding to the quantum
rotator case, or it can be considered on the whole interval
−∞ < x < ∞ corresponding to motion of cold atoms
in an optical lattice. The later case has been realized in
experiments with cold atoms in kicked optical lattice [14].
At K > Kc the classical diffusion in p becomes localized
by the quantum interference effects with an exponential
decay of probability over the momentum states n = p/h̄:

< |ψn|2 >∝ exp(−2|n− n0|/`) ; ` ≈ D/h̄2 (3)

with the localization length ` and n0 being an initial state
[12, 15]. This dynamical quantum localization is analo-
gous to the Anderson localization in disordered solids as
pointed in [16]. However, the role of spacial coordinate
is played by momentum state level index n and diffusion
appears due to dynamical chaos in the classical limit and
not due to disorder (see more detail in [13, 15, 17]).

The important feature of the Chirikov standard map
is its periodicity in spacial coordinate (of phase) x. The
cases with several kick harmonics have been considered
for various map extensions (see e.g. [4, 5, 12, 18]) but
all of them had periodicity in x. The important example
of the map with several harmonics is the generalized Ke-
pler map which provides an approximate description of
the Halley map dynamics in the Solar System [19] (see
also [11] for Refs. and extensions). In this system Jupiter
gives an effective kick in energy of the Halley comet when
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it passes through its perihelion. This kick function con-
tains several sine-harmonics of Jupiter rotational phase
since the comet perihelion distance is inside the Jupiter
orbit. However, other planets, especially Saturn, also
give a kick change of comet energy. Since the frequencies
of other planets are generally not commensurate with the
Jupiter rotation frequency we have a situation where the
kick function depends at least on two phases with incom-
mensurate frequencies. Thus it is important to analyze
the incommensurate extensions of the Chirikov standard
map.

The simplest model is the incommensurate standard
(i-standard) map which we investigate in this work:

p̄ = p+K1 sinx+K2 sin νx

x̄ = x+ p̄ (4)

where ν is a generic irrational number, and K1, K2 are
amplitudes of two incommensurate kick harmonics. Here
the coordinate domain is −∞ < x <∞ corresponding to
dynamics of atoms in an incommensurate optical lattice.
For K1 = 0 or K2 = 0 the model is reduced to the map
(1). We consider here the case of the golden mean value

ν = (
√

5− 1)/2 = 0.618... .
The incommensurate standard map (4) describes the

dynamics of cold atoms in a kicked optical lattice with an
incommensurate potential. The static incommensurate
optical lattice can be created by laser beams with two
incommensurate wave lengths. In fact such incommen-
surate optical lattice had been already realized in cold
atoms experiments [20] where the evolution of atomic
wavefunction can be approximately described [21] by the
Aubry-André model on a discrete incommensurate inte-
ger lattice with the Aubry-André transition from local-
ized to delocalized states [22]. At present the investi-
gation of interactions between atoms on such a lattice
attracts a significant interest of cold atoms community
(see e.g. [23]).

Due to the above reasons we think that the incommen-
surate standard map will capture new features of dynam-
ical chaos with possible application to various physical
systems. We also note that the quantum evolution of
this map may have localization or delocalization proper-
ties with a certain similarity with the Anderson transition
in disordered solids.

The paper is constructed as follows: Section II de-
scribes the properties of classical dynamics; quantum
map evolution is analyzed in Section III, effective two-
dimensional (2D) and three-dimensional features of quan-
tum evolution are considered in Section IV, the discussion
of results is given in Section V.

II. CLASSICAL MAP DYNAMICS

To study the properties of classical dynamics of map
(4) we lunch a bunch of trajectories in a vicinity of un-
stable fixed point x = 0, p = 0 and compute an effec-
tive diffusion coefficient D =< p2 > /t averaged over

FIG. 1. Diffusion rate in momentum D = 〈p2〉/t vs K1 and
K2. Data are averaged over 1000 trajectories with random
initial conditions in the interval x, p ∈ [0, 10−6) for the num-
ber of iterations t = 104. Color bar shows the values of D.

all initial trajectories. The dependence of D on K1 and
K2 is shown in Fig. 1. These data show that there is
a critical curve Kc2 = f(Kc1) below which the momen-
tum oscillations ave bounded and above which p grows
diffusely with time. At K1 = K2 = K we obtain
Kc = Kc1 = Kc2 ≈ 0.65 (see below). Of course, the
time t used in Fig. 1 is not very large (due to many tra-
jectories and many K1,K2 values) so that we obtain only
an approximate position of the critical curve. Thus for
K2 = 0 we know that Kc = 0.9716... [6] that is a bit
below than the blue domain with a finite diffusion rate
D. This happens due to not very large t = 104 value and
a small diffusion near Kc being D ≈ 0.3(K − Kc)

3 for
the map (1) [4, 15].

To represent trajectories on the Poincaré section it is
convenient to use variables x1 = x( mod 2π), x2 = αx(
mod 2π) and p. We show two sections for K = K1 = K2

below the critical value at K = 0.2 < Kc and above the
critical value at K = 0.7 > Kc (see Fig. 2). For K =
0.2 there are smooth invariant KAM surfaces bounding p
variations while for K = 0.7 there is a chaotic unbounded
dynamics in momentum.

When the last KAM surface is destroyed we have a
diffusive growth of momentum as it is shown in Fig. 3 for
K = K1 = K2 = 0.7 > Kc. For K = K1 = K2 = 0.2 <
Kc the values of p remain bounded for all times.

From the time dependence of 〈p2〉 on time t we com-
pute the diffusion rate D. The dependence of D on
K = K1 = K2 is shown in Fig. 4. We find that
this dependence is satisfactory described by the relation
D = D0(K − Kc)

α with D0 ≈ 0.95, Kc ≈ 0.65 and
α ≈ 2.5. The value of the exponent α is close to the
one for the Chirikov standard map with α ≈ 3 [4, 7, 15].
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FIG. 2. Poincaré section in the phase space (x1, x2, p) for
K = K1 = K2 = 0.2 (a) and K = K1 = K2 = 0.7 (b). a)The
data are obtained from two trajectories with t = 5000 map
iterations for the initial values p = x1 = 0.01, x2 = 0.01 × ν
with p = 0.01 and p = π/

√
2; b)the initial phases x1, x2 are

the same as in (a) and p = 0.01. Color bars show p values.

FIG. 3. Dependence of 〈p2〉 on time t for K1 = K2 = 0.2 in
black (bottom) and K1 = K2 = 0.7 in red (top) solid curves.
The average is done over 1000 trajectories with random ini-
tial conditions in the range x, p ∈ [0, 10−6) (similar to initial
conditions as in Fig. 1).

FIG. 4. Dependence of diffusion rate D = 〈p〉/t on K =
K1 = K2 shown by green (gray) curve, where vertical black
and red (gray) dashed lines mark values K = K1 = K2 = 0.2
and K = K1 = K2 = 0.7 respectively. The fit dependence
D = D0(K−Kc)

α is shown by blue (black) curve with the fit
values D0 = 0.95± 0.04, kc = 0.65± 0.02 and α = 2.5± 0.03.
Inset plot show the same curve for linear scale in D axis. Data
are obtained from 1000 trajectories and t = 105 iterations.

Of course, the number of iterations t = 105 is not very
large and due to that we have only approximate values of
the fit parameters D0,Kc, α. It is possible that the real
value Kc is a bit smaller then the it value Kc = 0.65 but
more exact determination of these values require separate
studies.

With the obtained global properties of the classical
i−standard map we go to analysis of its quantum evolu-
tion in next Sections.

III. QUANTUM MAP EVOLUTION

The quantum evolution of i-standard map is described
by the following transformation of wave function on one
map period:

ψ̄ = exp[−i(k1 cosx+ (k2/ν) cos νx)]

× exp[−ip̂2/2h̄] ψ (5)

with k1 = K1/h̄, k2 = K2/h̄ and normalization condi-
tion

∫∞
−∞|ψ(x)|2dx = 1. Here, the wave function ψ

evolution is considered on infinite domain −∞ < x <∞
corresponding to dynamics of cold atoms in kicked opti-
cal lattices; the first multiplier describes kick from op-
tical lattice and the second one gives a free propaga-
tion in empty space. The kick potential is V (x) =
k1 cosx+ (k2/ν) cos νx.

To perform numerical simulations of the quantum map
(5) we approximate ν by its Fibonacci series with νm =
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FIG. 5. Probability distribution in coordinate. Panel (a)
shows the probability distribution in coordinate for initial
state given by a Gaussian centered at stable (black curve)
and unstable (red/gray curve) conditions. Blue (dark black)
curves shows the potential energy V (x) for k1 = k2 = 0.2
where the scale is shown in right side. Panels (b), (c), (d)
(from top to bottom) show respectively the distributions for
k1 = k2 = 0.05 k1 = k2 = 0.2 and k1 = k2 = 0.8 after t = 104

iterations with black and red curves showing the cases of sta-
ble and unstable initial conditions. In each panel, top-right
insets show the same distribution in logarithmic scale and for
the whole Hilbert space. In all cases T = 76π/35 ≈ 0.983.

rm/qm = 144/233 considering time evolution on a ring of
size [0, 2πqm) with periodic boundary conditions. Here
rm = fm−1 and qm = fm, are the (m − 1)th and mth

Fibbonaci numbers given by fm = fm−1 + fm−2 with
f1 = f2 = 1, and therefore limm→∞ νm = ν. Then one
iteration of the map is obtained as

ψ̄ = F̂−1e
−i
[
k1 cos

(
2πxn
N0

)
+
k2
νm

cos
(

2πνmxn
N0

)]
F̂ e−i

T
2 ( pnqm )2ψ

(6)
where T = h̄ and the Hilbert space dimension is N =
N0 × qm, with qm (rm) periodic space cells of internal
dimension N0 for k1 (k2) harmonic of V (x). Here po-
sitions and momentum have integer values xn = n and
pn = (n − bN/2c) with n = 0, . . . , N − 1; and F̂ and

F̂−1 are the operators of discrete Fourier transform from
momentum to coordinate representation and back. For
numerical simulations we have chosen N0 = 35 = 243,
rm = 144 and qm = 233, with h̄ = 76π

35 ' 0.983.
We choose as an initial configuration a Gaussian wave

packet centered at stable (or unstable) point of the kick
potential V (x) = k1 cosx + (k2/ν) cos νx. On a dis-
crete lattice of xn = n (0 ≤ n < N) this distribution is
ψ(xn) = A exp[−(xn−X0)2/(2(N0/5))2)] with 〈x〉 = X0

and A a normalization factor. The corresponding distri-
bution, in momentum space pn, is obtained by the dis-

FIG. 6. Probability distribution in momentum for the same
cases than 5. Top panel show the probability distribution
in momentum for initial state given by a Gaussian centered
at zero (the same for stable and unstable conditions). In
second, third and fourth panels (from top to bottom) the
distribution is shown for k1 = k2 = 0.05, k1 = k2 = 0.2
and k1 = k2 = 0.8 after t = 104 iterations where black and
red dots illustrate the cases of stable and unstable conditions.
In each panel, top-right insets show the same distribution in
logarithmic scale and for the whole Hilbert space. In all cases
T = 76π/35 ≈ 0.983.

crete Fourier transform, where in this case 〈p〉 = P0 = 0.
We define P3,x(t) and P3,p(t) as the probability to stay

in 3 cells centered at initialX0 and P0 values respectively:

P3,x(t) =

bX0+
3N0
2 c∑

n=bX0− 3N0
2 c
|ψ(xn)|2 (7)

P3,p(t) =

bP0+
3N0
2 c∑

n=bP0− 3N0
2 c
|ψ(pn)|2 (8)

where bxc is the integer part of x.
The initial probability distributions placed in a vicin-

ity of stable and unstable fix points of the kick poten-
tial V (x) are shown in Fig. 5. We note that for small
k1 ∼ k2 � 1 the map approximately describes a con-
tinuous time evolution in a static potential. In [21] it is
shown that in this case the quantum evolution is approx-
imately reduced to the Aubry-André model on a discrete
lattice with the eigenstates of the stationary Schrödinger
equation:

λ cos(h̄n+ β)φn + φn+1 + φn−1 = Eφn . (9)
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FIG. 7. Time evolution of the probability to stay in the first 3
space cells P3,x for the cases of Figs 5 and 6 withN0 = 243 and
qm = 233. Top (a) and bottom (b) panels show the stable and
unstable conditions of Fig. 5 respectively for k1 = k2 = 0.05
(black circles), k1 = k2 = 0.2 (red circles) and k1 = k2 = 0.8
(blue circles) ordered from bottom to top in each panel.

Here λ is an effective dimensional energy of the quasiperi-
odic potential and the hopping amplitude being unity. A
metal-insulator transition (MIT) takes place from local-
ized states at λ > 2 to delocalized eigenstates at λ < 2
[22]. A review of the properties of the Aubry-André
model can be found in [24] and the mathematical prove of
MIT is given in [25]. An estimate obtained in [21] shows

that λ ∝ k2 exp(−C1/k1
C2 + 2C3

√
k1) for an irrational

ν ∼ 1 with C1, C2, C3 being numerical constants order
of unity. This approximate reduction of the Schrödinger
equation in a continuous quasiperiodic potential V (x) to
the discrete lattice Aubry-André model have been used
in experiments with cold atoms where the MIT was found
at λ = 2 [20, 23].

The signs of MIT are visible in Fig. 5 with a delocal-
ization of probability in space at k1 = k2 = 0.05 and
localization at k1 = k2 = 0.2; 0.8. At the same time the
results of Fig. 6 show that the probability distribution in
momentum remains exponentially localized for the above
k1, k2 values.

The time evolution of probabilities of stay in a vicin-
ity of initial cell P3,x and P3,p are shown in Fig. 7 and
Fig. 8. We see that at k1 = k2 = 0.05 only a small
fraction of probability (about 10 percent) remains in a
vicinity of initial space cell while in contrast it is rather
large for k1 = k2 = 0.2; 0.8. In contrast for the distribu-
tion in momentum about 99 percent remains in a vicinity
of initial cell for k1 = k2 = 0.05; 0.2 and 65 percent for
k1 = k2 = 0.8. Thus this data confirms localization in
momentum and MIT transition is space similar to the
MIT discussed in [21] in the limit of energy conserva-
tive system corresponding to the dynamics of our kicked

FIG. 8. Time evolution of the probability to stay in the first
3 momentum cells P3,p for the cases of Figs 5 and 6 with
N0 = 243 and qm = 233. Top (a) and bottom (b) panels
show the stable and unstable conditions of Fig. 6 respectively
for k1 = k2 = 0.05 (black circles), k1 = k2 = 0.2 (red circles)
and k1 = k2 = 0.8 (blue circles) ordered from top to bottom
in each panel.

FIG. 9. Probability P3,x(t) averaged in time within interval
t ∈ (9000, 10000] is shown as a function of k1 and k2. Here
T = 0.983... and the initial condition is centered at stable
and unstable points of the potential in (a) and (b) panels
respectively.

model at small k1, k2 values.

The global dependence of probabilities P3,x(t) and
P3,p(t) on kick amplitudes k1, k2 are shown in Figs. 9,10
for initial packet centered in a vicinity of stable or un-
stable point. For P3,x(t) there is a clear region on k1, k2-
plane where the probability P3,x(t) drops significantly
corresponding to delocalization in space (see Fig. 9)). In
contrast, the probability P3,p(t) remains always rather
high showing that the classical chaotic diffusion in mo-
mentum is localized by quantum interference effects.

In Fig. 11 we consider a case with a smaller value of
T = 0.2 so that the system becomes more close to the case
of stationary potential analyzed in [21]. This data are
similar to the case at larger T = 0.983... with a domain of
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FIG. 10. Probability P3,p(t) in momentum averaged in time
within interval t ∈ (9000, 10000] is shown as a function of k1
and k2. Here T = 0.983... and the initial condition is centered
at stable and unstable points of the potential in left (a) and
right (b) panels respectively.

FIG. 11. Probability P3,x(t) in space (a) and P3,p(t) in mo-
mentum (b) averaged in time within interval t ∈ (9000, 10000]
are shown as a function of k1 and k2. The initial condition in
x is centered at stable points of the potential and T = 0.2.

small probability P3,x(t) values at small k1, k2 indicated
the delocalization of probability in space. At the same
time the probability P3,p(t) in momentum remains always
localized.

The obtained results show the presence of certain space
delocalization of the quantum incommensurate map at
small kick amplitudes while at large amplitudes the prob-
ability remains localized. The probability in momentum
remains localized for all k1, k2 values at irrational T/2π
values.

At the same time we note that the rigorous prove of
probability delocalization in our model remains a math-
ematical challenge since the map of our system (or even
its stationary version considered in [21]) on the Aubry-
André model (9) works only approximately. Indeed, in
our model it is possible to have excitation of high energy
states (even if the numerical results indicate localization
in momentum) that complicates the dynamics. We hope
that the skillful mathematical tools developed in [25] will
allow to obtain mathematical results for the quantum in-
commensurate standard map.

Below we consider the localization properties in mo-
mentum in more detail.

FIG. 12. (a) Probability distribution |ψ(j1, j2)|2 in the model
(10) as a function of p = j1 + νj2 shown at time t = 104.
Here T = 2 and N2 = 37 = 2187 (N = 4782969). Black
(internal domain), red/gray (middle domain) and blue/dark
(external domain) circles represent k = k1 = k2 = 0.5, 0.7, 1.2

respectively. Numerical fits of |ψ|2 ∼ e−
p
λ with localization

length values are shown by dashes lines with λ(k = 0.5) ≈
0.656, λ(k = 0.7) ≈ 0.822 and λ(k = 1.2) ≈ 3.22. Panel (b)
shows the exponential dependence of fitted values of λ as a
function of k. Numerical fit is shown by the straight line with
the exponential growth λ ≈ 0.16 exp (2.44k). Initial state is
at j1 = j2 = 0.

IV. 2D AND 3D MODELS OF I-STANDARD
MAP

To analyze the localization properties in momentum
we note that the kick with k1 generates integer harmon-
ics of exp(−ijix) while the kick with k2 generates only
harmonics exp(−ij2νx) with integer j1, j2 values. Due to
that the wave function contains only these two types of
harmonics and the system evolution is described by

ψ̄ = F̂−1e−i[k1 cos x+k2 cos νx]F̂ e−iT (j1+νj2)
2/2ψ , (10)

where F̂ is the 2D-fast Fourier transformation from mo-
mentum to space representation and F̂−1 gives a back
transformation from space to momentum. The integers
j1 and j2 number the correspondent harmonic numbers
with the energy phase of free propagation between kicks
being φE = Tp2/2 = T (j1 + νj2)2/2 with p = (j1 + νj2).
If we would have φE(j1, j2) taking random values for each
j1, j2 then we would have 2D kicked rotator with the An-
derson type localization in 2D. In such a case we would
expect that the localization length λ grows exponentially
with the diffusion rate lnλ ∼ D ∼ (k1

2 + k2
2)/2 (see

e.g. [15, 26, 27]). However, the phases φE(j1, j2) are not
random but incommensurate and the appearance of 2D
Anderson localization is not so obvious.

For investigation of this expected 2D localization we
take N2 = 37 harmonics j1 and j2 so that the total
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FIG. 13. Probability distribution |ψ(j1, j2, j3)|2 in the model
(11) as a function of p = j1 + j2/θ + j3/θ

2 where θ is the
solution of θ3 − θ − 1 = 0. Here T = 2 and N3 = 529
(N = N3

3 = 148035889) at evolution times t = 200, 1000, 000
with blue (top dark points), red (middle gray points) and
black (bottom) points respectively. Top (a), middle (b) and
bottom (c) panels show the cases of k1 = k2 = k3 = 0.2,
k1 = k2 = k3 = 0.7 and k1 = k2 = k3 = 1.3. Initial state is
at j1 = j2 = j3 = 0. The Anderson transition takes place at
k = k1 = k2 ≈ 0.7.

number of states becomes N = N2
2 = 4782969. The

results of numerical show an exponential decay of prob-
ability with momentum p as it is shown in Fig. 12(a) for
a few k = k1 = k2 values. We fit this decay by an ex-
ponential dependence |ψ(p)|2 ∼ exp(−|p|/λ) thus deter-
mining the localization length λ. The results presented
in Fig. 12(b). show the expected exponential growth of
localization length lnλ ∼ 2.3k. The fact that lnλ is pro-
portional to k and not to expected k2 can be attributed
to the fact that we are still relatively close to the chaos
border (see Fig. 4) and that the diffusion rate is small
while the estimate lnλ ∼ D ∼ k2 assumes well devel-
oped chaotic regime with a relatively high D [27].

There is no delocalization in 2D but in 3D there is the
Anderson transition to delocalization [28] if a disorder is
below a critical value or chaotic diffusion rate is higher a
certain border (see e.g. [27]). We argue that 3D case can
be realized in our model if we add kick with one more
incommensurate potential V3(x) = k3 cos ν3x. Then the
wave function additional harmonics exp(−ij3ν3x) and in
analogy with (10) the time evolution is described by

ψ̄ = F̂−1e−i[k1 cos x+k2 cos νx+k3 cos ν3x]

× F̂ e−iT (j1+νj2+ν3j3)
2/2ψ , (11)

where momentum integer harmonics are j1, j2, j3 =
1, ..., N3 and with the total dimension N = N3

3 = 5293 =

148035889 and p = j1 + j2/θ + j3/θ
2, with irrational

θ = 1.32471795724475... being the solution of equation
θ3 − θ − 1 = 0. Thus ν = 1/θ, ν3 = 1/θ2.

The results for time evolution of probability are pre-
sented in Fig. 13. They clearly show that at k = k1 =
k2 = 0.2 there is exponential Anderson localization of
probability over momentum [28]. For k = k1 = k2 = 1.3
there is spreading of probability in time over momen-
tum states. The case at k = k1 = k2 = 0.7 is close
to a critical parameter value where the Anderson transi-
tion takes place. Thus the MIT point is located in the
range 0.7 ≤ kc < 1.3. Additional studies should be per-
formed to obtain the critical parameter more exactly but
the presented results definitely show that the transition
takes place for k-parameter in this range.

V. DISCUSSION

In our research we determined the main properties of
the incommensurate standard map for its classical dy-
namics and for its quantum evolution. In the classical
case the invariant KAM surfaces are destroyed above cer-
tain kick amplitudes given us a critical curve on the plane
of kick amplitudes K1,K2 (see Fig. 1). We find that
above the critical curve at its vicinity the diffusion rate
is characterized by a critical exponent α ≈ 2.5 which is
not so far from the case of the Chirikov standard map.

The quantum evolution at small quantum kick ampli-
tudes k1 = K1/h̄, k2 = K2/h̄ is similar to the Aubry-
André type transition [22] as discussed in [21] and ob-
served in cold atom experiments with a static incom-
mensurate potential [20, 23]. However, at larger values
of k1, k2 the evolution remain localized both in space and
momentum. We show that the localization in momen-
tum is similar to the case of Anderson localization in 2D.
While a significant progress has been reached with rig-
orous results for Aubry-André model [25], we point that
the mathematical prove of space and momentum local-
ization for the quantum incommensurate standard map
represents a high challenge for mathematicians.

The quantum evolution for the quantum i−standard
map is always localized in momentum, as in the case
of 2D Anderson localization. However, for three kick-
harmonics the situation becomes similar to the 3D An-
derson localization with MIT from localized to delocal-
ized evolution as the kick amplitude is increased. We
note that this behavior has similarities with the frequency
modulated kicked rotator introduced in [29] which also
demonstrates the Anderson localization in effective 2 and
3 dimensions [26] observed in the cold atoms experiments
[30, 31]. Thus the kicked rotator with one additional
modulation frequency in time domain is similar to the
case of 2D Anderson localization in agreement with pre-
dictions done in 1983 [29]. The case of 2 additional mod-
ulation frequencies is similar to the case of 3D Anderson
transition as discussed in [26]. We hope that the results
presented here will allow to investigate the Anderson lo-
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calization in 2D and 3D for periodically kicked rotator
with kicked incommensurate potential discussed in this
work.

As it was pointed in Section I the incommensurate
standard map naturally appears for a description of dy-
namics of dark matter or comets in the Solar System and
other planetary systems with 2 or more planets rotating
around the central star. Recently it has been shown that
in the case of star and one rotating planet the quantum
effects can play a significant role for escape of very light
dark matter from the planetary system due to the Ander-
son localization of energy transitions [32]. The obtained
results show that a presence of second planet leads to
the dynamics described by the incommensurate standard
map with significant effects on the quantum localization
of dark matter.

Since the Chirikov standard map has many universal
features and appears in the description of evolution of
many very different physical systems we argue that the
incommensurate standard map will also find a broad field
of applications.
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