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We study the transport properties of a Wigner crystal in one- and two-dimensional asymmetric
periodic potential. We show that the Aubry transition takes place above a certain critical amplitude
of potential with the sliding and pinned phase below and above the transition. Due to the asymmetry
the Aubry pinned phase is characterized by the diode charge transport of the Wigner crystal. We
argue that the recent experimental observations of Aubry transition with cold ions and colloidal
monolayers can be extended to asymmetric potentials making possible to observe Wigner crystal
diode with these physical systems and electrons on liquid helium.

I. INTRODUCTION

The Wigner crystal of charged particles [1] occurs
when the energy of their Coulomb repulsion exceeds
the kinetic energy of their motion. The Wigner crys-
tal appears in a variety of physical systems including
electrons on a surface of liquid helium [2], electrons in
two-dimensional (2D) semiconductor samples and one-
dimensional (1D) nanowires (see e.g. [3] and Refs.
therein), cold ions in radio-frequency traps [4, 5] and
dusty plasma in laboratory or in space [6]. The Wigner
crystal in quasi-1D channel on liquid helium is also stud-
ied in experiments [7].

It is important to understand how the Wigner crys-
tal is moving in a periodic potential in low-dimensional
systems. The periodic potential can be viewed as a sim-
plified description of a crystal potential created by atoms
in a solid-state system. It also effectively appears in the
frame of Little suggestion [8, 9] on electron conduction in
long spine conjugated polymers with insights for possible
synthesized organic superconductors. The properties of
electron conduction in the regime of charge-density-wave
(CDW) are also related to the interacting charge prop-
agation in a periodic potential which displays a host of
unusual properties [10], including organic superconduc-
tivity [11, 12].

The numerical and analytical analysis of properties
of 1D Wigner crystal in a periodic potential had been
started in [13] with a proposal of experimental realization
of this system with cold ions in optical lattices. It was
shown that this system can be locally described by the
Frenkel-Kontorova model [14] where the static positions
of interacting particles are described by the Chirikov
standard map [15]. This symplectic map captures many
universal features of dynamical systems with a transition
from the invariant Kolmogorov-Arnold-Moser (KAM)
curves to a global chaotic diffusion when the last KAM
curve is destroyed above the critical value of dimensional
chaos parameter K [15–17]. As a result this map de-
scribes behavior of a variety of physical systems as de-
picted in [18]. In this frame of dynamical systems the ir-

rational rotation number of the KAM curve corresponds
to the fixed incommensurate density of particles in a pe-
riodic potential corresponding to incommensurate crys-
tals [19].

The important step in the understanding of such in-
commensurate crystals was done by Aubry [20] showing
that above the critical value of chaos parameter K > Kc

the KAM curve with an incommensurate rotation num-
ber is replaced by an invariant Cantor set, cantori, which
has the minimal ground state energy configuration of in-
teracting particles in the periodic potential. For K < Kc

the chain of particles has an acoustic spectrum of low en-
ergy phonon excitations corresponding to a sliding phase.
In contrast, for K > Kc the spectrum of excitations has
an optical gap and the chain is pinned by the poten-
tial. The properties of low energy excitations for classical
and quantum Wigner crystal are analyzed in [13, 21, 22]
showing the existence of exponentially many low energy
configurations in a proximity of the Aubry ground state.
In a certain sense for K > Kc the Aubry cantori ground
state, which is mathematically exact, is hidden inside ex-
ponentially large number of spin-glass-like configurations
which are all populated in a physical system realization
at finite temperature. For the Wigner crystal the pinned
Aubry phase appears when the amplitude of the peri-
odic potential exceeds a certain critical value measured
in units of Coulomb interaction, while at small potential
amplitudes, corresponding to the KAM curve, the crystal
can easily slide in the potential.

In addition to the very interesting fundamental proper-
ties of the Aubry transition from sliding to pinning, it was
established [23] that the pinned phase is characterized by
the exceptional thermodynamic characteristics with very
large Seebeck coefficient and figure of merit ZT > 3 that
exceeds the largest ZT = 2.6 value reached in material
science experiments (see e.g. review [24]).

After proposal [13], the realizations of Wigner crystal
of ions in optical lattices attracted the interest of experi-
mental groups [25, 26]. The signatures of the Aubry-like
transition has been experimentally detected with a small
number of cold ions by the group of Vuletic with about 5
ions [27]. The chains with a larger number of cold ions
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are experimentally studied in [28]. Two ion chains are
used in [28] to create an effective periodic potential for
ions in another chain (zigzag transition for ions is an-
alyzed in [29]). Such type of cold ion experiments can
be considered as microscopic emulators of mechanisms of
nanofriction in real materials as it is argued in [30–32].

Till now the cold ion traps are used to investigate
mainly 1D or quasi-1D ionic Wigner crystal properties
in periodic lattices. Recently a new step to investigation
of 2D Wigner crystal in a periodic potential has been
done with experimental observation of signatures of the
Aubry transition using a colloidal monolayer on an opti-
cal lattice [33].

All previous studies considered the case of periodic po-
tential being symmetric in space with a sine shape. In
this work we consider the case of asymmetric potential
with two harmonics which is relatively easy to realize
with optical lattices (see e.g. [34, 35]). We also note that
any crystal with three or more atoms in a periodic cell
in general will generate asymmetric potential. We show
that in such a case a moderate static dc-field Edc gener-
ates an asymmetric current corresponding to the Wigner
crystal diode with a current flowing only in one direction.
We study this diode current for 1D case and 2D stripes
of finite width. Due to importance of diodes for elec-
tronic circuits (see [36] and overview in [37]) we assume
that the obtained results will clarify the mechanisms of
friction and transport on nanoscale.

II. MODEL DESCRIPTION

For 1D case the Hamiltonian of the system of N inter-
acting particles with equal charges in a periodic potential
is given by

H =

N∑
i=1

(Pi2
2

+ V (xi)
)

+ UC ,

UC =
∑
i>j

1√
(xi − xj)2 + a2

,

V (xi) = K
(

sinxi + 0.4 sin 2xi
)
. (1)

Here xi, Pi are conjugated coordinate and momentum of
particle i, and V (xi) is an external asymmetric periodic
potential of amplitude K. We use the screened Coulomb
interaction UC between particles with the screening
length a. Here we write the Hamiltonian in dimension-
less units where the lattice period ` = 2π and the particle
mass and charge are m = e = 1. In these atomic-like
units the physical system parameters are measured in
units: ra = `/2π for length, εa = e2/ra = 2πe2/` for
energy, Eadc = εa/era for applied static electric field,

va =
√
εa/m for particle velocity v, ta = era

√
m/εa for

time t.

For 2D case the Hamiltonian has the same form with

H =

N∑
i=1

(Pix2
2

+
Piy

2

2
+ V (xi, yi)

)
+ UC ,

UC =
∑
i>j

1√
(xi − xj)2 + (yi − yj)2 + a2

,

V (xi, yi) = K
(

sinxi + 0.4 sin 2xi − cos yi
)
. (2)

and 2D momentum Pix, Piy conjugated to xi, yi.
Similar to [23] the dynamics of interacting charges is

modeled in the frame of Langevin approach (see e.g. [38])
with the equation of motion in 1D being:

Ṗi = v̇i = −∂H/∂xi+Edc− ηPi+ gξi(t) , ẋi = Pi = vi .
(3)

The parameter η phenomenologically describes dissipa-
tive relaxation processes, and the amplitude of Langevin
force g is given by the fluctuation-dissipation theorem
g =

√
2ηT . Here we also use particle velocities vi = Pi

(since mass is unity). As usual, the normally distributed
random variables ξi are defined by correlators 〈〈ξi(t)〉〉 =
0, 〈〈ξi(t)ξj(t′)〉〉 = δijδ(t − t′). The amplitude of the
static force is given by Edc. For 2D case the equations of
motion have the same form with the force Edc acting in
x-direction.

The length of the system in 1D case is taken to be 2πL
in x-direction with L being the integer number of periods
with periodic boundary conditions. In 2D we studied the
case of stripes with the width of 2πNs considering usually
up to Ns = 5 period cells in y-direction with periodic
boundary conditions.

The numerical simulations are based on the combina-
tion of Boost.odeint [39] and VexCL [40, 41] libraries and
employed the approach described in [42] in order to ac-
celerate the solution with NVIDIA CUDA technology.
Problem (1) are solved using fourth order Runge-Kutta
method and (2) by Verlet method, where each particle
is handled by a single GPU thread. Since Coulomb in-
teractions in UC are decreasing with distance between
particles, the interactions for the 2D case were cut off at
the radius RC = 6` = 12π, that allowed to reduce the
computational complexity of the algorithm from O(N2)
to O(N logN). In 1D in some cases we only considered
interactions between immediate left and right neighbors,
since, as shown in [13, 23], the contribution of other
particles does not play a significant role. In all simu-
lations, in order to avoid close encounters between parti-
cles leading to numerical instability, the screening length
a = 0.7 is used. At this value of a the interaction en-
ergy is still significantly larger than the typical kinetic
energies of particles (T � 1/a) and the screening does
not significantly affect the interactions of particles. We
usually employed the relaxation rate η = 0.1 being rela-
tively small comparing to typical oscillation time scales
in the system, but other values of η were also considered.
The source code for the 1D and 2D experiments is avail-
able at https://gitlab.com/ddemidov/thermoelectric1d
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FIG. 1: The effective static potential Veff (x) = V (x) −
Edcx for one charge is shown by black and red/gray curves
in presence of a static force Edc at K = 0.05, red/gray curve
corresponds to Edc = 0; black curves show nonzero values of
Edc in panels (a), (b).

and https://gitlab.com/ddemidov/thermoelectric2d cor-
respondingly. The numerical simulations were run at
OLYMPE CALMIP cluster [43] using NVIDIA Tesla
V100 GPUs and partially at Kazan Federal University
using NVIDIA Tesla C2070 GPUs.

III. STATIC CONFIGURATIONS AND AUBRY
TRANSITION

We start from the analysis of properties of static con-
figurations of particles in 1D case. The effective poten-
tial Veff = V (x)−Edcx, acting on a particle in presence
of a static force Edc, is shown in Fig. 1. At Edc = 0
there is one potential minimum. In presence of the static
force Edc there are no potential minima for the force
Edc > −K pushing to the left and Edc < 1.8K pushing
to the right. Thus the asymmetry of potential leads to
different sliding borders for left and right force acting on
one particle. This asymmetry is at the origin of diode
transport of Wigner crystal.

At Edc = 0 the static configurations of Wigner crys-
tal energy local minima are defined by the conditions
∂H/∂xi = 0 [13, 14, 20]. As discussed in [13], in the
approximation of nearest neighbor interacting charges,
these conditions lead to the dynamical symplectic Wigner
map for equilibrium positions xi of charges in the Wigner
crystal (with Pi = vi = 0):

pi+1 = pi +Kg(xi) , xi+1 = xi + 1/
√
pi+1 , (4)

where the effective momentum conjugated to xi is
pi = 1/(xi − xi−1)2 and the kick function Kg(x) =
−dV (x)/dx = −K(cosx+ 0.8 cos 2x).

To check the validity of the map description we find
the ground state configuration using numerical methods

of energy minimization described in [13, 20]. Here the
Coulomb interaction between all electrons is used in the
numerical simulations. We use the hard wall boundary
conditions at the ends of the chain (for ions they can be
created by specific laser frequency detuning from reso-
nant transition between ion energy levels). This leads to
the density ν of charges along the chain being inhomo-
geneous since a charge in a boundary vicinity has more
pressure from other charges in the chain (a similar inho-
mogeneous local density ν(xi) = 2π/ | xi+1−xi | appears
for ions inside a global oscillator potential of a trap as dis-
cussed in [13]). Thus, as in [13], we select the central part
of the chain with approximately 1/3 of all charges where
the density is approximately constant being close to the
golden mean value ν = νg − 1 = (

√
5 − 1)/2 ≈ 0.618

(or ν = νg = (
√

5 + 1)/2 ≈ 1.618) which is assumed
to be a most robust KAM curve for the Chirikov stan-
dard map [16, 17, 20]. This choice corresponds to an
incommensurate phase with the golden KAM curve usu-
ally studied for the Aubry transition [16, 17, 20].

The numerically obtained charge positions and mo-
mentum xi, pi are shown in Fig. 2 for ν ≈ 0.618 (see
Fig. A.1 in Appendix for ν ≈ 1.618). From the numeri-
cal values xi we determine the kick function g(x) which
is close to the theoretically expected relation Kg(x) =
−dV/dx shown by the dashed curve. For small potential
amplitudes K < 0.0015 the chain is in the sliding phase
with a continuous KAM curve in the Poincaré section
plane (x, p). For K > 0.0015 the points (xi, pi) start to
be embedded inside the chaotic component of the phase
plane corresponding to the Aubry pinned phase. In this
phase the points (xi, pi) form a fractal Cantor set in the
phase plane and the chain is pinned by the potential. Ac-
cording to the data of Fig. 1 the Aubry transition from
sliding to pinned phase takes place at the critical value
Kc ≈ 0.0015. The qualitative change of chain proper-
ties with the transition from sliding to pinned phase can
be also seen with the help of hull function h(x) which
gives the charge positions in a periodic potential vs. un-
perturbed positions at K = 0 both taken mod 2π. For
K < Kc we have a continuous function h(x) ≈ x while for
K > Kc the hull function has a form of devil’s staircase
with charge positions clustering near certain values. For
ν ≈ 1.618 we find Kc ≈ 0.015 (see Fig. A.1 in Appendix).

For the potential V (x) = −K cosx the Wigner map (4)
can be locally described by the Chirikov standard map
as it is explained in [13]. This gives the Aubry transition
at the potential amplitude

Kcν ≈ 0.034(ν/νg)
3 , νg = 1.618... . (5)

At ν = 1.618... the numerical results obtained in [13, 23]
give Kc ≈ 0.0462 that is slightly above the theoretic
value. We attribute this modest difference to an inhomo-
geneous density of resonances in (4) (the Chirikov stan-
dard map approximation assumes it to be constant [15])
and to nearest neighbor interactions between charges
present in the Wigner crystal. The recent results confirm
the cubic decrease of Kcν with charge density ν [44].
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FIG. 2: Functions related to the dynamical map (4) obtained from the ground state equilibrium positions xi of N = 61
charged particles for L = 90 potential periods (with hard wall boundary conditions) for density ν ≈ 0.618 in the central chain
part at K = 0.0002 (a), K = 0.001 (b), K = 0.002 (c), K = 0.005 (d) (charges are marked by open circles). In each panel the
top subpanel shows the kick function g(x) (dashed curve is the theoretical curve, circles are actual charge positions); middle
subpanel shows the Poincaré section of map (4) (green/gray points) and actual charge positions (xi, pi) (open circles); bottom
subpanel shows the hull function h(x) (see text). The charge positions are shown as x = xi( mod 2π) for the central 1/3 part
of the chain.

In our case with two harmonics of potential the den-
sity of resonances is increased which, according to the
Chirikov criterion of overlapped resonances, should de-
crease Kc value (see [15, 16]). Indeed, for ν = 1.618 we
have Kc ≈ 0.015 being approximately 3 times smaller
compared to the case of one harmonic potential with
Kc ≈ 0.0462. For ν ≈ 0.618 we have Kcν ≈ 0.0015 while
the cubic extrapolation like in (5) gives Kcν ≈ 0.00084
being by 40% lower than the numerical values from
Fig. 2. We consider this as satisfactory taking into ac-
count the approximate Kc values extracted from Fig. 2
and Fig. A.1. Thus for the potential (1) we have on
average the density dependence of the critical potential
amplitude of the Aubry transition: Kcν ≈ 0.01(ν/νg)

3.

We note that the significant decrease of Kc for two
harmonic potential and especially with density ν can be
rather important for experiments with optical lattices
since a smaller potential amplitude is more accessible
with low power lasers.

IV. DIODE TRANSPORT IN 1D

The charge transport is computed with N charges on
L potential periods with periodic boundary conditions
(here we consider Coulomb interactions only between
nearest neighbor charges as discussed in Section II). We
compute the velocity v(t) of a chain at time t as an av-
erage velocity of all N charges at that time moment. A
typical dependence of v(t) on time is shown in Fig. 3.
The system parameters correspond to the Aubry pinned
phase. We see that approximately for t > 100 the motion
of a chain is in a stationary regime with its steady-state
propagation along the potential under the applied static
force Edc. The velocity of Wigner crystal propagation
vW to the left is close to the velocity of a free particle in
presence of force and dissipation v0 = Edc/η = 0.47 for
the case of Fig. 3. The time averaged value vleft = 0.439
is a bit smaller than v0 showing that the potential slightly
decreases the propagation velocity. In contrast, the chain
propagation to the right has a significantly smaller veloc-
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FIG. 3: Dependence of average chain velocity v(t) at time
t in 1D for N = 34 particles and L = 55 periods of poten-
tial (with periodic boundary conditions; ν = 34/55). Here
Edc = −0.047 (black points) with time average Wigner crys-
tal velocity vW = vleft = −0.439 and Edc = 0.047 (red/gray
points) with time average vW = vright = 0.088; the system
parameters are K = 0.05, T = 0.2Kc,Kc = 0.0462; η = 0.1
(time averaging is done over times above 1/2 of the whole
time interval).

ity vright = 0.089 � v0 for the same amplitude of static
force. Also instantaneous values of velocity v(t) have
significant fluctuations with even almost zero velocity at
some moments of time. This data clearly demonstrates
the emergence of diode transport in the asymmetric po-
tential in presence of interactions. From the physical
view point the velocity to the right is smaller than to the
left since the potential has a steep slope in this direction
while moving to the left a particle follows a gentle slope.
Thus in winter it is easier to pull sleigh along a gentle
slope of a hill than along a steep slope even if the hill
height is the same from both sides.

The dependence of Wigner crystal velocity vW on Edc
is shown in Fig. 4 for the Aubry pinned phase atK = 0.05
and ν = N/L ≈ 0.618 for different values of tempera-
ture T . At small T = 0.1Kc = 0.00462 � K = 0.05
we have a strongly asymmetric diode transport appear-
ing at finite Edc fields. With the increase of temperature
the diode transport becomes less and less pronounced.
Indeed, when the temperature is comparable with the
potential height, e.g. T = 0.8Kc ≈ 0.037 ∼ K = 0.05,
the statistical Boltzmann fluctuations over potential bar-
rier smooth the asymmetry of transport. In this regime
at small Edc fields the velocities to the left and to the
right directions become the same as it is shown in Fig. 5.

Indeed, in the linear regime limit at Edc → 0 the prin-
ciple of detailed balance (see e.g. [45]) guaranties that
the flow is the same in both directions. We note that
this point had been discussed in detail by Feynman for
a case of asymmetric potential [46] which became known
as ratchet. Indeed, as we show below (see Section VII)
at small temperatures the dependence vW (T ) is well de-

FIG. 4: Dependence of Wigner crystal velocity vW , averaged
over times t ≤ 104, on static field amplitude Edc for propa-
gation to the left (black points) and to the right (red/gray
points). Here ν = N/L = 34/55, K = 0.05, η = 0.1 and
temperature T/Kc = 0.1; 0.2; 0.4; 0.8 for panels (a); (b); (c);
(d) respectively. Here Kc = 0.0462 is the critical amplitude
of Aubry transition for ν = 1.618... in a potential with one
harmonic [13, 23].
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FIG. 5: Zoom of Fig. 4(d) at small Edc.

scribed by the Arrhenius thermal activation equation. At
present, the term ratchet, discussed by Feynman, is more
used for a description of directed transport appearing in
an asymmetric periodic potential under a time-periodic
force driving (see e.g. [47–49]). Due to these reasons we
use the term diode which is more adequate for the case of
static force without any time-periodic driving. It directly
corresponds to the asymmetry of charge flow obtained in
our model.

At fixed temperature (e.g at T = 0.1Kc as in Fig. 4(a))
the asymmetry of diode transport decreases with a de-
crease of the potential amplitude K as it is shown in
Fig. 6. Indeed, with a decrease of K the potential height
becomes comparable with temperature and, as above, the
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FIG. 6: Same as in Fig. 4(a) but at K = 0.03 (a) and
K = 0.01 (b).

FIG. 7: Same as in Fig. 4(a) but for different electron den-
sities N/L = 21/55(a) and N/L = 34/21(b).

principle of detailed balance leads to the same flows in
both directions.

The influence of Coulomb interactions of the diode
transport is obtained from the comparison of Fig. 7(a),
Fig. 4(a), Fig 7(b) where the electron density takes values
ν = N/L = 21/55, 34/55, 34/21 respectively, at all other
parameters kept fixed. All these 3 cases are located in the
pinned phase. We see that at N/L = 21/55, 34/55 the
diode velocity dependence vW (Edc) on Edc remains prac-
tically the same. We explain this by the fact that at small
densities the interactions between charges become weak
compared to the periodic potential and thus we approach
to the limit of transport of noninteracting particles which
still demonstrates the diode flow due to potential asym-
metry. The opposite tendency appears with the increase
of density to N/L = 34/21. In this case the interactions
are strong, even if we are still in the pinned phase, and
the asymmetry of potential is less pronounced so that

the transport flows are close to be symmetric even if one
still needs to apply a finite force Edc ≈ 0.02 to obtain
moderate velocities of Wigner crystal motion along the
periodic potential. This force can be interpreted as the
static friction force Fs ≈ Edc ≈ 0.02. We note that with
the increase of interactions (or density) we have a reduc-
tion of Fs values. Indeed, at lower density N/L = 34/55
we have larger values of static friction force Fs ≈ 0.03
(for left direction) and Fs ≈ 0.05 (for right direction).
Indeed, with increase of interactions we approach to the
sliding phase (the border of Aubry transition is growing
this density (5) where Fs = 0.

We note that for Edc < Fs the Wigner crystal veloc-
ity vW happens due to the Arrhenius thermal activation
(see Section VII) so that it drops exponentially with a
decrease of temperature. In contrast, for Edc > Fs we
have rather weak change of vW with T (see e.g. Fig. 4).

The above results are presented for the dissipation rate
η = 0.1. We tested also smaller values of η for which we
obtained qualitatively similar results. Thus for param-
eters of Fig. 7(b) we have approximately similar shape
of vW (Edc) dependence for η = 0.1 and η = 0.02 (see
Fig. A.2) with a more sharp shape in the latter case with
a smaller value Fs ≈ 0.013. We argue that at smaller
dissipation statistical fluctuations at a given tempera-
ture have more possibilities to overcome potential barri-
ers that leads to a moderate decrease of Fs.

V. DIODE TRANSPORT IN 2D

The diode properties of Wigner crystal in 2D are stud-
ied with the Hamiltonian (2) and related Langevin equa-
tions (3). We use periodic boundary conditions in x and
y directions with the static field Edc always acting in
x-direction. The majority of the results were obtained
with 5 cells in y giving us Ns = 5 stripes along x with
one periodic cell in each stripe (we obtained very similar
results with only Ns = 1 stripe in y). We keep the same
density ν = N/L in each stripe as in the above 1D case.
Thus the total number of charges is Ntot = NsN with L
and Ns potential periods in x and y. Similar to 1D case
(see Fig. 2) we compute the local average charge velocity
v(t) in x-direction at instant time moment t by averaging
over all Ntot charges (an example of dependence v(t) is
shown in Fig. A.3). In 2D simulations we usually used
time scales up to t = 5· 104 when the crystal propagation
is well stabilized.

The dependence of Wigner crystal velocity vW of Edc
in 2D is shown in Fig. 8 at difference densities ν = N/L =
34/55, 34/21, 55/21, 71/21 with all other parameters kept
fixed being also the same as in the corresponding 1D
cases. At low density N/L = 34/55 the dependence
vW (Edc) remains practically the same in 1D and 2D.
We attribute this to relatively weak interactions between
charges so that the diode transport is rather close to the
noninteracting case. The situation is drastically different
for N/L = 34/21: in 1D the diode transport asymmetry
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FIG. 8: Dependence of Wigner crystal velocity vW on Edc

in 2D case (5 lines in transverse y direction) at densities ν =
N/L = 34/55(a), 34/21(b), 55/21(c), 71/21(d). Other system
parameters are as in Fig. 4(a).
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FIG. 9: Dependence of vW /v0, shown by color, on T/Kc and
Edc for 2D case with 5 stripes and N/L = 34/21; K = 0.05,
Kc = 0.0462; η = 0.1, v0 = Edc/η.

is quite weak (Fig. 7(b)) while in 2D we have a strong
asymmetry (Fig. 8(b)) with different values of static fric-
tion force Fs ≈ 0.025 (left) and Fs ≈ 0.05 (right). At
larger densities N/L = 55/21, 71/21 the asymmetry is
reduced due to increase of interactions with Fs ≈ 0.025
for both directions. Thus in 2D case we have a tendency
similar to 1D case with a reduction of diode transport
asymmetry with the density increase.

The global dependence of 2D Wigner crystal velocity
| vW | on temperature T and Edc is shown in Fig. 9 for
density ν = N/L = 34/21. We find that the diode trans-
port is well visible for temperatures being smaller than
the potential height T/Kc ≈ T/K < 1 where vW is sig-
nificantly smaller than v0 = Edc/η. At large T/Kc values
vW becomes close to v0 since in this regime the poten-
tial influence becomes small. Of course, at very small

Edc values the velocity vW becomes very small and it be-
comes difficult to determine exactly very small vW values
in numerical simulations on a finite time scale (here vW
appears due to exponentially rare thermal fluctuations).
This is at the origin of peak-like structure near Edc ≈ 0
in Fig. 9.

Overall, the results for diode transport in 2D show that
its properties are similar to those of 1D case.

We note that using GPUs in the numerical experi-
ments allows to make simulations with a significantly
larger number of particles going up to Ntot ∼ 104 without
a significant increase of computational times. However,
this work was focused on analysis of specific physical ef-
fects related to diode transport for which it was sufficient
to stay within a maximal Ntot = 445 (see below). Re-
cently, the numerical simulations of 2D Wigner crystal
in a spatially modulated system with up to 1600 charges
has been reported in [50]. However, the possible links
with the Aubry transition have been not discussed in
this work. We think that without such links it is rather
difficult to understand the physics of various dislocation
phases appearing in 2D.

Another thing worth mentioning is the possibility of
realization of thermal diode discussed in [51]. On the
first glance it seems natural that in presence of charge
diode transport one can expect the thermal diode flow to
appear in our model. However, we were not able to find
thermal diode regime in our model. We explain this by
the fact that the charge diode transport appears at finite
Edc field values. Such fields are rather moderate on a
local scale but for a large system size they correspond to a
significant voltage difference ∆Vdc applied to the sample.
In contrast, the temperature difference applied to the
sample is always smaller than the sample temperature
and due to that to long sample the temperature gradient
becomes very small so that, due to the detailed balance
[45], the left and right heat flows remains equal in this
linear limit of small temperature gradient.

In the next Section we characterize the structure of
moving Wigner crystal in 2D.

VI. FORMFACTOR OF MOVING WIGNER
CRYSTAL

To characterize the structure of Wigner crystal in mov-
ing and static regimes we us the formfactor defined as

F (k) = 〈| Re
Ntot∑
i 6=j

exp(ik(xi(t)− xj(t))) |2〉/Ntot , (6)

where the average is done over all particles and 10 differ-
ent moments of time homogeneously spaced on the whole
computational interval of time. A similar approach had
been used in [13]. It showed that the formfactor captures
the Aubry transition from sliding phase with F (k) peaks
at incommensurate values k ≈ νj with integer j while in
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FIG. 10: Formfactor F (k) in 2D case with 5 stripes for (a)
N/L = 34/21; K = 0.001, T = 0 (η is not important since
Edc = 0); (b) N/L = 34/21; 89/55, K = 0.05, T = 0.01Kc
(η is not important since Edc = 0); (c) same as (b) but at
Edc = −0.03, η = 0.1; (d) same as (b) but at Edc = −0.045,
η = 0.1;

the pinned phase the peaks are more pronounced at k ≈ j
corresponding to the lattice period (see Fig. 5 in [13]). Of
course, in the pinned phase the density is still incommen-
surate (e.g. ν = 1.618...) but the charges are clustered in
groups where their positions are more closely located to
potential minima with some displacements (dislocations)
between clusters due to fractal devil’s staircase structure
of the whole chain in the pinned phase. These clusters
give peaks of F (k) at k ≈ j.

For the static Wigner crystal at Edc = 0 we also find a
similar F (k) structure shown in Fig. 10(a) and Fig. 10(b)
for sliding and pinned phases respectively. However, in
the sliding phase at K = 0.001� Kc we have F (k) peaks
located at k ≈ νeff j with νeff ≈

√
ν ≈ 1.272. Indeed, in

2D the average distance between particles becomes 1/
√
ν

instead of 1/ν as it was in 1D case. Due to that we find
peaks at k ≈

√
νj in Fig. 10(a). In contrast, in the pinned

phase the periodic potential imposes peaks at k ≈ j in
Fig. 10(b).

The formfactor of the moving Wigner crystal in the
diode regime at Edc = −0.03,−0.045 is shown respec-
tively in Fig. 10(c),(d) for the pinned phase. The main
peaks are still located at integer k ≈ j even though they
are somewhat broaden due to fluctuations of changes dur-
ing their propagation along the lattice. These fluctua-
tions mainly affect large peaks at large j = 3, 4... but the
peaks at j = 1, 2 remain. It is important to note that
with the increase of the ring size going from N/L = 34/21
to N/L = 89/55 we recover the same formfactor struc-
ture. This shows that the chosen system size corresponds
to the thermodynamic limit of infinite system.

The dependence of F (k) on temperature T for mov-
ing crystal at Edc = −0.03 is shown in Fig. 11. With
the increase of T the fluctuations become stronger and

FIG. 11: Dependence of formfactor F (k), shown by color,
on T/Kc and k; N/L = 34/21, η = 0.1, Edc = −0.03 in 2D
with 5 stripes.

FIG. 12: Dependence of formfactor F (k) of moving Wigner
crystal on Edc and k for K = 0.05, T = 0.01Kc, Kc = 0.0462,
η = 0.1 in 2D at N/L = 34/21 with 1 stripe (a) and with 5
stripes (b) (color bar marks F (k) values).

the peaks are suppressed at large T/Kc ≈ T/K values.
However, the peaks at k ≈ j = 1, 2 remain rather robust
even at large T/K.

The dependence of formfactor on Edc at fixed temper-
ature is shown in Fig. 12. At moderate | Edc |< 0.05
values in the diode regime we have F (k) peaks mainly at
k ≈ j = 1, 2, 3, 4, 5, 6 (they are more pronounced for large
size with 5 stripes). But at stronger field | Edc |> 0.05 we
see a transition to incommensurate structure with peaks
located at k ≈ ν̃j with ν̃ ≈ 1.5 corresponding to an in-
termediate density between νeff ≈ 1.272 and ν = 1.618.
Thus a sufficiently strong dc-field can change the struc-
ture of moving pinned Wigner crystal to sliding incom-
mensurate crystal. Indeed, at strong Edc the crystal ve-
locity vW becomes rather large and the periodic potential
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gives to this directed flow only relatively weak perturba-
tion.

We present the video of Wigner crystal motion in the
diode regime in Supplementary Material [52].

VII. ANALYSIS OF APPROXIMATIONS

The performed numerical simulations use certain ap-
proximations like e.g. the Langevin approach for the
thermal bath, finite interaction range between charges.
Here we briefly justify the validity of these approxima-
tions.

Thus, in Fig. A.4 we show the velocity distributions in
1D and 2D cases. These results show that the numerical
results well reproduce the theoretical thermal Maxwell
distribution centered at the average particle velocity vW .
At significant values of Edc and related vW there is a
noticeable deformation of the distribution which we at-
tribute to a moderate heating of particles by the static
force Edc and effects of their interactions in presence of
a periodic potential. However, we note that even when
there is a visible deformation of the distribution in x-
direction in 2D case, the distribution in y−direction is
still very well described by the Maxwell one. We note
that as it was described Section II in 2D case the parti-
cles are free to move from one stripe to another one but
such transitions happened to be rare due to repulsion
between charges.

We note that the friction force for electrons on a sur-
face of liquid helium can have a more complicated form
due to various low energy excitations in this system (see
e.g. [2]). However, the Langevin approach reproduces
well the thermal distribution in the system and we con-
sider that this approach is reasonably justified as the first
step to investigation of this rather complex and nontriv-
ial system. However, we suppose that the future studies
will allow to test other forms of the friction force in the
Langevin equation that will capture the specific features
of electron friction on the surface of liquid helium due to
rich properties of low energy excitations in this system.

Indeed, the results presented in Fig. A.5 show that the
temperature dependence of Wigner crystal velocity vW is
well described by the Arrhenius thermal activation equa-
tion that confirms that the Langevin approach provides
us a reasonable description of the thermal environment.

The obtained results for vW are not sensitive to the
interaction radius between charges RC as it is illustrated
in fig. A.6 where it is changed by a factor 50 with prac-
tically the same profile of time dependence vW (t), up to
statistical fluctuations. This is in agreement with the
results of Fig. 2 which shows that the chain of charges,
where all interactions are taken into account, is rather
well described by the symplectic map with only nearby
interactions between charges. We also note that the com-
parison between 1D chain dynamics with only nearest
neighbors interactions and the chain with interactions of
all charges had been performed in [13, 23] showing that

the short range approximation for interactions provides
rather good approximation. In addition, we also show in
Fig. A.7 that the dependencies vW (Edc) for 1D case (with
only nearby interactions) and 2D case (with 1 stripe/line)
remain very close to each other. Thus 1D case captures
the main physical features of the system being well useful
for the description of 2D system.

Thus, we consider that the results discussed above jus-
tify the approximations used in our numerical simula-
tions.

VIII. DISCUSSION

In this work we demonstrated that the Wigner crystal
diode transport appears naturally for charge motion in
asymmetric 1D and 2D potential. In presence of charge
interactions a dc-field move crystal easily in one direction
while no current appears in opposite direction. Our re-
sults show close similarities of diode transport in 1D and
2D. The diode transport appears in the Aubry pinned
phase.

We think that the asymmetry is rather natural for var-
ious materials since already three different atoms in a
periodic cell create generally an asymmetric potential.
An incommensurate charge density in such materials can
be induces by effective charge doping from other planes
(e.g. like in high-temperature cuprates superconductors)
or impurities.

With a recent progress in experimental studies of
Aubry transition with cold ions [27, 28] and colloidal
monolayers [33] we hope to obtain a deeper understand-
ing of mechanisms of nanofriction on atomic scale [31].
These experiments can be also performed with asymmet-
ric potentials providing first experimental realizations
of Wigner crystal diode. Indeed, two-harmonic optical
lattices had been already realized experimentally (see
e.g. [34, 35]) that opens possibilities to study the diode
regime with cold ions. The dependence of the Aubry
transition on density, obtained in [13] (see (5) and [44]),
shows that the Aurby phase can be reached with a mod-
erate amplitude of lattice potential created by laser fields.
Indeed, for ν ≈ 0.38 we obtain from (5) Kcv ≈ 0.00044
with the required potential amplitude of Aubry transi-
tion being VA = Kcνe

2/(`/2π) ≈ 0.04K◦(Kelvin) for
the lattice period ` ∼ 1µm (VA ≈ 3K◦ for ν = 1.618).

In addition to cold ion experiments we think that there
are promising possibilities to study Wigner crystal diode
with electrons on liquid helium moving in a quasi-1D
channel [7]. The first experiments in this direction have
been reported recently in [53]. According to the above
estimate, for electron density ν ≈ 1.618 and ` ≈ 1µm the
Aubry transition takes place at the potential amplitude
VA ≈ 3K◦ that is well below the electron temperature of
about 0.1K◦ well available for such experiments (see e.g.
[7, 53]).

There are also possibilities of experimental realization
of Wigner crystal diode with colloidal monolayers extend-
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ing the experiments [33] to asymmetric potentials.
We expect that the experimental investigations of elec-

tron and ion transport in a periodic potential at low tem-
peratures will allow to understand the nontrivial mecha-
nisms of friction and thermoelectricity at nanoscale and
then on atomic scale with new applications for material
science.
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Here we present supplementary Appendix figures
Fig. A.1, Fig. A.2, Fig. A.3, Fig. A.4, Fig. A.5, Fig. A.6,
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