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Abstract. We study analytically and numerically the thermoelectric properties of cold ions placed in an
optical lattice. Our results show that the transition from sliding to pinned phase takes place at a certain
critical amplitude of lattice potential being similar to the Aubry transition for the Frenkel–Kontorova
model. We show that this critical amplitude is proportional to the cube of ion density that allows to
perform experimental realization of this system at moderate lattice amplitudes. We show that the Aubry
phase is characterized by the dimensionless Seebeck coefficient about 50 and the figure of merit being
around 8. We propose possible experimental investigations of such system with cold ions and argue that
the experiments with electrons on liquid helium surface can also help to understand its unusual properties.
The obtained results represent also a challenge for modern methods of quantum chemistry and material
science.

1 Introduction

The Wigner crystal [1] has been realized with a variety
of physical systems including cold ions in radio-frequency
traps [2,3], electrons on a surface of liquid helium [4], quan-
tum wires in solid state systems (see e.g. review [5]), and
even dusty plasma in space [6].

The Cirac-Zoller proposal to perform quantum com-
putations with trapped cold ions [7] pushed forward the
cold ion investigations with generation of quantum entan-
glement, realization of main quantum gates and simple
algorithms (see e.g. review [8]). In addition the quantum
simulations of various physical systems with cold atoms
became an independent and important research direction
(see e.g. reviews [9,10]). At present the experiments with
a chain of up to 100 cold ions have been reported [11].

The proposal to study the properties of Wigner crystal
[1] in a periodic optical lattice with cold trapped ions in
one-dimension (1D) has been introduced in [12]. The ana-
lytical and numerical studies performed there established
the emergence of transition from sliding phase at weak
potential amplitudes to the pinned crystal phase at high
amplitudes. It was shown that this transition is the Aubry
type transition [13] appearing in the Frenkel–Kontorova
model of a chain of particles connected by springs and
placed on a periodic substrate [14]. In fact, the properties
of ionic chain can be locally described by the Chirikov
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standard map [15] properties of which are directly linked
with those of the Frenkel–Kontorova model. Thus the
sliding phase corresponds to the integrable Kolmogorov–
Arnold–Moser (KAM) curves while the pinned Aubry
phase corresponds to the cantori invariant set embed-
ded in the phase space component with dynamical chaos.
The mathematical properties of such symplectic maps had
been studied in great detail in the field of dynamical chaos
(see [13,16,17]) and a variety of their physical application
are highlighted in [15,18].

The proposal [12] attracted the interest of cold ion
experimental groups [19,20] with the first signs of obser-
vation of the Aubry transition reported by Vuletic group
[21] with 5 cold ions in a periodic potential followed by
experiments with a larger number of ions placed in two
chains with an effective periodic potential created by one
chain acting on another one [22].

The physical properties of the Wigner crystal in a peri-
odic potential are highly nontrivial and interesting. It
was shown that the quantum model in the pinned phase
has an exponentially large number of exponentially quasi-
degenerate configurations with instanton quantum tun-
neling between these configurations in the vicinity of the
vacuum state [12]. Thus this system represents an exam-
ple of dynamical spin-glass model where the exponential
quasi-degeneracy emerges not due to external disorder but
due to nonlinearity and chaos of the underlying dynami-
cal map. However, in addition to this interesting physics it
has been argued [23,24] that this model captures the main
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mechanisms of friction at nanoscale so that the cold ion
experiments can represent the microscopic friction emula-
tors allowing to understand study tribology at nanoscale
[25]. Also it was shown recently that in the case of an
asymmetric potential there is emergence of the Wigner
crystal diode current in one and two dimensions [26].

Of course, the applications of physics of Wigner crys-
tal in a periodic potential to nanofriction are a very use-
ful and important research direction. But in addition it
has been shown that this system possesses exceptional
thermoelectric properties [27]. The fundamental aspects
of thermoelectricity had been analyzed in far 1957 by Ioffe
[28,29]. At present the needs of efficient energy usage stim-
ulated extensive investigations of various materials with
high characteristics of thermoelectricity as reviewed in
[30–34].

The thermoelectricity is characterized by the Seebeck
coefficient S = −∆V/∆T (or thermopower) which is
expressed through a voltage difference ∆V compensated
by a temperature difference ∆T . We use units with a
charge e = 1 and the Boltzmann constant k = 1 so that
S is dimensionless (S = 1 corresponds to S ≈ 88µV/K
(microvolt per Kelvin)). The thermoelectric materials are
ranked by a figure of merit ZT = S2σT/κ [28,29], where
σ is the electric conductivity, T is material temperature
and κ is the thermal conductivity. For an efficient usage of
thermoelectricity one needs to find materials with ZT > 3
[30,33]. At present the highest ZT value observed in mate-
rial science experiments is ZT ≈ 2.6 [34]. It has been
argued that the materials with an effective reduced dimen-
sionality favor the high thermoelectric performance [35].
The results obtained in [27] showed that in the Aubry
pinned phase it is possible to reach ZT > 3 and S � 1
while the KAM sliding phase has low values of ZT and S.
However, in [27] only a case of relatively high charge den-
sity has been considered which requires high power lasers
for a generation of high amplitude of periodic potential.
In this work we consider the case of low ion density show-
ing that in this case only a moderate potential amplitude
is required to reach ZT > 3. Thus we expect that the
experiments with cold ions in optical lattices can be used
as emulators of thermoelectricity on nanoscale allowing to
understand the physical mechanisms of efficient thermo-
electricity.

In our opinion, the deep understanding of these mech-
anisms is required to select material with high thermo-
electric properties. At present there are a lot of quan-
tum physico-chemistry numerical computations of ther-
moelectric parameters for a variety of real materials (see
e.g. [36,37]). With the advanced computational methods
the band structures of electronic transport are determined
taking into account all atom and electron interactions.
However, after that, the conductivity is computed as for
noninteracting electrons. In contrast, we argue that the
interactions of charges (electrons or ions) are crucial for
their thermoelectric properties of transport in a periodic
potential of atomic structures. Due to these reasons we
believe that the theoretical and experimental investiga-
tions of Wigner crystal transport in a periodic potential
are crucial for the understanding of thermoelectricity at
atomic and nanoscales.

We note that in addition to the cold ion experiments
in optical lattices there are also other physical systems
which can be used as a test bed for thermoelectricity at
nanoscale. We consider as rather promising the electrons
on liquid helium surfaces within narrow quasi-1D channels
[38,39] and colloidal monolayers where the signatures of
Aubry transition have been observed recently [40].

The paper is composed as follows: descriptions of model
and numerical methods are given in Section 2, the depen-
dence of the Aubry transition on charge density is deter-
mined in Section 3 by the numerical simulations and the
reduction to the symplectic map and its local analysis
via the Chirikov standard map, the formfactor of the ion
structure in a periodic potential is considered in Section 4,
the Seebeck coefficient S is determined in the KAM slid-
ing phase and the Aubry pinned phase in Section 5, the
dependence of figure of merit ZT on system parameters is
established in Section 6 and the discussion of the results
is given in Section 7.

2 Model description

The Hamiltonian of the chain of ion charges in a periodic
potential is

H =
N∑

i=1

(
Pi

2

2
+ V (xi)

)
+ UC ,

UC =
∑
i>j

1
| xi − xj |

,

V (xi) = −K cosxi. (1)

Here xi, Pi are conjugated coordinate and momentum of
particle i, and V (x) is an external periodic potential of
amplitude K. The Hamiltonian is written in dimension-
less units where the lattice period is ` = 2π and ion mass
and charge are m = e = 1. In these atomic-type units
the physical system parameters are measured in units:
ra = `/2π for length, εa = e2/ra = 2πe2/` for energy,
Eadc = εa/era for applied static electric field, va =

√
εa/m

for particle velocity v, ta = era
√
m/εa for time t. The

temperature T (or kBT ) is also measured in this dimen-
sionless units, thus for ` = 1µm the dimensionless temper-
ature T = 0.01 corresponds to the physical temperature
T = 0.01εa/kB = 0.02πe2/(`kB) ≈ 1 K (Kelvin).

We note that in this work we consider only the prob-
lem of classical charges. Indeed, as shown in [12] the
dimensionless Planck constant of the system is ~eff =
~/(e

√
m`/2π). For a typical lattice period ` ≈ 1µm, ν ∼ 1

and 40Ca+ we have ~eff ≈ 10−5. For electrons on a periodic
potential of liquid helium with the same period ` ≈ 1µm
we have ~eff ≈ 2 × 10−3. Due to this reason we consider
below only the classical dynamics of charges.

Following [27] we model the dynamics of ions in the
frame of Langevin approach (see e.g. [41]) with the equa-
tion of motion being

Ṗi = v̇i = −∂H/∂xi + Edc − ηPi + gξi(t), ẋi = Pi = vi .
(2)
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The parameter η describes phenomenologically the dis-
sipative relaxation processes, and the amplitude of
Langevin force g is given by the fluctuation-dissipation
theorem g =

√
2ηT . We also use particle velocities vi =

Pi (since mass is unity). The normally distributed ran-
dom variables ξi are defined by correlators 〈〈ξi(t)〉〉 = 0,
〈〈ξi(t)ξj(t′)〉〉 = δijδ(t − t′). The amplitude of the static
force is given by Edc. Equations (2) are solved numerically
by the 4th order Runge–Kutta integration with a time
step ∆t, at each such a step the Langevin contribution is
taken into account, As in [27] we usually use ∆t = 0.02
and η = 0.02 with the results being not sensitive to these
parameters.

The length of the system in 1D case is taken to be 2πL
in x-direction with L being the integer number of peri-
ods with periodic or hard-wall boundary conditions for N
ions inside the system. The dimensionless charge density
is ν = N/L being related to the winding number of the
KAM curves in the related symplectic map description of
equilibrium positions of ions.

We note that the Langevin description of a system evo-
lution is a standard approach for analysis of the system
when it has a fixed temperature created by the contact
with the thermal bath or certain thermostat. The ori-
gin of this thermostat is not important since this descrip-
tion is universal [41]. For experiments with cold ions we
assume that the thermostat is created by external envi-
ronment, residual gas etc. For the computation of the
Seebeck coefficient we need to have a temperature gra-
dient along the ion chain. In the frame of the Langevin
equation this is realized easily simply by imposing in (2)
that T is a function of the ion position along the chain
with T = T (x) = T0 + gx where T0 is the average tem-
perature along the chain and g = dT/dx is a small tem-
perature gradient (here x is a coordinate position of a
given ion). In the experiments with cold ions such a tem-
perature gradient can be created by multiple laser beams
which generate a fluctuating force f(x). The average force
should be zero while its square f2(x) should change lin-
early along the chain. These fluctuating forces of laser
beams will create additional ion velocity fluctuations with
(δvi)2 ∝ f2(x) ∝ (T (x)− T0) = gx thus producing a tem-
perature gradient along the ion chain. We return to the
discussion of the thermalization in experiments later.

For clarity we note that the results of Sections 3 and 4
are obtained with interactions between all ions, while the
results obtained with the Langevin dynamics presented
in Sections 5 and 6 are obtained with nearest neighbor
interactions between ions (in [27] it was shown that this
approximation still provides a good description of the case
of all interacting ions).

3 Density dependence of the Aubry transition

The equilibrium static positions of ions in a periodic
potential are determined by the conditions ∂H/∂xi = 0,
Pi = 0 [12,13]. In the approximation of nearest neigh-
bor interacting ions, this leads to the symplectic map for
recurrent ion positions xi

pi+1 = pi +Kg(xi), xi+1 = xi + 1/
√
pi+1, (3)

where the effective momentum conjugated to xi is
pi = 1/(xi − xi−1)2 and the kick function Kg(xi) =
−dV/dx|x=xi

= −K sinxi. Below we show that this map
with only nearest neighbor interacting ions provides a
good description of the case of interactions between all
ions.

The map (3) can be locally (in the phase space)
described by the Chirikov standard map. This proce-
dure is standard and is described in [15,16]. With this
aim the second equation in (3) for ion positions xi+1

is locally linearized in pi+1 near the resonant values of
pr(m) = 1/(2πm)2 ≈ (ν/2π)2 defined by the condition
xi+1 = xi + 2πm ≈ xi + 2π/ν where m are integers. This
leads to the local description of dynamics by the Chirikov
standard map [12,15]:

yi+1 = yi −Keff sinxi, xi+1 = xi − yi+1, (4)

where yi = α(pi − pr), α = 1/(2pr
3/2) = (2π/ν)3/2

and the dimensionless chaos parameter Keff = αK =
K(2π/ν)3/2. As it is shown in [15–17] the global chaos
border is determined by the critical Keff ≈ 1.

As in [12] the validity of the map description is checked
numerically finding the ground state configuration using
numerical methods of energy minimization described in
[12,13]. In these simulations the Coulomb interactions
between all ions are considered. Also we use the hard-
wall boundary conditions at the ends of ion chain assum-
ing that in the experiments it can be created by specific
laser frequency detuning from resonant transition between
ion energy levels. Due to these boundary conditions the
smoothed ion density is inhomogeneous since an ion near
boundary vicinity has more pressure from other ions in
the chain (a similar inhomogeneous density appears for
ions inside a global oscillator potential of a trap as dis-
cussed in [12]). To avoid the non-homogeneity of the aver-
age local density (see Fig. 1, where we see that this density
increases near the chain ends) we select the central part
of the chain with approximately 1/3 of all ions where the
average local density is approximately constant (we dis-
tinguish average local density from the local density as
defined in Fig. 1 caption). The examples of ion density
for KAM sliding and Aubry pinned phases are shown in
Figure 1. The data show that the local distribution of
ions is relatively smooth in the sliding phase and is rather
peaked in the pinned phase. The selected density is cho-
sen to be close to the inverse of the golden mean value
ν = ν̃g = ν−1

g = νg − 1 = (
√

5− 1)/2 = 0.618 . . . which is
often used for stability analysis of KAM curves in symplec-
tic maps (see e.g. [16,17]). With the choice N/L = 55/89,
typical for common Frenkel–Kontorova model as a ratio-
nal approximant to the golden mean, we have actually
ν = 0.56, and we need to adjust the number of ions N in
order to approach the required value ν̃g = 0.618 . . ..

We note that this problem of local density change disap-
pears if one restricts himself by the account for the nearest
neighbors interactions between ions: in this approach the
ions density becomes practically constant along the whole
chain. This approach is used below in our simulations of
kinetic properties of the system.
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Fig. 1. Local ion density distribution is shown along the ion
chain for the sliding phase at K = 0.001 (blue points connected
by lines) and for the pinned phase at K = 0.01 (black points
connected by lines). Here the local density is defined as ρ(X) =
2π/(xi+1 − xi) and X = (xi+1 + xi)/2; the gray curve shows
the average local density distribution obtained from averaging
of local density over approximately 5 ions. The red dashed line
corresponds to the fraction of golden mean density ρ(X) =
νg − 1 = (

√
5 − 1)/2 = 0.618 . . ., and the blue dashed line

corresponds to ρ(X) = ν = 0.56 obtained from the formfactor
data (see Fig. 6 below). Here the ratio of N and L is N/L =
55/89 ≈ νg ≈ 0.618... .

The analysis of ground state stationary positions of ions
in a periodic potential is shown in Figure 2 for the KAM
sliding phase (K = 0.001) and the Aubry pinned phase
(K = 0.01) at N/L = 60/89 ratio which gives approx-
imately the golden mean fraction ν ≈ ν̃g ≈ 0.618 in
the middle part of the chain. Even if the Coulomb inter-
actions between all ions are considered the kick func-
tion g(x) is close to the theoretical one g(x) = − sinx.
This shows that the approximation of nearest neighbors
used in the symplectic map (3) gives us a good approx-
imation of the system. For K = 0.001 the positions of
ions follow the invariant KAM curve while for K = 0.01
the ion positions form an invariant Cantor set (cantori)
appearing on the place of destroyed KAM curve. The
hull function is defined as h(x) = (xi + π)[mod 2π] − π
with x = (2π(i − 1)/ν − π/2)[mod 2π] − π, where i ∈
(N/3, . . . , 2N/3). This function expresses the actual ion
positions in presence of the periodic potential as the func-
tion of ion positions in absence of this potential. Indeed,
at K → 0 we have h(x) = x with a smooth deforma-
tion for small perturbations while in the pinned phase we
obtain the devil’s staircase corresponding to the fractal
cantori structure. This is the standard method used for
the description of the invariant KAM curves and fractal
cantori when the KAM curve is destroyed (see more detail
in [13,16,17]). The transition from the smooth hull func-
tion to the devil’s staircase is visible in the data of Figure 2
even if there is a certain spreading of points especially in
the KAM phase which we attribute to a rather small value
of K = 0.001. Thus the obtained data show that with

Fig. 2. Functions related to the dynamical map obtained from
the ground state equilibrium positions xi of ions at K = 0.001
(open circles, left column) and K = 0.01 (full circles, right
column). Panels show: the kick function g(x) (top); the phase
space (p, x) of the map with g(x) = − sinx (green/light-gray
points) and actual ion positions (red/gray circles) (middle);
the hull function h(x) (bottom). The ion positions are shown
via the hull function h(x) = (xi + π)[mod 2π] − π versus x =
(2π(i − 1)/ν − π/2)[mod 2π] − π, for the central 1/3 part of
the chain; i ∈ (N/3, . . . , 2N/3). Here N/L = 60/89.

ν ≈ 0.618 the Aubry transition takes place at a certain
Kc(ν) inside the interval 0.001 < Kc(ν) < 0.01.

It is important to note that a similar approximate sym-
plectic map description for static charge positions is work-
ing well not only in the case of periodic potential but also
for wiggling channel structures analyzed in [42].

To obtain the critical amplitude in a more exact way
we determine the static ion configuration at a fixed den-
sity ν = N/L and then compute the phonon spectrum
ω(k) of small ion oscillations near the equilibrium posi-
tions. Such an approach was already used and described
in [12,13]. An example of the photon spectrum ω(k) is
shown in Figure 3 for N/L = 55/89. Below the transition
at K < Kc(ν) we have the linear acoustic type spectrum
ω ≈ Cvk of phonon type excitations describing ion oscil-
lations near their static equilibrium positions like those
shown in Figure 2 at N/L = 60/89. Here, k = i/N plays
the role of the wave vector and Cv ≈ 0.2 is the sound veloc-
ity. The lowest phonon frequency goes to zero with the
increase of the system size as ω(k = 1/N) ≈ Cv/N . The
spectrum becomes drastically different above the transi-
tion K > Kc(ν) with appearance of the optical gap ω0 in
the spectrum ω(k). In fact, the gap ω0 is proportional to
the Lyapunov exponent of symplectic map orbits located
on the corresponding fractal cantori set [13,16]. It is inde-
pendent of the system size N .

In principle, it is possible to search numerically for the
value of Kc(ν) at which a nonzero optical gap appears in
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Fig. 3. Spectrum of phonon excitations ω(k) as a function of
scaled mode number k = i/N (i = 1, . . . , N−2), for K = 0.001
(bottom curve, open circles), K = 0.002 (bottom curve, gray
circles) and K = 0.015 (top curve, full circles). Here there are
N = 55 ions and L = 89 lattice periods.

Fig. 4. The lowest mode phonon frequency ω0(K) vs the peri-
odic potential coupling K. Blue, green and black curves cor-
respond to N/L = 34/55, 55/89 and 89/144. The position of
the Aubry transition K = Kc indicated by arrow is defined as
an intersection of the curve ω0(K) with the level shown by the
dotted line at ω0(K = 0). Three arrows correspond to different
winding numbers (densities) ν = 34/55, 55/89 and 89/144 and
correspond to Kc = 0.002, 0.0018 and 0.0016.

the spectrum ω(k). However, we find more useful to com-
pute the dependence of lowest frequency ω0 = ω(k = 1/N)
on the amplitude K. In the KAM phase we have ω0(K)
being independent of K and thus we determine the crit-
ical Kc(ν) by the intersection of horizontal line ω0(K) =
ω0(K = 0) with the curve of the spectrum ω0(K) at higher
K values (ω0(K = 0) = ω0(K)). The example of this
intersection procedure is shown in Figure 4 at increasing
Fibonacci approximates N/L = 34/55, 55/89, 89/144. We
estimate the accuracy of this method of Kc computation

Fig. 5. Dependence of the critical coupling Kc on the wind-
ing number ν = N/L. Blue, green and black curves corre-
spond to L = 55, 89 and 144; for each L the number of ions
N takes all integer values up to corresponding highest/lowest
ν value. The red curve corresponds to theoretical estimate:
Kc = 0.034(ν/1.618)3.

on the level of 10%–15% of Kc value. At small sizes like
34/55 a wiggling of curve at higher K decreases the accu-
racy. But at longer sizes the result is stable. Thus we
obtain the critical Kc(ν) ≈ 0.0017 for the irrational den-
sity N/L = ν = νg = 0.618 . . ., taking the average value
for sizes 55/89 and 89/144.

The numerically obtained dependence of the critical
amplitude of Aubry transition Kc(ν) on ion density ν is
shown in Figure 5 for the range 0.5 ≤ ν ≤ 1.7. The numer-
ical values Kc(ν) are obtained as in Figure 4 for the lattice
size L = 55, 89, 144 and for all integer N values appearing
inside the interval 0.5 ≤ ν ≤ 1.7. On average the numer-
ical values are in a good agreement with the theoretical
expression given in [12]

Kc(ν) ≈ 0.034(ν/νg)3, νg = 1.618... . (5)

This formula is obtained on the basis of local reduction
of map (3) to the Chirikov standard map with a homo-
geneous density of nonlinear resonances. For that the sec-
ond equation (3) is linearized near 1/

√
p = 2π/νg that

gives the Chirikov standard map with chaos parameter
Keff = K(2π/νg)3/2 and the critical value Kc = 0.034
at νg = 1.618 . . . corresponding to Keff ≈ 1. Indeed,
the KAM curve with a given ν is destroyed when the
global chaos appears in the Chirikov standard map (4) at
Keff = Kc(ν)(2π/ν)3/2 ≈ 1 that leads to the dependence
(5). More details of this method are given in [12,15,16,43]).
For ν = νg = 1.618 . . . , the detailed numerical analysis
gives Kc(ν) ≈ 0.0462 [12,27] (instead of 0.034) and for
ν = 0.618 . . . we have Kc(ν) ≈ 0.0017 (instead of 0.0189).
The strongest deviations from the theoretical dependence
(5) take place at ν ≈ 0.55 and ν ≈ 1.06 with a signif-
icant drop of Kc. In fact, these ν values are located in
the vicinity of main resonances with ν = 1/2; 1 which
are slightly shifted from their rational positions due to

https://www.epjd.epj.org
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Fig. 6. Dependence of the formfactorF (k) onk below the Aubry
transition (K = 0.001 < Kc = 0.00189) (KAM sliding phase,
gray curves) and above (K = 0.01 > Kc = 0.002) (pinned mode,
red curves). For a clarity the gray curves are shifted up by 10. The
temperature takes values T = 10−6, 2×10−3, 10−2 for top, mid-
dle and bottom panels respectively. Here N/L = 55/89. Dotted
curves indicate the peak positions at ki = νi, where ν = 0.56
is the mean rotation number at the central region of the chain.
(compare this value of ν to that in the Fig. 1). The formfactor is
calculated over central part of ion chain, contributions from 10
ions from each edge are ignored.

inhomogeneity of ion density appearing due to the hard-
wall boundary conditions (see Fig. 1). In a vicinity of ratio-
nal resonances there is a stochastic layer inside which the
dynamical chaos emerges at rather small critical pertur-
bations (see [15,16]).

In the following the analysis of the thermodynamic char-
acteristics is done for ν ≈ 0.618. In the related Figures 7–11
for rescaling of parameters to the dimensionless units we
use Kc = 0.002 which is close to the theoretical value
K = 0.00189 from (5).

Thus in global the numerical results obtained here for
the dependence Kc(ν) on density are in good agreement
with the theory (5) developed in [12]. The most striking
feature of this dependence is the sharp decrease of Kc

with ν. This allows to observe the Aubry transition at
significantly smaller laser powers simply by a moderate
decrease of density ν (see discussion below).

4 Formfactor of the ion structure

It is useful to characterize the structure of ions in a peri-
odic potential by the formfactor F (k) given by

Fig. 7. Dependence of Seebeck coefficient S on temperature
T at different values K/Kc = 0 (black), 1 (blue), 2 (green), 3
(brown), 4 (red). Here the ratio of number of N ions to number
of lattice periods L is N/L = 21/34 and Kc = 2×10−3. Dashed
line shows S = 1.2 value at K = 0 for noninteracting particles.

F (k) =

〈∣∣∣∣∣∣
Ncr∑
i 6=j

exp (ik (xi(t)− xj(t)))

∣∣∣∣∣∣
2〉

/Ncr, (6)

where the sum is taken by the central part of the chain
with approximatelyNcr ≈ N/3. The positions of ions xi(t)
at different moments of time are obtained at finite temper-
ature T with the Langevin equations (2) with averaging
over time. Here we use the hard-wall boundary conditions
and Coulomb interactions act between all electrons ions.
Here we use the Metropolis algorithm for simulation of the
thermal effects (see e.g. [12,42]), rather than the Langevin
equation, and the nearest neighbor approximation is not
necessary.

The variation of F (k) with temperature is shown in
Figure 6 for the KAM sliding phase and the Aubry pinned
phase. In the KAM phase at K < Kc the peaks of F (k)
are located at k ≈ iν corresponding to integer harmonics
i of average ion density ν ≈ 0.56 in the central part of
the chain. In contrast, in the Aubry phase at K > Kc

there appear additional integer peaks at k ≈ i being com-
mensurable with the lattice period. At low temperature
T = 10−6 the peaks of F (k) are well visible and clearly
demonstrate the transition from incommensurate phase
at K < Kc to the quasi-commensurate phase above the
Aubry transition at K > Kc. with the increase of tem-
perature the high harmonics in F (k) are washed out by
thermal fluctuations. We think that the analysis of for-
mafactor structure can be rather useful for experimental
investigations of Aubry transition.

5 Seebeck coefficient

The computations of the Seebeck coefficient S are done
in the frame of Langevin equations (2) with the hard-
wall boundary conditions. We note that in the Aubry

https://www.epjd.epj.org
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Fig. 8. Seebeck dependence on K at different temperatures
T/Kc = 0.25 (black), 0.5 (blue), 1 (green), 1.5 (cyan), 2 (red).
Here the ratio of number of N ions to number of lattice periods
L is N/L = 21/34 and Kc = 2× 10−3.

pinned phase long computational times are required. This
is due to the fact that ion pinned in one well of the peri-
odic potential have a small probability ∝ exp(−B/T ) of
thermal fluctuations to overcome the barrier of a height
B ∼ (K − Kc). Thus we made simulations with times
up to t = 108. In physical units this corresponds to
t ∼ 108ta ∼ 10−2s, for ` ∼ 1µm amd ions 40Ca+, while
ions can now be trapped for hours [11]. In these simula-
tions for each ion we take into account the Coulomb inter-
actions only with nearest left and right neighbor ions that
allow to accelerate the computations. As in [27] we ensured
that the obtained results are not sensitive to inclusion of
interactions with other neighbors.

The computations of S are done with the procedure
developed in [27]. At fixed temperature T we apply a static
field Edc which creates a voltage drop ∆V = Edc2πL and
a gradient of ion density ν(x) along the chain. Then at
Edc = 0 within the Langevin equations (2) we impose a
linear gradient of temperature ∆T along the chain and
in the stabilized steady-state regime determine the charge
density gradient of ν(x) along the chain (see e.g. Fig. 2
in [27]). The data are obtained in the linear regime of
relatively small Edc and ∆T values. Then the Seebeck
coefficient is computed as S = ∆V/∆T where ∆V and
∆T are taken at such values that the density gradient
from ∆V compensates the one from ∆T .

The dependencies of S on temperature T at differ-
ent amplitudes K of the periodic potential are shown in
Figure 7. In the KAM sliding phase with K ≤ Kc there is
no significant change of S ≈ 2, which remains close to its
value S = 1.2 for free noninteracting particles. In contrast
in the Aubry pinned phase with K/Kc > 1 we obtain an
exponential increase of S at T/Kc < 0.5. This increase of
S is especially visible for K/Kc = 4 where the maximal
reached value is S ≈ 50.

We note that a similar strong growth of S at low tem-
peratures has been reported in experiments with quasi-
one-dimensional conductor (TMTSF)2PF6 [44] where as

Fig. 9. Dependence of conductivity on K at different temper-
atures T/Kc = 0.25 (black), 0.5 (blue), 1 (green), 1.5 (brown),
2 (red). Here the ratio of number of N ions to number of lat-
tice periods L is N/L = 21/34, η = 0.02, σ0 = ν/(2πη) with
ν = 0.618 and Kc = 2× 10−3.

high as S = 400 value had been reached at low tempera-
tures (see Fig. 3 in [44]).

The dependence of S on K is shown in Figure 8. At
low temperatures T < Kc there is a sharp increase of
S with increase of K > Kc with a maximal reached
value S ≈ 60. In a certain sense the increase of K drives
the system deeper and deeper into the insulating phase
with larger and larger resistivity. Thus we can say that
S increases with the increase of sample resistivity. A sim-
ilar dependence has been observed in experiments with
two-dimensional electron gas in highly resistive (pinned)
samples of micron size (see Fig. 8 in [45]).

Thus we can say that our numerical results are in a
qualitative agreement with the experiments [44,45].

6 Figure of merit ZT

To determine the figure of merit ZT we need to compute
in addition to S the electrical conductivity σ and the heat
conductivity κ. The computation of σ is done by applying
a weak Edc field acting on a circle with periodic boundary
conditions. Then we compute the ion velocity vion aver-
aged over all particles and time interval. Then the charge
current is j = νvion/2π and σ = j/Edc. At K = 0 the ion
crystal moves as a whole with vion = Edc/η corresponding
to the conductivity of free particles σ = σ0 = ν/(2πη)
that is confirmed by numerical simulations (see Fig. 9).

The dependence of σ on K and temperature T is shown
in Figure 9. In the KAM sliding phase at K < Kc, σ/σ0

is practically independent of T and K. However, in the
Aubry pinned phase at K > Kc there is an exponential
drop of σ/σ0 with increase of K and with decrease of T .

For the computation of heat conductivity κ we use the
approach developed in [27]. The heat flow J is related
to the temperature gradient by the Fourier law with the
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Fig. 10. Dependence of heat conductivity κ on K at different
temperatures T/Kc = 0.25 (black), 0.5 (blue), 1 (green), 1.5
(brown), 2 (red). Here the ratio of number of N ions to number
of lattice periods L is N/L = 21/34, η = 0.02, κ0 = σ0Kc and
Kc = 2× 10−3.

thermal conductivity κ: J = κ∂T/∂x [31,41]. The heat
flow is computed from forces acting on a given ion i from
left and right sides being respectively fL

i =
∑

j<i 1/|xi −
xj |2, fR

i = −
∑

j>i 1/|xi− xj |2. For an ion moving with a
velocity vi these forces create left and right energy flows
JL,R = 〈fL,R

i vi〉t . In a steady state the mean ion energy
is independent of time and JL + JR = 0. But the differ-
ence of these flows gives the heat flow along the chain:
J = (JR − JL)/2 = 〈(fR

i − fL
i )vi/2〉t. We perform such

computations of the heat flow, with hard wall boundary
conditions. In addition to the method used in [27] we
perform time averaging using accurate numerical integra-
tion along the ions trajectories that cancels contribution
of large oscillations due to periodical motion of ions. In
this way we determine the thermal conductivity via the
relation κ = JL/∆T . The obtained results for κ are inde-
pendent of small ∆T . Our previous result confirm that the
thermodynamic characteristic are independent of system
size [27].

The dependence of heat conductivity κ on K and T is
shown in Figure 10. For convenience we present the ratio of
κ to κ0 = σ0Kc to have the results in dimensionless units.
There is an exponential decrease of κ/κ0 with increase of
K > Kc showing that for ionic phonons the propagation
along the chain becomes more difficult at high K ampli-
tudes. The decrease of T leads to a decrease of κ/κ0 but
this drop is less pronounced comparing to those for σ/σ0.

From the obtained values of S, σ and κ at ν ≈ 0.618
we compute the figure of merit ZT shown in Figure 11
as a function of K/Kc at different temperatures. At fixed
T there is an optimal maximal ZT value located approxi-
mately at K/Kc ≈ 2.5 while at smaller and higher K/Kc

values we have a decrease of ZT . The maximal ZT value
increases with the growth of temperature and the width
of the peak becomes broader. At the maximum with
T/Kc = 2 and K/Kc = 2.5 we obtain ZT ≈ 8. This

Fig. 11. Dependence of figure of merit ZT on K at different
temperatures T/Kc = 0.25 (black), 0.5 (blue), 1 (green), 1.5
(brown), 2 (red). Here the ratio of number of N ions to number
of lattice periods L is N/L = 21/34, η = 0.02 and Kc =
2× 10−3.

maximal ZT value is by factor 2 larger than the value
obtained at ν ≈ 1.618, T/Kc ≈ 3 and K/Kc ≈ 3.5 in [27].
We suppose that a more dilute ion density favors more
efficient thermodynamical characteristics.

The presented data in general demonstrate a growth of
ZT with increase of temperature T . This trend is in a qual-
itative agreement with the experimental results in mate-
rial science [33,34]. However, very high temperatures are
not of significant interest when they become much higher
than room temperature. For our model it is clear that for
T � K we go to the limit of ion chain in absence of peri-
odic potential with an effective sliding regime with S ≈ 1
and small ZT . There are signs of drop of ZT at high T
visible in [27] (Figs.5,7 there). However, the region of very
high T corresponds to high ion velocities thus requiring
smaller integration step and longer CPU times.

Our studies are done for the strictly 1D case. It is impor-
tant to consider extensions to the two-dimensional (2D)
case which may be useful for electrons on liquid helium
and material science. Indeed, in quasi-1D case it is known
that transfer dynamics can lead to excitation of transfer
modes and zigzag instabilities [46,47]. However, the recent
results reported for 2D Wigner crystal transport indicate
that there is similarity between 1D and 2D properties and
thus we expect that the obtained results will be useful for
higher-dimensional systems.

7 Discussion

In this work we analyzed the properties of cold ion chain
placed in a periodic potential. The results show the emer-
gence of Aubry transition from KAM sliding phase to
Aubry pinned phase when the amplitude of the potential
exceeds a critical value VA = Kc(ν)e2/(`/2π). For a typi-
cal period of optical lattice ` = 1µm and dimensionless ion
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density per period ν = 1.618, with Kc ≈ 0.034, this cor-
responds to VA ≈ 3 K (Kelvin) that would require rather
strong laser power for creation of such optical potential.
However, with a decrease of ν we have a cubic drop of VA

and thus for ν = 0.38 we need only VA ≈ 0.04 K that is
much more accessible for optical lattice experiments.

The interest of the Aubry phase is related to high
thermodynamic properties appearing in this phase. Thus
we show that one can reach in this phase the high val-
ues of Seebeck coefficient S ≈ 50kB/e ≈ 4400µV/K
which approaches to the record experimental values S ≈
400 kB/e observed in quasi-one-dimensional materials [44]
and with two-dimensional electron gas in small disordered
samples with S ∼ 50 kB/e [45]. Even more remarkable is
that in this phase the figure of merit can be as such high as
ZT ≈ 8 being above the record experimental values [34].
We suppose that for cold ions in optical lattices the volt-
age difference δV can be easily created by a weak external
static electric field while the temperature difference ∆T at
the ends of the lattice can be generated by additional laser
beams heating generating a small change of temperature
along the ion chain. We note that there is now a signif-
icant progress with the temperature control of cold ions
and atoms (see e.g. [48–50]) that allows to hope on exper-
imental generation of temperature gradients for Seebeck
coefficient measurements in near future. Thus such exper-
iments would allow to investigate the thermodynamical
properties of Wigner crystal of cold ions in optical lat-
tice. We assume that the investigations of thermoelectric
properties with cold ions in optical lattices may bring us
to a deep understanding of thermoelectricity which will
be further used for selection of optimal thermoelectric
materials.

Also we think that the simple models considered here
raise an important challenge for computational methods
of quantum chemistry where interactions of electrons and
atoms are taking into account in the computations of band
structures but after that the thermoelectric characteris-
tics are computed for effectively noninteracting electrons
(see e.g. [36,37]). We argue that our results clearly show
that the high thermoelectric characteristics appear only in
the Aubry pinned phase where the interactions between
charges play a crucial role. We argue that our results chal-
lenge the further development of methods of quantum
chemistry.

Thus the above analysis clearly demonstrates the
importance of Aubry pinned phase for high thermoelec-
tric performance. Due to that the experimental investi-
gations of the Aubry transition with cold ions in optical
lattices and electrons on liquid helium will bring to us
important fundamental results useful for development of
efficient thermoelectric materials.
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