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Evaporative Cooling and Self-Thermalization in an Open
System of Interacting Fermions

Andrey R. Kolovsky* and Dima L. Shepelyansky

Depletion dynamics of an open system of weakly interacting fermions with
two-body random interactions is studied. In this model, fermions are escaping
from the high-energy one-particle orbitals, that mimics the evaporation
process used in laboratory experiments with neutral atoms to cool them to
ultra-low temperatures. It is shown that due to self-thermalization the system
instantaneously adjusts to the new temperature which decreases with the
course of time.

1. Introduction

The cooling of neutral atoms to micro-Kelvin and further to
nano-Kelvin temperatures is one of the most noticeable achieve-
ments of the modern physics that opened a new era of quantum
technologies.[1] Themainmethod used to cool atoms frommicro-
to nano-Kelvin temperature is evaporative cooling, where experi-
mental setups are designed to remove the most hot atoms from
an atomic cloud. Although being quite successful themethod has
a drawback that one loses up to 99% of atoms to reach the tem-
perature where Bose or Fermi atoms enter the degenerate state.
To make the method more efficient we need a deeper under-

standing of the cooling process that can be achieved by consider-
ing simplified microscopic models. Up to the best of our knowl-
edge such models were introduced for the first time in refs. [2,3],
where it was already noticed that the necessary ingredient of any
microscopic model of evaporative cooling is interatomic inter-
actions due to elastic collisions. One needs these collisions to
redistribute atoms among the one-particle orbitals (trap modes)
when atoms are removed from the high-energy orbitals. This re-
lates the problem of evaporative cooling to the other fundamental
problem of physics, namely, self-thermalization in the isolated
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system of identical particles. Indeed, it
is experimentally known that we can use
many concepts of statistical physics for
atoms in a trap, in spite of the fact
that the system has no contact with a
thermostat. Common explanation of the
self-thermalization appeals to the theory
of Quantum Chaos—a branch of quan-
tum physics dealing with non-integrable
systems.[4,5] Currently there is a growing
interest in self-thermalization in various

many-body systems known also as the eigenstate thermalization
hypothesis (ETH) and many-body localization (MBL), see recent
reviews[6–9] and the references therein.
In this work we extend our previous studies[10] of self-

thermalization in the closed systems of identical particles onto
the open systems, where number of particle is not conserved.
Alternatively, the work can be viewed as generalization of the
few-mode models[2,3] of evaporative cooling for arbitrary large
number of the modes. As a particular system we consider the
so-called two-body random interaction model (TBRIM) which
was introduced in the 1970s in nuclear physics in the context
of Quantum Chaos.[11,12] This model describes a system of N
spinless fermions distributed over M one-particle orbitals with
the energies 𝜖k (𝜖1 ≤ 𝜖2 ≤ … ≤ 𝜖M), where fermions have two-
body interactions with randommatrix elements. We note in pass-
ing that the limiting case of this model with strongly interact-
ing fermions recently got a renewed interest in the context of
SYK black hole model for theory of quantum gravity.[13–16] It
was shown in refs. [10,17] that at moderate interaction strength
TBRIM enters the regime of Quantum Chaos, where its eigen-
states |ΨE⟩ become self-thermalized. This means, in particular,
that occupation numbers nk = ⟨ΨE|ĉ†k ĉk|ΨE⟩ of the one-particle
orbitals obeys the Fermi–Dirac distribution

nk =
1

e𝛽(𝜖k−𝜇) + 1
(1)

where the inverse temperature 𝛽 and the chemical potential 𝜇 are
uniquely determined by the eigenstate energy E and the number
of fermions N in the system. Here we make the system open by
introducing particle losses from the most upper orbital. Since we
elect to remove particles from the high-energy orbital, the open
TBRIM obviously mimics the process of evaporative cooling of
fermionic atoms. We argue in the work that the understanding
of the self-thermalization mechanism allows to perform an op-
timization of the evaporative cooling. It involves, in particular,
optimization of the rate at which particles are removed from the
system. We find that the optimal depletion rate is actually deter-
mined by the self-thermalization rate in TBRIM.
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2. The Model

The Hamiltonian of the closed (isolated) TBRIM reads

Ĥ(N) =
M∑
k=1

𝜖kĉ
†
k ĉk + 𝜀

M∑
ijkl=1

Jij,klĉ
†
i ĉ

†
j ĉkĉl (2)

where the orbital energies 𝜖k and the interaction (generally com-
plex) constants Jij,kl are random numbers and we set the disper-
sion of all random entries to unity. The dimension of the Hilbert
space is N = M!∕N!(M − N)!. The parameter 𝜀 in the Hamil-
tonian (2) controls the strength of two-body interactions and the
super-indexN denotes the number of fermions in the system. As
mentioned in Section 1, if we increase the interaction strength 𝜀

the system shows the transition to Quantum Chaos that numer-
ically is observed as a change of the level-spacing statistics from
the Poisson distribution to theWigner–Dyson distribution.[18] We
notice that this transition happens at rather small 𝜖cr so that in
many aspects fermions can be considered as non-interacting. In
particular, the density of states of the system is practically the
same as for 𝜀 = 0. This justifies the usage of the Fermi–Dirac
distribution (1) which, strictly speaking, refers to the ideal gas. In
what follows we set 𝜀 = 0.008 and we checked that for this value
of 𝜀 the TBRIM is chaotic and self-thermalized for 2 ≤ N ≤ 5,
which are relevant for the numerical simulations reported below.
It should be stressed that we do not use any average over random
entries of themodel. In this sense randomness of the orbital ener-
gies 𝜖k and interaction constants Jij,kl is not important for physics
of the discussed phenomena. However, it simplifies the analysis
by insuring, for example, that the mean interaction energy is al-
ways around zero and that the system density of states can be
approximated by the Gaussian.
We describe the evaporation dynamics by solving the master

equation on the system density matrix(t)

d
dt

= −i[Ĥ,] − loss() (3)

loss() = 𝛾

2
(ĉ†MĉM − 2ĉMĉ†M +ĉ†MĉM) (4)

where 𝛾 is the depletion constant, that is, the rate at which par-
ticles are removed from the most upper orbital 𝜖M. Notice that
the density matrix  is defined in the extended Hilbert space
given by direct sum of N0 + 1 subspaces where N0 = N(t = 0)
is the initial number of fermions. Correspondingly, the Hamil-
tonian Ĥ in Equation (3) has block structure with blocks given
by Equation (2). In what follows we mainly consider M = 12
and N0 = 5 where the total dimension of the Hilbert space is
 = 1 + 12 + 66 + 220 + 495 + 792 = 3003. As the initial condi-
tion we choose an eigenstate of Ĥ(N) with N = N0 from the mid-
dle of its spectrum. This choice corresponds to infinite effective
temperature where occupation numbers of the one-particle or-
bitals are approximately equal. The quantities which we calculate
are the occupation numbers nk(t) = Tr[ĉ†k ĉk(t)], the mean num-
ber of fermions in the system, N̄(t) =

∑M
k=1 nk(t), and the mean

energy, Ē(t) =
∑M

k=1 𝜖knk(t). Typical behavior of N̄(t) and Ē(t) is
exemplified in Figure 1a,b where the blue solid and red dashed

Figure 1. a) The mean number of fermions N̄, b) the mean energy Ē, c)
the chemical potential 𝜇, and d) the inverse temperature 𝛽 as functions of
time for the depletion constant 𝛾 = 0.2 (blue solid lines) and 𝛾 = 2 (red
dashed lines). Additional dotted lines in panel (a) are Equation (7). The
system size isM = 12 and initially we have N0 = 5 fermions. Since we set

ℏ = 1 and 𝜖2
k
= 1, the characteristic time T = 2𝜋.

lines refer to the case of a small 𝛾 = 0.2 and a large 𝛾 = 2, respec-
tively. In the subsequent two sections we analyze this behavior in
some details.

3. Depletion Dynamics

Webeginwith the depletion dynamics. Similar to the totalHamil-
tonian, the density matrix (t) has block structure where each
block (N)(t) is associated with the fixed number of fermions in
the system. This gives another expression for the mean number
of particles

N̄(t) =
N0∑
N=1

NPN(t) , PN(t) = Tr[(N)(t)]∕N (5)

where PN(t) are interpreted as probabilities to find N particles in
the system at a given time t. Probabilities PN(t) are shown in Fig-
ure 2 in the linear and logarithmic scales for 𝛾 = 2. It is seen that
PN(t) with N > 1 show asymptotic exponential decay while P1(t)
approaches unity. This is consistent with the expectation that the
steady-state solution of the master equation (3) corresponds to a
single fermion. It is also seen in Figure 2 that relaxation to this
steady state is a cascade-like process where “children” cascade
takes essentially longer time than “parent” cascade. In the other
words, depletion rate decreases proportionally to the number of
particles left in the system. In the next paragraph we give a for-
mal explanation for this intuitively expected result and quantify
the dependence N̄(t).
One gets a useful insight in the depletion process by analyz-

ing the survival probability, that is, probability to find the initial
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Figure 2. Probabilities PN(t) to find N particles at a given time t in the
linear (left panel) and logarithmic (right panel) scales. Different curves
refer (from top to bottom at t∕T = 40) toN = 1, 2, 3, 4, 5, respectively. The
survival probability (i.e., the probability to find initial number of fermions)
is marked by the thick line. The value of the depletion constant 𝛾 = 2.

number of particles. The survival probability has no parent cas-
cade and can be calculate in a simpler way, namely, by solving the
Schrödinger equation with the non-hermitian Hamiltonian Ĥeff

Ĥ(N)
eff =

M∑
k=1

(
𝜖k − i

𝛾

2
𝛿k,M

)
ĉ†k ĉk + 𝜀

M∑
ijkl=1

Jij,klĉ
†
i ĉ

†
j ĉkĉl (6)

which is obtained from the hermitian Hamiltonian (2) by pre-
scribing imaginary energy to the Mth orbital. Then the norm of
the wave function exactly corresponds to probability to find the
initial number of particles in the system. The introduced non-
hermitian Hamiltonian (6) relates the currently considered prob-
lem to the quantum chaotic scattering.[19–23] Indeed, considering
the Hamiltonian matrix in the Fock basis we find the number of
complex diagonal elements to be given by Q = NN∕M, which
can be interpreted as the number of decay channels. It is known
that short-time dynamics of the survival probability in chaotic
scattering is the exponential decay, PN(t) = exp(−𝜈t), with incre-
ment 𝜈 proportional to ratio of the number of channels to the
matrix size.[22,23] Adopting this result to our problem with cas-
cade dynamics (where the number of channels and the matrix
size are changing from parent to children cascade) we obtain

N̄(t) = N0 exp
[
−𝛼N̄(t) t

]
(7)

where the coefficient 𝛼 is proportional to the depletion constant 𝛾 .
The solution of the nonlinear equation (7) is depicted in Figure 1a
by dotted lines. It is in reasonable agreement with the straight-
forward simulation of the depletion dynamics.
At the next step we discuss the dependence of the increment

𝜈 for the exponential decay of the survival probability on the de-
pletion constant 𝛾 . One may naively expect that 𝜈 [and, hence,
the coefficient 𝛼 in Equation (7)] linearly depends on 𝛾 . However,
this is true only if the depletion constant is smaller than the (yet
unspecified) rate of self-thermalization 𝛾cr , while in the opposite
case 𝜈 actually decreases with an increase of 𝛾 . This effect, which
is often referred to as the Zeno effect,[24] has a simple explanation
in terms of the energy spectrum of the Hamiltonian (6)

Ĥeff |𝜙j⟩ = j|𝜙j⟩ , j = Ej − i
Γj

2
(8)

Figure 3. Eigenvalues of the Hamiltonian (6) in the complex plane for 𝛾 =
0.2 (left panel) and 𝛾 = 2 (right panel).

For small 𝛾 the complex energies j are located near the real axis,
see Figure 3a, and the mean value Γ̄ of the resonance widths is
proportional to 𝛾 , Γ̄ ∼ 𝛾 . As 𝛾 is increased, the cloud of eigenen-
ergies splits into two groups (in the context of quantum chaotic
scattering, this effect is discussed in refs. [20,21]), see Figure 3b.
For the first group Γ̄ remains to be proportional to 𝛾 while for
the second group we have Γ̄ ∼ 1∕𝛾 , as it is easy to prove by us-
ing the first-order perturbation theory. Thus, with an increase of
the depletion constant 𝛾 the increment 𝜈 = Γ̄ shows a maximum
at some critical value 𝛾cr , which for the parameters of Figure 2
correspond to 𝛾cr ≈ 1.2. We mention that this critical value of the
depletion constant can be used as an unambiguous definition of
the self-thermalization rate in the considered system of weakly
interacting fermions.

4. Thermalization Dynamics

In this section we provide numerically evidence that TBRIM re-
mains to be self-thermalized also in the presence of particle loss.
The numerical validation of this statement is given below.
First, using numerical data for the mean number of particle

N̄ and the mean energy Ē depicted in Figure 1a,b we solve the
system of two nonlinear algebraic equation on the chemical po-
tential 𝜇 and the inverse temperature 𝛽

N̄ =
M∑
k=1

1
e𝛽(𝜖k−𝜇) + 1

, Ē =
M∑
k=1

𝜖k

e𝛽(𝜖k−𝜇) + 1
(9)

The solution is shown in panels (c) and (d) where, as before, the
solid and dashed lines refer to 𝛾 = 0.2 and 𝛾 = 2, respectively. Sec-
ond, using the obtained𝜇 and 𝛽 we calculate the occupation num-
bers according to Equation (1) and compare them with actual oc-
cupation numbers calculated as nk(t) = Tr[ĉ†k ĉk(t)], see Figure 4.
(From now on we focus on the case 𝛾 = 0.2.) The observed agree-
ment confirms that we indeed have the true thermalizationwhere
the notion of temperature is absolutelymeaningful, in spite of the
absence of any thermal bath. From Figure 1d we clearly see that
during evaporation the system temperature decreases with time.
In addition to Figure 4, Figure 5 shows occupation numbers at

the beginning and the end of numerical simulation as the func-
tion of orbital energies. Remarkably, occupations of two lowest-
energy orbitals get increased. Thus, for a larger system size one
may expect that nk of a few lowest-energy orbitals approach unity,
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Figure 4. Occupation numbers of the orbitals as a color map (bright
yellow=1, dark blue=0), left panel, as compared to the Fermi–Dirac dis-
tribution with 𝜇 = 𝜇(t) and 𝛽 = 𝛽(t) taken from Figure 1 c,d (right panel).

Figure 5. Occupation numbers of the orbitals at the beginning (open cir-
cles) and the end (asterisks) of numerical simulation as the function of
orbital energies. Solid lines are the Fermi–Dirac distribution for 𝛽 = 0 and
𝛽 ≈ 1.8 that correspond to the initial and final temperature of the system.

that is, we enter the degenerate state. This expectation is sup-
ported by results of numerical simulation forM = 16 andN0 = 8
(the total dimension of the Hilbert space = 39 203), where oc-
cupation numbers of the four lowest orbitals are above 0.5 and
occupations of the two lowest orbitals are above 0.7.

5. Case of SYK Black Hole Model

Due to a significant recent interest in the SYK model,[13–16] we
briefly discuss the evaporation process in this model which cor-
responds to vanishing orbital energies 𝜖k = 0 in the Hamiltonian
(2). Clearly, in this case of strongly interacting fermions we can-
not appeal to the Fermi–Dirac distribution (which is derived for
non-interacting fermions). However, we still can address the de-
pletion dynamics.
As for the previous TBRIM case, we assume fermions to es-

cape only from one orbital. Upper panels in Figure 6 shows prob-
abilities PN(t) for 𝛾 = 2 in the linear and logarithmic scales. The
decay rate of the survival probability is seen to be slightly larger
than in the TBRIM case, which is consistent with distribution of
eigenvalues of the non-Hermitian Hamiltonian—see lower pan-
els in Figure 6 where we depict the eigenvalue distribution for

Figure 6. Top panels: the same as in Figure 2 yet for the SYK case where
one-particle energies 𝜖k in theHamiltonian (2) are set to zero. Bottompan-
els: the same as Figure 3 yet for the SYK case where 𝜖k in the Hamiltonian
(6) are set to zero.

𝛾 = 0.2 and 𝛾 = 2. Similar to the TBRIM case, the compact cloud
of eigenvalues is found to separate into two clouds at 𝛾 ≈ 1.2.
Thus for both TBRIM and SYKmodels the depletion rate is max-
imized at the same value of 𝛾cr .

6. Conclusions

We analyzed the process of evaporative cooling in the system of
weakly interacting fermions. This process has a competition be-
tween depletion, where particles are removed from high-energy
one-particle orbitals (generalization of the results onto the case
of more than one decaying orbital is straightforward) and self-
thermalization, which repopulates these orbitals. We especially
stress the importance of the latter process. It is generally a hard
problem to find conditions for emergence of self-thermalization
in a given system of interacting particles. For the isolated TBRM
these conditions have been analyzed in our previous works.[10,17]

In the present work we showed that the self-thermalization in
TBRIM takes place also in the presence of particle loss (decay).
Thus the TBRIM becomes a paradigmatic model for investi-
gation of different aspects of self-thermalization in closed and
open systems.
We studied the depletion dynamics in the open TBRMbymap-

ping the problem to quantum chaotic scattering. It was shown,
in particular, that the number of lost particles is not a monotonic
function of the depletion constant 𝛾 but has a pronounced max-
imum at some 𝛾cr . Since the depletion constant can be varied in
laboratory experiments, this result suggests a method for mea-
suring the self-thermalization rate by finding the critical 𝛾cr where
the increment 𝜈 for exponential decay of the survival probability
is maximized.
Since we remove particles from the high-energy orbitals, the

depletion process results in a decrease of the system energy and,
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as a consequence, in the temperature drop for the remaining par-
ticles. We stress that efficiency of this cooling mechanism is not
just proportional to particle loss, as one might naively expect, but
is an involved function of the depletion constant 𝛾 (which can be
varied in a laboratory experiment), the self-thermalization rate 𝛾cr
(which is an internal property of the system), and the duration of
the evaporation process (which can be limited by some reason).
An example is given in Figure 1a,d. It is seen that within the same
time interval we reached lower temperature for 𝛾 = 0.2 than for
𝛾 = 2, in spite of the fact that in the former case we lost less par-
ticles than in the latter case.
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