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Abstract —We study depletion dynamics of an open system of weakly interacting fermions with
two-body random interactions. In this model fermions are escaping from the high-energy one-
particle orbitals, that mimics the evaporation process used in laboratory experiments with neutral
atoms to cool them to ultra-low temperatures. It is shown that due to dynamical thermalization
the system instantaneously adjusts to the new chemical potential and temperature, so that occu-
pation numbers of the one-particle orbitals always obey the Fermi-Dirac distribution. In this way
we are able to describe the evaporation process which leads to a significant cooling of particles
remaining inside the system. We also briefly discuss the evaporation process in the SYK black
hole model that corresponds to strongly interacting fermions.
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Introduction. — The cooling of neutral atoms to
O micro-Kelvin and further to nano-Kelvin temperatures is
“bne of the most noticeable achievements of the modern
] Physics that opened a new era of quantum technologies
= [I]. The main method used to cool atoms from micro to
O) nano-Kelvin temperature is the evaporative cooling, where
QAN experimental setups are designed to remove the most hot
matoms from an atomic cloud. Although being quite suc-
cessful the method has a drawback that one loses up to 99
s percent of atoms to reach the temperature where Bose or

Fermi atoms enter the degenerate state.
O) ' In this work we extend our previous studies [2] of dy-
= namical (or self-) thermalization in the Two-Body Ran-
S dom Interaction Model (TBRIM) introduced in Refs. [34].
»==The model describes a system of N spinless fermions dis-
tributed over M one-particle orbitals, where fermions have
Btwo—body interactions with random matrix elements. We
note in passing that at present the limiting case of this
model with strongly interacting fermions got a renewed
interest in the context of SYK black hole model for theory

of quantum gravity [5HS].

It was shown in Ref. [2l0] that at moderate interaction
strength TBRIM enters the regime of Quantum Chaod]

IThis assumes the interaction strength to exceed some critical
value which can be estimated by using Aberg’s criteria [10]. Nu-
merically the transition to Quantum Chaos [IT1[12] is observed as a
change of the level-spacing statistics from the Poisson distribution

where its eigenstates |¥g) become self-thermalized, in
spite of the fact that the system is isolated (i.e., not con-
nected to any thermostat). This means, in particular, that
occupation numbers nj; = <\IIE|éLék|\IJE> of the orbitals
with energies € obeys the Fermi-Dirac distribution,

1
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where the inverse temperature 8 and the chemical poten-
tial p are uniquely determined by the eigenstate energy
FE and the number of fermions N in the system. Here we
make the system open by introducing absorption of parti-
cles from the most upper orbital. It is shown below that
TBRIM preserves its self-thermalization property also in
the presence of absorption.

Since we remove particles from the high-energy orbital,
the open TBRIM mimics the process of evaporative cool-
ing of fermionic atoms. We argue in the work that the
understanding of the mechanisms of self-thermalization al-
lows to perform an optimization of the evaporative cool-
ing. It involves, in particular, optimization of the rate
at which particles are absorbed in the system. We find
that the optimal rate is actually determined by the self-
thermalization rate in TBRIM.

to the Wigner-Dyson distribution when the interaction strength ex-
ceeds the above critical value [I3].
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Fig. 1: The mean number of fermions N (a), the mean energy F
(b), the chemical potential 4 (c), and the inverse temperature 3
(d) as functions of the time for the depletion constant v = 0.2,
blue solid lines, and v = 2, red dashed lines. Additional dotted
lines in the panel (a) are Eq. ([[)). The system size is M = 12
and initially we have No = 5 fermions. Since we set & = 1 and
€2 = 1 the characteristic time 7' = 2.

The model. —
lated) TBRIM reads

The Hamiltonian of the closed (iso-

M M
W) — Z ekéLék +e& Z Jij,klézé;[ékél ) (2)
k=1 ijkl=1

where the orbital energies €5 and the interaction (gener-
ally complex) constants .J;; j; are random numbers and we
set the dispersion of all random entries to unity. The pa-
rameter € in the Hamiltonian (2] controls the strength of
two-body interactions and the super-index N denotes the
number of fermions in the system. The dimension of the
Hilbert space is Ny = M!/N!{(M — N)!. In what follows
we use M = 12 and € = 0.034. We checked that for this
value of € the TBRIM is chaotic and self-thermalized for
2 < N < 5, which are relevant for the numerical simula-
tion reported below.

We describe the evaporation dynamics by solving the
master equation on the system density matrix R(¢),

dR ~

E = —i[H, R] +£loss(R) ) (3)
Lioss(R) = L(&h,epR — 2600 REN, + REE ¢ 4
loss( ) 2(C]\4CM CM CI\/[+ CMCM), ()

where 7 is the absorption rate or depletion constant, i.e.,
the rate at which particles are removed from the most
upper one-particle orbital €5;. Notice that the density
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Fig. 2: Probabilities Pn(t) to find N particles at a given time
t in the linear, left panel, and logarithmic, right panel, scales.
Different curves refer (from top to bottom at ¢/7" = 40) to
N = 1,2,3,4,5, respectively. The survival probability (i.e.,
the probability to find initial number of fermions) is marked
by the thick line. The value of the depletion constant v = 2.

matrix R is defined in the extended Hilbert space given
by direct sum of Ny 4 1 subspaces where Ny = N(t = 0)
is the initial number of fermions. Correspondently, the
Hamiltonian H in Eq. [B]) has block structure with blocks
given by Eq. [@). In what follows we consider Ny = 5
where the total dimension of the Hilbert space is N' =
1+ 12 + 66 + 220 + 495 + 792 = 3003. As the initial
condition we choose an eigenstate of HY) with N = Ny
from the middle of its spectrum. This choice corresponds
to infinite effective temperature where occupation num-
bers of the natural orbitals are approximately equal. The
quantities which we calculate are the occupation numbers
ng(t) = Tr[éLékR(t)], the mean number of fermions in
the system, N(t) = Yo' ng(t), and the mean energy,
E(t) = Yok, exni(t). Typical behavior of N(t) and E(t)
is exemplified in Fig. [I(a,b) where the blue solid and red
dashed lines refer to the case of a small v = 0.2 and a
large v = 2, respectively. In the subsequent two sections
we analyze this behavior in some details.

Depletion dynamics. — We begin with the depletion
dynamics. Similar to the total Hamiltonian the density
matrix R(t) has the block structure where each block is
associated with the fixed number of fermions in the sys-
tem. This gives another expression for the mean number
of particles,

N@ =3 NPy(t), Pwt)=TROWN. ()

where Py (t) are interpreted as probabilities to find N par-
ticles in the system at a given time ¢. Probabilities Py (t)
are shown in Fig.[2in the linear and logarithmic scales for
v =2. It is seen that Py (¢) with N > 1 show asymptotic
exponential decay while P (t) approaches unity. This is
consistent with the expectation that the steady-state so-
lution of the master equation (B]) corresponds to a single
fermion. It is also seen in Fig. [2] that relaxation to this
steady-state is a cascade-like process where ‘children’ cas-
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Fig. 3: Eigenvalues of the Hamiltonian (@) in the complex plane
for v = 0.2, left panel, and v = 2, right panel.

cade takes essentially longer time than ‘parent’ cascade.
In the other words, depletion rate decreases proportion-
ally to the number of particles left in the system. In the
next paragraph we give a formal explanation for this intu-
itively expected result and quantify the dependence N (t).

One gets a useful insight in the depletion process by
analyzing the survival probability, i.e., probability to find
the initial number of particles. The survival probability
has no parent cascade and can be calculate in a simpler
way, namely, by solving the Schrodinger equation with the
non-Hermintian Hamiltonian H.;,

M M
(N Y At A Atata
He(ff) = Z (ek - Z§5k,M> CLC[c +e€ Z Jijyklclc;ckcl , (

k=1 ijkl=1

which is obtained from the Herminia Hamiltonian ([2) by
prescribing imaginary energy to the Mth orbital. Then
the norm of the wave function exactly corresponds to prob-
ability to find the initial number of particles in the system.
The introduced non-Herminia Hamiltonian is related to
the problem of quantum chaotic scattering [T4HI8]. Con-
sidering the Hamiltonian matrix in the Fock basis we find
the number of complex diagonal elements to be given by
@ = NNy /M, which can be interpreted as the number
of decay channels. It is known that short-time dynam-
ics of the survival probability in chaotic scattering is the
exponential decay, Py (t) = exp(—vt), with increment v
proportional to ratio of the number of channels to the ma-
trix size [I7[I8]. Adopting this result to our problem with
cascade dynamics (where the number of channels and the
matrix size are changing from parent to children cascade)
we obtain

N(t) = Noexp [—aN(t) t] , (7)
where the coefficient « is a function of the depletion con-
stant . The solution of the nonlinear equation () is
depicted in Fig. [[{a) by dotted lines. It is in a reason-
able agreement with the straightforward simulation of the
depletion dynamics.

At the next step we discuss the dependence of the incre-
ment v for the exponential decay of the survival probabil-
ity on the depletion constant . One may naively expect
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Fig. 4: Occupation numbers of the orbitals, left panel, as
compared to the Fermi-Dirac distribution with p = pu(t) and
B = B(t) taken from Fig. [{ic,d), right panel.

that v [and, hence, the coefficient « in Eq. ()] linearly
depends on . However, this is true only if the depletion
constant is smaller than the rate of self-thermalization,
while in the opposite case v actually decreases with an
increase of 7. This effect, which is often referred to as the
Zeno effect [19], has a simple explanation in terms of the
energy spectrum of the Hamiltonian (@),

Hepslg) = &jley), & =Ej—i-2.

Indeed, for small v the complex energies &; are located

6)near the real axis, see Fig. B(a), and the mean value r

of the resonance widths is proportional to v, I' ~ v. As
v is increased, the cloud of eigenenergies splits into two
groupsﬁ, see Fig. BIb). For the first group I' remains to
be proportional to v while for the the second group we
have ' ~ 1/ , as it is easy to show by using the first-
order perturbation theory. Thus, with an increase of the
depletion constant 7 the increment v = I' shows a maxi-
mum at some critical value 7., which for the parameters
of Fig. [2 corresponds to 7. ~ 1.2. We mention that this
critical value of the depletion constant can be used as un-
ambiguous definition of the self-thermalization rate in the
considered system of weakly-interacting fermions.

Thermalization dynamics. — In this section we pro-
vide numerically evidence that TBRIM remains to be self-
thermalized also in the presence of particle loss. The nu-
merical confirmation of this statement is given below.

First, using numerical data for the mean number of par-
ticle N and the mean energy E depicted in Fig. Da,b) we
solve the system of two nonlinear algebraic equation on
the chemical potential i and the inverse temperature 3,

M M

_ 1 _ €k
N= I; eBlen—n) £ 17 E= I; eBles—p) 417

(9)

The solution is shown in the panels (c) and (d) where,
as before, the solid and dashed lines refer to v = 0.2 and

2In the context of quantum chaotic scattering this effect is dis-

cussed in Refs. [I51[16].
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Fig. 5: Occupation numbers of the orbitals at the beginning
(open circles) and the end (asterisks) of numerical simulation
as the function of orbital energies. Solid lines are the Fermi-
Dirac distribution for 5 = 0 and 8 = 1.8 that correspond to
the initial and final temperature of the system.

v = 2, respectively. Second, using the obtained x and 5 we
calculate the occupation numbers according to Eq. ([II) and
compare them with actual occupation numbers calculated
asng(t) = Tr[é;fcékR(t)], see Fig.[l (From now on we focus
on the case v = 0.2.) The observed agreement confirms
that we indeed have the true thermalization where the
notion of temperature is absolutely meaningful, in spite of
the absence of any thermal bath. From Fig.1(d) we clearly
see that during evaporation the temperature of the system
decreases with time,

In addition to Fig. @ Fig. Bl shows occupation num-
bers at the beginning and the end of numerical simulation
as the function of orbital energies. Remarkably, occupa-
tions of two lowest-energy orbitals get increased. Thus,
for a larger system size one may expect that ny of a few
lowest-energy orbitals approach unity, i.e., we enter the
degenerate state.

Case of SYK black hole model. — Due to a sig-
nificant recent interest to the SYK model [BHS] we briefly
discuss the evaporation process in this model which corre-
sponds to vanishing orbital energies ¢, = 0 in the Hamil-
tonian (Z). Clearly, in this case of strongly interacting
fermions we cannot appeal to the Fermi-Dirac distribu-
tion (which is strictly derived for non-interacting fermions)
and, hence, the notion of temperature is not defined. How-
ever, we still can address the depletion dynamics.

As for the previous TBRIM case we assume the absorp-
tion to take place only from one orbital. Upper panels in
Fig. [l shows probabilities Py (t) for v = 2 in the linear
and logarithmic scales. Similar to the TBRIM case there
is an exponential decay of probability to find the number
of fermions N > 1 while the probability N = 1 approaches
unity. The decay rate of the survival probability is seen to
be slightly larger than in the TBRIM case, which is consis-

1 10°
f
\‘“J
|
o |
|
|
10 |
L
20 40 0 20 40
T T
0.1 1
o
~
94 BEE
0 0
-5 0 5 -5 0 5
E E

Fig. 6: Top panels: the same as in Fig. @ yet for the SYK case
where one-particle energies €, in the Hamiltonian (2)) are set to
zero. Bottom panels: the same as Fig. [§ yet for the SYK case
where € in the Hamiltonian (@) are set to zero. Parameter e
in both Hamiltonians is € = 0.034

tent with distribution of eigenvalues of the non-Hermitian
Hamiltonian — compare Fig. Blb) and Fig. B{d). For the
sake of completeness we also display in Fig.[0l(c) the eigen-
value distribution for v = 0.2. Similar to the TBRIM case
this compact cloud of eigenvalues is found to separate into
two clouds at v ~ 1.2. Thus for both TBRIM and SYK
models the depletion rate is maximized at the same value

of ver-

Conclusions. — We analyzed the process of evapora-
tive cooling in the system of weakly interacting fermions.
This process has a competition between depletion, where
particles are removed from high-energy one-particle or-
bitals (generalization of the results onto the case of more
than one decaying orbital is straightforward) and self-
thermalization, which repopulates these orbitals. We es-
pecially stress the importance of the latter process and it is
generally a hard problem to find conditions for emergence
of self-thermalization in a given system of interacting par-
ticles. For the isolated TBRM these conditions have been
analyzed in our previous works [2,[9]. In the present work
we showed that the self-thermalization in TBRIM takes
place also in the presence of particle loss (absorption).
Thus the TBRIM becomes a paradigmatic model for inves-
tigation of different aspects of self-thermalization in closed
and open systems.

We studied the depletion dynamics in the open TBRM
by mapping the problem to quantum chaotic scattering.
It was shown, in particular, that the number of lost parti-
cles is not a monotonic function of the depletion constant
~v but has a pronounced maximum at some ... Since
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the depletion constant can be varied in laboratory exper-
iments, this result suggests a method for measuring the
self-thermalization rate by finding the critical v., where
the increment v for exponential decay of the survival prob-
ability is maximized.

Since we remove particles from the high-energy orbitals,
the depletion process results in a decrease of the system
energy and, as a consequence, in the temperature drop
for the remaining particles. We stress that efficiency of
this cooling mechanism is not just proportional to parti-
cle loss, as one might naively expect, but is an involved
function of the depletion constant v (which can be varied
in a laboratory experiment), the self-thermalization rate
Yer (which is an internal property of the system), and the
duration of the evaporation process (which can be limited
by some reason). An example is given in Fig. [(a,d). It is
seen that within the same time interval we reached lower
temperature for v = 0.2 than for v = 2, in spite of the
fact that in the former case we lost less particles than in
the later case.
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