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Abstract: We study numerically the problem of dynamical thermalization of interacting cold fermionic
atoms placed in an isolated Sinai oscillator trap. This system is characterized by a quantum
chaos regime for one-particle dynamics. We show that, for a many-body system of cold atoms,
the interactions, with a strength above a certain quantum chaos border given by the Åberg criterion,
lead to the Fermi–Dirac distribution and relaxation of many-body initial states to the thermalized
state in the absence of any contact with a thermostate. We discuss the properties of this dynamical
thermalization and its links with the Loschmidt–Boltzmann dispute.
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1. Introduction

The problem of emergence of thermalization in dynamical systems started from the
Loschmidt–Boltzmann dispute about time reversibility and thermalization in an isolated system of
moving and colliding classical atoms [1,2] (see the modern overview in [3,4]). The modern resolution
of this dispute is related to the phenomenon of dynamical chaos where an exponential instability of
motion breaks the time reversibility at infinitely small perturbation (see e.g., [5–8]). The well known
example of such a chaotic system is the Sinai billiard in which a particle moves inside a square box
with an internal circle colliding elastically with all boundaries [9].

The properties of one-particle quantum systems, which are chaotic in the classical limit, have
been extensively studied in the field of quantum chaos during the last few decades and their
properties have been mainly understood (see, e.g., [10–12]). Thus, it was shown that the level
spacing statistics in the regime of quantum chaos [13] is the same as for Random Matrix Theory
(RMT) invented by Wigner for a description of spectra of complex nuclei [14,15]. This result
became known as the Bohigas–Giannoni–Schmit conjecture [13,16]. Thus, classically chaotic
systems ( e.g., Sinai billiard) are usually characterized by Wigner–Dyson (RMT) statistics with level
repulsion [13–15] while the classically integrable systems usually show Poisson statistics for level
spacing distribution [11,12,16]. In this way, the level spacing statistics gives a direct indication for
ergodicity (Wigner–Dyson statistics) or non-ergodicity (Poisson statistics) of quantum eigenstates.
It was also established that the classical chaotic diffusion can be suppressed by quantum interference
effects leading to an exponential localization of eigenstates [17–20] being similar to the Anderson
localization in disordered solid-state systems [21]. The localized phase is characterized by Poisson
statistics and the delocalized or metallic phase has RMT statistics. For billiard systems, the localized
(nonergodic) and delocalized (ergodic) regimes appear in the case of rough billiards as described
in [22,23].
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It was also shown that, in the regime of quantum chaos, the Bohr correspondence
principle [24] and the fully correct semiclassical description of quantum evolution remain valid
only for a logarithmically short Ehrenfest time scale tE ∼ ln(1/h̄)/h [17,19]. Here, h̄ is an effective
dimensionless Planck constant and h in the Kolmogorov–Sinai entropy characterizing the exponential
divergence of classical trajectories. This result is in agreement with the Ehrenfest theorem, which
states that the classical-quantum correspondence works on a time scale during which the wave packet
remains compact [25]. However, for the classically chaotic systems, the Ehrenfest time scale is rather
short due to an exponential instability of classical trajectories. After the Ehrenfest time scale tE,
the quantum out-of-time correlations (or OTOC as it is used to say now) stop decaying exponentially
in contrast to exponentially decaying classical correlators [26,27]. For t > tE, the decay of quantum
correlations stops and they remain on the level of quantum fluctuations being proportional to h̄ [26–28].
Since the level of quantum fluctuations is proportional to h̄, the classical diffusive spreading over
the momentum is affected by quantum corrections only on a significantly larger diffusive time scale
tD ∝ 1/h̄2 � tE ∝ ln(1/h̄) [17,19,26–28].

The problem of the emergence of RMT statistics and quantum ergodicity in many-body quantum
systems is more complex and intricate as compared to one-particle quantum chaos. Indeed, it is well
known that, in many-body quantum systems, the level spacing between nearest energy levels drops
exponentially with the increase of number of particles or with energy excitation δE above the Fermi
level in finite size Fermi systems, e.g., in nuclei [29]. Thus, at first glance, it seems that an exponentially
small interaction between fermions should mix many-body quantum levels leading to RMT level
spacing statistics (see, e.g., [30]).

Furthermore, the size of the Hamiltonian matrix of a many-body system grows exponentially
with the number of particles, but, since all interactions have a two-body nature, the number of
nonzero interaction elements in this matrix does not grow faster than the number of particles in the
fourth power. Thus, we have a very sparse matrix being rather far from the RMT type. A two-body
random interaction model (TBRIM) was proposed in [31,32] to consider the case of generic random
two-body interactions of fermions in the limiting case of strong interactions when one-particle orbital
energies are neglected. Even if the TBRIM matrix is very sparse, it was shown that the level spacing
statistics p(s) is described by the Wigner–Dyson or RMT distribution [33,34].

However, it is also important to analyze another limiting case when the two-body interaction
matrix elements of strength U are weak or comparable with one-particle energies with an average level
spacing ∆1. In metallic quantum dots, this case with U/∆1 ≈ 1/g corresponds to a large conductance
of a dot g = ETh/∆1 � 1, where ETh = h̄/tD is the Thouless energy with tD being a diffusion spread
time over the dot [35–37]. In this case, the main question is about critical interaction strength U
or excitation energy δE above the Fermi level of the dot at which the RMT statistics becomes valid.
First, numerical results and simple estimates for a critical interaction strength in a model similar to
TBRIM were obtained by Sven Åberg in [38,39]. The estimate of a critical interaction Uc, called the
Åberg criterion [40], compares the typical two-body matrix elements with the energy level spacing ∆c

between quantum states directly coupled by two-body interactions. Thus, the Åberg criterion tells that
the Poisson statistics is valid for many-body energy levels for U < Uc ∼ ∆c and the RMT statistics
sets in for U > Uc ∼ ∆c. In [41], this criterion, proposed independently of [38,39], was applied to
the TBRIM of weakly interacting fermions in a metallic quantum dot being confirmed by extensive
numerical simulations. It was also argued that the dynamical thermalization sets in an isolated finite
fermionic system for energy excitations δE above the critical border δEch determined from the above
criterion [41]:

δE > δEch ≈ g2/3∆1 , g = ∆1/U. (1)

The emergence of thermalization in an isolated many-body system induced by interactions
between particles without any contact with an external thermostat represents the Dynamical
Thermalization Conjecture (DTC) proposed in [41]. The validity of the Åberg criterion was numerically
confirmed for various physical models (see [40] and references therein). An additional confirmation
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was given by the analytical derivation presented in [42] showing that, for three interacting particles,
in a metallic dot the RMT sets in when the two-body matrix elements U become larger than the
two-particle level spacing ∆2 ∼ ∆c being parametrically larger than the three-particle level spacing
∆3 � ∆2. The advanced theoretical arguments developed in [43,44] confirm the relation (1) for
interacting fermions in a metallic quantum dot.

The test for the transition from Poisson to RMT statistics is rather direct and needs only the
knowledge of energies’ eigenvalues. However, the verification of DTC is much more involved since it
requires the computation of system eigenstates. Thus, it is much more difficult to check numerically
the relation (1) for DTC. However, it is possible to show that there is a transition from non-thermalized
eigenstates at weak interactions (presumably for δE < δEch) to dynamically thermalized individual
eigenstates at relatively strong interactions (presumably for δE > δEch). Thus, for the TBRIM with
fermions, the validity of DTC for individual eigenstates at U > Uc ∼ ∆c has been demonstrated
in [45,46] by the computation of energy E and entropy S of each eigenstate and its comparison with
the theoretical result given by the Fermi–Dirac thermal distribution [47].

Even if the TBRIM represents a useful system for DTC tests, it is not so easy to realize it in real
experiments. Thus, in this work, we investigate the DTC features in a system of cold fermionic atoms
placed in the Sinai oscillator trap created by a harmonic two-dimensional potential with a repulsive
circular potential created by a laser beam in a vicinity of the trap center. In such a case, the repulsive
potential in the center is modeled as an elastic circle as in the case of Sinai billiard [9]. For one particle,
it has been shown in [48] that the Sinai oscillator has an almost fully chaotic phase space and that, in the
quantum case, the level spacing statistics is described by the RMT distribution. Due to one-particle
quantum chaos in the Sinai oscillator, we expect that this system will have properties similar to the
TBRIM. On the other side, the Sinai oscillator trap has been already experimentally realized with
Bose–Einstein condensate of cold bosonic atoms [49–51]. At present, cold atom techniques allow for
investigating various properties of cold interacting fermionic atoms [52,53] and we argue that the
investigation of dynamical thermalization of such fermionic atoms, e.g., 6Li, in a Sinai oscillator trap is
now experimentally possible. Thus, in this work, we study properties of DTC of interacting fermionic
atoms in a Sinai oscillator trap. Here, we consider the two-dimensional (2D) case of such a system
assuming that the trap frequency in the third direction is small and that the 2D dynamics are not
significantly affected by the adiabatically slow motion in the third dimension.

Finally, we note that, at present, the TBRIM model in the limit of strong interactions attracts a
high interest in the context of field theory since, in this limit, it can be mapped on a black hole model
of quantum gravity in 1 + 1 dimensions known as the Sachdev–Ye–Kitaev (SYK) model linked also
to a strange metal [54–59]. In fact, the SYK model, in its fermionic formulation [56], corresponds
to the TBRIM considered with a conductance close to zero g → 0. In these lines, the dynamical
thermalization in TBRIM and SYK systems has been discussed in [45,46]. Furthermore, there is also
a growing interest in dynamical thermalization for various many-body systems known also as the
eigenstate thermalization hypothesis (ETH) and many-body localization (MBL) (see, e.g., [60–63]).
We think that the system of interacting fermionic atoms in a Sinai oscillator trap captures certain
features of TBRIM and SYK models and thus represents an interesting test ground to investigate
nontrivial physics of these systems in real cold atom experiments.

This paper is composed as follows: in Section 2, we describe the properties of the one-particle
dynamics in a Sinai oscillator; numerical results for dynamical thermalization on interacting atoms in
this oscillator are presented in Section 3; the conditions of thermalization for fermionic cold atoms in
realistic experiments are given in Section 4; the discussion of the results is presented in Section 5.

2. Quantum Chaos in Sinai Oscillator

The model of one particle in the 2D Sinai oscillator is described in detail in [48] with the Hamiltonian:

H1 =
1

2m
(p2

x + p2
y) +

m
2
(ω2

xx2 + ω2
yy2) + Vd(x, y). (2)
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Here, the first two terms describe the 2D oscillator with frequencies ωx, ωy and the last term
gives the potential wall of elastic disk of radius rd. We choose the dimensionless units with mass
m = 1, frequencies ωx = 1, ωy =

√
2 and disk radius rd = 1. The disk center is located

at (xd, yd) = (−1/2,−1/2) so that the disk bungs a hole in the center as it was the case in the
experiments [49]. The Poincare sections at different energies are presented in [48] showing that
the phase space is almost fully chaotic (see Figure 1 there). The quantum evolution is described by
the Schrödinger equation with the quantized Hamiltonian (2), where the conjugate momentum and
coordinate variables become operators with the commutation relation [x, px] = [y, py] = ih̄ [48]. For the
quantum problem, we use the value of the dimensionless Planck constant h̄ = 1 so that the ground
state energy is Eg = 1.685. In the following, the energies are expressed in atomic like units of energy
Eu = h̄ωx (for our choice of Sinai oscillator parameters, we also have Eu = h̄ωx = h̄2/(mrd

2)) [48] with
the typical size of oscillator ground state being equal to the disk radius: a0 = ∆xosc = (h̄/mωx)1/2 = rd.

-1

-0.5

0

0.5

1

a) b)

c) d)

Figure 1. Color plot of one-particle eigenstates ϕk(x, y) of the Sinai Hamiltonian in coordinate plane
(x, y) with −7.6 ≤ x ≤ 7.6 and −5.4 ≤ y ≤ 5.4 for orbital numbers k = 1 (ground state) (a), k = 6 (b),
k = 11 (c) and k = 16 (d). The numerical values of the color bar apply to the signed and nonlinearly
rescaled wave function amplitude: sgn[ϕk(x, y)] |ϕk(x, y)/ϕmax|1/2, where ϕmax is the maximum of
|ϕk(x, y)| and the exponent 1/2 provides amplification of regions of small amplitude.

In [48], it is shown that the classical dynamics of this system are almost fully chaotic.
In the quantum case, the level spacing statistics is well described by the RMT distribution. The
average dependence of energy level number k is well described by the theoretical dependence
k(ε) = ε2/(2

√
2)− ε/2 [48]. Thus, the one-particle density of states ρ1(ε) and corresponding level

spacing ∆1 are:

ρ1(ε) =
dk
dε

=
ε√
2
− 1

2
, ∆1 =

1
ρ
≈
√

2
ε
≈ 0.84√

k
. (3)

Examples of several eigenstates, computed on a numerical grid of 28,341 spatial points, are shown
in Figure 1. More details on the numerical diagonalization of (2) and other example eigenstates can be
found in [48].

3. Sinai Oscillator with Interacting Fermionic Atoms

3.1. Two-Body Interactions of Fermionic Atoms

The two-body interaction of atoms appears usually due to van der Waals forces which drop
rapidly with the distance between two atoms and the short ranged interaction can be described in
the framework of the scattering length approach (see, e.g., [64,65]). Therefore, we assume that the
finite effective interaction range rc is significantly smaller than the disk radius rd and the typical size
of the wave function, i.e., rc � rd. Such a short range interaction is indeed used to modelize atomic



Condens. Matter 2019, 4, 76 5 of 29

interactions in harmonic traps (see, e.g., [66]). For example, in a typical experimental situation, the disk
radius is of the order of micron rd ∼ 1µm = 10−4 cm, while, for Li and other alkali atoms, we have
rc ∼ 3× 10−7 cm [64,65]. Of course, in the limit of small rc � rd, the interaction between two atoms
takes place mainly in the s-wave scattering, so effectively the interaction operates between fermions
with different quantum numbers of the Sinai oscillator. This feature is of course taken into account in
our numerical simulations.

In the following, we use a simple interaction function having a constant amplitude U for r ≤ rc

and being zero for r > rc, where we simply choose rc = 0.2rd, which corresponds well to the short range
interaction regime. The precise value of rc is not very important since a slight modification rc → r̄c

can be absorbed in a modified amplitude according to U → Ū = U(r̄c/rc)2, a relation we verified
numerically for various values of r̄c < rd. We numerically checked that, at a used rc = 0.2rd value,
we are in the regime when the interaction matrix elements are proportional to rc

2 so that we are in the
regime of short-range interactions. We mention that, in experiments, the strength of the interaction
amplitude can be changed by a variation of the magnetic field via the Feshbach resonance [67].

3.2. Reduction to TBRIM Like Case and Its Analysis

Using the methods described in [48], we numerically compute a certain number of one-particle
or orbital energy eigenvalues εk and corresponding eigenstates ϕk(r) of the Sinai oscillator (2).
As repulsive interaction potential v(r), we choose the short ranged box function v(r) = U if
|r| ≤ rc = 0.2 (since rd = 1) and v(r) = 0, otherwise. Here, the parameter U > 0 gives the
overall scale of the interaction strength depending on the charge of the particles and eventually other
physical parameters.

Therefore, the corresponding many-body Hamiltonian with M one-particle orbitals and 0 ≤ L ≤ M
spinless fermions takes the form:

H =
M

∑
k=1

εk c†
k ck + ∑

i<j,k<l
Vij,kl c†

i c†
j cl ck , (4)

where, for i < j and k < l, we have the interaction matrix elements:

Vij,kl = V̄ij,kl − V̄ij,lk , V̄ij,kl =
∫

dr1

∫
dr2 ϕ∗i (r1)ϕ∗j (r2) v(r1 − r2)ϕk(r1)ϕl(r2) (5)

and c†
k , ck are fermion operators for the M orbitals satisfying the usual anticommutation relations.

We note that, in the literature, when expressing a two-body interaction potential in second quantization,
one usually uses the raw matrix elements V̄ij,kl with an additional prefactor of 1/2 and full independent
sums for the four indices i, j, k and l. Using the particle exchange symmetry: V̄ij,kl = V̄ji,lk, one can
reduce the i, j sums to i < j, which removes the prefactor 1/2 (after exchanging the index names l
and k for the i > j contributions and exploiting that contributions at i = j or l = k obviously vanish).
The definition of the anti-symmetrized interaction matrix elements Vij,kl according to (5) allows for
also reducing the k, l sums to k < l. Furthermore, the ordering of the two fermion operators cl ck in (4)
is also important and necessary to obtain positive expectation values if the interaction is repulsive. The
anti-symmetrized matrix elements Vij,kl correspond to a M2 ×M2 matrix with M2 = M(M− 1)/2).
In order to avoid a global shift of the non-interacting eigenvalue spectrum due to the interaction,
we also apply a diagonal shift Vij,ij → Vij,ij − (1/M2)∑k<l Vkl,kl to ensure that this matrix has a
vanishing trace ( One can easily show that the trace of the M2 × M2 anti-symmetrized interaction
matrix is proportional to the trace of the interaction operator in the many-body Hilbert space with
a factor depending on M and L). Of course, such a global energy shift does not affect the issues of
thermalization, interaction induced eigenfunction mixing or the quantum time evolution with respect
to the Hamiltonian H, etc.
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We note that the transition from the classical Hamiltonian (2) to the quantum one (4) is done by
the standard procedure of second quantization (see, e.g., [68]).

3.3. Aberg Parameter

In absence of interaction, the energy eigenvalues of (4) are given as the sum of occupied
orbital energies:

E({nk}) =
M

∑
k=1

εk nk, (6)

where {nk} represents a configuration such that nk ∈ {0, 1} and ∑k nk = L. The associated eigenstates
are the basis states where each orbital is either occupied (if nk = 1) or unoccupied (if nk = 0) and,
in this work, we will denote these states in the usual occupation number representation: |nM · · · n2 n1>,
where, for convenience, we write the lower index orbitals starting from the right side.

The distribution of the total one-particle energies (6) is numerically rather close to a Gaussian
(since nk act as quasi-random numbers) with mean and variance (see also Equation (A.4) of Ref. [46]):

Emean = Lε , σ2
0 =

L(M− L)
M− 1

(
ε2 − ε2

)
, εn =

1
M

M

∑
k=1

εn
k , n = 1, 2. (7)

Therefore, the many-body level spacing ∆MB or inverse Heisenberg time at the band center
E = Emean is given by ∆MB = 1/tH =

√
2π(σ0/d), where d = M!/(L!(M− L)!) is the dimension of

the fermion Hilbert space in the sector of M orbitals and L particles. In our numerical computations,
we simply evaluated the quantities εn of (7) using the exact one-particle energy eigenvalues obtained
from the numerical diagonalization of the one-particle Sinai Hamiltonian H1 given in (2). However,
to get some analytical simplification for large M, one may use the one-particle density of states (3),
which gives, after replacing the sums by integrals and neglecting the constant term, εn ≈ 2 εn

M/(n + 2)
and ε2 − ε2 ≈ ε2

M/18 ≈
√

2 M/9.
For the question of whether the interaction strength is sufficiently strong to mix the non-interacting

basis states, the important quantity is the effective level spacing of states coupled directly by the
interaction ∆c =

√
2π [σ0(L = 2)/K], where K = 1 + L(M− L) + L(L− 1)(M− L)(M− L− 1)/4 is

the number of nonzero elements for a column (or row) of H [41,69] and we need to use the variance
for only two particles:

σ2
0 (L = 2) =

2(M− 2)
M− 1

(
ε2 − ε2

)
⇒

σ2
0 (L = 2)

σ2
0

=
2(M− 2)
L(M− L)

(8)

because the interaction only couples states where (at least) L − 2 particles are on the same orbital
such that (at most) only the partial sum of two one-particle energies is different between two coupled
states. Even though for two particles the hypothesis of a Gaussian distribution is theoretically not
justified, the distribution is still sufficiently similar to a Gaussian and it turns out that the value
of 1/∆c = K/[

√
2π σ0(L = 2)] as the coupled two-particle density of states in the band center is

numerically quite accurate with an error below 10% (for M = 16 and our choice of εk values).
According to the Åberg criterion [38,39,41], the onset of chaotic mixing happens for

typical interaction matrix elements U comparable to ∆c. Therefore, we compute the quantity

Vmean =
√
〈|Vij,kl |2〉 (which is proportional to the interaction amplitude U) where the average is

done with respect to all M2
2 matrix elements of the interaction matrix. This quantity might be

problematic and not correspond to a typical interaction matrix element in the case of a long tail
distribution. However, in our case, it turns out that Vmean ≈ 2 exp(〈ln |Vij,kl |〉), which excludes
this scenario. Using this quantity, we introduce the dimensionless Åberg parameter and the critical
interaction amplitude Uc by A = Vmean/∆c = U/Uc such that A = 1 if U = Uc. We expect [38,39,41]
to be the onset of strong/chaotic mixing at A � 1 and a perturbative regime for A � 1, while,
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at A = 1, we have the critical interaction strength U = Uc. The value of Uc depends on the parameters
L, M, σ0 and the overlap of the one-particle eigenstates according to (5). To obtain some useful
analytical expression of Uc, we note that the quantity Vmean, numerically computed for 4 ≤ M ≤ 30,
can be quite accurately fitted by Vmean ≈ 3× 10−4 U/εM. Furthermore, we remind readers of the

expression ∆c = (1/K)
√

4π(M− 2)(ε2 − ε2)/(M− 1), which can be simplified in the limit M � 1
and L� 1, such that K ≈ (M− L)2L2/4, resulting in: ∆c = 4/3

√
2π εM/[(M− L)2 L2]. Here, we also

used the found expression above ε2 − ε2 ≈ ε2
M/18. From this, we find that Uc = ∆cU/Vmean ≈

C M/[(M− L)2 L2] with a numerical constant C ≈ 16× 104√π/9 ≈ 3.15× 104, where we also used
ε2

M ≈ 2
√

2 M according to (3). Below, we will give more accurate numerical values of Vmean, ∆c and Uc

for the parameter choice of M and L numerically relevant in this work.
We note that this estimate for A = U/Uc applies to energies close to the many body band center

of H and that, for energies away from the band center, the value of ∆c is enhanced, thus reducing the
effective value of A. Furthermore, we computed Vmean by a simplified average over all interacting
matrix elements not taking into account an eventual energy dependence according to the index values
of i, j, k, l in (5).

3.4. Density of States

In this work, we present numerical results for the case of M = 16 orbitals and L = 7 particles
corresponding to a many-body Hilbert space of dimension d = M!/(L!(M− L)!) = 11440 and the
number K = 820 of directly coupled states of a given initial state by non-vanishing interaction matrix
elements in (4). Thus, in our studies, the whole Hilbert space is built only on these M = 16 orbitals.
We diagonalize numerically the many-body Hamiltonian (4) for various values of A in the range
0.025 ≤ A ≤ 200. We have also verified that the results and their physical interpretation are similar for
smaller cases such as M = 12, L = 5 (with d = 792, K = 246) or M = 14, L = 6 (d = 3003, K = 469).

We mention that, for M = 16 and L = 7, we find numerically that Vmean = 3.865× 10−5 U
and, from (8), that ∆c =

√
2π [σ0(L = 2)/K] = 6.1706× 10−3, where the quantities εn were exactly

computed from the numerical orbitals energies εk. From this, we find that Uc = ∆c U/Vmean ≈ 159.65.
This expression is more accurate than the more general analytical estimate for arbitrary M� 1 and
L� 1 given in the last section (which would provide Uc ≈ 127 for M = 16 and L = 7).

Our first observation is that, even in the presence of interactions, the density of states has
approximately a Gaussian form with the same center Emean given in (7) for the case A = 0. This is
simply due the fact that the interaction matrix has, by choice, a vanishing trace and does not provide a
global shift of the spectrum. We determine the variance σ2(A) of the Gaussian density of states by a fit
of the integrated density of states P(E) using

P(E) = (1 + erf[q(E)])/2 , q(E) = (E− Emean)/[
√

2 σ(A)], (9)

such that P′(E) is a Gaussian of width σ(A) and center Emean (see Appendix A of Ref. [46] for more
details). From this, we find the behavior:

σ2(A) = σ2
0 (1 + αA2), (10)

where α is a constant depending on M and L; for M = 16, L = 7 the fit values of σ0 and α are
σ0 = 3.013± 0.009 and α = 0.00877± 0.00010. It is also possible to determine σ(A) using the expression
σ2(A) = TrFock

[
(H − Emean1)2] /d where the trace in Fock space can be evaluated either by using the

matrix H before diagonalizing it or using its exact energy eigenvalues Em. This provides the same
behavior as (10) with the very similar numerical values σ0 = 3.013± 0.007 and α = 0.00858± 0.00008
(for M = 16, L = 7). We mention that the integrated Gaussian density of states (9) is not absolutely
exact but quite accurate for values A ≤ 10. For larger values of A, the deviations increase, but the
overall form is still correct. As described in [46], the quality of the fit can be considerably improved if
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we replace in (9) the linear function q(E) by a polynomial of degree 5. In this case, the precision of the
fit is highly accurate for the full range of A values we consider. In particular, we use this improved fit to
perform the spectral unfolding when computing the nearest level spacing distribution (shown below).

To obtain some theoretical understanding of (10), one can consider a model where the initial
interaction matrix elements (5) are replaced by independent Gaussian variables with identical
variance V2

mean. In this case, one can show theoretically [46] that σ2(A) = σ2
0 + K2V2

mean, where
K2 = L(L− 1)[1 + M− L + (M− L)(M− L− 1)/4] is a number somewhat larger than K taking into
account that certain non-vanishing interaction matrix elements in Fock space are given as a sum of
several initial interaction matrix elements (5) (see Appendix A of [46] for details). The parameter
K2 takes for M = 16, L = 7 (M = 14, L = 6 or M = 12, L = 5) the value K2 = 1176 (K2 = 690
or K2 = 370, respectively). Since Vmean = A∆c = A

√
2π σ0(L = 2)/K, we indeed obtain (10) with

α = αth = 4π(M − 2)K2/[K2(L(M − L)]. For M = 16, L = 7, we find σ0 = 3.0279 (see (7)) and
αth = 0.00488. The latter is roughly by a factor of 2 smaller than the numerical value. We attribute this
to the fact that the real initial interaction matrix elements (5) are quite correlated, and not independent
uniform Gaussian variables, leading therefore to an effective increase of the number K2 due to
hidden correlations. The important point is that theoretically at very large values values of M and
L, e.g., M ≈ 2L � 1, we have K2 ≈ K ≈ L4/4 and αth ≈ 32π/L5, which is parametrically small for
very large L. Therefore, there is a considerable range of values 1 < A < 1/

√
α where the interaction

strongly mixes the non-interacting many-body eigenstates but where the density of states is only
weakly affected by the interaction. This regime is also known as the Breit–Wigner regime (see, e.g., [40],
for the case of interacting Fermi systems).

3.5. Thermalization and Entropy of Eigenstates

In the following, we mostly concentrate on values A ≤ 10 such that the effect of the increase
of the spectral width σ(A) is still small or at least quite moderate. The question arises if a given
many-body state, either an exact eigenstate of H or a state obtained from a time evolution with respect
to H, is thermalized according to the Fermi–Dirac distribution [47]. As in [45,46], we determine the
occupation numbers nk = 〈c†

k ck〉 for such a state, as well as the corresponding fermion entropy S [47]
and the effective total one-particle energy E1p by :

S = −
M

∑
k=1

(
nk ln nk + (1− nk) ln(1− nk)

)
, E1p =

M

∑
k=1

εk nk (11)

based on the assumption of weakly interacting fermions. In the regime of modest interaction A . 5
(for M = 16, L = 7), corresponding to a constant spectral width σ(A) ≈ σ0, we have typically
E1p ≈ Eex (for exact eigenstates of H) or E1p ≈ 〈H〉 (for other states). If the given state is thermalized,
its occupation numbers nk should be close to the theoretical Fermi–Dirac filling factor n(εk) with
n(ε) = 1/(1 + exp[β(ε − µ)]), where inverse temperature β = 1/T and chemical potential µ are
determined by the conditions:

L =
M

∑
k=1

n(εk) , E =
M

∑
k=1

εk n(εk). (12)

Here, E is normally given by E1p, but one may also consider the value Eex (or 〈H〉) provided the
latter is in the energy interval where the conditions (12) allow for a unique solution. Furthermore, for a
given energy E, we can also determine the theoretical (or thermalized) entropy Sth(E) using (11) with
nk being replaced by n(εk) (where β, µ are determined from (12) for the energy E).

The many-body states with energies above Emean are artificial since they correspond to negative
temperatures due to the finite number of orbitals considered in our model. Therefore, we limit our
studies to the lower half of the energy spectrum 29 ≤ E ≤ 39 ≈ Emean (for M = 16, L = 7). In Figure 2,
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we compare the thermalized Fermi–Dirac occupation number n(ε) with the occupation numbers nk
for two eigenstates at level numbers m = 123 (1354, with m = 1 corresponding to the ground state)
with approximate energy eigenvalue E ≈ 32 (E ≈ 35) for three different Åberg parameters A = 0.35,
A = 3.5 and A = 10. These states are not too close to the ground state but still quite far below the
band center.
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Figure 2. Orbital occupation number nk versus orbital energies εk (black stars) of individual eigenstates
at level numbers m = 123 (a,c,e), 1354 (b,d,f), and Åberg parameter A = 0.35 (a,b), A = 3.5 (c,d),
A = 10 (e,f), (with m = 1 corresponding to the ground state). The thin blue (thick red) curves show the
theoretical Fermi–Dirac occupation number n(ε) = 1/(1 + exp[β(ε− µ)]), where inverse temperature
β and chemical potential µ are determined from (12) with E = E1p (E = Eex). The horizontal green
lines correspond to the constant value 0.5 whose intersections with the red or blue curves provide the
positions of the chemical potential. In this and all subsequent figures, the orbital number is M = 16,
the number of particles is L = 7 and the corresponding dimension of the many body Hilbert space is
d = 11440. Table 1 gives for each of these levels the values of Eex, E1p, S, Sth, β, µ and for both energies
for the latter three parameters.

We note that the regime of negative temperatures is natural for the TBRIM where the energy
spectrum is inside a finite energy band (this regime has been discussed in [45,46]). However,
for the Sinai oscillator, the energy spectrum is unbounded and, due to that, the regime of negative
temperatures, appearing in the numerical simulations due to a finite number of one-particle orbital,
is artificial.
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Table 1. Parameters of the eigenstates corresponding to Figure 2. S is the entropy, E1p the effective total
one-particle energy, both given by (11), and Eex is the exact energy eigenvalue. Inverse temperature β,
chemical potential µ, theoretical entropy Sth are determined by (12) or (11) (with nk replaced by n(εk))
for both energies E1p, Eex.

A m S Sth(E1p) E1p µ(E1p) β(E1p) Sth(Eex) Eex µ(Eex) β(Eex)

0.35 122 0.95 7.91 32.15 5.31 1.05 7.89 32.13 5.31 1.05
0.35 1353 4.91 10.16 35.29 4.98 0.45 10.16 35.30 4.98 0.45
3.5 122 6.99 8.28 32.52 5.28 0.95 7.54 31.81 5.34 1.15
3.5 1353 10.16 10.23 35.45 4.95 0.43 10.10 35.15 5.00 0.47
10 122 8.91 8.98 33.33 5.22 0.77 4.96 30.10 5.46 2.02
10 1353 10.52 10.54 36.28 4.75 0.32 9.53 34.12 5.14 0.63

At weak interaction, A = 0.35, both states are not at all thermalized with occupation numbers
being either close to 1 or 0. Apparently, these states result from weak perturbations of the
non-interacting eigenstates |0000011000110111> or |1000100011001011>, where the nk values are
rounded to 1 (or 0) if nk > 0.5 (nk < 0.5). For m = 1354, the values of nk are a little bit farther away
from the ideal values 0 or 1 as compared to m = 123 but still sufficiently close to be considered as
perturbative. Apparently, the state m = 123, which is lower in the spectrum (with larger effective
two-body level spacing), is less affected by the interaction than the state 1354. In both cases, the entropy
S is quite below the thermalized entropy Sth (see Table 1 for numerical values of entropies, energies,
inverse temperature and chemical potential for the states shown in Figure 2).

At intermediate interaction, A = 3.5, the occupation numbers are closer to the theoretical
Fermi–Dirac values but still with considerable deviations. Here, both entropy values S are rather
close to Sth. The state 1354 seems to be better thermalized than the state m = 123, the latter having a
slightly larger deviation between both entropy values. At stronger interaction, A = 10, both states are
very well thermalized with a good matching of both entropy values (again with the state 1354 being a
bit better thermalized than the state m = 123) provided we use E1p as reference energy to compute
temperature and chemical potential. The temperature obtained from Eex is too small because here
the increase of σ(A) is already quite strong and Eex rather strongly deviates from E1p. In addition,
the value of Sth using Eex does not match S. Obviously, at stronger interaction values, it is necessary to
use E1p to test the thermalization hypothesis of a given state.

Figure 3 shows the mutual dependence between the three parameters β, µ on E when solving the
conditions (12). The chemical potential as a function of β = 1/T is rather constant except for smallest
values of β where µ ∼ 1/β with a negative prefactor. One can actually easily show from (12) that in the
limit β→ 0 the chemical potential does not depend on εk and is given by µ = − ln[1+ (M− 2L)/L]/β

providing a singularity if L 6= M/2 with negative (positive) prefactor for L < M/2 (L > M/2) and
µ = 0 for L = M/2. The temperature (β−1) vanishes for E close to the lower energy border and
diverges for E close to the band center Emean.
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Figure 3. Dependence of chemical potential µ on inverse temperature β = 1/T (a) and of β = 1/T on
energy E (b) where β and µ are determined from (12) for a given energy E.



Condens. Matter 2019, 4, 76 11 of 29

In Figure 4, we present the nearest level spacing distribution p(s) for different values of the Åberg
parameter. To compute p(s), we have used only the “physical” levels in the lower half of the energy
spectrum and the unfolding has been done with the integrated density of states (9), where q(E) is
replaced by a fit polynomial of degree 5. For the smallest value A = 0.2, the distribution p(s) is very
close to the Poisson distribution with some residual level repulsion at very small spacings. This is
a quite well known effect because typically the transition from Wigner–Dyson to Poisson statistics
(when tuning some suitable parameter such as the Åberg parameter from strong to weak coupling) is
non-uniform in energy and happens first at larger spacings (energy differences) and then at smaller
spacings. The reason is simply that two levels which by chance are initially very close are easily
repelled by a small residual coupling matrix element (when slightly changing a disorder realization or
similar). For A = 0.5, there is somewhat more level repulsion at small spacings, but the distribution is
still rather close to the Poisson distribution with some modest deviations for s ≤ 1.2. For the larger
Åberg values A = 3.5 and A = 10, we clearly obtain Wigner–Dyson statistics (taking into account the
quite limited number of only d/2− 1 = 5719 level spacing values for the histograms). These results
clearly confirm that the transition from A < 1 to A > 1 corresponds indeed to a transition from a
perturbative regime to a regime of chaotic mixing with Wigner–Dyson level statistics [14].
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Figure 4. Histogram of unfolded level spacing statistics (blue line) for the exact energy eigenvalues Em

of H (using the lower half of the spectrum with 1 ≤ m ≤ d/2). The different panels correspond to the
Åberg parameter values A = 0.2 (a), A = 0.5 (b), A = 3.5 (c), A = 10 (d). The unfolding is done using
the integrated density of states (9), where q(E) is replaced by a fit polynomial of degree 5. The Poisson
distribution pPois(s) = exp(−s) (black line) and the Wigner surmise pWig(s) = π

2 s exp(−π
4 s2) (green

line) are also shown for comparison.

A further confirmation that A = 1 is critical can be seen in Figure 5, which compares the
dependence of the entropy S of exact eigenstates (lower half of the spectrum) on E1p or Eex with the
theoretical thermalized entropy Sth(E). For the Åberg values A = 0.2 (and A = 0.5), the entropy S
of all (most) states is significantly below its theoretical value Sth. Actually, the distribution of data
points is considerably concentrated at smaller entropy values which is not so clearly visible in Figure.
In particular, the average of the ratio of S/Sth(E1p) is 0.178 for A = 0.2 and 0.522 for A = 0.5. For the
Åberg values A = 3.5 and A = 10, most or nearly all entropy values (for E1p) are very close to
the theoretical line with the average ratio S/Sth(E1p) being 0.990 for A = 3.5 and 0.998 for A = 10.
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For A = 3.5, the states with lowest energies are not yet perfectly thermalized and the data points for
Eex and E1p are still rather close. For A = 10, all states are well thermalized (when using the energy
E1p) while the data points for Eex are quite outside the theoretical curve simply due to the overall
increase of the width of the energy spectrum. This observation is also in agreement with the discussion
of Figure 2. For smaller values A < 0.2 (not shown in Figure 5), we find that the data points are
still closer to the E-axis while, for larger values A > 10, the data points are clearly on the theoretical
curve for E1p (but more concentrated on energy values closer to the center with larger entropy values
and larger temperatures), while, for Eex, according to (10), the overall width of the exact eigenvalue
spectrum increases strongly and the data points are clearly outside the theoretical curve (except for a
few states close to the band center).
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Figure 5. Dependence of the fermion entropy S on the effective one-particle total energy E1p (blue
cross symbols) and the exact many-body energy Eex (red plus symbols). The green curve shows the
theoretical entropy Sth(E) obtained from the Fermi–Dirac occupation numbers as explained in the text.
The different panels correspond to the Åberg parameter values A = 0.2 (a), A = 0.5 (b), A = 3.5 (c),
A = 10 (d).

We note that the data points in Figure 5a,b significantly deviate from the theoretical thermalization
curve since the Åberg criterion is not satisfied (A < 1). For A = 3.5; 10, the deviations are significantly
reduced, but they are still more pronounced in a vicinity of the ground state in agreement with the
relation (1).

In Figure 6, the occupation numbers nk (averaged over several energy eigenvalues inside a given
energy cell) are shown in the plane of energy E and orbital index k as color density plot for the Åberg
parameter A = 3.5. The comparison with the theoretical occupation numbers n(εk) (shown in the
same way) provides further confirmation that, at A = 3.5, there is indeed already a quite strong
thermalization of most eigenstates.
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Figure 6. Color density plot of the orbital occupation number nk in the plane of energy E and orbital
index k. (a) nk values of exact eigenstates of H with Åberg parameter A = 3.5; (b) thermalized
Fermi–Dirac occupation number n(εk), where β and µ are determined from (12) as a function of total
energy E. The occupation number nk is averaged over all eigenstates (a) or several representative
values of E (b) inside a given energy cell. The energy interval 29 ≤ E ≤ 39 corresponds roughly to the
lower half of the spectrum (at M = 16, L = 7) for states with positive temperature and is similar to the
energy interval used in Figures 4 and 5. The color bar provides the translation between nk values and
colors (red for maximum nk = 1, green for nk = 0.5 and blue for minimum nk = 0).

3.6. Thermalization of Quantum Time Evolution

The question arises how or if a time dependent state |ψ(t)>= exp(−iHt)|ψ(0)>, obeying the
quantum time evolution with the Hamiltonian H and an initial state |ψ(0)> being a non-interacting
eigenstate |nM · · · n2n1)> (with all nk ∈ {0, 1} and ∑k nk = L), evolves eventually into a thermalized
state. We have computed such time dependent states using the exact eigenvalues and eigenvectors of
H to evaluate the time evolution operator. As initial states, we have chosen four states (for M = 16,
L = 7): (i) |φ1>= |0000100000111111> where a particle at orbital 7 is excited from the non-interacting
ground state (with all orbitals from 1 to 7 occupied) to the orbital 12, (ii) |φ2>= |0010100000011111>
where two particles at orbitals 6 and 7 are excited from the non-interacting ground state to the orbitals
12 and 14, (iii) |φ3>= |0000011000110111> and (iv) |φ4>= |1000100011001011>. The states |φ3> and
|φ4> are obtained from the exact eigenstate of H for A = 0.35 at level number m = 123 and 1354,
respectively, by rounding the occupation numbers nk to 1 (or 0) if nk > 0.5 (nk < 0.5) (states of top
panels in Figure 2). The approximate energies (6) of these four states are E ≈ 30 (|φ1>), E ≈ 32 (|φ2>

and |φ3>) and E ≈ 35 (|φ4>).
It is useful to express the time in multiples of the elementary quantum time step defined as:

∆t =
tH

d
=

1√
2π σ2(A)

, (13)

where tH is the Heisenberg time (at the given value of A), d the dimension of the Hilbert space and σ(A)

the width of the Gaussian density of states given in (10). The quantity ∆t is the shortest physical time
scale of the system (inverse of the largest energy scale) and obviously for t� ∆t the unitary evolution
operator is close to the unit matrix multiplied by a uniform phase factor: exp(−iHt) ≈ exp(−iEmeant) 1
since the eigenvalues Em of H satisfy |Em − Emean| . σ(A). We expect that any signification deviation
of |ψ(t)> with respect to the initial condition |ψ(0)> happens at t ≥ ∆t (or later in case of very weak
interaction). Furthermore, by analyzing the time evolution in terms of the ratio t/∆t the results do not
depend on the global energy scale of the spectral width. The longest time scale is the Heisenberg time
tH ≈ 104∆t (since d = 11440 for M = 16, L = 7). Later, we also discuss intermediate time scales such
as the inverse decay rate obtained from the Fermi golden rule.

To show graphically the time evolution, we compute the time dependent occupation numbers
nk(t) =<ψ(t)|c†

k ck |ψ(t)> and present them in a color density plot in the plane (k, t/∆t). In addition,
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at the time value used last, we compute the effective total one-particle energy E1p using the relation
(11) (note that E1p is not conserved with respect to the time evolution except for very weak interaction)
and use this value to determine from (12) the inverse temperature β, chemical potential µ and the
thermalized Fermi–Dirac filling factor n(εk) at each k value for the orbital index. These values of
ideally thermalized occupation numbers will be shown in an additional vertical bar ( Note that this
additional bar is not related to the usual color bar that provides the translation of colors to nk values).
The latter is shown in Figure 6 and applies also to all subsequent figures with color density plots
for nk values right behind the data for the last time values separated by a vertical white line. This
presentation allows for an easy verification if the occupation numbers at the last time values are indeed
thermalized or not.

In Figure 7, we show the time evolution for the initial state |φ1> and the two Åberg parameter
values A = 1 and A = 3.5 using a linear time scale with integer multiples of ∆t and for t ≤ 2000 ∆t ≈
tH/6. At A = 1, the occupation number n12 (of the excited particle) shows, at the beginning, a periodic
structure, with an approximate period 400 ∆t for t < 1000 ∆t, and a modest decay for t > 1000 ∆t.
At the same time, the first orbitals above the Fermi sea are slightly excited. At final t = 2000 ∆t,
the state is clearly not thermalized. For A = 3.5, we see a very rapid partial decay of n6 and n12

together with an increase of n7. Furthermore, for nk with 8 ≤ k ≤ 11, there are later and more modest
excitations with a periodic time structure. Here, the final state at t = 2000 ∆t is also not thermalized,
but it is closer to thermalization as for the case A = 1.
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Figure 7. Color density plot of the orbital occupation number nk in the plane of orbital index k and
time t for the time dependent state |ψ(t)>= exp(−iHt)|ψ(0)> with initial condition |ψ(0)>= |φ1>=

|0000100000111111>. The time values are integer multiples of the elementary quantum time step
∆t = tH/d = 1/[

√
2π σ(A)] where tH is the Heisenberg time (at the given value of A). The bar behind

the vertical white line with the label “th” shows the theoretical thermalized Fermi–Dirac occupation
numbers n(εk) where β and µ are determined from (12) using the energy E = E1p of the state |ψ(t)> at
the last time value t = 2000 ∆t. The two panels correspond to the Åberg parameter A = 1 (a), A = 3.5
(b). For the translation of colors to nk values, the color bar of Figure 6 applies.

The linear time scale used in Figure 7 is not very convenient since it cannot capture a rapid
decay/increase of nk well at small times and its maximal time value is also significantly limited
below the Heisenberg time. Therefore, we use in Figures 8 and 9 a logarithmic time scale with
0.1 ∆t ≤ t ≤ 106 ∆t ≈ 102 tH. Note that, in these figures, the different nk values for each cell are not
time averaged but represent the precise values for certain, exponentially increasing, discrete time
values (see caption of Figure 8 for the precise values). Therefore, in case of periodic oscillations of nk,
there will be, for larger time values, a quasi random selection of different time positions with respect
to the period.
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Figure 8. Color density plot of the orbital occupation number nk in the plane of orbital index k
and time t for the time dependent state |ψ(t)>= exp(−iHt)|ψ(0)>. The time axis is shown in
logarithmic scale with time values tn = 10 (n/100)−1 ∆t and integer n ∈ {0, 1, . . . , 700} corresponding to
0.1 ≤ tn/∆t ≤ 106. The elementary quantum time step ∆t is the same as in Figure 7. The bar behind
the vertical white line with the label “th” shows the theoretical thermalized Fermi–Dirac occupation
numbers n(εk) where β and µ are determined from (12) using the energy E = E1p of the state |ψ(t)> at
the last time value t = 106 ∆t. The additional longer tick below the t-axis right next to the tick for 103

gives the position of the maximal time value t/∆t = 2000 of Figure 7. The different panels correspond
to the initial state |ψ(0)>= |φ1>= |0000100000111111> (a,c,e) or |ψ(0)>= |φ2>= |0010100000011111>
(b,d,f) and Åberg parameter values A = 1 (a,b), A = 3.5 (c,d), A = 10 (e,f). For the translation of colors
to nk values, the color bar of Figure 6 applies.

In Figure 8, the time evolution for the initial states |φ1> and |φ2> is shown for the Åberg values
A = 1, 3.5, 10. For |φ1> at A = 1 and A = 3.5, the observations of Figure 7 are confirmed with the
further information that the absence of thermalization in these cases is also valid for time scales larger
than 2000 ∆t up to 106 ∆t and for A = 3.5 the initial decay of n6 and n12 happens at t ≈ 10 ∆t. For |φ1>

at A = 10, the decay starts at t ≈ 3 ∆t and an approximate thermalization happens at t > 40 ∆t.
However, here there is still some time periodic structure and it would be necessary to do some time
average to have perfect thermalization. For |φ2> at A = 1, the decay of excited orbitals 12 and 14 starts
at t ≈ 100 ∆t and saturates at t ≈ 1000 ∆t at which time also orbitals 6 and 7 are excited. After this,
there are very small excitations of orbitals 8, 9, 10 and maybe 13, 15. There is also some very modest
decay of the Fermi sea orbitals 2, 4 and 5 at t > 1000 ∆t. The final state at t = 106 ∆t is not thermalized
even though some orbitals have nk values close to thermalization. For |φ2> at A = 3.5, the decay of
excited orbitals 12 and 14 starts at t ≈ 10 ∆t and, for t > 300 ∆t, there is thermalization (but requiring
some time average as for |φ1> at A = 10). Interestingly, at intermediate times 10 ∆t < t < 100 ∆t,
the high orbitals 13 and 16 are temporarily slightly excited and decay afterwards rather quickly to
their thermalized values. For |φ2> at A = 10, the decay of excited orbitals 12 and 14 starts even at
t ≈ 3 ∆t and thermalization seems to set in at t > 30 ∆t.
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Figure 9. As in Figure 8 but for the initial states |ψ(0)>= |φ3>= |0000011000110111> (a,c,e) and
|ψ(0)>= |φ4>= |1000100011001011> (b,d,f) (with the same A values as in Figure 8 for each row).
These initial states can be obtained from the eigenstates of H for A = 0.35 at level numbers m = 123 or
1354, respectively, by rounding the occupation numbers to 1 (or 0) if nk > 0.5 (nk < 0.5) (see also top
panels of Figure 2).

Figure 9 is similar to Figure 8 except for the initial states |φ3> and |φ4> which have occupation
numbers nk ∈ {0, 1} obtained by rounding the nk values of the two eigenstates visible in the two
top panels of Figure 2. Here, the initial decay of excited orbitals starts roughly at t ≈ 300 ∆t
(t ≈ (10− 20)∆t or t ≈ (2 − 3)∆t) for A = 1 (A = 3.5 or A = 10, respectively). There is
no thermalization for both states at A = 1 (but some nk values are close to thermalized values),
approximate thermalization for A = 3.5 and |φ3> and good thermalization for A = 3.5 and |φ4> as
well as A = 10 (both states).

Using the time dependent values nk(t), one can immediately determine the corresponding entropy
S(t) using (11). At t = 0, we have obviously S(0) = 0, since, for all four initially considered states,
we have perfect occupation number values of either nk = 0 or nk = 1. Naturally, one would expect
that the entropy increases with a certain rate and saturates then at some maximal value which may
correspond (or be lower) to the thermalized entropy Sth(E1p) (with E1p determined for the state |ψ(t)>
at large times) depending if there is presence (or absence) of thermalization according to the different
cases visible in Figures 8 and 9. However, in the absence of thermalization, we see that there may also
exist periodic oscillations with a finite amplitude at very long time scales.

In Figure 10, we show the time dependent entropy S(t) for the two initial states |φ1>, |φ4> and
the three values A = 1, A = 3.5 and A = 10 of the Åberg parameter. For A = 10, there is indeed a
rather rapid saturation of the entropy of both states at a maximal value that is indeed close to the
thermalized entropy Sth(E1p). We note that E1p is not conserved at strong interactions and that its
initial value E1p ≈ 30 (E1p ≈ 35) at t = 0 evolves to E1p ≈ 33.5 (E1p ≈ 37) at large times for |φ1> (|φ4>)
corresponding roughly to S ≈ Sth(E1p) ≈ 9.2 (10.8) visible as thin blue horizontal lines in Figure 10.
For A = 3.5 (or A = 1), the thermalized entropy values, visible as thin green (red) lines, are lower as
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compared to the case A = 10 due to different final E1p values. For A = 3.5 and |φ4>, there is also
saturation of S to its thermalized value. For A = 3.5 and |φ1>, there seems to be an approximate
saturation at a quite low value S ≈ 6 but with periodic fluctuations in the range 6± 0.3. For A = 1
and |φ4>, there is a quite late and approximate saturation with some fluctuations that are visible for
t > 104 ∆t and with S ≈ 10± 0.2. For A = 1 and |φ1>, there is a late periodic regime for t > 103 ∆
with a quite large amplitude S ≈ 3± 1 and with Smax ≈ 4 significantly below the thermalized entropy
Sth(E1p) ≈ 5.5. The panels using a normal (instead of logarithmic) time scale with t ≤ 200 ∆t miss
completely the long time limits for A = 1 and might incorrectly suggest that there is an early saturation
at quite low values of S.
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Figure 10. Time dependence of the entropy S, computed by (11), of the state |ψ(t) >=

exp(−iHt)|ψ(0) > for the Åberg parameter values A = 1 (red lines), A = 3.5 (green lines),
A = 10 (blue lines) and initial states |ψ(0)>= |φ1>= |0000100000111111> (a,c); |ψ(0)>= |φ4>=

|1000100011001011 > (b,d); thick colored lines show numerical data of S(t) and thin horizontal
colored lines show the thermalized entropy Sth(E1p) with E1p being determined from |ψ(t)> at
t = 106 ∆t; panels (a,b) use a linear time axis: 0 ≤ t ≤ 200 ∆t; panels (c,d) use a logarithmic time axis:
0.1 ∆t ≤ t ≤ 106 ∆t; ∆t is the elementary quantum time step (see also Figure 6).

The periodic (or quasi-periodic) time dependence of nk(t) or S(t), for the cases with lower values
of A and/or an initial state with lower energy, indicates that, for such states, only a small number
(2, 3, . . .) of exact eigenstates of H contribute mostly in the expansion of |ψ(t)> in terms of these
eigenstates.

Figure 10 also shows that the initial increase of S(t) is rather comparable between the two states
for identical values of A even though the long time limit might be very different. Furthermore,
a closer inspection of the data indicates that typically S(t) is close to a quadratic behavior for t . ∆t
but which immediately becomes linear for t & ∆t similarly as the transition probabilities between
states in the context of time dependent perturbation theory. To study the approximate slope in the
linear regime, we define (For practical reasons, we decide to incorporate the quantum time step
∆t in the definition of Γc, i.e., Γc is defined as the ratio of the initial slope S′(t) over the global
spectral bandwidth ∼ σ(A) ∼ 1/∆t) the quantity Γc = dS(t)/d(t/∆t) = ∆tS′(t) for t = ξ∆t, where
ξ & 1 is a numerical constant of order one. To determine Γc practically, we perform first the fit
S(t) = S̄∞ (1− exp[−γ̄1(t/∆t)]) for 0 ≤ t/∆t ≤ 100 and use the exponential decay rate γ̄1 to perform
a refined fit S(t) = S∞ (1− exp[−γ1(t/∆t)− γ2(t/∆t)2]) for the interval 0 ≤ t/∆t ≤ 5/γ̄1. From this,
we determine Γc = S∞ γ1, which is rather close to S̄∞ γ̄1 for A ≤ 2 but not for larger values of A where
the decay time is reduced and not sufficiently large in comparison to the initial quadratic regime.
Therefore, the quadratic term in the exponential is indeed necessary to obtain a reasonable fit quality.
This procedure corresponds to an effective average of the value of ξ between 1 and roughly 1/γ1,
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which is indeed useful to smear out some oscillations in the initial increase of S(t) for smaller values
A ≤ 1.

We note that, for many-body quantum systems, the exponential growth of entropy with time had
been also discussed and numerically illustrated in [40] (see also related publications in References 25
and 26 there). Recently, such an exponential growth of entropy has been discussed in [62,70].

Figure 11 shows the dependence of these values of Γc on the parameter A for our four initial
states. At first sight, one observes a behavior Γc ∝ A2 for A . 2 and a saturation for larger values
of A. However, a more careful analysis shows that there are modest but clearly visible deviations
with respect to the quadratic behavior in A (power law fits Γc ∝ Ap for A ≤ 2 provide exponents
close to p ≈ 1.75− 1.85) and it turns out that these deviations correspond to a logarithmic correction:
Γc = f (A) = (C1 − C2 ln[g(A)]) g(A) with g(A) = A2 (for fits with A ≤ 1) or with g(A) = A2/(1 +

C3 A2) (for fits with all A values).
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Figure 11. Dependence of the initial slope Γc = ∆t S′(t) (at small time values t ∼ ∆t) of
the time dependent entropy on the Åberg parameter A in double logarithmic scale. ∆t is the
elementary quantum time step (see also Figure 6). The practical determination of Γc is done using
the fit S(t) = S∞ (1 − exp[−γ1(t/∆t) − γ2(t/∆t)2]) which provides Γc = S∞ γ1. The different
data points correspond to the four different initial states used in Figures 8 and 9. The dashed
line corresponds to the power law behavior ∝ A2 and the light blue line corresponds to the fit
Γc = f (A) = (C1 − C2 ln[g(A)]) g(A) with g(A) = A2/(1 + C3 A2) and fit values C1 = 0.107± 0.009,
C2 = 0.0081± 0.0023, C3 = 0.092± 0.017 for the initial state |ψ(0)>= |φ1>= |0000100000111111>
corresponding to the red plus symbols. Fit values for the other initial states can be found in Table 2.
The full black line corresponds to f0(A) = f (A)C3=0 = [C1−C2 ln(A2)] A2. The simpler fit Γc = f0(A)

in the range 0.025 ≤ A ≤ 1 provides the values C1 = 0.107± 0.002 and C2 = 0.0078± 0.0005 which are
identical (within error bars) to the values found by the more general fit Γc = f (A) for the full range of
A values.

Table 2. Values of the fit parameters C1, . . . , C5 for the initial states |φ1 >, . . . , |φ4 > used for the
analytical fits of Γc (ΓF) in Figure 11 (see also Figure 12 and Figure 13).

Initial State C1 C2 C3 C4 C5

|φ1>= |0000100000111111> 0.107± 0.009 0.0081± 0.0023 0.092± 0.017 0.0048± 0.0001 0.0054± 0.0003
|φ2>= |0010100000011111> 0.100± 0.003 0.0103± 0.0011 0.069± 0.007 0.0068± 0.0001 0.0099± 0.0003
|φ3>= |0000011000110111> 0.110± 0.005 0.0130± 0.0016 0.080± 0.012 0.0076± 0.0001 0.0098± 0.0003
|φ4>= |1000100011001011> 0.103± 0.003 0.0210± 0.0007 0.018± 0.005 0.0094± 0.0001 0.0140± 0.0002

To understand this behavior, we write for sufficiently small times nk(t) ≈ 1− δnk(t) (if nk(0) = 1)
or nk(t) ≈ δnk(t) (if nk(0) = 0), where δnk(t) is the small modification of nk(t). Time dependent
perturbation theory suggests that δnk(t) ∼ (t/∆t)2 for t . ∆t and δnk(t) ≈ ak A2 t/∆t for t & ∆t such
that still δnk(t) � 1 with coefficients ak dependent on k (and also on M, L) and satisfying a linear
relation to ensure the conservation of particle number. Using (11) and neglecting corrections of order
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δn2
k , we obtain: S ≈ −∑k (δnk ln δnk − δnk) and Γc = ∆t S′(t) ≈ −∆t ∑k δn′k(t) ln δnk(t) with t = ξ ∆t.

Since δn′k(t) ≈ ak A2/∆t, we find indeed the behavior :

Γc = [C1 − C2 ln(A2)] A2 , C1 = −∑
k

ak〈ln(akξ)〉 , C2 = ∑
k

ak, (14)

where 〈· · · 〉 indicates an average over some modest values of ξ & 1. The precise values of ak may
depend rather strongly on the orbital index k and the initial state (see also Figures 8 and 9), but the
coefficients C1, C2 depend only slightly on the initial state (see Table 2). Furthermore, by replacing
A2 → g(A) = A2/(1 + C3 A2) to allow for a saturation at large A and with a further fit parameter
C3, it is possible to describe the numerical data by the more general fit Γc = f (a) for the full range of
A values.

3.7. Survival Probability and Fermi’s Golden Rule

The knowledge of the time dependent states |ψ(t)> allows us also to compute the decay function
pdec(t) = | <ψ(0)|ψ(t)> |2 which represents the survival probability of the initial non-interacting
eigenstate due to the influence of interactions. Again, for the very short time window t . ∆t, we expect
a quadratic decay: 1− pdec(t) ≈ 〈(H − Emean)2〉t2 ≈ const. (t/∆t)2 with 〈· · · 〉 being the quantum
expectation value with respect to |ψ(0)> and a numerical constant . 1 since 1/∆t represents roughly
the spectral width of H. For t & ∆t, but such that 1− pdec(t) � 1, we have, according to Fermi’s
golden rule: 1− pdec(t) = ΓF (t/∆t), where ΓF is the decay rate (Again, for practical reasons and
similarly to Γc, we incorporate in the definition of ΓF the time scale ∆t, i.e., ΓF = ∆t × usual decay
rate found in the literature and meaning that ΓF is defined as the ratio of the usual decay rate over the
global spectral bandwidth) of the state.

To determine ΓF numerically, we apply the fit: pdec(t) = C exp(−ΓF t/∆t) in two steps. First,
we use the interval 1 ≤ t/∆t ≤ 50 and, if 5/ΓF < 50, corresponding to a rapid decay (which happens
for larger values of A), we repeat the fit for the reduced interval 1 ≤ t/∆t ≤ 5/ΓF. The choice of the
Amplitude C 6= 1 and the condition t ≥ ∆t for the fit range allow for taking into account the effects
due to the small initial window of quadratic decay. In Figure 12, we show two examples for the initial
state |φ1> and the Åberg values A = 3.5 and A = 10. In both cases, the shown maximal time value
tmax = 50 ∆t (if A = 3.5) or tmax ≈ 13.5 (if A = 10) defines the maximal time value for the fit range.
For A = 10, the fit nicely captures the decay for 1 ≤ t/∆t ≤ 6, while, for A = 3.5, there are also some
oscillations in the decay function for which the fit procedure is equivalent to some suitable average in
the range 1 ≤ t/∆t ≤ 30. For very small values of A, the fit procedure also works correctly since it
captures only the initial decay that is important if pdec(t) does not decay completely at large times and
which typically happens in the perturbative regime A . 1.
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Figure 12. Decay function pdec(t) = | <ψ(0)|ψ(t)> |2 obtained numerically from |ψ(t)> with the
initial state |ψ(0)>= |0000100000111111> (thin red line) and the fit pdec(t) = C exp(−ΓF t/∆t) (thick
green line) for the two Åberg values A = 3.5 (a) and A = 10 (b). The fit values are C = 0.959± 0.011,
ΓF = 0.0483± 0.0015; (a)C = 1.339± 0.015, ΓF = 0.369± 0.005; (b) corresponding to the decay times
Γ−1

F = 20.7 (a), 2.71; (b). ∆t is the elementary quantum time step (see also Figure 6).
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Figure 13 shows the dependence of ΓF on A for the usual four initial states together with the
fit ΓF = f (A) = C4 A2/(1 + C5 A2) for the data with initial state |φ1>. The values of the parameters
C4, C5 for this and the other initial states are given in Table 2. Here, the initial quadratic dependence
ΓF ∝ A2 is highly accurate (with no logarithmic correction). Similarly to Γc, there is only a slight
dependence of the values of ΓF and the fit values on the choice of initial state.
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Figure 13. Dependence of the decay rate ΓF corresponding to Fermi’s gold rule on the Åberg parameter
A in double logarithmic scale. The practical determination of ΓF is done using the exponential fit
function of Figure 12 for the numerically computed decay function pdec(t). The different data points
correspond to the four different initial states used in Figures 8 and 9. The dashed line corresponds to the
power law behavior ∝ A2 and the full black line corresponds to the fit ΓF = f (A) = C4 A2/(1 + C5 A2)

and fit values C4 = 0.0048 ± 0.0001, C5 = 0.0054 ± 0.0003 for the initial state |ψ(0)>= |φ1 >=

|0000100000111111> corresponding to the red plus symbols. Fit values for the other initial states can
be found in Table 2. ∆t is the elementary quantum time step (see also Figure 6).

Theoretically, we expect according to Fermi’s Golden rule that: ΓF ≈ (∆t) 2πV2
Fock ρc(E), where

V2
Fock = TrFock(V2)/(Kd) = σ2

0 αA2/K according to the discussion below (10) and ρc(E) is the effective
two-body density of states for states directly coupled by the interaction such that ρc(Emean) = 1/∆c

(see discussion below (7)). We note that VFock is the typical interaction matrix element in Fock space
which is slightly larger than Vmean (see the theoretical discussion above for the computation of the
coefficient α used in (10) and Appendix A of [46]). The factor ∆t is due to our particular definition
(Again, for practical reasons and similarly to Γc, we incorporate in the definition of ΓF the time scale
∆t, i.e., ΓF = ∆t × usual decay rate found in the literature and meaning that ΓF is defined as the ratio
of the usual decay rate over the global spectral bandwidth) of decay rates. The expression of ΓF is
actually also valid for larger values of A provided we use the density of states ρc(E) in the presence of
interactions that provides an additional factor 1/

√
1 + αA2 according to (10). Therefore, at the band

center, we have: 2π ∆t ρc = K/[σ0(L) σ0(L = 2)(1 + αA2)], which gives, together with (8):

ΓF =
σ0(L)

σ0(L = 2)

(
αA2

1 + α A2

)
=

√
L(M− L)
2(M− 2)

(
αA2

1 + α A2

)
. (15)

For M = 16 and L = 7, the square root factor is 1.5 and we have to compare 1.5α ≈ 0.0132 with
the values of C4 in Table 1, which are somewhat smaller, probably due to a reduction factor for the
energy dependent density of states since the energies of the initial states have a certain distance to
the band center. Furthermore, according to (15), we have to compare C5 with α ≈ 0.00877 which is
not perfect but gives the correct order of magnitude. For both parameters, the numerical matching is
quite satisfactory taking into account the very simple argument using the same typical value of the
interaction matrix elements for all cases of initial states.

Finally, we mention that, for the three Åberg parameter values A = 1, A = 3.5, A = 10 used in
Figures 8 and 9, we have typical decay times in units of ∆t being 1/ΓF ≈ 300, 30, 3, respectively (with
some modest fluctuations depending on initial states). These values match quite well the observed time
values at which the initially occupied orbitals start to decay (see the above discussion of Figures 8 and 9).
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3.8. Time Evolution of Density Matrix and Spatial Density

We now turn to the effects of the many-body time evolution in position space (see for example
Figure 1). For this, we compute the spatial density

ρ(x, y, t) =<ψ(t)|Ψ†(x, y)Ψ(x, y)|ψ(t)> , Ψ(†)(x, y) = ∑
k

ϕ
(∗)
k (x, y) c(†)k , (16)

where ϕk(x, y) is the one-particle eigenstate of orbital k, with some examples shown in Figure 1.
Here, Ψ(†)(x, y) denotes the usual fermion field operators (in the case of continuous x, y variables) or
standard fermion operators for discrete position basis states (when using a discrete grid for x and y
positions as we did for the numerical solution of the non-interacting Sinai oscillator model in Section 2).
The sum over orbital index k in (16) requires in principle a sum over a full complete basis set of orbitals
with infinite number (case of continuous x, y values) or a very large number (case of discrete x-y grid)
significantly larger than the very modest number of orbitals M we used for the numerical solution of
the many-body Sinai oscillator.

However, we can simply state that, in our model, by construction, all orbitals with k > M are never
occupied such that, in the expectation value for ρ(x, y, t), only the values k ≤ M are necessary. Taking
this into account together with the fact that the one-particle eigenstates are real valued, we obtain the
more explicit expression:

ρ(x, y; t) =
M

∑
k,l=1

ϕk(x, y) ϕl(x, y) nkl(t) , nkl(t) =<ψ(t)|c†
k cl |ψ(t)>, (17)

where nkl(t) is the density matrix in orbital representation generalizing the occupation numbers
nk(t) which are its diagonal elements. Due to the complex phases of |ψ(t)> (when expanded in
the usual basis of non-interacting many-body states), the density matrix is complex valued but
hermitian: n∗kl(t) = nlk(t). Therefore, its anti-symmetric imaginary part does not contribute in
ρ(x, y; t). We have numerically evaluated (17) and we present in Figure 14 color plots of the density
matrix and the spatial density ρ(x, y; t) for A = 3.5, the initial state |ψ(0)>= |φ2> and four time
values t/∆t = 0.1, 30, 100, 1000. Since the density ρ(x, y; t) does not provide a lot of spatial structure,
we also show in Figure 14 the density difference with respect to the initial condition ∆ρ(x, y; t) =

ρ(x, y; t)− ρ(x, y; 0) which reveals more of its structure (figures and videos for the time evolution of
this and other cases are available for download at the web page [71]).

At the time t/∆t = 0.1, density matrix and spatial density are essentially identical to the initial
condition at t = 0. For ∆ρ, we see a non-trivial structure since there is a small difference with the
initial condition and the color plot simply amplifies small maximal amplitudes to maximal color values
(red/yellow for strongest positive/negative values even if the latter are small in an absolute scale).
The density matrix is diagonal and its diagonal values are either 1 (for initially occupied orbitals) or
0 (for initially empty orbitals) and the spatial density simply gives the sum of densities due to the
occupied eigenstates.

At t/∆t = 30, we see a non-trivial structure in the density matrix with a lot of non-vanishing
values in certain off-diagonal elements. Furthermore, the orbitals 13 and 16 are also slightly excited
(see also discussion of Figure 8) and there is a significant change of the spatial density.

Later, at t/∆t = 100, the number/values of off-diagonal elements in the density matrix is
somewhat reduced, but they are still visible. Especially between orbitals 12 and 13 as well as 14 and
15, there is a rather strong coupling. Orbital 13 is now more strongly excited than the initially excited
orbital 12. In addition, orbitals 14 and 15 are quite strong. The spatial density has become smoother
and the structure of ∆ρ is roughly close to the case at t/∆t = 30 but with some significant differences.
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Figure 14. Time dependent density matrix |nkl(t)| (a), spatial density ρ(x, y, t) (b), spatial density
difference with respect to the initial condition ∆ρ(x, y, t) = ρ(x, y, t) − ρ(x, y, 0) (c) all computed
from |ψ(t)> for the initial state |ψ(0)>= |φ2 >= |0010100000011111> and the Åberg parameter
A = 3.5. Panels in column (a) correspond to (k, l) plane with k, l ∈ {1, . . . , 16} being orbital index
numbers. Panels in columns (b,c) correspond to the same rectangular domain in (x, y) plane as in
Figure 1. The five rows of panels correspond to the time values t/∆t = 0.1, 30, 100, 1000 and the
thermalized case (label “th”) where the density matrix is diagonal with entries being the thermalized
occupations numbers nkk = n(εk) at energy E = 32.9 (typical total one-particle energy of |ψ(t)>
for t/∆t ≥ 1000). The numerical values of the color bar represent values of |nkl | (a), (ρ/ρmax)1/2

(b), sgn(∆ρ)(|∆ρ|/∆ρmax)1/2 (c) where ρmax or ∆ρmax are maximal values of ρ or |∆ρ|, respectively.

Finally, at t/∆t = 1000, the density matrix seems be diagonal with values close to the thermalized
values. There is a further increase of the density smoothness and ∆ρ has a similar but different structure
as for t/∆t = 100 or t/∆t = 30.

Apparently, at intermediate times 20 ≤ t/∆t ≤ 100, there are some quantum correlations between
certain orbitals, visible as off-diagonal elements in the density matrix which disappear for later times.
This kind of decoherence is similar to the exponential decay observed in [46] for the off-diagonal
element of the 2× 2 density matrix for a qubit coupled to a chaotic quantum dot or the SYK black hole.
However, to study this kind of decoherence more carefully in the context here, it would be necessary
to use as initial state a non-trivial linear combination of two non-interacting eigenstates and not to rely
on the creation of modest off-diagonal elements for intermediate time scales as we see here.

The spatial density is globally rather smooth and typically quite well given by the “classical”
relation ρ(x, y; t) ≈ ∑k ϕ2

k(x, y) nk(t) in terms of the time dependent occupation numbers. Only for
intermediate time scales with more visible quantum coherence (more off-diagonal elements nkl(t) 6= 0),
this relation is less accurate. However, at A = 3.5, the density still exhibits small but regular fluctuations
in its detail structure as can be seen in the structure of ∆ρ for later time scales. A closer inspection of
the data (for time values not shown in Figure 14) also shows that, even at long time scales, there are
significant fluctuations of ρ when t is slightly changed by a few multiples of ∆t.

In Figure 14, we also show for comparison the theoretical thermalized quantities where, in (17),
the density matrix is replaced by a diagonal matrix with entries being the thermalized occupations
numbers nkk = n(εk) at energy E = 32.9, which is the typical total one-particle average energy of
|ψ(t)> for the long time limit t/∆t ≥ 1000 showing that, at t/∆t = 1000, the state is very close to
thermalization but still with small significant differences (see also discussion of Figure 7 for this case).

We may also generalize the spatial density (16) to a spatial density correlator which we define as:

ρcorr(x, y; x0, y0; t) =<ψ(t)|Ψ†(x, y)Ψ(x0, y0)|ψ(t)>=
M

∑
k,l=1

ϕk(x, y) ϕl(x0, y0) nkl(t) (18)
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depending on initial (x0, y0) and final position (x, y). As an illustration, we choose the fixed value
(x0, y0) = (1.22, 0.15) which is very close to the maximal position (center of the red area) of the
one-particle ground state ϕ1(x, y) visible in panel (a) of Figure 1. The spatial density correlator is
potentially complex with a non-vanishing imaginary part in case of non-vanishing off-diagonal matrix
elements of nkl(t) 6= 0 for k 6= l. In Figure 15, we present density plots of absolute value, real and
imaginary part of ρcorr(x, y; x0, y0; t) in (x, y) plane and with the given value (x0, y0) = (1.22, 0.15)
for the same parameters of Figure 14 (concerning initial state, Åberg parameter, time values and also
thermalized case). However, for the thermalized case, the density matrix is diagonal by construction
and the imaginary part of ρcorr,th(x, y; x0, y0) vanishes (giving a blue panel due to zero values).
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Figure 15. Time dependent spatial density correlator ρcorr(x, y; x0, y0; t) shown in the same rectangular
domain in (x, y) plane as in Figure 1. The columns correspond to absolute value (a), real part (b),
imaginary part (c). The initial point is given by (x0, y0) = (1.22, 0.15) which is very close to the maximal
position (center of the red area) of the one-particle ground state ϕ1(x, y) visible in panel (a) of Figure 1.
Initial state, Åberg parameter and meaning of row labels are as in Figure 14. The numerical values
of the color bar represent values of sgn(u)|u/umax|1/2 where u is absolute value (a), real part (b),
imaginary part (c), of ρcorr and umax is the maximal value of |u|. The data for thermalized case and
imaginary part is completely zero (blue panel in bottom right corner) since the spatial density correlator
is for the thermalized case purely real.

There are significant time dependent fluctuations of ρcorr(x, y; x0, y0; t) for all time scales with real
part and absolute value being dominated by rather strong maximal values for positions close to the
initial position. However, the imaginary part (which vanishes at t = 0 and is typically smaller than
the values in maximum domain of a real part) shows a more interesting structure since the color plot
amplifies small amplitudes (in absolute scale). Apart from this, the absolute and real part values for
positions outside the maximum domain (far away from the initial position) seem to decay for long
timescales, which is also confirmed by the thermalized case. Even though the case for t/∆t = 1000
seems to be rather close to the thermalized case (for absolute value and real part), there are still
differences that are more significant here as in Figure 14.

Globally, the obtained results show that the dynamical thermalization takes place well, leading to
the usual Fermi–Dirac thermal distribution when the Åberg criterion is satisfied and interactions are
sufficiently strong to drive the system into the thermal state.
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4. Estimates for Cold Atom Experiments

We discuss here typical parameters for cold atoms in a trap following [72]. Thus, for sodium
atoms, we have ω ≈ ωx,y,z ≈ 2π10Hz with a0 =

√
h̄/(mω) = 6.5µm and oscillator level spacing

Eu = h̄ω ≈ 0.5nK (nanoKelvin). The typical scattering length is as ≈ 3nm being small compared
to a0. The atomic density is ρ0 = 1/(a0)

3 ≈ 4× 109cm−3. Since as � a0, the two-body interaction
is of δ-function type with v(r1 − r2) = (4πh̄2as/m)δ(r1 − r2) [66,72]. In our numerical simulations,
δ(r) is replaced by a function H(rc − |r|)/(C 2drd

c ) with a small rc, volume C of the unit sphere in d
dimensions and with the Heaviside function H(x) = 1 (or 0) for x ≥ 0 and H = 0 for x < 0. Hence,
our parameter U introduced in Section 3 corresponds to U = (C 2drd

c )(4πh̄2as/m).
Below, we present the estimates for the dynamical thermalization border for excitations

of fermionic atoms in a vicinity of their Fermi energy in a 3D Sinai oscillator following the
lines of Equation (1). In such a case, the two-body interaction energy scale between atoms is
Us = 4πh̄2ρ0as/m = 4π(as/a0)h̄ω [66,72] so that Us/h̄ω ∼ 6× 10−3. Compared to sodium, the mass
of Li atoms is approximately three times smaller so that, for the same ω, we have a0 ≈ 10µm and
Us/h̄ω ≈ 4× 10−3. We think that the scattering length can be significantly increased via the Feshbach
resonance, allowing for reaching effective interaction values Us/h̄ω ∼ 1 being similar to the value
A ∼ 3 used in our numerical studies with the onset of dynamical thermalization.

Usually, a 3D trap with fermionic atoms can capture about Na ∼ 105 atoms with ω ≈ ωx ∼ ωy ∼
ωz ∼ 2π10Hz. Following the result (1), it is interesting to determine the DTC border dependence
on Na � 1 for a Sinai oscillator with rd ∼ 1µm ∼ a0/5. We assume that, similar to a 2D case,
the scattering on an elastic ball in the trap center leads to quantum chaos and chaotic eigenstates with
` ≤ Na components (e.g., in the basis of oscillator eigenfunctions). The Fermi energy of the trap is
then EF = h̄(Naωxωyωz)1/3 ≈ h̄ωNa

1/3 [52,53]. Assuming that all these components have random
amplitudes of a typical size 1/

√
`, we then obtain an estimate for a typical matrix element of two-body

interaction between one-particle eigenstates

U2 ≈ αs h̄ω/`3/2 , αs = 4π(as/a0), a0 =
√

h̄/mω. (19)

The derivation of this estimate is very similar to the case of two interacting particles in a disordered
potential with localized eigenstates [73]. At the same time, in the vicinity of the Fermi energy
EF, we have the one-particle level spacing ∆1 = dEF/dNa ≈ h̄ω/(3Na

2/3). Hence, the effective
conductance appears in in (1) is g = ∆1/U2 ≈ `3/2/(3αsNa

2/3). Thus, from (1), we obtain the
dynamical thermalization border for excitation energy δE in a 3D Sinai oscillator trap with Na
fermionic atoms:

δE > δEch ≈ ∆1g2/3 ≈ 2`∆1/(αs
2/3Na

4/9) ∼ Na
5/9∆1/αs

2/3 ∼ h̄ω/(αs
2/3Na

1/9) ∼ EF/(αs
2/3Na

4/9). (20)

It is assumed that δE � EF. Here, the last three relations are written in an assumption that
` ∼ Na. Thus, at large Na values and not too small αs, the critical energy border δEch for dynamical
thermalization is rather small compared to EF. However, still δEch � ∆1. Here, we used the maximal
value for the number of components ` ∼ Na. It is possible that, in reality, ` can be significantly
smaller than Na. However, the determination of the dependence `(Na) requires separate studies taking
into account the properties of chaotic eigenstates and their spreading over the energy surface. This
spreading can have rather nontrivial properties (see, e.g., [23]). This is confirmed by the results
presented in Appendix A for the 2D case of Sinai oscillator showing the numerically obtained
dependence of two-body matrix elements on energy for transitions in a vicinity of Fermi energy
EF (see Figure A1 there).

5. Conclusions

In this work, we demonstrated the existence of interaction induced dynamical thermalization of
fermionic atoms in a Sinai oscillator trap if the interaction strength between atoms exceeds a critical
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border determined by the Åberg criterion [38,39,41]. This thermalization takes place in a completely
isolated system in the absence of any contact with an external thermostat. In the context of the
Loschmidt–Boltzmann dispute [1,2], we should say that formally this thermalization is reversible
in time since the Schrodinger equation of the system has symmetry t → −t. The classically chaotic
dynamics of atoms in the Sinai oscillator trap breaks in practice this reversibility due to exponential
growth of errors induced by chaos. In the regime of quantum chaos, there is no exponential growth
of errors due to the fact that the Ehrenfest time scale of chaos is logarithmically short [17,19,26,28].
An example for the stability of time reversibility is given in [27,28]. In fact, the experimental reversal of
atom waves in the regime of quantum chaos has been even observed with cold atoms in [74]. In view
of this and the fact that the spectrum of atoms in the Sinai oscillator trap is discrete, we can say that
dynamical thermalization will have obligatory revivals in time returning from the thermalized state
(e.g., bottom panels in Figure 8) to the initial state (top panels in Figure 8). This is the direct consequence
of the Poincare recurrence theorem [75]. However, the time for such a recurrence grows exponentially
with the number of components contributing to the initial state (which is also exponentially large in the
regime of dynamical thermalization) and thus, during such a long time scale, external perturbations
(coming from outside of our isolated system, e.g., not perfect isolation) will break in practice this
time reversibility.

We hope that our results will initiate experimental studies of dynamical thermalization with cold
fermionic atoms in systems such as the Sinai oscillator trap.
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Appendix A. Two-Body Matrix Elements near the Fermi Energy

In this Appendix, we present numerical results for the dependence of the quantity
Vmean(ε) =

√
〈V2

ij,kl〉 as a function of ε where the average is done only for orbitals with energies εn

close to ε (for n ∈ {i, j, k, l}), i.e.: |εn − ε| ≤ ∆ε with ∆ε = 2. We note that this is different from the
quantity Vmean used in Section 3 where the average was done over all orbitals (up to a maximal number
being M). The reason for the special average with orbital energies close to ε (which will be identified
with the Fermi energy EF) is that these transitions are dominant in the presence of the Pauli blockade
near the Fermi level.

We remind readers that, according to the discussion of Sections 2 and 3, the matrix elements
Vij,kl were computed for an interaction potential of amplitude U for |r1 − r2| < rc (with the radius
rc = 0.2rd = 0.2) and being zero for |r1 − r2| ≥ rc. Furthermore, they have been anti-symmetrized and
a diagonal shift Vij,ij → Vij,ij − (1/M2)∑k<l Vkl,kl was applied to ensure that the interaction matrix has
a vanishing trace.

Due to this shift and the precise average procedure, there is a slight (purely theoretical)
dependence on the maximal orbital number M for this average (there is a cut-off effect for ε close to
the maximal orbital energy εM). Due to this, we considered two values of M = 30 and M = 60.

The numerically obtained dependence is shown in Figure A1 and is well described by the fit
Vmean/U = a/εb with a = 1.56× 10−4 and b = 0.78. The small value of a is due to antisymmetry of
two-particle fermionic states and, due to a small value of rc = 0.2rd, which leads to a decrease of the
effective interaction strength being proportional to rc

2.
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Figure A1. Dependence of the average two-body matrix element Vmean rescaled by the amplitude of
interaction strength U on one-particle energy ε for two-body interaction transitions in a vicinity of
Fermi energy EF = ε; green symbols are for number of one-particle orbitals M = 30, red symbols are for
M = 60; the blue line shows the fit Vmean/U = a/εb with a = 0.000156± 2× 10−6; b = 0.781± 0.005.

We note that the Fermi energy is determined by the number of fermionic atoms Na inside
the 2D Sinai oscillators with ε = EF ≈ ωNa

1/2 assuming ω = ωx ≈ ωy. Therefore, we have
ε ∝ M1/2 ∼ Na

1/2, ∆1 ∼ h̄ω/Na
1/2 and Vmean ∼ αs h̄ω/`3/2 ∼ αs h̄ω/Na

b/2 (see (19)). Hence,
the obtained exponent b ≈ 0.78 corresponds to the number of one-particle components ` ∼ Na

b/3 ∼
Na

0.25 ∼ nx
0.5. At the moment, we do not have a clear explanation for this numerical dependence. This

dependence corresponds to g = ∆1/Vmean ∼ `3/2/(αsNa
1/2) ∼ 1/(αsNa

1/8). For such a dependence,
we obtain that the DTC border in 2D takes place for an excitation energy δE > δEch ∼ g2/3∆1 ∼
h̄ω/(αs

2/3Na
7/12). Thus, the thermalization can take place at rather low energy excitations above the

Fermi energy with ∆1 < δE� EF.
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