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Abstract. We develop the linear response theory for the Google matrix PageRank algorithm with respect
to a general weak perturbation and a numerical efficient and accurate algorithm, called LIRGOMAX
algorithm, to compute the linear response of the PageRank with respect to this perturbation. We illustrate
its efficiency on the example of the English Wikipedia network with more than 5 millions of articles
(nodes). For a group of initial nodes (or simply a pair of nodes) this algorithm allows to identify the
effective pathway between initial nodes thus selecting a particular subset of nodes which are most sensitive
to the weak perturbation applied to them (injection or pumping at one node and absorption of probability
at another node). The further application of the reduced Google matrix algorithm (REGOMAX) allows to
determine the effective interactions between the nodes of this subset. General linear response theory already
found numerous applications in various areas of science including statistical and mesoscopic physics. Based
on these grounds we argue that the developed LIRGOMAX algorithm will find broad applications in the
analysis of complex directed networks.

PACS. XX.XX.XX No PACS code given

1 Introduction

Linear response theory finds a great variety of applications
in statistical physics, stochastic processes, electron trans-
port, current density correlations and dynamical systems
(see e.g. [1,2,3,4,5]). In this work we apply the approach
of linear response to Google matrices of directed networks
with the aim to characterize nontrivial interactions be-
tween nodes.

The concept of Google matrix and the related PageR-
ank algorithm for the World Wide Web (WWW) has been
proposed by Brin and Page in 1998 [6]. A detailed descrip-
tion of the Google matrix construction and its properties
is given in [7]. This approach can be applied to numerous
situations and various directed networks [8].

Here we develop the LInear Response algorithm for
GOogle MAtriX (LIRGOMAX) which applies to a very
general model of a weakly perturbed Google matrix or
the related PageRank algorithm. As a particular applica-
tion we consider a model of injection and absorption at a
small number of nodes of the networks and test its effi-
ciency on examples of the English Wikipedia network of
2017 [9]. However, the scope of LIRGOMAX algorithm is
more general. Thus, for example, it can be also applied
to compute efficiently and accurately the PageRank sen-
sitivity with respect to small modifications of individual
elements of the Google matrix or its reduced version [10,
11,12,13].

From a physical viewpoint the approach of injec-
tion/absorption corresponds to a small pumping proba-

bility at a certain network node (or group of nodes) and
absorbing probability at another specific node (or group of
nodes). In a certain sense such a procedure reminds lasing
in random media where a laser pumping at a certain fre-
quency generates a response in complex absorbing media
[14].

More specifically we select two particular nodes, one
for injection and one for absorption, for which we use
the LIRGOMAX algorithm to determine a subset of most
sensitive nodes involved in a pathway between these two
nodes. Furthermore we apply to this subset of nodes the
REduced GOogle MAtriX (REGOMAX) algorithm devel-
oped in [10,11] and obtain in this way an effective Google
matrix description between nodes of the found pathway.

In general the REGOMAX algorithm determines effec-
tive interactions between selected nodes of a certain rel-
atively small subset embedded in a global huge network.
Its efficiency was recently demonstrated for the Wikipedia
networks of politicians [11] and world universities [12],
SIGNOR network of protein-protein interactions [13] and
multiproduct world trade network of UN COMTRADE
[15].

In this work our aim is to provide a first illustration
of the efficiency of the LIRGOMAX algorithm combined
with the reduced Google matrix analysis. Due to this we
restrict in this work our considerations to the analytical
description of the LIRGOMAX algorithm and the illus-
tration of its application to two cases from the English
Wikipedia network of 2017.
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The paper is constructed as follows: in Section 2 we
provide the analytical description of the LIRGOMAX al-
gorithm complemented by a brief description of the Google
matrix construction and the REGOMAX algorithm, in
Section 3 we present certain results for two examples of
the Wikipedia network, the discussion of results is given
in Section 4. Additional data are also available at [16].

2 Theory of a weakly perturbed Google
matrix

2.1 Google matrix construction

We first briefly remind the general construction of the
Google matrix G from a direct network of N nodes. For
this one first computes the adjacency matrix Aij with el-
ements 1 if node j points to node i and zero otherwise.
The matrix elements of G have the usual form Gij =
αSij +(1−α)/N [6,7,8], where S is the matrix of Markov
transitions with elements Sij = Aij/kout(j) and kout(j) =∑N

i=1Aij 6= 0 being the out-degree of node j (number of
outgoing links) or Sij = 1/N if j has no outgoing links
(dangling node). The parameter 0 < α < 1 is the damp-
ing factor with the usual value α = 0.85 [7] used here.
We note that for the range 0.5 ≤ α ≤ 0.95 the results are
not sensitive to α [7,8]. This corresponds to a model of a
random surfer who follows with probability α at random
one of the links available from the actual node or jumps
with probability (1−α) to an arbitrary other node in the
network.

The right PageRank eigenvector of G is the solution of
the equation GP = λP for the unit eigenvalue λ = 1 [6,7].
The PageRank P (j) values represent positive probabilities
to find a random surfer on a node j (

∑
j P (j) = 1). All

nodes can be ordered by decreasing probability P num-
bered by the PageRank index K = 1, 2, ...N with a max-
imal probability at K = 1 and minimal at K = N . The
numerical computation of P (j) is done efficiently with the
PageRank iteration algorithm described in [6,7].

It is also useful to consider the original network with
inverted direction of links. After inversion the Google ma-
trix G∗ is constructed via the same procedure (using the
transposed adjacency matrix) and its leading eigenvector
P ∗, determined by G∗P ∗ = P ∗, is called CheiRank [17]
(see also [8]). Its values P ∗(j) can be again ordered in de-
creasing order resulting in the CheiRank index K∗ with
highest value of P ∗ at K∗ = 1 and smallest values at
K∗ = N . On average, the high values of P (P ∗) corre-
spond to nodes with many ingoing (outgoing) links [7,8].

2.2 Reduced Google matrix algorithm

The REGOMAX method is described in detail in [10,
11,13,12]. For a given relatively small subset of Nr � N
nodes it allows to compute efficiently a “reduced Google
matrix” GR of size Nr ×Nr that captures the full contri-
butions of direct and indirect pathways appearing in the

full Google matrix G between the Nr selected nodes of in-
terest. The PageRank vector Pr of GR coincides with the
full PageRank vector projected on the subset of nodes, up
to a constant multiplicative factor due to the sum nor-
malization. The mathematical computation of GR pro-
vides a decomposition of GR into matrix components that
clearly distinguish direct from indirect interactions: GR =
Grr +Gpr+Gqr [11]. Here Grr is given by the direct links
between the selected Nr nodes in the global G matrix
with N nodes. Gpr is a rank one matrix whose columns
are rather close (up to constant factor) to the reduced
PageRank vector Pr. Even though the numerical weight
of Gpr is typically quite large it does not give much new in-
teresting information about the reduced effective network
structure.

The most interesting role is played by Gqr, which takes
into account all indirect links between selected nodes hap-
pening due to multiple pathways via the global network
nodes N (see [10,11]). The matrix Gqr = Gqrd + Gqr

(nd)

has diagonal (Gqrd) and non-diagonal (Gqr
(nd)) parts with

Gqr
(nd) describing indirect interactions between selected

nodes. The exact formulas and the numerical algorithm
for an efficient numerical computation of all three com-
ponents of GR are given in [10,11]. It is also useful to
compute the weights WR, Wpr, Wrr, Wqr of GR and its
3 matrix components Gpr, Grr, Gqr given by the sum of
all its elements divided by the matrix size Nr. Due to
the column sum normalization of GR we obviously have
WR =Wrr +Wpr +Wqr = 1.

2.3 General model of linear response

We consider a Google matrix G(ε) (with non-negative ma-
trix elements satisfying the usual column sum normal-
ization) depending on a small parameter ε and a gen-
eral stochastic process P (t + 1) = G(ε)F (ε, P (t)) where
F (ε, P ) is a general function on ε and P which does NOT
need to be linear in P . (Here P (t) denotes a time depen-
dence of the vector P ; below and for the rest of this paper
we will use the notation P (j) for the jth component of
the vector P ).

Let ET = (1, . . . , 1) be the usual vector with unit en-
tries. Then the condition of column sum normalization of
G(ε) reads ETG(ε) = ET . The function F (ε, P ) should
satisfy the condition ETF (ε, P ) = 1 if ETP = 1. At ε = 0
we also require that F (0, P ) = P , i.e. F (0, P ) is the iden-
tity operation on P . We denote by G0 = G(0) the Google
matrix at ε = 0 and by P0 its PageRank vector such that
G0 P0 = P0 with ETP0 = 1. We denote by P the more
general, ε-dependent, solution of

P = G(ε)F (ε, P ) , ET P = 1 . (1)

2.3.1 Pump model

As a first example we present the Pump model to model an
injection- and absorption scheme. For this we choose for
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the Google matrix simply G(ε) = G0 (i.e. no ε-dependence
for G) and

F (ε, P ) =
(1+ εD)P

ET [(1+ εD)P ]
=

(1+ εD)P

1 + ε e(P )
(2)

with e(P ) = ETDP and D being a diagonal matrix with
entriesDj which are mostly zero and with few positive val-
uesDj > 0 for nodes j with injection and few negative val-
uesDj < 0 for nodes j with absorption. The non-vanishing
diagonal entries ofDj should be comparable (a global scal-
ing factor can be absorbed in a redefinition of the parame-
ter ε) and we have e(P ) =

∑
Dj 6=0DjP (j). Physically, we

multiply each entry P (j) by the factor 1 + εDj (which is
unity for most nodes j) and then we sum-normalize this
vector to unity before we apply the Google matrix G0 to
it.

2.3.2 PageRank sensitivity

As a second example we consider the PageRank sensitiv-
ity. For this we fix a pair (i, j) of indices and multiply
the matrix element (G0)ij by (1 + ε) and then we sum-
normalize the column j to unity which provides the ε-
dependent Google matrix G(ε). For the function F (ε, P )
we simply choose the identity operation: F (ε, P ) = P . In
a more explicit formula we have:

∀k,l Gkl(ε) =
(1 + ε δkiδlj) (G0)kl

1 + ε δlj (G0)ij
(3)

where δki = 1 (or 0) if k = i (or k 6= i). Note that the
denominator is either 1 if l 6= j or the modified column
sum 1+ ε (G0)ij of column j if l = j. Then the sensitivity
D(j→i)(k) is defined as:

D(j→i)(k) =
P (k)− P0(k)

εP0(k)
(4)

where P is the ε-dependent PageRank of G(ε) computed
in the usual way. We expect that this quantity has a well
defined limit if ε→ 0 but equation (4) is numerically not
very precise for very small values of ε due to the effect of
loss of precision. Below we present a method to compute
the sensitivity in a precise way in the limit ε→ 0.

Examples of the sensitivity analysis, using directly (4),
were considered for the reduced Google matrix of sets of
Wikipedia and other networks (see e.g. [12,15]).

2.4 Linear response

2.4.1 General scheme

One can directly numerically determine the ε-dependent
solution P (ε) of (1) for some small but finite value of ε
(by iterating P (n+1) = G(ε), F (ε, P (n)) with some suitable
initial vector P (0)) and compute the quantity

∆P (ε) =
P (ε)− P (0)

ε
. (5)

We expect that ∆P (ε) has a finite well defined limit if
ε → 0. However, its direct numerical computation by (5)
is subject to numerical loss of precision if ε is too small. In
the following, we will present a different scheme to com-
pute ∆P which is numerically more accurate and stable
and that we call linear response of Google matrix. For this
we expand G(ε) and F (ε, P ) up to order ε1 (neglecting
terms ∼ ε2 or higher):

G(ε) = G0 + εG1 + . . . , F (ε, P ) = P + εF1(P ) + . . .
(6)

Furthermore we write

P (ε) = P0 + ε P1 + . . . . (7)

The usual sum-normalization conditions for the first order
corrections read as :

ETG1 = 0 , ETF1(P ) = 0 , ETP1 = 0 (8)

if ETP = ETP0 = 1. These conditions imply that P1 and
also F1(P ) belong to the subspace “bi-orthogonal” to the
PageRank, i.e. orthogonal to the left leading eigenvector
of G0 which is just the vector ET .

Inserting (6) and (7) into (1) we obtain (up to order
ε1):

P = P0 + εP1 = G0 P0 + ε
[
G0 P1 +G1 P0 +G0 F1(P0)

]
.

(9)
Comparing the terms of order ε0 one obtains the usual
unperturbed PageRank equation P0 = G0 P0. The terms
of order ε1 provide an inhomogeneous PageRank equation
of the type :

P1 = G0 P1 + V0 , V0 = G1 P0 +G0 F1(P0) . (10)

The solution P1 of this equation is just the limit of (5):

P1 = lim
ε→0

∆P (ε) = lim
ε→0

P (ε)− P (0)
ε

. (11)

To solve numerically (10) we first determine the unper-
turbed PageRank P0 of G0 in the usual way and compute
V0 which depends on P0. Then we iterate the equation:

P
(n+1)
1 = G0 P

(n)
1 + V0 (12)

where for the initial vector we simply choose P (0)
1 = 0.

This iteration converges with the same speed as the usual
PageRank algorithm versus the vector P1 and it is numer-
ically more accurate than the finite difference ∆P (ε) at
some finite value of ε.

We remind that ETV0 =
∑

j V0(j) = 0 and also ETG0 =

ET . Therefore if at a given iteration step the vector P (n)
1

satisfies the condition ETP
(n)
1 = 0 we also have ETP

(n+1)
1 =

ETG0P
(n)
1 + ETV0 = ETP

(n)
1 = 0.

Therefore the conditions (8) are satisfied by the itera-
tion equation (12) at least on a theoretical/mathematical
level. However, rounding errors may produce slight errors
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in the conditions (8) and since such numerical errors con-
tain a contribution in the direction of the unperturbed
PageRank vector P0, corresponding to the eigenvector of
G0 with maximal eigenvalue, they do not disappear dur-
ing the iteration and might even (slightly) increase with
n. Therefore, due to purely numerical reasons, it is useful
to remove such contributions by a projection after each
iteration step of the vector P (n+1)

1 on the subspace bi-
orthogonal to the PageRank by:

P
(n+1)
1 → Q

(
P

(n+1)
1

)
, Q(X) = X−(ETX)P0 (13)

where Q(X) is the projection operator applied on a vector
X. It turns out that such an additional projection step in-
deed increases the quality and accuracy of the convergence
of (12) but even without it the iteration (12) converges nu-
merically, however with a less accurate result.

It is interesting to note that one can “formally” solve
(12) by:

P1 =

∞∑
n=0

Gn
0 V0 =

1

1−G0
V0 (14)

which can also be found directly from the first equation
in (10). Strictly speaking the matrix inverse (1 − G0)

−1

does not exist since G0 has always one eigenvalue λ = 1.
However, since ET V0 = 0, the vector V0, when expanded
in the basis of (generalized) eigenvectors of G0, does not
contain a contribution of P0 which is the eigenvector for
λ = 1 such that the expression (14) is actually well de-
fined. From a numerical point of view a different scheme
to compute P1 would be to solve directly the linear sys-
tem of equations (1 − G0)P1 = V0 where the first (or
any other suitable) equation of this system is replaced by
the condition ETP1 = 0 resulting in a linear system with a
well defined unique solution. Of course, such a direct com-
putation is limited to modest matrix dimensions N such
that a full matrix inversion is possible (typically N be-
ing a few multiples of 104) while the iterative scheme (12)
is possible for rather large matrix dimensions such that
the usual PageRank computation by the power method is
possible. For example for the English Wikipedia edition
of 2017 with N ≈ 5 × 106 the iterative computation of
P1 using (12) takes typically 2 − 5 minutes on a recent
single processor core (e.g.: Intel i5-3570K CPU) without
any use of parallelization once the PageRank P0 is known.
(The computation of P0 by the usual power method takes
roughly the same time.)

2.4.2 Application to the pump model

For the injection- and absorption scheme we can compute
F1(P ) from (2) as:

F (ε, P ) = (1− ε e(P ) + . . .)(P + εDP ) (15)
= P + ε [P − (ETDP )P ] + . . . .

Here the term ∼ ε1 is just the projection of DP to the
subspace bi-orthogonal to P . This projection is the mani-
festation in first order in ε of the renormalization used in
(2).

Furthermore, since for the injection- and absorption
scheme we also have G1 = 0, the vector V0 in (10) and
(12) becomes:

V0 = G0 F1(P0) = G0Q(DP0)

= G0DP0 − (ETDP0)G0 P0 (16)
= G0DP0 − (ETG0DP0)P0 = Q(G0DP0)

with Q being the projector given in (13). Here we have
used that ET G0 = ET and G0 P0 = P0. This small cal-
culation also shows that the projection operator can be
applied before or after multiplying G0 to DP0.

2.4.3 Application to the sensitivity

In this case we have F (ε, P ) = P such that F1(P ) = 0
and we have to determine G1 from the expansion G(ε) =
G0 + εG1 + . . .. Expanding (3) up to first order in ε we
obtain:

∀kl (G1)kl = δkiδlj (G0)kl − δlj (G0)ij (17)

where (i, j) is the pair of indices for which we want to
compute the sensitivity. Using G1 we compute V0 = G1 P0

and solve the inhomogeneous PageRank equation (10) it-
eratively as described above to obtain P1. Once P1 is know
we can compute the sensitivity from :

D(j→i)(k) =
P1(k)

P0(k)
. (18)

We note that equation (18) is numerically accurate and
corresponds to the exact limit ε→ 0 while (4) is numeri-
cally not very precise and requires a finite small value of
ε.

2.5 LIRGOMAX combined with REGOMAX

We consider the pump model described above and we take
two particular nodes i with injection and j with absorp-
tion. For the diagonal matrix D we choose Di = 1/P0(i)
and Dj = −1/P0(j) where P0 is the PageRank of the un-
perturbed network and all other values Dk = 0. In this
way we have e(P0) = ETDP0 = Di P0(i) +Dj P0(j) = 0.
Due to this the renormalization denominator in (2) is sim-
ply unity and all excess probability provided by the injec-
tion at node i will be exactly absorbed by the absorption
at node j. We insist that this is only due to our particu-
lar choice for the matrix D and concerning the numerical
procedure one can also choose different values of Di or
Dj with e(P0) 6= 0 (which would result in some global
excess probability which would be artificially injected or
absorbed due the normalization denominator in (2) being
different from unity).

Using the above values of Di and Dj we compute
the vector V0 = G0DP0 = G0W0 (since ETDP0 = 0)
where W0 = DP0 is a vector with only two non-zero
components W0(i) = 1 and W0(j) = −1. Therefore for
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Table 1. Top 20 nodes of strongest negative values of P1 (index
number i = 1, . . . , 20) and top 20 nodes of strongest positive
values of P1 (index number i = 21, . . . , 40) with P1 being cre-
ated as the linear response of PageRank of English Wikipedia
2017 PageRank with injection (or pumping) at University of
Cambridge and absorption at Harvard University; KL is the
ranking index obtained by ordering |P1| and K is the usual
PageRank index obtained by ordering the PageRank probabil-
ity P0 of the global network with N nodes.

i KL K Node name

1 1 129 Harvard University
2 2 1608 Cambridge, Massachusetts
3 4 1 United States
4 5 296 Yale University
5 6 4617 Harvard College
6 7 62115 Harvard Yard
7 10 104359 Harvard Museum of Natural History
8 11 415 National Collegiate Athletic Ass.
9 12 52 The New York Times

10 13 75 American Civil War
11 14 7433 Harvard Medical School
12 15 73 American football
13 16 20994 Charles River
14 17 50 Washington, D.C.
15 18 23901 Harvard Divinity School
16 19 436 Massachusetts Institute of Tech.
17 20 88022 President and Fellows of Harvard Col.
18 21 128 Boston
19 22 42608 The Harvard Crimson
20 23 42259 Harvard Square

21 3 229 University of Cambridge
22 8 15 England
23 9 1414 Cambridge
24 69 1842 Trinity College, Cambridge
25 253 6591 St John’s College, Cambridge
26 254 7022 King’s College, Cambridge
27 256 285 Order of the British Empire
28 257 6 United Kingdom
29 258 33256 Newnham College, Cambridge
30 260 316 Church of England
31 262 238 The Guardian
32 263 21569 Clare College, Cambridge
33 264 4656 Durham University
34 265 191614 Regent House
35 266 3814 Chancellor (education)
36 267 16193 Gonville and Caius Col. Cambridge
37 270 25165 E. M. Forster
38 274 1650 Archbishop of Canterbury
39 277 2076 Fellow
40 278 73538 Colleges of the Univ. of Cambridge

all k we have V0(k) = (G0)ki − (G0)kj . According to
the above theory we know that V0 and W0 are orthog-
onal to ET , i.e. ETV0 = ETW0 = 0 or more explicitely∑

k V0(k) =
∑

kW0(k) = 0. For W0 the last equality is
obvious and the first one is due to the column sum normal-
ization of G0 meaning that

∑
k(G0)ki =

∑
k(G0)kj = 1.

Using the expression V0(k) = (G0)ki − (G0)kj we deter-
mine the solution of the linear response correction to the
PageRank P1 by solving iteratively the inhomogeneous
PageRank equation (10) as described above. The vector
P1 has real positive and negative entries also satisfying the
condition

∑
k P1(k) = 0. Then we determine the 20 top

nodes with strongest negative values of P1 and further 20
top nodes with strongest positive values of P1 which con-
stitute a subset of 40 nodes which are the most significant

nodes participating in the pathway between the pumping
node i and absorbing node j.

Using this subset we then apply the REGOMAX al-
gorithm to compute the reduced Google matrix and its
components which are analyzed in a similar way as in
[11]. The advantage of the application of LIRGOMAX at
the initial stage is that it provides an automatic proce-
dure to determine an interesting subset of nodes related
to the pumping between nodes i and j instead of using an
arbitrary heuristic choice for such a subset.

The question arises if the initial two nodes i and j
belong themselves to the subset of nodes with largest P1

entries (in modulus). From a physical point of view we
indeed expect that this is generically the case but there
is no simple mathematical argument for this. In particu-
lar for nodes with a low PageRank ranking and zero or
few incoming links this is probably not the case. However,
concerning the two examples which we will present in the
next section both initial nodes i and j are indeed present
in the selected subset and even with rather top positions
in the ranking (provided by ordering |P1|).

3 LIRGOMAX for Wikipedia network

As a concrete example we illustrate the application of LIR-
GOMAX algorithm to the English Wikipedia network of
2017 (network data available at [9]). This network con-
tains N = 5416537 nodes, corresponding to article titles,
and Ni = 122232932 directed hyperlinks between nodes.
Previous applications of the REGOMAX algorithm for the
Wikipedia networks of years 2013 and 2017 are described
in [11,12].

3.1 Case of pathway Cambridge - Harvard Universities

As a first example of the application of the combined LIR-
GOMAX and REGOMAX algorithms we select two arti-
cles (nodes) of the Wikipedia network with pumping at
University of Cambridge and absorption at Harvard Uni-
versity. The global PageRank indices of these two nodes
areK = 229 (PageRank probability P0(229) = 0.0001078)
andK = 129 (PageRank probability P0(129) = 0.0001524).
As described above we chose the diagonal matrix D as
D(229) = 1/P0(229) and D(129) = −1/P0(129) (other
diagonal entries of D are chosen as zero) and determine
the vector V0 used for the computation of P1 (see (12))
by V0 = G0W0 where the vector W0 = DP0 has the
nonzero components W0(229) = 1 and W0(129) = −1.
Both W0 and V0 are orthogonal to the left leading eigen-
vector ET = (1, . . . , 1) of G0 according to the theory de-
scribed in the last section.

The subset of 40 most affected nodes with 20 strongest
negative and 20 strongest positive values of the linear
response correction P1 to the initial PageRank P0 are
given in Table 1. We order these 40 nodes by the index
i = 1, . . . , 20 for the first 20 most negative P1 values and
then i = 21, . . . , 40 for the most positive P1 values. The
index KL is obtained by ordering |P1| for all N ≈ 5× 106
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Fig. 1. Linear response vector P1 of PageRank for the En-
glish Wikipedia 2017 with injection (or pumping) at Univer-
sity of Cambridge and absorption at Harvard University. Here
KL is the ranking index obtained by ordering |P1| from max-
imal value at KL = 1 down to its minimal value. Top panel
shows |P1| versus KL in a double logarithmic representation
for all N nodes. Bottom panel shows a zoom of P1 versus KL

for KL ≤ 103 in a double logarithmic representation with sign;
blue data points correspond to P1 > 0 and red data points to
P1 < 0.

network nodes. The table also gives the PageRank in-
dex K obtained by ordering P0. The first 4 positions in
KL are taken by Harvard University; Cambridge, Mas-
sachusetts; University of Cambridge; United States. Thus,
even if the injection is made for University of Cambridge
the strongest response appears for Harvard University;
Cambridge, Massachusetts and only then for University
of Cambridge (KL = 1, 2, 3). We attribute this to non-
trivial flows existing in the global directed network. This
shows that the linear response approach provides rather
interesting information about the sensitivity and interac-
tions of nodes on directed networks. We will see below for
other examples that the top nodes of the linear response
vector P1 can have rather unexpected features.

In general the most sensitive nodes of Table 1 are
rather natural. They represent countries, cities and other
administrative structures related to the two universities.
Other type of nodes are Yale University, The New York
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Fig. 2. Reduced Google matrix components GR, Gpr, Grr and
Gqr for the English Wikipedia 2017 network and the subgroup
of nodes given in Table 1 corresponding to injection at Univer-
sity of Cambridge and absorption at Harvard University (see
text for explanations). The axis labels correspond to the index
number i used in Table 1. The relative weights of these com-
ponents are Wpr = 0.920, Wrr = 0.036, and Wqr = 0.044. Note
that elements of Gqr may be negative. The values of the color
bar correspond to sgn(g)(|g|/max |g|)1/4 where g is the shown
matrix element value. The exponent 1/4 amplifies small values
of g for a better visibility.

Times, American Civil War for Harvard U and Church of
England, The Guardian, Durham University for U Cam-
bridge (in addition to many Colleges presented in the list)
corresponding to closest other universities and also news-
papers appearing on the pathway between the pair of se-
lected nodes.

Of course, the linear response vector P1 extends on all
N nodes of the global network. We show its dependence
on the ordering index KL in Figure 1. Here the top panel
represents the decay of |P1| withKL and the bottom panel
shows the decay of negative and and positive P1 values for
KL ≤ 103. We note that among top 100 values ofKL there
are only 4 nodes related to U Cambridge with positive
P1 values while all other values of P1 are negative being
related to Harvard U. This demonstrates a rather different
structural influence between these two universities.

After the selection of 40 most significant nodes of the
pathway between both universities (see Table 1) we apply
the REGOMAX algorithm which determines all matrix
elements of Markov transitions between these 40 nodes
including all direct and indirect pathways via the huge
global Wikipedia network with 5 million nodes.

The reduced Google matrix GR and its three compo-
nents Gpr, Grr, Gqr are shown in Figure 2. As discussed
above the weight Wpr = 0.920 of Gpr is close to unity and
its matrix structure is rather similar to the one of GR with
strong transition lines of matrix elements corresponding to
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Fig. 3. Same as in Fig. 2 but for the matrix Grr+G
(nd)
qr , where

G
(nd)
qr is obtained from Gqr by putting its diagonal elements at

zero; the weight of these two components is Wrr+qrnd = 0.066.

United States at top PageRank index K = 1 (i = 3, KL =
4) and United Kingdom atK = 6 (i = 28, KL = 257). The
weights Wrr = 0.036, Wqr = 0.044 of Grr, Gqr are signifi-
cantly smaller. These values are similar to those obtained
in the REGOMAX analysis of politicians and universities
in Wikipedia networks [11,12]. Even if the weights of these
matrix components are not large they represent the most
interesting and nontrivial direct (Grr) and indirect (Gqr)
interactions between the selected 40 nodes. The image of
Grr in Figure 2 shows that the direct links between the
U Cambridge block of nodes (with index 21 ≤ i ≤ 40 in
Table 1) and the Harvard U block of nodes (with index
1 ≤ i ≤ 20 in Table 1) are rather rare and relatively weak
while the links within each block are multiple and rela-
tively strong. This confirms the appropriate selection of
nodes in each block provided by the LIRGOMAX algo-
rithm.

The matrix elements of the sum of two components
Grr + Gqr

(nd) (component Gqr is taken without diagonal
elements) are shown in Figure 3. We note that some ele-
ments are negative which is not forbidden since only the
sum of all three components given byGR should have posi-
tive matrix elements. However, the negative values are rare
and relatively small compared to the values of positive ma-
trix elements. Thus the minimal value is −0.00216 for the
transition from Church of England to United States while
other typical negative values are smaller by a factor 5-10.
For comparison, the maximal value of positive element
is 0.1135 from Regent House to University of Cambridge
and there are many other positive elements of the order
of 0.03. Thus we consider that the negative elements play
no significant role. A similar conclusion was also obtained
for the interactions of politicians and universities in [11,
12].

Grr+Gqr
(nd)

friends

●38●35

●31

●30

●28

●26●25
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●21

●18
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●1
■■■■■■■■■■■■■■■■■■Harvard University

■■US

■■■■■■■■■■■■■■■■■■■■■■■University of Cambridge

■■■■■■■England

■■■■■■■■■■■■■■Town Cambridge

Fig. 4. Network of friends for the subgroup of nodes given
in Table 1 corresponding to injection at University of Cam-
bridge and absorption at Harvard University constructed from
the matrix Grr +G

(nd)
qr using 4 top (friends) links per column

(see text for explanations). The numbers used as labels for the
different nodes correspond to the index i of Table 1.

From Figure 3 we see that for Grr+G
(nd)
qr the strongest

interactions are also inside each university block. However,
there are still some significant links between blocks with
strongest matrix elements being 0.0120 from Fellow to
United States and 0.0050 from Harvard University to Uni-
versity of Cambridge (for both directions between blocks).
The link Fellow to United States is also the strongest in-
direct link in its off diagonal sub-block (for Gqr) while
the strongest direct link (for Grr) is Fellow to Harvard
University. Furthermore, the link Harvard University to
University of Cambridge is also the strongest indirect link
in its off diagonal sub-block (for Gqr) while the strongest
direct link (for Grr) is Harvard College to University of
Cambridge.

Using the transition matrix elements of Grr + G
(nd)
qr

we construct a network of effective friends shown in Fig-
ure 4. First, we select five initial nodes which are placed on
a (large) circle: the two nodes with injection/absorption
(University of Cambridge and Harvard University) and
three other nodes with a rather top position in the KL

ranking (England, (Town of) Cambridge and United States).
For each of these five initial nodes we determine four
friends by the criterion of largest matrix elements (in mod-
ulus) in the same column, i.e. corresponding to the four
strongest links from the initial node to the potential friends.
The friend nodes found in this way are added to the net-
work and drawn on circles of medium size around their
initial node (if they do not already belong to the initial
set of 5 top nodes). The links from the initial nodes to
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their friends are drawn as thick black arrows. For each of
the newly added nodes (level 1 friends) we continue to de-
termine the four strongest friends (level 2 friends) which
are drawn on small circles and added to the network (if
there are not already present from a previous level). The
corresponding links from level 1 friends to level 2 friends
are drawn as thin red arrows.

Each node is marked by the index i from the first col-
umn of Table 1. The colors of the nodes are essentially red
for nodes with strong negative values of P1 (corresponding
to the index i = 1, . . . , 20) and blue for nodes with strong
positive values of P1 (for i = 21, . . . , 40). Only for three
of the initial nodes we choose different colors which are
olive for US, green for England and cyan for (the town of)
Cambridge.

The network of Figure 4 shows a quite clear separa-
tion of network nodes in two blocks associated to the two
universities with a rather small number of links between
the two blocks (e.g. US is a friend of England but not
vice-versa).

3.2 Case of pathway Napoleon - Alexander I of Russia

We illustrate the application of the LIRGOMAX and RE-
GOMAX algorithms on two other nodes of the Wikipedia
network with injection (pumping) at Napoleon and ab-
sorption at Alexander I of Russia. The global PageRank
indices of these two nodes are K = 201 (PageRank proba-
bility P0(201) = 0.0001188) and K = 5822 (PageRank
probability P0(5822) = 1.389 × 10−5 ) respectively. In
contrast to the the previous example the two PageRank
probabilities are rather different. However, this difference
is compensated by our choice of the diagonal matrix D
with D(201) = 1/P0(201) and D(5822) = −1/P0(5822)
(other diagonal entries of D begin zero). Again we deter-
mine the vector V0 used for the computation of P1 (see
(12)) by V0 = G0W0 where the vector W0 = DP0 has the
nonzero components W0(201) = 1 and W0(5822) = −1.
Furthermore, both W0 and V0 are orthogonal to the left
leading eigenvector ET = (1, . . . , 1) of G0.

The top nodes of P1, noted by index i, with 20 strongest
negative and 20 strongest positive values are presented in
Table 2. The ranking of nodes in decreasing order of |P1|
given by the index KL is shown in the second column of
Table 2. It is interesting to note that the injection node
Napoleon is only at position KL = 29 with a significantly
smaller value of |P1| compared to Alexander I of Russia at
KL = 3, Russian Empire at KL = 1 and Saint Petersburg
at KL = 2. But among the positive P1 values Napoleon
is still at the first position. We attribute this relatively
small |P1| value of Napoleon compared to the nodes of
the other block to significant complex directed flows in
the global Wikipedia network. Also Napoleon has a signif-
icantly stronger PageRank probability and thus this node
produces a stronger influence on Alexander I of Russia
than vice-versa.

In contrast to the previous case of universities Table 2
contains mainly countries, a few towns and islands, and

Table 2. Same as in Table 1 for English Wikipedia 2017 with
injection (pumping) at Napoleon and absorption at Alexander
I of Russia.

i KL K Node name

1 1 181 Russian Empire
2 2 216 Saint Petersburg
3 3 5822 Alexander I of Russia
4 4 15753 Paul I of Russia
5 5 3409 Catherine the Great
6 6 158 Moscow
7 7 17 Russia
8 8 153 Azerbaijan
9 9 9035 Nicholas I of Russia
10 10 203707 Elizabeth Alexeievna (Louise of Baden)
11 11 92 Ottoman Empire
12 12 7 Iran
13 13 177854 Government reform of Alexander I
14 14 889 Caucasus
15 15 31784 Russo-Persian War (1804–13)
16 16 8213 Alexander II of Russia
17 17 475 Prussia
18 18 5764 Dagestan
19 19 32966 Serfdom in Russia
20 20 131205 Adam Jerzy Czartoryski

21 29 201 Napoleon
22 52 192 French Revolution
23 144 4 France
24 149 12 Italy
25 167 10611 French Directory
26 180 24236 Joséphine de Beauharnais
27 188 7361 National Convention
28 189 21727 French campaign in Egypt and Syria
29 195 2237 Corsica
30 198 3166 Louis XVI of France
31 199 7875 Saint Helena
32 200 40542 André Masséna
33 201 3353 French Revolutionary Wars
34 203 11916 Maximilien Robespierre
35 204 1241 Louvre
36 205 69382 Lucien Bonaparte
37 206 21754 Coup of 18 Brumaire
38 207 15926 French Republican Calendar
39 208 14931 Jacobin
40 209 7509 Napoleonic Code

historical figures related in some manner to Napoleon or
Alexander I of Russia.

The dependence of the linear response vector P1 on the
index KL is shown in Figure 5 (analogous to Figure 1).
The decay of |P1| with KL is shown in the top panel,
being similar to the top panel of Figure 1. The values of
P1 with sign are shown in the bottom panel. The difference
of the |P1| values for Napoleon and Alexander I of Russia
is not so significant but many nodes (28) from the block
of Alexander I of Russia have larger |P1| values than |P1|
of Napoleon.

The results for the reduced Google matrix of 40 nodes
of Table 2 are shown in Figure 6. The strongest lines of
transitions in GR and Gpr correspond to nodes with top
PageRank positions of the global Wikipedia network being
France at K = 4 (i = 23, KL = 144), Iran at K = 7 (i =
12, KL = 12), Italy at K = 12 (i = 24, KL = 149)
and Russia at K = 17 (i = 7, KL = 7). As explained
above the structure of transitions appears rather similar
between GR and Gpr. The weights of all three components
Gpr, Grr, Gqr are similar to those of the two universities
(see caption of Figure 6).
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Fig. 5. Same as in Fig. 1 for the subgroup of Table 2 corre-
sponding to injection at Napoleon and absorption at Alexander
I of Russia.
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Fig. 6. As Fig. 2 for the subgroup of Table 2 corresponding to
injection at Napoleon and absorption at Alexander I of Russia.
The relative weights of the different matrix components are
Wpr = 0.900, Wrr = 0.042 and Wqr = 0.058.
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Fig. 7. Same as in Fig. 3 for the subgroup of Table 2 corre-
sponding to injection at Napoleon and absorption at Alexander
I of Russia. The weight of Grr +G

(nd)
qr is Wrr+qrnd = 0.087.

The components Grr and Gqr, shown in Figure 6, are
also dominated by the two diagonal blocks related to the
two initial nodes Napoleon and Alexander I of Russia.
There are only a few direct links between the two blocks
but the number of indirect links is substantially increased.
The sum of these two components Grr + G

(nd)
qr is shown

in Figure 7, where the diagonal elements of Gqr are omit-
ted. The strongest couplings between the two blocks in
Grr + G

(nd)
qr are 0.009879 for the link from French cam-

paign in Egypt and Syria to Ottoman Empire and 0.02439
for the link from Elizabeth Alexeievna (Louise of Baden)
to Napoleon (for both directions between the diagonal
blocks).

In analogy to Figure 4 we construct the network of
friends for the subset of Table 2 shown in Figure 8. As
in Figure 4, we use the four strongest transition matrix
elements of Grr+G

(nd)
qr per column to construct links from

the five top nodes to level 1 friends (thick black arrows)
and from level 1 to level 2 friends (thin red arrows). As
the five initial top nodes we choose France (cyan), Russian
Empire (olive), Saint Petersburg (green), Napoleon (blue)
and Alexander I of Russia (red); all other nodes of the
Napoleon block (21 ≤ i ≤ 40 in Table 2) are shown in
blue, and all other nodes of the Alexander I of Russia
block (1 ≤ i ≤ 20 in Table 2)) are shown in red; numbers
inside the points correspond to the index i of Table 2.

The network of Figure 8 also shows a clear two block
structure with relatively rare links between the two blocks.
The coupling between two blocks appears due to one link
from Alexander I of Russia to Prussia, which even being
red is more closely related to the blued block of nodes.

For both examples network figures constructed in the
same way using the other matrix components GR, Grr or
Gqr (instead of Grr +G

(nd)
qr ) or using strongest matrix el-



10 K.M. Frahm and D.L. Shepelyansky: Linear response theory for Google matrix

Grr+Gqr
(nd)

friends

●33

●30

●27

●24

●23

●22 ●21

●17

●14

●12●11
●8

●7
●6

●5
●3

●2

●1
■■■■■■■■■■■■■■Russian Empire

■■■■■■■■■■■■■■■■Saint Petersburg

■■■■■■■■■■■■■■■■■■Alexander I of Russia

■■■■■■■■Napoleon

■■■■■■France

Fig. 8. Same as in Fig. 4 for the subgroup of Table 2 corre-
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I of Russia.

ements in rows (instead of columns) to determine follower
networks are available at [16].

This type of friend/follower effective network schemes
constructed from the reduced Google matrix (or one of its
components) were already presented in [11] in the context
of Wikipedia networks of politicians.

4 Discussion

We introduced here a linear response theory for a very
generic model where either the Google matrix or the as-
sociated Markov process depends on a small parameter
and we developed the LIRGOMAX algorithm to compute
efficiently and accurately the linear response vector P1 to
the PageRank P0 with respect to this parameter for large
directed networks. As a particular application of this ap-
proach it is in particular possible to identify the most im-
portant and sensitive nodes of the pathway connecting two
initial groups of nodes (or simply a pair of nodes) with in-
jection or absorption of probability. This group of most
sensitive nodes can then be analyzed with the reduced
Google matrix approach by the related REGOMAX al-
gorithm which allows to determine effective indirect net-
work interactions for this set of nodes. We illustrated the
efficiency of the combined LIRGOMAX and REGOMAX
algorithm for the English Wikipedia network of 2017 with
two very interesting examples. In these examples, we use
two initial nodes (articles) for injection/absorption, cor-
responding either to two important universities or to two
related historical figures. As a result we obtain associated
sets for most sensitive Wikipedia articles given in Tables 1

and 2 with effective friend networks shown in Figures 4
and 8.

As a further independent application the LIRGOMAX
algorithm allows also to compute more accurately the Page-
Rank sensitivity with respect to variations of matrix ele-
ments of the (reduced) Google matrix as already studied
in [12,15].

It is known that the linear response theory finds a va-
riety of applications in statistical and mesoscopic physics
[1,3], current density correlations [4], stochastic processes
and dynamical chaotic systems [2,5]. The matrix prop-
erties and their concepts, like Random Matrix Theory
(RMT), find important applications for various physical
systems (see e.g. [18]). However, in physics one usually
works with unitary or Hermitian matrices, like in RMT.
In contrast the Google matrices belong to another class of
matricies rarely appearing in physical systems but being
very natural to the communication networks developed by
modern societies (WWW, Wikipedia, Twitter ...). Thus
we hope that the linear response theory for the Google
matrix developed here will also find useful applications in
the analysis of real directed networks.
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