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Abstract

Motivation: Directed protein networks with only a few thousand of nodes are rather complex and do
not allow to extract easily the effective influence of one protein to another taking into account all indirect
pathways via the global network. Furthermore, the different types of activation and inhibition actions
between proteins provide a considerable challenge in the frame work of network analysis. At the same
time these protein interactions are of crucial importance and at the heart of cellular functioning.
Results: We develop the Google matrix analysis of the protein-protein network from the open public
database SIGNOR. The developed approach takes into account the bi-functional activation or inhibition
nature of interactions between each pair of proteins describing it in the frame work of Ising-spin matrix
transitions. We also apply a recently developed linear response theory for the Google matrix which
highlights a pathway of proteins whose PageRank probabilities are most sensitive with respect to two
proteins selected for the analysis. This group of proteins is analyzed by the reduced Google matrix
algorithm which allows to determine the effective interactions between them due to direct and indirect
pathways in the global network. We show that the dominating activation or inhibition function of each
protein can be characterized by its magnetization. The results of this Google matrix analysis are presented
for three examples of selected pairs of proteins. The developed methods work rapidly and efficiently even
for networks with several million of nodes and can be applied to various biological networks.
Availability: The Google matrix data and executive code of described algorithms are available at
http://www.quantware.ups-tlse.fr/QWLIB/google4signornet/

1 Introduction
Protein-protein interactions (PPI) are at the heart of information processing
and signaling in cellular functions. It is natural to present and analyze
these PPI by presenting them as a directed network of actions between
proteins (or network nodes). The simplest case of action is activation or
inhibition so that such networks can be considered as bi-functional. The
development of related academic databases of PPS networks with an open
public access is a challenging task with various groups working in this
direction (see e.g. Liberzon et al., 2011; Perfetto,L. et al., 2016; Kanehisa
et al., 2017; Fabregat et al., 2018; Splender et al., 2018). A typical example
is the SIGNOR directed network of PPI links for about 4000 proteins of
mammals and 12000 bi-functional directed links as reported by Perfetto,L.
et al., 2016.

On the scale of the past twenty years, modern society has created
a variety of complex communication and social networks including the
World Wide Web (WWW), Facebook, Twitter, Wikipedia. The size of
these networks varies from a several millions for Wikipedia to billions
and more for Facebook and WWW. The description of generic features of
these complex networks can be found e.g. in Dorogortsev, 2010.

An important tool for the analysis of directed networks is the
construction of the Google matrix of Markov transitions and related
PageRank algorithm invented by Brin and Page in 1998 for ranking of
all WWW sites (see Brin and Page, 1998; Langville and Meyer, 2006).
This approach has been at the foundations of the Google search engine
used world wide. A variety of applications of Google matrix analysis to
various directed networks is described by Ermann et al., 2015.

Here we apply recently developed extensions of Google matrix
analysis, which include the REduced GOogle MAtriX (REGOMAX)
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algorithm (Frahm et al., 2016) and the LInear Response algorithm for
GOogle MAtriX (LIRGOMAX) (Frahm and Shepelyansky, 2019a), to
the SIGNOR PPI network. The efficiency of these algorithms has been
demonstrated for Wikipedia networks of politicians (Frahm et al., 2016)
and world universities (Frahm and Shepelyansky, 2019a; Coquide et al.,
2019a), and multi product world trade of UN COMTRADE database
(Coquide et al., 2019b). Thus it is rather natural to apply these algorithms
to PPI networks which have a typical size being significantly smaller than
Wikipedia and WWW.

From a physical view-point the LIRGOMAX approach corresponds
to a small probability pumping at a certain network node (or group of
nodes) and absorbing probability at another specific node (or group of
nodes). This algorithm allows first to determine the most sensitive group
of nodes involved in this pumping-absorption process tracing a pathway
connecting two selected proteins. In a second stage one can then apply the
REGOMAX algorithm and obtain an effective reduced Google matrix, and
in particular effective interactions, for the found subset of most sensitive
nodes. These interactions are due to either direct or indirect pathways in
the global huge network in which is embedded the selected relatively small
subset of nodes.

The REGOMAX and LIRGOMAX algorithms originate from the
scattering theory of nuclear and mesoscopic physics, field of quantum
chaos and linear response theory of electron transport (Frahm et al., 2016;
Frahm and Shepelyansky, 2019a).

We point out that the analysis of the SIGNOR PPI network already
found biological applications reported by Sacco et al., 2016; Lun.X-K.
et al., 2017; Kanhaiya et al., 2017; Dimitrakopoulos et al., 2018. The
detailed review of various applications of the PPI signaling networks is
given by Invergo and Beltrao, 2018. However, the Google matrix analysis
has not been used in these studies.

The challenging feature of PPI networks is the bi-functionality of
directed links which produce activation or inhibition actions. While in our
previous analysis of SIGNOR network by Lages et al., 2018 this feature
was ignored, here we apply the Ising-PageRank approach developed in
Frahm and Shepelyansky, 2019b for opinion formation modeling. In this
Ising-type approach the number of nodes in the PPI network is doubled,
with a (+) or (−) attribute for each protein, and the links between doubled
nodes are described by 2 × 2 matrices corresponding to activation or
inhibition actions.

In this work we apply the LIRGOMAX and REGOMAX algorithm to
the bi-functional PPI network of SIGNOR. We show that this approach
allows to determine the effective sensitivity with direct and indirect
interactions between a selected pair of proteins. As particular examples we
will choose three protein pairs implicating the Epidermal growth factor
receptor (EGFR) which is considered to play an important role in the
context of lung cancer (see e.g. Bethune et al., 2010; Zamay et al., 2017).

The paper is constructed as follows: in Section 2 we describe the
construction of Google matrix from links between proteins and related
LIRGOMAX and REGOMAX algorithms, in Section 3 we characterize
data sets and the Ising-PPI-network for bi-functional interactions between
proteins, results are presented in Section 4 and the conclusion is given
in Section 5. Supplementary Material provides additional matrix data
and executable code for the described algorithms for the SIGNOR
Ising-PPI-network.

2 Methods of Google matrix analysis

2.1 Google matrix construction

The Google matrix G of N nodes (proteins or proteins with (+)/(−)
attribute) is constructed from the adjacency matrix Aij with element 1
if node j points to node i and zero otherwise. The matrix G has the

standard form Gij = αSij + (1 − α)/N (see Brin and Page, 1998;
Langville and Meyer, 2006; Ermann et al., 2015), where S is the matrix
of Markov transitions with elements Sij = Aij/kout(j) and kout(j) =∑N
i=1 Aij 6= 0 being the out-degree of node j (number of outgoing links);

Sij = 1/N if j has no outgoing links (dangling node). The parameter
0 < α < 1 is known as the damping factor with the usual valueα = 0.85

(Langville and Meyer, 2006) which we use here. For the range 0.5 ≤ α ≤
0.95 the results are not sensitive toα (Langville and Meyer, 2006; Ermann
et al., 2015). A useful view on this G matrix is given by the concept of a
random surfer, moving with probability α from one node to another via
one of the available directed links or with a jump probability (1 − α) to
any node.

The right PageRank eigenvector of G is the solution of the equation
GP = λP for the leading unit eigenvalue λ = 1 (Langville and Meyer,
2006). The PageRank P (j) values represent positive probabilities to find
a random surfer on a node j (

∑
j P (j) = 1). All nodes can be ordered by

decreasing probability P numbered by PageRank index K = 1, 2, ...N

with a maximal probability at K = 1 and minimal at K = N . The
numerical computation of P (j) is done efficiently with the PageRank
iteration algorithm described by Langville and Meyer, 2006. The idea of
this algorithm is simply to start with some initial, sum normalized, vector
P (0) of positive entries, e.g. being 1/N for simplicity, and then to iterate
P (n+1) = GP (n) which typically converges after n = 150 − 200

iterations (for α = 0.85).
It is also useful to consider the original network with inverted direction

of links. After inversion the Google matrixG∗ is constructed via the same
procedure withG∗P ∗ = P ∗. The matrixG∗ has its own PageRank vector
P ∗(j) called CheiRank (Chepelianskii, 2010; Ermann et al., 2015). Its
values give probabilities to find a random surfer of a given node and they
can be again ordered in a decreasing order with CheiRank indexK∗ with
highest P ∗ at K∗ = 1 and smallest at K∗ = N . On average, the high
values of P (P ∗) correspond to nodes with many ingoing (outgoing) links
(Langville and Meyer, 2006; Ermann et al., 2015).

2.2 Reduced Google matrix (REGOMAX) algorithm

The REGOMAX algorithm is described in detail by Frahm et al., 2016;
Lages et al., 2018; Coquide et al., 2019a. It allows to compute efficiently
a “reduced Google matrix” GR of size Nr × Nr that captures the full
contributions of direct and indirect pathways appearing in the full Google
matrix G between Nr nodes of interest selected from a huge global
network with N � Nr nodes. For these Nr nodes their PageRank
probabilities are the same as for the global network withN nodes, up to a
constant multiplicative factor taking into account that the sum of PageRank
probabilities over Nr nodes is unity. The computation of GR determines
a decomposition of GR into matrix components that clearly distinguish
direct from indirect interactions:GR = Grr +Gpr +Gqr (Frahm et al.,
2016). Here Grr is given by the direct links between the selected Nr
nodes in the global G matrix with N nodes. We note that Gpr is rather
close to the matrix in which each column is approximately proportional
to the PageRank vector Pr , satisfying the condition that the PageRank
probabilities ofGR are the same as forG (up to a constant multiplier due
to normalization). Hence, in contrast toGqr, Gpr doesn’t give much new
information about direct and indirect links between selected nodes.

The most interesting role is played byGqr, which takes into account all
indirect links between selected nodes happening due to multiple pathways
via the global network of nodes N (see Frahm et al., 2016). The matrix
Gqr = Gqrd + Gqrnd has diagonal (Gqrd) and non-diagonal (Gqrnd)
parts withGqrnd describing indirect interactions between selected nodes.
The exact formulas for all three components of GR are given in Frahm
et al., 2016. It is also useful to compute the weightsWR,Wpr,Wrr,Wqr

of GR and its 3 matrix components Gpr, Grr, Gqr given by the sum of
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all its elements divided by the matrix size Nr . Due to the column sum
normalization ofGR we obviously haveWR =Wrr+Wpr+Wqr = 1.

We note that the matrix elements of Gqr may have negative values
(only the full reduced matrixGR should have positive elements;Grr also
has only positive matrix elements) but these negative values are found to
be small for the Ising-PPI-networks and do not play a significant role.
A similar situation for Wikipedia networks is discussed by Frahm et al.,
2016; Frahm and Shepelyansky, 2019a.

2.3 LIRGOMAX algorithm

The detained description of the LIRGOMAX algorithm is given by Frahm
and Shepelyansky, 2019a. It performs an infinitely weak ε-probability
injection (pumping) at one node (a protein or a protein with (+)/(−)
attribute) and absorption at another node of interest. This process is
described by the modified PageRank iteration P (n+1) = GF (ε, P (n))

where the vector valued function F (ε, P ) has the components P (i) + ε

for i being the index of the injection/pumping node, P (j)− ε for j being
the index of the absorption node and simply P (k) for all other nodes
k. In this way the vector F (ε, P ) is also sum normalized if P is sum
normalized and obviously F (0, P ) = P is the identity operation. In
Frahm and Shepelyansky, 2019a a more general version of F (ε, P ) was
considered with potentially different prefactors for the ε contributions,
injection/absorption at possibly more than two nodes and an additional
renormalization factor to restore the sum normalization (which is automatic
in the simple version). However, for the applications in this work the above
given simple version of F (ε, P ) is sufficient.

In principle one can solve iteratively the above modified PageRank
iteration formula which converges at the same rate as the usual PageRank
iteration algorithm and provides a modified ε-depending PageRank P (ε).
Then one can compute the linear response vectorP1 = dP (ε)/dε|ε=0 =

limε→0[P (ε) − P0]/ε where P0 is the PageRank obtained for ε = 0.
However the naive direct evaluation of this limit is numerically not stable
in the limit ε → 0. Fortunately as shown by Frahm and Shepelyansky,
2019a it is possible to compute P1 directly in an accurate and efficient
way by solving the inhomogeneous PageRank equation

P1 = GP1 + V0 , V0 = GW0 (1)

where the vector W0 has only two non-zero components for the two
particular injection or absorption nodes W0(i) = 1 or W0(j) = −1
respectively. Therefore a more explicit expression for the vector V0
appearing in (1) is V0(k) = Gki − Gkj (for all nodes k). We mention
that the three vectors P1, V0 and W0 are orthogonal to the vector ET =

(1, . . . , 1) composed of unit entries, i.e.
∑
k P1(k) =

∑
kW0(k) =∑

k V0(k) = 0. Furthermore, all of these vectors, especially P1 have
real positive or negative entries (note that in general eigenvectors of a
non-symmetric real matrix may be complex).

A formal solution of the inhomogeneous PageRank equation is: P1 =∑∞
n=0G

n V0 = (1 − G)−1 V0 which is well defined since V0, when
expanded in the basis of (generalized) eigenvectors of G, does NOT have
a contribution of P0 (the only eigenvector of G with eigenvalue 1) such
that the singularity of the matrix inverse does not constitute a problem. Of
course numerically, we compute P1 in a different way, as described by
Frahm and Shepelyansky, 2019a one can iterate the equation P (n+1)

1 =

GP
(n)
1 + V0 with P (0)

1 = 0 which converges with the same rate as the
usual PageRank iteration.

In a similar as the PageRank P0 is characterized by the index K we
introduce the index KL by ordering |P1| such that KL = 1 corresponds
to the node with largest value of |P1| and KL = N to the node with
smallest value of |P1|. Once P1 is computed for the pair of chosen
injection/absorption nodes we determine the 20 top nodes with strongest
negative values of P1 and further 20 top nodes with strongest positive

values of P1 which constitute a subset of 40 nodes which are the most
significant nodes participating in the pathway between the pumping node
i and absorbing node j. We also require that these two particular nodes i
and j belong to this subset. If this is not automatically the case we replace
the node at total position 20 (position 20 for strongest negative values
of P1) with the absorption node j and/or the node at total position 40
(position 20 for strongest positive values of P1) with the injection node i.
This situation happens once for the absorption node of the third example
below which has a very low ranking position KL ≈ 2000 for |P1|.

In general from a physical/biological point of view we indeed expect
that the two particular injection/absorption nodes belong automatically to
the selected subset of most sensitive nodes. However, there is no simple
or general mathematical argument for this.

Using this subset of top nodes in the KL ranking we then apply the
REGOMAX algorithm to compute the reduced Google matrix and its
components and in particular we determine the effective direct and indirect
interactions of this reduced network. The advantage of the application of
LIRGOMAX at the initial stage is that it provides an automatic and more
rigorous procedure to determine an interesting subset of protein nodes
related to the pumping between nodes i and j instead of using an arbitrary
heuristic choice for such a subset.

3 Data sets and Ising-PPI-network construction
We use the open public SIGNOR PPI network Perfetto,L. et al., 2016 (April
2019 release for human, mouse and rat). This network containsN = 4341

nodes (proteins) and N` = 12547 directed hyperlinks between nodes.
Each protein (node) is described by their name and identifier.

A new interesting feature of this PPI directed network is that its
hyperlinks have activation and inhibition actions. For some links the
functionality is unclear and then they are considered to be neutral. This
feature rises an interesting mathematical challenge for the Google matrix
description of such bi-functional networks. To meet this challenge we
use the Ising-PageRank approach developed by Frahm and Shepelyansky,
2019b for a model of opinion formation on social networks. In this
approach each node is doubled getting two components marked by (+) and
(−). The activation links point to the (+) components and inhibition links
point to the (−) components. Such transitions between doubled nodes are
described by 2× 2 block matrices σ+ (σ−) matrices with entries 1 (0) in
the first row and 0 (1) in the second row as for Ising spin-1/2 (see details
described in Supplementary Material). A neutral transition is described by
2× 2 matrix σ0 with all elements being 1/2. Thus for this Ising-network
(doubled-size network) we have doubled number of node N = 8682 and
the total number of hyperlinks being N` = 27266; among them there
are Nact = 14944 activation links, Ninh = 7978 inhibition links and
Nneut = 4344 neutral links (N` = Nact + Ninh + Nneut). From
this weighted Ising-PPI-network with N` = 27266 nodes we construct
the Google matrix following the standard rules described by Langville and
Meyer, 2006; Ermann et al., 2015 and also given above.

Below we apply the Google matrix analysis taking into account the
bi-functionality PPI and illustrate the efficiency of the LIRGOMAX and
REGOMAX algorithms for the SIGNOR Ising-PPI-network.

The details of Ising-PPI-network construction, its main statistical
properties and an executable code for the described algorithms are
provided in the Supplementary Material and in Frahm and Shepelyansky,
2019c. Below we discuss the results obtained with the LIRGOMAX and
REGOMAX algorithms for three examples of specific pathways between
two specific proteins.
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Table 1. Top 20 nodes of strongest negative values of P1 (index number i =

1, . . . , 20) and top 20 nodes of strongest positive values of P1 (index number
i = 21, . . . , 40) with P1 being created as the linear response of the PageRank
of the Ising-PPI-network with injection (or pumping) at EGFR P00533 (+) and
absorption at JAK2 O60674 (-); KL is the ranking index obtained by ordering
|P1| and K is the usual PageRank index obtained by ordering the PageRank
P0.

i KL K Node name

1 1 30 JAK2 O60674 (+)
2 4 470 JAK2 O60674 (-)
3 5 554 IFNGR2/INFGR1 SIGNOR-C142 (+)
4 6 354 ARHGEF1 Q92888 (+)
5 7 631 APOA1 P02647 (+)
6 8 956 CSF2RA/CSF2RB SIGNOR-C212 (+)
7 9 57 STAT1 P42224 (+)
8 10 204 MAP3K5 Q99683 (-)
9 12 1008 STAT4 Q14765 (+)

10 13 825 CCR2 P41597 (+)
11 14 2377 PRMT5 O14744 (-)
12 15 2378 STAM Q92783 (+)
13 16 1482 EPOR P19235 (+)
14 17 1117 CSF2RA P15509 (+)
15 18 959 ITGAL P20701 (+)
16 19 1968 CTLA4 P16410 (-)
17 20 2058 STAP2 Q9UGK3 (+)
18 21 2024 ITGB2 P05107 (+)
19 22 532 EZH2 Q15910 (-)
20 23 1196 GTF2I P78347 (+)

21 2 29 GRB2 P62993 (+)
22 3 172 FES P07332 (+)
23 11 90 EGFR P00533 (+)
24 27 3 PIK3CD O00329 (-)
25 30 126 CBL P22681 (+)
26 31 136 EGFR P00533 (-)
27 32 648 EZR P15311 (+)
28 36 38 PTK2 Q05397 (+)
29 37 456 GAB1 Q13480 (+)
30 39 424 BCR P11274 (-)
31 42 124 PIK3R1 P27986 (+)
32 43 26 PLCG1 P19174 (+)
33 44 58 SHC1 P29353 (+)
34 45 88 ESR1 P03372 (+)
35 46 2398 VAV2 P52735 (+)
36 47 746 SHC3 Q92529 (+)
37 48 291 ERBB2 P04626 (+)
38 49 888 ERBB3 P21860 (+)
39 51 1109 NCK1 P16333 (+)
40 52 1531 CRK P46108 (-)

4 Results
Here we present results obtained with LIRGOMAX and REGOMAX
algorithms for pathways between several pairs of selected proteins.

4.1 Case of pathway EGFR - JAK2 proteins

As a first example we choose the node EGFR P00533 (+) for injection
(pumping) and JAK2 O60674 (-) for absorption. It is known that mutations

affecting the protein EGFR expression or activity could result in lung
cancer (see e.g. Bethune et al., 2010; Zamay et al., 2017). This protein
interacts with the protein JAK2 whose mutations have been implicated
in various types of cancer. We argue that the injection (pumping) at
EGFR P00533 (+) and absorption at JAK2 O60674 (-) should involve
certain variations of the PageRank probability, represented byP1, showing
interactions between various proteins actively participating in the pathway
from EGFR P00533 (+) to JAK2 O60674 (-). The pumping process can
be viewed as a result of disease development and absorption as a certain
mutation of this disease into another one.
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Fig. 1. Linear response vectorP1 of PageRank for the Ising-PPI-network with injection (or
pumping) at EGFR P00533 (+) and absorption at JAK2 O60674 (-). HereKL is the ranking
index obtained by ordering |P1| from maximal value atKL = 1 down to minimal value.
Top panel shows |P1| versus KL in a double logarithmic representation for all N nodes.
Bottom panel shows a zoom of P1 versus KL for KL ≤ 103 in a double logarithmic
representation with sign; blue data points correspond to P1 > 0 and red data points to
P1 < 0.

The global PageRank indices of these two nodes are K = 90

(PageRank probability P (90) = 0.0009633 ) for EGFR P00533 (+)
and K = 470 (PageRank probability P (470) = 0.0003444) for JAK2
O60674 (-). As described above in the LIRGOMAX computations we
choose the vector in V0 which appears in the inhomogeneous PageRank
equation (1) as V0 = GW0 with W0(K = 90) = +1, W0(K =

470) = −1 and W0(K) = 0 for all other values of the Kindex K. We
remind that bothW0 and V0 are orthogonal to the left leading eigenvector
ET = (1, . . . , 1) of G according to the general description of the
LIRGOMAX algorithm given above and in Frahm and Shepelyansky,
2019a.

For comparison we let us note that the top 4 PageRank nodes areK = 1

(P (1) = 0.003041) for CASP3 P42574 (+),K = 2 (P (2) = 0.002821)
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for NOTCH1 P46531 (+), K = 3 (P (3) = 0.002433) for PIK3CD
O00329 (-), K = 4 (P (4) = 0.002413) for CTNNB1 P35222 (-)
(other values/data are available at Frahm and Shepelyansky, 2019c).

Similar to the two Wikipedia examples analyzed by Frahm and
Shepelyansky, 2019a the LIRGOMAX algorithm selects the proteins
mostly affected by injection/absorption process with 20 most positive
(EGFR block) and 20 most negative (JAK2 block) values of P1 shown
in Table 1. Here the pumped protein EGFR P00533 (+) is on the third
position in its block of positive P1 values (i = 23) and with KL = 11

(where KL is the ranking index obtained by ordering the components of
|P1|) while the protein with absorption JAK2 O60674 (-) has the second
position in its block of negative P1 values (i = 2) with KL = 4. Thus
these two nodes are not at the first positions in their respective blocks but
still they are placed at very high positions.
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Fig. 2. Reduced Google matrix components GR , Gpr , Grr and Gqr for Ising-PPI-
network and the subgroup of nodes given in Table 1 corresponding to injection at EGFR
P00533 (+) and absorption at JAK2 O60674 (-) (see text for explanations). The axis labels
correspond to the index i used in Table 1. The relative weights of these components are
Wpr = 0.761, Wrr = 0.220, and Wqr = 0.019. The values of the color bar
correspond to sgn(g)(|g|/max |g|)1/4 where g is the shown matrix element value. The
exponent 1/4 amplifies small values of g for a better visibility.

The dependence of |P1| of the index KL is shown in the top panel of
Figure 1. The decay of |P1| is relatively slow forKL ≤ 40 followed by a
more rapid drop forKL > 40. The bottom panel shows the dependence of
positive (blue) and negative (red) values ofP1 onKL. We note that the top
absolute values |P1| for blue and red components have comparable values
being of the order of |P1| ∼ 0.1 for approximately KL ≤ 40. However,
in this range the number of positive (blue) values of P1 is significantly
smaller compared to the number of negative (red) values of P1. This point
can also be seen from the column ofKL values in Table 1. Another feature
visible from Table 1 is that the number of proteins with negative component
(−) is significantly smaller than those with a positive component (+) (5
for 1 ≤ i ≤ 20 and 4 for 21 ≤ i ≤ 40. We return to the properties of
positive and negative components a bit later.

After the selection of most significant 40 nodes of the pathway
between the two injection/absorption proteins (see Table 1) we apply the
REGOMAX algorithm which determines all matrix elements of Markov
transitions between these 40 nodes including all direct and indirect
pathways via the large global Ising-PPI-networks network with 8682
nodes.
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Fig. 3. Same as in Fig. 2 but for the matrix Grr + Gqrnd , where Gqrnd is obtained
from Gqr by putting its diagonal elements at zero; the weight of these two components is
Wrr+qrnd = 0.227.

The reduced Google matrix GR and its three components Gpr, Grr,
Gqr are shown in Figure 2 for proteins of Table 1 (1 ≤ i ≤ 40). The weight
of the component Gpr is Wpr = 0.761 being not so far from unity but
this value is belowWpr ≈ 0.95 appearing usually in Wikipedia networks
(Frahm et al., 2016; Frahm and Shepelyansky, 2019a). We attribute this to
a significantly smaller number of links per node being ` = N`/N ≈ 3.1

for the Ising-PPI-network while for the English Wikipedia network of 2017
we have ` ≈ 22.5 (Frahm and Shepelyansky, 2019a). Indeed, the weight
Wrr = 0.220 of direct transitions of Grr is significantly larger than the
corresponding values for the Wikipedia case withWrr ≈ 0.04. However,
the weights Wqr = 0.019 are comparable for both reduced networks.

The matrix structure of direct transitions Grr has a clear two block
structure with dominant transitions inside each block associated to EGFR
and JAK2 with only 4 significant matrix elements from the EGFR to the
JAK2 block. These matrix elements correspond to links from EGFR (±)
to JAK2 (+) and STAT1(+) and have the same value g ≈ 0.0167 while
all other matrix elements (of this EGFR to JAK2 block) are very small
with the value g ≈ 1.73 × 10−5 corresponding to the minimal value
(1− α)/N in G related to the damping factor α = 0.85.

The matrix Gpr (which is exactly of rank 1) has a very simple
structure with all columns being (approximately) proportional to the (local)
PageRank of GR (which is itself proportional to the global PageRank
projected onto the subset of 40 nodes) and one clearly sees that the strong
horizontal red lines correspond to index positions i of Table 1 where
the corresponding index K is quite low below ∼ 100 corresponding
to a relatively high PageRank position. The full reduced matrix GR is
numerically dominated by Gpr (but less clearly as for typical Wikipedia
cases) and has at first sight a similar structure as Gpr but with somewhat
smaller values. However, some of the strongest direct links (fromGrr) are
also visible. Similarly to the Wikipedia network of politicians as discussed
in Frahm et al., 2016 both matrix components GR and Gpr are not very
usefully to identify the indirect links.

The indirect links are visible in the matrix Gqr. As explained and
shown mathematically in Frahm et al., 2016 they correspond to pathways
where a given node i1 of the small subset points to a certain node outside the
subset (in the big surrounding PPI network) which itself points eventually
to another node outside the subset and comes after a finite number of
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iterations finally back to a different node i2 inside the subset. This provides
an indirect link from i1 to i2 and the weight or strength of this indirect
link is characterized by the value of the matrix element (Gqr)i2,i1 .
According to Figure 2 there are now also significant interactions between
the two blocks of EGFR and JAK2 for the matrix Gqr, sometimes with
negative values (note that the matrix elements of Gqr may be negative).
Figure 3 shows the the sum of the two componentsGrr +Gqrnd (Gqrnd

corresponds to Gqr without its diagonal elements) which confirms this
observation. Actually, we consider that the elements of Grr + Gqrnd

describe best the combined direct and indirect links for the given subset.
Due to the contribution of indirect transitions there are additional

transitions between these two blocks where the four strongest additional
elements of Gqr have values g = 0.0106 (GRB2 P62993 (+) to JAK2
O60674 (+)); g = 0.0099 (GRB2 P62993 (+) to STAT1 P42224 (+));
g = 0.0059 (GAB1 Q13480 (+) to GTF2I P78347 (+)); g = 0.0039

(PIK3R1 P27986 (+) to GTF2I P78347 (+)). There are also 11 additional
transitions with g > 0.1. Thus even if the weight of Gqr is not high it
provides important new indirect interactions between proteins from the
EGFR block to the JAK2 block.
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Fig. 4. Network of friends for the subgroup of nodes given in Table 1 corresponding to
injection at EGFR P00533 (+) and absorption at JAK2 O60674 (-) constructed from the
matrixGrr +Gqrnd using 4 top (friends) links per column (see text for explanations).

The situation is even more striking when we consider the transitions
from the JAK2 block to the EGFR block. There are no direct links
between these blocks in this direction from the global network but due
to the construction of the Google matrix described above there are still
numerically very small values g for the matrix elements of Grr due
to dangling nodes (nodes with no outgoing links) with g = 1/N ≈
1.15 × 10−4 (in certain columns) or due to the damping factor term
(1 − α)/N ≈ 1.73 × 10−5 (for the other columns). On the other side
concerning the indirect links described by Gqr we find rather significant
transitions from the JAK2 block to the EGFR block with the four largest
values: g ≈ 0.0122 (CCR2 P41597 (+) to EGFR P00533 (-) and to
ESR1 P03372 (+)); g ≈ 0.006 (CSF2RA/CSF2RB SIGNOR-C212 (+)
to ESR1 P03372 (+) and to PIK3R1 P27986 (+)). There are also 9
additional transitions with g > 0.001. Complete data files for the matrix

elements of matrix components (for all examples) are available at Frahm
and Shepelyansky, 2019c.

It is convenient to present the interactions between proteins, generated
by the matrix elements of the sum of two components Grr + Gqrnd

from Figure 3, in the form of a network shown in Figure 4. To construct
the network of effective friends, we select first five initial nodes which
are placed on a (large) circle: the two nodes with injection and absorption
(EGFR (+) (injection node, blue) and JAK2 (-) (absorption node, olive) and
three other nodes with a rather top position in the KL ranking: JAK2 (+)
(related to JAK2 (-) withKL = 1, i = 1, red), GRB2 (+) (withKL = 2,
i = 21, green) and FES (+) (with KL = 3, i = 22, cyan). For each of
these five initial nodes we determine four friends by the criterion of largest
matrix elements (in modulus) in the same column, i.e. corresponding to
the four strongest links from the initial node to the potential friends. The
friend nodes found in this way are added to the network and drawn on
circles of medium size around their initial node (if they do not already
belong to the initial set of 5 top nodes). The links from the initial nodes to
their friends are drawn as thick black arrows. For each of the newly added
nodes (level 1 friends) we continue to determine the four strongest friends
(level 2 friends) which are drawn on small circles and added to the network
(if there are not already present from a previous level). The corresponding
links from level 1 friends to level 2 friends are drawn as thin red arrows.

Each node is marked by the index i from the first column of Table 1.
The colors of the nodes are essentially red for nodes with strong negative
values of P1 (corresponding to the index i = 1, . . . , 20) and blue for
nodes with strong positive values of P1 (for i = 21, . . . , 40). Only for
three of the initial nodes we choose different colors which are olive for JAK
(-), green for GRB2 (+) and cyan for FES (+). This procedure generates
the directed friendship network shown in Figure 4.

The obtained network of Figure 4 has a rather clear separation between
the two blocks related to EGFR (mainly blue nodes) and JAK2 (mainly red
nodes). There is only one link of first level (black arrow) from the EGFR
block (GRB2 (+)) to the JAK2 block (JAK2 (+)), Of course, there are
other strong direct transitions from the EGFR block to the JAK2 block as
described above, but these links are weaker than the 4 closest friends and
therefore they do not appear in the network structure of Figure 4. However,
we see that there are many links between the two blocks on the secondary
level of red arrows.

The block of JAK2 (red nodes) is rather compact with only 6 nodes
(one red node at i = 20 is more linked to the EGFR block). In contrast the
EGFR block contains 15 (blue) nodes showing that this group of proteins
is characterized by broader and more extensive interconnections. We think
that such a network presentation provides a useful qualitative image of the
effective interactions between the two groups of proteins.

Network figures, for this example and the other two examples discussed
below, constructed in the same way using the other matrix componentsGR,
Grr or Gqr (instead of Grr +Gqrnd) or using strongest matrix elements
in rows (instead of columns) to determine follower networks are available
at Frahm and Shepelyansky, 2019c.

4.2 Magnetization of proteins of EGFR - JAK2 pathway

In the Ising-PPI-network each protein is described by two components
which can be considered as spin up or down state. The PageRank
probability of a protein is given by the sum of probabilities of its two
components with P (j) = P+(j) + P−(j). It can be shown that due to
the structure of the matrix transitions given by the matrices σ+, σ−, σ0
the sum of probabilities P (j) for a given protein j is the same as for
the directed PPI network without doubling (see Supplementary Material).
Thus the activation or inhibition links in the Ising-PPI-network of doubled
size only redistribute PageRank probability for a given protein between
up and down components. The physical meaning of these up and down
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component probabilities P+ and P− is qualitatively related to the fact
that on average the PageRank probability P of a node is proportional to
the number of ingoing links. Thus P+ is proportional to the number of
ingoing activation links and P− is proportional to the number of ingoing
inhibition links. Thus we can characterize each node by its normalized
magnetization M(j) = (P+(j) − P−(j))/(P+(j) + P−(j)). By
definition −1 ≤ M(j) ≤ 1. Big positive values of M mean that this
protein has mainly ingoing activation links while big negative values
mean that this protein has mainly inhibition ingoing links. In principle,
we can also study the magnetization of CheiRank probability of proteins
given by M∗(j) = (P ∗+(j) − P ∗−(j))/(P ∗+(j) + P ∗−(j)) but we keep
this for further investigations. We note that M(j) and M∗(j) represent
the normalized values which are independent of the total probability
P (j), P ∗(j). Thus the magnetization of nodes of the reduced Google
matrix remains the same as in the global network.

We take all different 38 proteins present in Table 1 and consider their
magnetization (this number is smaller than 40 since for few proteins both
(+) or (−) components are present in this Table). All these 38 proteins
are listed in Table 2 with their local PageRank and CheiRank indices K
andK∗. The distribution of these 38 proteins on the PageRank-CheiRank
plane is shown in Figure 5 and the colors of the square boxes presents
the values of M(j) (see caption of Figure 5). The three proteins with the
strongest positive magnetizations are PLCG1 P19174 (M = 0.8959),
GRB2 P62993 (M = 0.8899), FES P07332 (M = 0.8719) and with the
strongest negative values are BCR P11274 (M = −0.7799), PIK3CD
O00329 (M = −0.7328), PRMT5 O14744 (M = −0.3527). In total
there are only 5 proteins of Table 2 with negative magnetization values.
We attribute this to the fact that the number of inhibition links is smaller
than the number of activation ones. We think that the magnetization of
proteins can provide new interesting information about the functionality
of proteins.
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Fig. 5. PageRank “magnetization”M(j) = (P+(j)−P−(j))/(P+(j)+P−(j)) of
proteins of Table 2 shown on the PageRank-CheiRank plane (K,K∗) of local indices; here
j represents a protein node in the initial single protein network andP±(j) are the PageRank
components of the Ising-PPI-network (see text). The values of the color bar correspond to
M/max |M| with max |M| = 0.896 being the maximal value of |M(j)| for the
shown group of proteins.

Table 2. Group of 38 nodes of the single protein network obtained from the
group of Table 1 by removing the (+) and (−) attributes. K (K∗) represent
the local rank indices obtained from the PageRank (CheiRank) ordering of the
single protein network. The index i is the same as in Table 1 where the two
values i = 2 and i = 26 do not appear here since they correspond to the two
nodes where both components (+) and (−) are present in Table 1.

K K∗ i Node name

1 34 24 PIK3CD O00329
2 3 1 JAK2 O60674
3 1 23 EGFR P00533
4 2 32 PLCG1 P19174
5 10 21 GRB2 P62993
6 11 28 PTK2 Q05397
7 8 34 ESR1 P03372
8 5 7 STAT1 P42224
9 7 33 SHC1 P29353

10 13 8 MAP3K5 Q99683
11 4 25 CBL P22681
12 25 31 PIK3R1 P27986
13 6 37 ERBB2 P04626
14 21 22 FES P07332
15 12 5 APOA1 P02647
16 9 19 EZH2 Q15910
17 27 4 ARHGEF1 Q92888
18 30 29 GAB1 Q13480
19 28 3 IFNGR2/INFGR1 SIGNOR-C142
20 24 30 BCR P11274
21 22 40 CRK P46108
22 26 27 EZR P15311
23 15 6 CSF2RA/CSF2RB SIGNOR-C212
24 19 38 ERBB3 P21860
25 33 36 SHC3 Q92529
26 18 10 CCR2 P41597
27 14 39 NCK1 P16333
28 31 15 ITGAL P20701
29 17 9 STAT4 Q14765
30 23 14 CSF2RA P15509
31 16 20 GTF2I P78347
32 37 16 CTLA4 P16410
33 36 13 EPOR P19235
34 20 18 ITGB2 P05107
35 38 17 STAP2 Q9UGK3
36 32 11 PRMT5 O14744
37 35 12 STAM Q92783
38 29 35 VAV2 P52735

4.3 Examples of other protein pathways

We also consider two other proteins pairs for injection (pumping) and
absorption which we analyzed in the same way. Again we compute the
vector V0 = GW0 where W0 has only two non-zero components being
1 at the pumping node and −1 at the absorption node, we solve the
inhomogeneous PageRank equation (1) to obtain the linear response vector
P1 from which we determine a set of 40 nodes composed with 20 strongest
negative and 20 strongest positive values. In order to ensure that the
two initial injection and absorption nodes also belong to this subset we
eventually replace the node at position 20 for strongest positive and/or
negative values with the injection and/or absorption node respectively.
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Here we only show and discuss the list of the obtained subsets and the
effective network schemes corresponding to Table 1 and Figure 4 for these
two examples while Tables and Figures analogous to Table 2, Figures 1,
2, 3, 5 are given in the Supplementary Material.

First we discuss the case of injection at MAP2K1 Q02750 (+) and
absorption at EGFR P00533 (-). The protein MAP2K1 is a member of
the dual-specificity protein kinase family that acts an integration point for
multiple biochemical signals. There is no direct link between MAP2K1
and EGFR. The global PageRank indices of these two nodes are K =

84 (PageRank probability P (84) = 0.0009794 ) for MAP2K1 Q02750
(+) and K = 136 (PageRank probability P (136) = 0.0007817) for
EGFR P00533 (-). The subset of most sensitive proteins obtained from
the LIRGOMAX algorithm for this protein pair is given in Table 3. These
proteins are different from those of Table 1. We note now that the injection
and absorption proteins have lower positions in the rank indicesKL and i
of Table 3. We attribute this somehow unexpected result of the P1 ranking
to rather nontrivial vortex flows on the Ising-PPI-network.

The friendship network for this case is shown in Figure 6 (the
construction method is the same as Figure 4). The 5 proteins of the initial
large circle are EGFR (-) (olive), FES (+) (red), MAP2K1 (+) (cyan),
MAPK14 (-) (green), CEBRPA (+) (blue). In this network we find a
number of strong indirect links from the block of MAP2K1 Q02750 (+)
(blue nodes) to EGFR P00533 (-) (red nodes) for which there is no direct
link (e.g. from i = 21 to i = 14 proteins of Table 3). In the opposite
direction from red to blue nodes there are only two strong direct matrix
elements of Grr being from PI3K SIGNOR-C156 (+) i = 13 to IRS1
P35568 (-) i = 21 with g = 0.08501 and from STAT3 P40763 (+)
i = 18 to CASP3 P42574 (+) i = 32 with g = 0.03543 with all other
elements being below 1.8 × 10−5. However, in this direction there are
9 new indirect links with elements g > 0.01 and 20 with g > 0.005.
This results in a rather dense network with many links shown in Figure 6.
From the network structure we see that the proteins i = 25, 40 of the blue
block are more closely related with proteins of the red block and inversely
the proteins i = 10, 18, 20 of the red block are more closely related with
proteins of the blue block.
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Fig. 6. Same as Figure 4 but for the pathway of Table 3.

Table 3. Same as in Table 1 but for injection (pumping) at MAP2K1 Q02750
(+) and absorption at EGFR P00533 (-).

i KL K Node name

1 15 172 FES P07332 (+)
2 16 29 GRB2 P62993 (+)
3 17 90 EGFR P00533 (+)
4 18 3 PIK3CD O00329 (-)
5 19 126 CBL P22681 (+)
6 20 648 EZR P15311 (+)
7 21 136 EGFR P00533 (-)
8 22 38 PTK2 Q05397 (+)
9 23 30 JAK2 O60674 (+)

10 24 57 STAT1 P42224 (+)
11 26 456 GAB1 Q13480 (+)
12 27 424 BCR P11274 (-)
13 29 9 PI3K SIGNOR-C156 (+)
14 32 26 PLCG1 P19174 (+)
15 33 746 SHC3 Q92529 (+)
16 34 2398 VAV2 P52735 (+)
17 35 291 ERBB2 P04626 (+)
18 36 15 STAT3 P40763 (+)
19 37 888 ERBB3 P21860 (+)
20 38 40 JAK1 P23458 (+)

21 1 125 CEBPA P49715 (+)
22 2 144 MAPK14 Q16539 (-)
23 3 54 GSK3B P49841 (+)
24 4 543 TAL1 P17542 (-)
25 5 74 CASP9 P55211 (-)
26 6 16 PPARG P37231 (-)
27 7 1491 ARRB2 P32121 (+)
28 8 156 MAPK3 P27361 (+)
29 9 84 MAP2K1 Q02750 (+)
30 10 246 MAPK1 P28482 (+)
31 11 80 IRS1 P35568 (-)
32 12 1 CASP3 P42574 (+)
33 13 523 KIF3A Q9Y496 (+)
34 14 7 ERK1/2 SIGNOR-PF1 (+)
35 25 528 ERG P11308 (+)
36 28 106 MEF2C Q06413 (+)
37 30 826 ANGPT2 O15123 (+)
38 31 290 TEK Q02763 (+)
39 78 181 CPT1B Q92523 (+)
40 86 20 JUN P05412 (+)

As a further example we also briefly discuss the pathway generated
by injection at EGFR P00533 (+) and absorption at PIK3CA P42336 (-).
These two proteins are conventional bio markers of lung cancer (see e.g.
Zamay et al., 2017). The global PageRank indices of these two nodes are
K = 90 (PageRank probabilityP (90) = 0.0009633 ) for EGFR P00533
(+) and K = 1604 (PageRank probability P (1604) = 0.0001366) for
PIK3CA P42336 (-).

The most sensitive proteins obtained by the LIRGOMAX algorithm,
are shown in Table 4. However, now the absorption node PIK3CA P42336
(-) has a very low value (in modulus) of P1 (P1 = −4.59 × 10−5,
KL = 2806) and does initially not belong to the group of nodes with
20 top strongest negative values. Therefore we replace the node AKT3
Q9Y243 (+) (KL = 70) which was initially selected for i = 20 by the
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Table 4. Same as in Table 1 but for injection (pumping) at EGFR P00533 (+)
and absorption at PIK3CA P42336 (-).

i KL K Node name

1 1 203 BTK Q06187 (+)
2 2 19 AKT SIGNOR-PF24 (+)
3 3 14 AKT1 P31749 (+)
4 4 100 AKT2 P31751 (+)
5 5 63 MTOR P42345 (+)
6 6 24 PtsIns(3,4,5)P3 CID:24755492 (+)
7 7 80 IRS1 P35568 (-)
8 8 23 RAC1 P63000 (+)
9 10 330 PI3K SIGNOR-C156 (-)

10 11 9 PI3K SIGNOR-C156 (+)
11 38 1014 TEC P42680 (+)
12 39 970 BMX P51813 (+)
13 62 1587 ITK Q08881 (+)
14 63 154 PIK3CB P42338 (+)
15 65 1672 DAPP1 Q9UN19 (+)
16 66 1076 PLCG2 P16885 (+)
17 67 56 mTORC1 SIGNOR-C3 (+)
18 68 1196 GTF2I P78347 (+)
19 69 75 BAD Q92934 (-)
20 2806 1604 PIK3CA P42336 (-)

21 9 172 FES P07332 (+)
22 12 29 GRB2 P62993 (+)
23 13 90 EGFR P00533 (+)
24 14 3 PIK3CD O00329 (-)
25 15 136 EGFR P00533 (-)
26 16 126 CBL P22681 (+)
27 17 30 JAK2 O60674 (+)
28 18 57 STAT1 P42224 (+)
29 19 648 EZR P15311 (+)
30 20 456 GAB1 Q13480 (+)
31 21 424 BCR P11274 (-)
32 22 58 SHC1 P29353 (+)
33 23 746 SHC3 Q92529 (+)
34 24 2398 VAV2 P52735 (+)
35 25 40 JAK1 P23458 (+)
36 26 291 ERBB2 P04626 (+)
37 27 888 ERBB3 P21860 (+)
38 28 7 ERK1/2 SIGNOR-PF1 (+)
39 29 1028 JAK1/STAT1/STAT3 SIGNOR-C120 (+)
40 30 303 STAT1/STAT3 SIGNOR-C118 (+)

absorption node PIK3CA P42336 (-). Furthermore, also its (+) component
PIK3CA P42336 (+) (P1 = −0.004546 andKL = 138) does not appear
in Table 4 showing that the influence of EGFR P00533 (+) on the protein
PIK3CA P42336 is rather low.

The friendship network structure of shown in Figure 7 shows a clear
separation between the two blocks of positive (blue) and negative (red)
P1 values. However, some proteins of one block happen to be closer to
proteins of the other block (e.g. proteins i = 10, 14 from the red block
are closer to the blue block and blue block protein i = 29 is closer to
the proteins of the red block). We also note that concerning the links from
the blue to the red block there are 9 significant direct transitions (matrix
elements of Grr larger than 0.01) and 35 significant indirect and direct
transitions (matrix elements of Grr + Gqrnd larger than 0.01). For the

opposite direction of transitions from the red to the blue block the increase
is less significant but still there are new transitions due to indirect pathways
(2 significant transitions forGrr and 3 forGrr+Gqr). The significance of
indirect transitions is also well visible in the friendship network of Figure 7
with many red arrows between the two blocks.

The same results for the original list, where the node AKT3 Q9Y243
(+) at position i = 20 has not been replaced by PIK3CA P42336 (-), are
available at Frahm and Shepelyansky, 2019c.

Grr+Gqr
(nd)

friends

●38●35

●32

●31

●30

●29

●26

●25

●23

●22 ●21

●20
●19

●17

●15

●14

●13 ●12

●11
●10

●9

●8
●7

●6

●5

●4

●3

●2

●1 ■■■■■■■BTK (+)

■■■■■■■AKT (+)

■■■■■■■■■■PIK3CA (−)

■■■■■■■FES (+)

■■■■■■■■EGFR (+)

Fig. 7. Same as Figure 4 but for the pathway of Table 4.

5 Conclusion
In this work we describe the properties of Google matrix analysis of the
bi-functional SIGNOR PPI network from Perfetto,L. et al., 2016. The
main elements of this approach are: the activation and inhibition actions
of proteins on each-other are described by Ising spin matrix transitions
between the protein components in the doubled size Ising-PPI-network;
the recently developed LIRGOMAX (Frahm and Shepelyansky, 2019a)
algorithm determines the most sensitive proteins on the pathway between
two selected proteins with probability injection (pumping) at one protein
and absorption at another protein; the set of most sensitive proteins are
analyzed by the REGOMAX algorithm which treats efficiently all direct
and indirect interactions in this subset taking into account all their effective
interactions through the global PPI network. We illustrated the efficiency
of this approach on several examples of two selected proteins. The
obtained results show the efficiency of the LIRGOMAX and REGOMAX
algorithms. We also show that the bi-functionality of protein-protein
interactions leads to a certain effective magnetization of proteins which
characterizes their dominant action on the global PPI network.

The executive codes and reduced Google matrix data are open and
publicly available at Frahm and Shepelyansky, 2019c and interested
researchers can easily study any example of a pathway between any pair
of proteins from the SIGNOR network.

The described LIRGOMAX and REGOMAX algorithms can be
applied also to other type of biological networks (e.g. metabolic networks
discussed by Frainay et al., 2019).
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We mention that the described Google matrix algorithms have been
tested for networks with 5 million nodes and thus they can operate
efficiently on other PPI networks of significantly larger size (e.g. MetaCore
network which has several tens of thousands of nodes and about 2 million
links). Thus we expect that the Google matrix approach, or in short
Googlomics, will find broad applications for the analysis of protein-protein
interactions.
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SUPPLEMENTARY MATERIAL

for “Google matrix analysis of bi-functional SIGNOR network of protein-protein interactions”

by K.M. Frahm and D.L. Shepelyansky

S.1 Statistical properties of the SIGNOR protein-protein interactions network PPI
Using the Signor database a network of N = 4341 proteins with N` = 12547 interactions was created. In a first version, called the “single protein
network”, the links do not contain the information if the interaction corresponds to activation, inhibition or is neutral/unknown. As usual we first construct
an adjacency matrix with entries Aij = 1 if there is a link from node j → i and Aij = 0 if there is no such link. However, in certain rare cases there
are multiple types of links between two proteins (e.g. activation and inhibition) in which case we chooseAij being a multiplicity factor of 2 or 3 (instead
of the usual entry 1). Once the adjacency matrix is fixed the Google matrix of this (single) protein network is constructed in the usual way: column sum
normalization, taking into account the effect of dangling nodes (nodes with no outgoing link) by replacing each zero column by a uniform column with
entries 1/N and with the application of the standard damping factor α = 0.85.

In Fig. S.1 we show the PageRank P (CheiRank P ∗) for this single network versus the corresponding rank index K (K∗) showing a typical decay
(roughly) comparable to a power law P ∼ 1/Kβ (P ∗ ∼ 1/(K∗)β ) with β ≈ 0.7 (0.8) forK ≥ 100 (K∗ ≥ 10). Fig. S.2 shows the density of nodes
in the PageRank-CheiRank plane (K,K∗) and the positions of the subgroup of nodes corresponding to Table 2 for this network.

To take into account the information about the nature of the links we use the approach of the Ising-PageRank to construct a larger network where
each node is doubled with two labels (+) and (−). To construct the doubled “Ising” network of proteins each unit entry of the initial adjacency matrix is
replaced by 2× 2 matrices which are:

σ+ =

(
1 1

0 0

)
, σ− =

(
0 0

1 1

)
, σ0 =

1

2

(
1 1

1 1

)
(S.1)

where σ+ applies to “activation”, σ− to “inhibition” and σ0 to “neutral” or “unknown”. For the rare cases with multiple types of links between two
proteins we use the sum of the corresponding σ matrices which increases the weight of the adjacency matrix elements. After this the corresponding
Google matrix is constructed in the usual way. The doubled Ising protein network corresponds toNI = 8682 nodes andNI,` = 27266 links (according
to the non-zero entries of the used σ matrices).

Now the PageRank vector (of this doubles Ising network) has components P+(j) and P−(j). Due to the particular structure of the σ matrices (S.1)
one can show analytically the exact identity P (j) = P+(j) +P−(j) where P (j) is the PageRank of the initial single protein network. For this we have
to replace in Eq. (4) of (Frahm and Shepelyansky (2019)b) the value ni by nij with nij = 1, 0, 1/2 for the matrix σ+, σ− or σ0 respectively. The
additional dependence of nij on j takes into account that the choice of the σ matrix may be different for each link (and is not identical inside each row
as it was the case for the model used in (Frahm and Shepelyansky (2019)b). Then the analytical argument of this work also applies in exactly the same
way to the case of the doubled Ising protein network. We have also numerically verified that the identity P (j) = P+(j) +P−(j) holds up to numerical
precision (∼ 10−13).

As in (Frahm and Shepelyansky (2019)b) we introduce the PageRank “magnetization” by:

M(j) =
P+(j)− P−(j)
P+(j) + P−(j)

(S.2)

for a node j. The dependence of M(j) on nodes is shown in Fig. S.3 for the whole network and in Fig. 5 for the subgroup of nodes of Table 2.
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Fig. S.1. PageRank P (K) and CheiRank P∗(K∗) for the single protein network.

Fig. S.2. Density of nodes W (K,K∗) of the single protein network on PageRank-CheiRank plane (K,K∗) averaged over 100 × 100 logarithmically equidistant grids for 0 ≤
lnK, lnK∗ ≤ lnN , the density is averaged over all nodes inside each cell of the grid, the normalization condition is

∑
K,K∗ W (K,K∗) = 1. The color bar of Fig. 2 applies (for

positive values) and its values correspond to (W/maxW )1/4 . In order to increase the visibility large density values have been reduced to (saturated at) 1/16 of the actual maximum
density. The x-axis corresponds to lnK and the y-axis to lnK∗ . The white crosses show the positions of the 38 nodes of Table 2 and in Fig. 5.
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Fig. S.3. PageRank “magnetization”M(j) = (P+(j)−P−(j))/(P+(j) +P−(j)) in the Ising-PPI-network; here j is the node index andK(j) is the PageRank index of the initial
SIGNOR network (without node doubling).

All rights reserved. No reuse allowed without permission. 
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which was not peer-reviewed) is. http://dx.doi.org/10.1101/750695doi: bioRxiv preprint first posted online Sep. 1, 2019; 

http://dx.doi.org/10.1101/750695


“signor” — 2019/8/29 — page 13 — #13

Google matrix analysis of SIGNOR PPI network 13

S.2 Pathway from MAP2K1 Q02750 (+) to EGFR P00533 (-)

Here we present additional figures and table for this pathway discussed in subsection 4.3. Table S.1 gives the proteins (extracted from Table 3) for which
the magnetization M is presented in Figure S.7.
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Fig. S.4. Same as in Fig. 1 but for the pathway from MAP2K1 Q02750 (+)
to EGFR P00533 (-).
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Fig. S.5. Same as in Fig. 2 but for the pathway from MAP2K1 Q02750 (+)
to EGFR P00533 (-).
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Fig. S.6. Same as in Fig. 3 but for the pathway from MAP2K1 Q02750 (+)
to EGFR P00533 (-).

Table S.1. Same as in Table 2 but for injection (pumping) at MAP2K1 Q02750
(+) and absorption at EGFR P00533 (-). The index i is the same as in Table 3
where two values do not appear here since they correspond to the two nodes
where both components (+) and (−) are present in Table 3.

K K∗ i Node name

1 23 26 PPARG P37231
2 9 32 CASP3 P42574
3 29 25 CASP9 P55211
4 37 4 PIK3CD O00329
5 20 13 PI3K SIGNOR-C156
6 8 18 STAT3 P40763
7 5 34 ERK1/2 SIGNOR-PF1
8 11 40 JUN P05412
9 4 22 MAPK14 Q16539

10 17 36 MEF2C Q06413
11 10 9 JAK2 O60674
12 3 23 GSK3B P49841
13 6 3 EGFR P00533
14 18 21 CEBPA P49715
15 7 14 PLCG1 P19174
16 19 2 GRB2 P62993
17 21 8 PTK2 Q05397
18 22 20 JAK1 P23458
19 2 28 MAPK3 P27361
20 31 31 IRS1 P35568
21 14 10 STAT1 P42224
22 1 30 MAPK1 P28482
23 12 29 MAP2K1 Q02750
24 13 5 CBL P22681
25 15 17 ERBB2 P04626
26 27 1 FES P07332
27 39 39 CPT1B Q92523
28 26 38 TEK Q02763
29 25 24 TAL1 P17542
30 33 11 GAB1 Q13480
31 28 12 BCR P11274
32 30 6 EZR P15311
33 38 33 KIF3A Q9Y496
34 16 35 ERG P11308
35 24 19 ERBB3 P21860
36 36 15 SHC3 Q92529
37 35 37 ANGPT2 O15123
38 34 27 ARRB2 P32121
39 32 16 VAV2 P52735
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Fig. S.7. Same as in Fig. 5 but for the pathway from MAP2K1 Q02750 (+) to
EGFR P00533 (-) with proteins from Table S.1; the maximal magnetization
used in the color bar normalization isMmax = 0.961
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S.3 Pathway from EGFR P00533 (+) to PIK3CA P42336 (-)

Here we present additional figures and table for this pathway discussed in subsection 4.3. Table S.2 gives the proteins (extracted from Table 4) for which
the magnetization M is presented in Figure S.11.
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Fig. S.8. Same as in Fig. 1 but for the pathway from EGFR P00533 (+) to
PIK3CA P42336 (-).
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Fig. S.9. Same as in Fig. 2 but for the pathway from EGFR P00533 (+) to
PIK3CA P42336 (-).
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Fig. S.10. Same as in Fig. 3 but for the pathway from EGFR P00533 (+) to
PIK3CA P42336 (-).

Table S.2. Same as in Table 2 but for injection (pumping) at EGFR P00533
(+) and absorption at PIK3CA P42336 (-). The index i is the same as in
Table 4 where two values do not appear here since they correspond to the two
nodes where both components (+) and (−) are present in Table 4.

K K∗ i Node name

1 2 2 AKT SIGNOR-PF24
2 1 3 AKT1 P31749
3 35 24 PIK3CD O00329
4 16 9 PI3K SIGNOR-C156
5 3 38 ERK1/2 SIGNOR-PF1
6 8 6 PtsIns(3,4,5)P3 CID:24755492
7 14 17 mTORC1 SIGNOR-C3
8 6 27 JAK2 O60674
9 13 8 RAC1 P63000

10 4 23 EGFR P00533
11 7 5 MTOR P42345
12 15 22 GRB2 P62993
13 28 19 BAD Q92934
14 25 14 PIK3CB P42338
15 17 20 PIK3CA P42336
16 18 35 JAK1 P23458
17 29 7 IRS1 P35568
18 10 28 STAT1 P42224
19 12 32 SHC1 P29353
20 5 4 AKT2 P31751
21 9 26 CBL P22681
22 11 36 ERBB2 P04626
23 23 21 FES P07332
24 20 1 BTK Q06187
25 38 40 STAT1/STAT3 SIGNOR-C118
26 31 30 GAB1 Q13480
27 24 31 BCR P11274
28 27 29 EZR P15311
29 34 39 JAK1/STAT1/STAT3 SIGNOR-C120
30 22 37 ERBB3 P21860
31 33 33 SHC3 Q92529
32 32 12 BMX P51813
33 26 11 TEC P42680
34 37 16 PLCG2 P16885
35 21 18 GTF2I P78347
36 19 13 ITK Q08881
37 36 15 DAPP1 Q9UN19
38 30 34 VAV2 P52735
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Fig. S.11. Same as in Fig. 5 but for the pathway from EGFR P00533 (+) to
PIK3CA P42336 (-) with proteins from Table S.2; the maximal magnetization
used in the color bar normalization isMmax = 0.961
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