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Abstract. We study numerically transport and thermoelectric properties of electrons placed in a two-
dimensional (2D) periodic potential. Our results show that the transition from sliding to pinned phase
takes place at a certain critical amplitude of lattice potential being similar to the Aubry transition for the
one-dimensional Frenkel-Kontorova model. We show that the 2D Aubry pinned phase is characterized by
high values of Seebeck coefficient S ≈ 12. At the same time we find that the value of Seebeck coefficient is
significantly influenced by the geometry of periodic potential. We discuss possibilities to test the properties
of 2D Aubry phase with electrons on a surface of liquid helium.

1 Introduction

The Wigner crystal [1] has been realized with a variety
of solid-state systems including electrons on a surface of
liquid helium [2] and quantum wires in solid state systems
(see e.g. review [3]). For one-dimensional (1D) case it was
theoretically shown that the properties of Wigner crystal
in a periodic potential are highly nontrivial and interesting
[4]. At a weak amplitude of periodic potential the Wigner
crystal slides freely while above a critical amplitude of
potential it is pinned by a periodic lattice.

It was shown [4] that this system can be approximately
reduced to the Frenkel-Kontorova model (see detailed
description in [5]) corresponding to a chain of particles
connected by linear springs and placed in a periodic
potential. In the Frenkel-Kontorova model the equilib-
rium positions of particles are described by the Chirikov
standard map [6] which represents a cornerstone model of
area-preserving maps and dynamical chaos (see e.g. [7,8]).
It is known that this map describes a variety of physi-
cal systems [9]. A small potential amplitude corresponds
to a small kick amplitude of the Chirikov standard map
and in this regime the phase space is covered by isolating
Kolmogorov-Arnold-Moser (KAM) invariant curves. The
rotation phase frequency of a KAM curve corresponds to
a fixed irrational density ν of particles per period. In this
KAM regime the spectrum of small oscillations of parti-
cles near their equilibrium positions is characterized by a
linear phonon (or plasmon) spectrum similar to those in a
crystal. Thus in the KAM phase a chain can slide freely in
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space. However, for a potential amplitude above a certain
critical value the chain of particles is pinned by the lattice
and the spectrum of oscillations has an optical gap related
to the Lyapunov exponent of the invariant cantori which
replaces the KAM curve. The appearance of this phase
had been rigorously shown by Aubry [10] and is known
as the Aubry pinned phase. In [4] it is shown that for
charged particles with Coulomb interactions the charge
positions are approximately described by the Chirikov
standard map and that the transport of Wigner crystal
in a periodic potential is also characterized by a transi-
tion from the sliding KAM phase to the Aubry pinned
phase.

A new reason of interest to a Wigner crystal transport in
a periodic potential is related to the recent results show-
ing that the Aubry phase is characterized by very good
thermoelectric properties with high Seebeck coefficient S
and high figure of merit ZT [11,12]. The fundamental
aspects of thermoelectricity had been established in far
1957 by Ioffe [13,14]. The thermoelectricity of a system
is characterized by the Seebeck coefficient S = −∆V/∆T
(or thermopower). It is expressed through a voltage dif-
ference ∆V compensated by a temperature difference ∆T .
Below we use units with a charge e = 1 and the Boltzmann
constant kB = 1 so that S is dimensionless (S = 1 cor-
responds to S ≈ 88µV/K (microvolt per Kelvin)). The
thermoelectric materials are ranked by a figure of merit
ZT = S2σT/κ [13,14] with σ being an electric conduc-
tivity, T being a temperature and κ being the thermal
conductivity of material.

Nowadays the needs of efficient energy usage stimu-
lated extensive investigations of various materials with
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high characteristics of thermoelectricity as reviewed in
[15–19]. The aim is to design materials with ZT > 3 that
would allow an efficient conversion between electrical and
thermal forms of energy. The best thermoelectric materi-
als created till now have ZT ≈ 2.6. At the same time the
numerical modeling reported for a Wigner crystal reached
values ZT ≈ 8 [11,12]. However, these results are obtained
in 1D case while the thermoelectric properties of Wigner
crystal in a two-dimensional (2D) periodic potential have
not been studied yet. Also the physics of the Aubry transi-
tion in 2D has not been investigated in detail. It has been
argued [20] that high thermoelectric properties should
appear in low-dimensional systems and thus the studies
of 2D case and its comparison with 1D one are especially
interesting.

As possible experimental systems with a Wigner crys-
tal in a periodic potential we point to electrons on liquid
helium [2]. The experimental investigations of such sys-
tems have been already started with electrons on liquid
helium with a quasi-1d channel [21] and with a periodic
1D or 2D potential [22]. Another physical system is rep-
resented by cold ions in a periodic 1D potential proposed
in [4]. In this field the proposal [4] attracted the inter-
est of experimental groups with first results reported in
[23,24]. Later the signatures of the Aubry-like transition
have been reported by the Vuletic group with 5 ions [25].
The chains with a larger number of ions are now under
investigations in [26,27]. However, at present it seems
rather difficult to extend cold ions experiments to 2D
case. Thus we expect that the most promising experimen-
tal studies of thermoelectricity of Wigner crystal in 2D
periodic potential should be the extension of experimental
setups with electrons on liquid helium reported in [21,22].
It is also possible that other physical systems like two-
dimensional colloidal monolayers, where the observation of
Aubry transition has been reported recently [28], can open
complementary possibilities for experimental modeling of
thermoelectricity.

In this work we present the numerical study of trans-
port and thermoelectric properties of Wigner crystal in
2D lattice. We use the numerical vector codes reported
in [29] which employ GPGPU computers thus allowing to
simulate numerically the dynamics of a large number of
electrons. We present the results for the crystal velocity
and Seebeck coefficient at different system parameters and
different lattice configurations.

The paper is composed as follows: the model description
is given in Section 2, the equations for equilibrium charge
positions are discussed in Section 3, properties of electron
current are analyzed in Section 4, the results for Seebeck
coefficient at different lattice geometries are presented in
Section 5 and the discussion is given in Section 6.

2 Model description

The Hamiltonian of a chain of charges in a 2D periodic
potential has the form

H =

Ntot∑
i=1

(Pix
2

2
+
Piy

2

2
+ V (xi, yi)

)
+ UC ,

UC =
∑
i>j

1√
(xi − xj)2 + (yi − yj)2 + a2

,

V = V1(xi, yi) = −K
(

cosxi + cos yi
)

;

V = V2(xi, yi) = −K
(

cos(xi + yi/2) + cos yi
)

;

V = V3(xi, yi) = −K cosxi − 0.5Kh

(
yi − h/2)

)2
, (1)

where 2D momenta Pix, Piy are conjugated to particle
space coordinates xi, yi and V (xi, yi) is an external poten-
tial. We consider two geometries of periodic potential with
square (V = V1) and diamond (V = V2) lattices. In addi-
tion we consider a channel model (V = V3) with a periodic
lattice along x-axis and oscillator confinement in y-axis.
The Hamiltonian is written in dimensionless units where
the lattice period is ` = 2π and particle mass and charge
are m = e = 1. In these atomic-type units the system
parameters are measured in physical units: ra = `/2π for
length, εa = e2/ra = 2πe2/` for energy, Eadc = εa/era for

applied static electric field, va =
√
εa/m for particle veloc-

ity v, ta = era
√
m/εa for time t. The temperature T (or

kBT ) is also measured in these dimensionless units, thus
for ` = 1µm the dimensionless temperature T = 0.01 cor-
responds to the physical temperature T = 0.01εa/kB =
0.02πe2/(`kB) ≈ 1 K (Kelvin).

As in [11,29] the electron dynamics is modeled in the
frame of Langevin approach (see e.g. [30]) described by
equations of motion:

Ṗix = v̇ix = −∂H/∂xi + Edc − ηPix + gξix(t),

Ṗiy = v̇iy = −∂H/∂yi − ηPiy + gξiy(t),

ẋi = Pix = vix, ẏi = Piy = viy . (2)

The parameter η phenomenologically describes dissipa-
tive relaxation processes, and the amplitude of Langevin
force gL is given by the fluctuation-dissipation theorem
gL =

√
2ηT where T is the system temperature. Here

we also use particle velocities vix = Pix, viy = Piy (since
mass is unity). As usual, the normally distributed ran-
dom variables ξi are defined by correlators 〈〈ξi(t)〉〉 = 0,
〈〈ξi(t)ξj(t′)〉〉 = δijδ(t − t′). The amplitude of the static
force, or electric field, is given by Edc.

The equations (2) are solved numerically with a time
step ∆t, at each such a step the Langevin contribution is
taken into account, As in [29] we usually use ∆t = 0.02
and η = 0.1 with the results being not sensitive to these
parameters. The length of the system in x-axis is taken
to be 2πL with L being the integer number of periods.
In y-axis we use Ly periodic cells with periodic bound-
ary conditions. In x-direction we consider the motion on
a ring with a periodic boundary conditions or an elastic
wall placed at x = 0 (to have balanced charge interac-
tions). There are Ntot electrons in LLy cells and the
dimensionless charge density is ν2 = Ntot/(LLy). We use
Ntot = LyN so that we have 1D density in each of Ly

stripes being ν = ν2 = N/L. Thus for the Fibonacci val-
ues of N = 21, 34, 55, . . . and L = 13, 21, 34, . . . we have
ν ≈ 1.618 corresponding to 1D case studied mainly in
[4,11]. The numerical simulations are performed up to
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dimensionless times t = 2 × 106 at which the system is
in the steady-state.

As in [29] the numerical simulations are based on
the combination of Boost.odeint [31] and VexCL [32,33]
libraries and employ the approach described in [34] in
order to accelerate the solution with NVIDIA CUDA tech-
nology. The equations (2) are solved by Verlet method,
where each particle is handled by a single GPU thread.
Since Coulomb interactions are decreasing with distance
between particles, the interactions for the 2D case are cut
off at the radius RC = 6` = 12π, that allows to reduce the
computational complexity of the algorithm from O(N2) to
O(N logN). In order to avoid close encounters between
particles leading to numerical instability, the screening
length a = 0.7 is used. At such a value of a the interaction
energy is still significantly larger than the typical kinetic
energies of particles (T � 1/a) and the screening does
not significantly affect the interactions of particles. The
source code is available at https://gitlab.com/ddemidov/
thermoelectric2d. The numerical simulations were run at
OLYMPE CALMIP cluster [35] with NVIDIA Tesla V100
GPUs and partially at Kazan Federal University with
NVIDIA Tesla C2070 GPUs.

We checked that an increase of interaction radius RC

by a factor 6 does not affect the electron flow velocity (see
Fig. A.1). Thus we conclude that the interaction radius
used in these studies allows to capture the physics of
interacting electrons in a periodic potential.

In this work we consider only the problem of classical
charges. Indeed, as shown in [4] the dimensionless Planck

constant of the system is ~eff = ~/(e
√
m`/2π). For a typ-

ical lattice period ` ≈ 1µm, ν ∼ 1 and electrons on a
periodic potential of liquid helium we have a very small
effective Planck constant ~eff ≈ 2× 10−3.

It is know that an electron lattice creates an addi-
tional so called dimple lattice due to deformation of
helium surface (see e.g. [36,37]). In this work we do not
take into account such dimple-type effects assuming that
the external periodic potential has a significantly larger
amplitude.

3 Equilibrium positions of electrons

As for the 1D case the equilibrium static positions of
electrons in a periodic potential are determined by the
conditions ∂H/∂xi = ∂H/∂yi = 0, Pix = Piy = 0 [4,10].
In the approximation of nearest neighbor interacting elec-
trons, taking into account only nearby cells in x and y
directions, this leads to the map for recurrent electron
positions xi, yj

px,i+1 = px,i +Kgx(xi), xi+1 = xi + Fpx,i+1
,

py,j+1 = py,j +Kgy(yj), yj+1 = yj + Fpy,j+1
, (3)

where the effective momentum conjugated to xi
and yj , are px,i = −dV/dxi = (xi − xi−1)/R3 and
py,j = −dV/dyj = (yj − yj−1)/R3 with R2 = (xi −
xi−1)2 + (yj − yj−1)2 + a2 and the kick functions
Kgx(xi) = −dV/dx|x=xi

= −K sinxi and Kgy(yj) =

−dV/dy|y=yj
= −K sin yj (for V = V1). The functions

Fig. 1. Three potentials shown by color for the three cases
from (1) at V = V1 (top panel), V = V2 (middle panel), V = V3

(bottom panel, here K = 0.1, Kh = 0.005).

Fpx,i+1 ;Fpy,j+1 express the changes xi+1 − xi; yj+1 − yj .
For 1D case the recursive map for electron positions has
an explicit symplectic form [4,12,29] (e.g. see Eq. (3) in
[12]). This 1D map can be approximately reduced to the
Chirikov standard map [4,6,12] that allows to obtain the
analytical dependence for the Aubry transition on charge
density. We note that if we neglect electron interactions
between different stripes then we obtain approximately
from (3) the 1D map studied in [4,12,29].

However, interactions between stripes, represented by
cells in y-axis, play an important role and hence in 2D
case the map is much more complicated having an implicit
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form. Also from the dynamical view point it corresponds
to the case of two times represented by indices i and j.
Such maps have been never studied from a mathematical
view point that makes their analysis very complicated.

Due to these reasons we do not enter in the mathe-
matical analysis of such maps. Instead, we directly study
the transport properties on electrons described in next
sections.

4 Properties of electron current

In the frame of described Langevin approach we determine
numerically the average flow velocity vW of the Wigner
crystal in x-direction under the influence of a static elec-
tric field Edc using periodic boundary conditions in x-axis.
In absence of periodic potential the crystal flows with the
free electron velocity v0 = Edc/η (such a case was also
discussed in [29]).

Thus we use periodic boundary conditions to determine
the electron conductivity related to vW . We also use the
fixed wall boundary conditions at the end of lattice in
x-direction for computations of density gradients induced
by voltage and temperature gradients in x-directions. In
y-axis we always have periodic boundary conditions. Both
types of such boundary conditions can be realized exper-
imentally with an electron flowing through the system or
with potential bumps and the lattice ends.

A typical dependence of vW on the potential amplitude
K at different values of temperature T and static field
Edc are shown in Figure 2 for the potential V = V1 in (1).
This data shows that at fixed T the current velocity vW
drops exponentially with increase of the potential ampli-
tude K. This is consistent with the presence of Aubry
transition from the Aubry pinned phase at K > Kc2 to
the KAM sliding phase at K < Kc2. Here Kc2 is a certain
critical amplitude of the transition. We can estimate that
Kc2 ∼ 0.02 being approximately by a factor of 2 smaller
comparing to the critical amplitude K = Kc = 0.0462 in
1D at ν = 1.618 . . . [4,11,12]. At the same time an exact
determination of Kc2 requires a detailed numerical anal-
ysis of transport at rather small Edc values and small
temperatures. Indeed the comparisons of vW values at
Edc = 0.01 and 0.001 shows that at small K values we
have a linear regime with vW ∼ Edc/η but at K ≈ 0.02
such a linear response starts to be destroyed pointing that
Kc2 can be somewhat smaller with Kc2 ∼ 0.015. In fact,
the situation in 2D case is more complicated compared to
1D case. Indeed, in 1D for K > Kc there are no KAM
curves and electrons should overcome a potential barrier
to propagate along the lattice (while for K < Kc they
can freely slide along the lattice as it is guaranteed by
the Aubry theorem [10]). In 2D case the situation is more
complex since even at large K > Kc2 there are formally
straight paths propagating in x-direction, but it is possi-
ble that they are not really accessible due to interactions
between electrons. Thus we estimate that in 2D lattice
with V = V1 in (1) we have at ν ≈ 1.618 the Aubry tran-
sition at Kc2 ≈ 0.015 − 0.02. The exact value of Kc2 is
not very important for our further thermoelectric studies

Fig. 2. Dependence of the Wigner crystal velocity vW
(5 stripes) on the potential parameter K for 2D system with
ν = 34/21 at different values of driving force Edc and tempera-
ture T ; here Kc = 0.0462 is the critical potential amplitude for
the Aubry transition in 1D case. The system has L = 21 cells
in x-axis and Ly = 5 cells in y-axis and N = 34 × 5 electrons;
here the potential V = V1 in (1).

which are performed at K values being significantly larger
then Kc2 and at larger temperatures T .

We note that the crystal structure of electrons is
well seen both in equilibrium electron positions (see
Fig. A.2) and in video of moving electrons (video is
available at http://www.quantware.ups-tlse.fr/QWLIB/
wignerdiode/). The crystal structure is also seen from the
formfactor of electrons (Fig. A.3). We also note that the
confirmations of the crystal structure of static and moving
electrons is demonstrated in [29] for slightly different form
of a periodic potential.

We also checked that the linear response regime is well
present for moderate temperature values with vW ∝ Edc

as it is illustrated in Figure A.4. The values of Seebeck
coefficient are obtained at such moderate temperatures.
At very low temperatures and high K values, as some
present in Figure 2, the pinning of the Wigner crystal
becomes very strong and very long computational times
are required to reach the linear response regime. Due to
that reason we perform our studies at moderate T and K
values well inside such a regime. At finite temperature vW
is never zero but at very low T and Edc very large times
are required to compute numerically statistically reliable
very small vW .

The thermoelectric propertied of the 2D system are
studied for typical values K ≥ 0.1 and T ∼ 0.1. In such
a regime a typical dependence of vW on T is shown in
Figure 3. The obtained vW values are characterized by a
significant decrease of vW with decrease of T . The pres-
ence of fluctuations can be overcome by an averaging of
data over Savitzky-Golay filter showing that on average
the data are well described by the Arrhenius thermal
activation dependence ln vW = −B − Ar/T which works
for a large temperature range T > 1/50 (with B = 4.67,
AR = 0.018 at Edc = 0.01, B = 3.74, AR = 0.047 at
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Fig. 3. Top panel: dependence of Wigner crystal velocity vW
on temperature T at K = 0.1, L = 21, Ly = 5, Ntot = 21 × 5,
ν = Ntot/LLy = 34/21 and and driving force Edc = 0.01;
data are smoothed by Savitzky-Golay filter with polynomial
order 2 (points of window 150 in ORIGIN package) shown by
red curve. Bottom panel: Thermal activation dependence of
ln(vW ) on inverse temperature 1/T at parameters of left panel
and different values of driving force Edc, points show filtered
data.

Edc = 0.005 and B = 5.25, AR = 0.044 at Edc = 0.001).
The fit parameters show that for such Edc values the
current is described by the linear response dependence
vW ∝ Edc.

Above we discussed the square-lattice case with V = V1

in (1). Similar results are obtained for two other lattices
with V = V2 and V = V3. In the next section we present
the analysis of the thermoelectric properties in the linear
response regime for these three lattice geometries.

We note that the self-diffusion of electrons in 2D peri-
odic potential had been discussed recently in [38] but
thermoelectricity and the Aubry pinned phase had not
been analyzed there.

5 Seebeck coefficient

To compute the Seebeck coefficient of our system we use
the procedure developed in [11]. We use the Langevin
description of a system evolution being a standard
approach for analysis of the system when it has a fixed
temperature created by the contact with the thermal bath
or certain thermostat. The origins of this thermostat are
not important since this description is universal [30]. For
the computation of the Seebeck coefficient S we create a
temperature gradient along x-direction. In the frame of
the Langevin equation this is realized easily simply by
imposing in (2) that T is a function of an electron posi-
tion along x-axis with T = T (x) = T0 +Gx. Here T0 is the
average temperature along the chain and G = dT/dx is a
small temperature gradient (here x is a coordinate posi-
tion of a given electron). For numerical computation of
S we have periodic conditions in y-axis and we introduce
an elastic wall at x = 0 keeping the Coulomb interactions
of electrons through this wall (this makes density distri-
bution homogeneous in absence of Edc and temperature
gradient).

At fixed temperature T we apply a static field Edc

which creates a voltage drop ∆V = 2πLEdc and a gra-
dient of electron density ν(x) along the chain. Then at
Edc = 0 within the Langevin equations (2) we impose a
linear gradient of temperature ∆T along x-axis and in
the stabilized steady-state regime determine the electron
density gradient g(ν) = dν(x)/dx along x-direction. The
data are obtained in the linear regime of relatively small
Edc and ∆T values. Then the Seebeck coefficient is com-
puted as S = ∆V/∆T where ∆V and ∆T are taken at
such values that the density gradient from ∆V compen-
sates those from ∆T . Examples of such density gradients
in presence of Edc and temperature gradient are shown in
Figures A.5–A.8.

The obtained dependencies of S on temperature T at
different amplitudes K of the periodic potential are shown
in Figure 4 for all three geometries of periodic potential
given in (1). We discuss the dependence S(K) for each
geometry case.

For the square-lattice with V = V1 in (1) we find a sig-
nificant increase of S with K > Kc2 at fixed temperature
T = 0.1 > Kc2. At K = 0.1 the values of S are not affected
by a variation of system size from Ly = 3 up to Ly = 10.
At largest value of K = 0.35 we obtain the largest value
of S = 6.2 at Ly = 3. Unfortunately, at such large K
values very long simulation times are required to reach
the steady-state in this strongly pinned Aubry phase. We
expect that at larger transverse size Ly longer times are
required to reach the steady-state and our maximal sim-
ulation time t = 2 × 106 is not sufficient for Lx = 250
and Ly > 3 for K ≈ 0.3. A decrease of number of cells in
x-axis down to Lx = 120 at Ly = 3 leads to a moderate
reduction of S down to S = 4.57 from its value S = 6.2 at
Lx = 250 at K = 0.35. However, in this strongly pinned
regime we have rather strong fluctuations of S with small
variations of K and we attribute this variation with Lx to
fluctuations. We checked that an increase of T from 0.1 up
to 0.3 at K = 0.1 (Lx = 250, Ly = 3) leads to a reduction
of S approximately by 20%. We checked that an increase
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Fig. 4. Dependence of Seebeck coefficient S on K for different
periodic potentials given in (1) marked by V1, V2, V3 with num-
ber of periodic cells Lx, Ly given; the total number of electrons
being N ≈ 1.618LxLy and fixed temperature T = 0.1 (here for
V = V3 case Kh = 0.002).

of T from 0.1 up to 0.2 at K = 0.3 (V3, Lx = 250, Ly = 5)
leads to a reduction of S approximately by 14%.

From a physical view point at large values T � K
the influence of periodic potential becomes small and we
are getting moderate S ∼ 1 values corresponding to the
sliding KAM phase. A similar dependence of S on tem-
perature has been found for 1D case (e.g. see right panel
of Fig. 3 in [4]).

The case of a diamond lattice with V = V2 in (1) is also
presented in Figure 4. In this case the dependence S(K)
is practically absent (S is increased only by 10% when
K is increased from 0.25 up to 0.5). Thus the compari-
son of square and diamond lattices shows that the lattice
geometry place a significant role. However, the reasons
for significantly smaller S values for the diamond lattice
remain not rather clear. It is possible that for the diamond
case there is a winding path that keeps the sliding of elec-
trons in this case so that it is more close to the sliding
KAM regime with moderate S ∼ 1 values.

The strongest values up to S ≈ 12.5 are found for the
case V = V3 for Kh = 0.002 (see Fig. 4). In this case
the periodic potential is only in x-direction while in y-
direction we have a harmonic potential. In a certain sense
in this case there is no any free path for flying through
the system at large values of K. Thus we assume that the
pinned phase is more robust for such a geometry. We note
that the results in Figure 4 are shown for Kh = 0.002.
At such a value of Kh the harmonic potential is rela-
tively weak and electrons still cover all Ly = 5 cells in
y-direction. As for the square lattice case we find that S
is decreasing with an increase of T (see Fig. A.9).

For K = 0.3 we checked that an increase of Kh from
Kh = 0.001 up to Kh = 0.008 leads to a decrease of S
from S = 6.25 down to S = 4.62 (at fixed T = 0.1 and

Lx = 250, Ly = 5). We interpret this result assuming that
at small h values electrons have more flexibility in y-
direction that leads to larger S values. At Kh = 0.002
we also checked that an increase of Ly = 5 up to Ly = 11
is sufficient to create a channel of electrons distributed
in such a way that they do not touch the boundary in
y-direction; however, in such a case we obtain S = 9.3
(at Ly = 11, Kh = 0.002, K = 0.3) being higher com-
pared to the case presented in Figure 4 with S = 5.85 at
Ly = 5,Kh = 0.002,K = 0.3. We explain this by the fact
that for Ly = 11 the effective electron density is decreased
comparing to Ly = 5 case (the total number of electrons is
the same in both cases) and thus the electron interactions
are effectively reduced that leads to a more pinned regime
with a larger S value.

The results discussed above are obtained for a fixed
electron density ν ≈ 1.618, We checked that for V = V3

case the value of S is not significantly affected by an
increase of ν up to ν = 2.618 where we obtained S ≈ 4
at K = 0.3, L = 250, Ly = 5,Kh = 0.006. However, fur-
ther more detailed investigation of dependence of S on
density ν are highly desirable.

The obtained results show that it is possible to have
rather large Seebeck coefficients S ≈ 12 � 1 at certain
lattice geometries in the Aubry pinned phase.

Of course, it would be very interesting to obtain the
figure of merit ZT for the above lattices. However, the
computation of thermal conductivity κ, following the pro-
cedure described in [11,12], was not stabilized at maximal
computational times t = 2 × 106. We attribute this to
long times required for phonon (plasmon) equilibrium to
be reached in our 2D system with about 2000 electrons.
Indeed, in 1D studies reported in [11,12] much larger times
had been used (t ∼ 108) with smaller system sizes and
about 50–100 electrons.

6 Discussion

In this work we presented numerical modeling of elec-
tron transport and themoelectricity in 2D periodic lattices
of different geometries. We note that similar to 1D case
discussed in [11,12] there is a transition from sliding
KAM phase at K < Kc2 to the Aubry pinned phase at
K > Kc2 where the electron current drops exponentially
with increase of K. However, compared to 1D case this
transition is not so sharp probably due to presence of more
complex pathways for sliding of electrons.

While the KAM phase has moderate values of Seebeck
coefficient S ∼ 1 the Aubry phase is characterized by a
significant growth of S with K up to the highest value
S ≈ 12 found in our numerical simulations. At the same
time it is established that a change of geometry can lead
to a significant reduction of S at the same amplitudes K of
periodic potential. We attribute such a feature to presence
of free electron pathways crossing the whole system at
certain geometries thus reducing maximal S values.

The maximal value of S ∼ 12 obtained in this study
is still smaller than the extreme values of S obtained
in certain experiments. Thus in experiments with quasi-
one-dimensional conductor (TMTSF)2PF6 [39] as high as

https://epjb.epj.org/
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S = 400kB/e ≈ 35 mV/K value had been reached at low
temperatures (see Fig. 3 in [39]). Rather high values of
S ≈ 50kB/e had been observed in highly resistive two-
dimensional semiconductor (pinned) samples of micron
size (see Fig. 8 in [40]). The high values of S ≈ 30kB/e
have been reported recently for CoSbS single crystals [41].

In these studies we did not reach such high S values
but we obtain a clear dependence showing that S is rapidly
growing with increase of potential amplitudeK and that it
is also growing with a decrease of temperature T . Unfortu-
nately, very high S values appear only inside the strongly
pinned Aubry phase where the times of numerical simula-
tions become very large to reach the steady-state regime.
We are restricted by CPU time available for our numer-
ical simulations and thus we were not able to penetrate
inside such strongly pinned phase. But our results clearly
show that even higher value S � 10 can be reached in the
strong pinned regime.

We think that the proposed investigations of themo-
electric properties of Wigner crystal in 2D periodic lattice
are well accessible for experiments with low temperature
electrons on a surface of liquid helium in the regimes sim-
ilar to those discussed in [21,22]. Indeed, for a typical
lattice period ` = 1µm the potential amplitude K = 0.1
corresponds to VA = Ke2/(`/2pi) ≈ 10 K (Kelvin) that
can be reached at rather weak potential modulation in
space. Such VA can be significantly larger than electron
temperature which easily takes values of T = 0.1 K. It is
experimentally demonstrated that it is possible to real-
ize inter-electron distance of about 1µm [42]. Thus we
expect that such experiments will allow to obtain under-
standing of fundamental properties of thermoelectricity.
As discussed in [43] they can be also very useful for
understanding of the fundamental aspects of friction at
nanoscale.
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Appendix A

Appendix presents some additional data quoted in the
main part of the paper.

Fig. A.1. Dependence of flow velocity of Wigner crystal at
Coulomb interaction radius Rc = 6` (black squares) and Rc =
26` (red points); other parameters are give in the figure panel;
η = 0.1; case V1; 5 stripes in y.

Fig. A.2. Equilibrium positions of electrons are shown by
points for ν = 34/21, K = 0.1, case V1; video of moving
electrons is available at http://www.quantware.ups-tlse.fr/
QWLIB/wignerdiode/.

Fig. A.3. Formfactor F (k) of moving electrons for parame-
ters given in the figure panel; η = 0.1, case V1; 5 stripes in
y; 5 stripes in y; average is done over all electrons and 10
different time intervals homogeneously spaced on the whole
computational time interval.

In Figure A.1 we show that the interaction radius RC =
6` is sufficient for a correct computation of electron flow
velocity.

https://epjb.epj.org/
http://www.quantware.ups-tlse.fr/QWLIB/wignerdiode/
http://www.quantware.ups-tlse.fr/QWLIB/wignerdiode/
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Fig. A.4. Linear response regime for parameters given in the
figure panel; η = 0.1, 5 stripes in y; numerical data are given
by black squares, red line shows the fit of data with vW =
(9.878 ± 0.041)Edc.

Fig. A.5. Dependence of 1D electron density (averaged over
y-axis) on x = L coordinate at different values of applied static
field Edc. Here V = V1 in (1),K = 0.1, T0 = 0.1, the system has
LLy = 250 × 10 period cells with average density of electrons
per cell being ν ≈ 1.618 (in total Ntot = 4045 electrons); the
physical time is t = 2 × 106.

The crystal structure of electrons is demonstrated
in Figure A.2 for equilibrium electron positions. In
Figure A.3 we show the formfactor F (k) of moving
electrons. As in [29] the formfactor is defined as

F (k) = 〈| Re
Ntot∑
i 6=j

exp(ik(xi(t)− xj(t))) |2〉/Ntot (A.1)

where the average is done over all particles and 10 dif-
ferent moments of time homogeneously spaced on the
whole computational interval of time; Ntot is the total
number of electrons. Figure A.3 shows clear peak at k ≈

Fig. A.6. Dependence of the gradient of electron density g(ν1)
on static field Edc for parameters of Figure A.1; ν = ν1 =
1.618.

Fig. A.7. Dependence of 1D electron density (averaged over
y-axis) on x = L coordinate at different values of temperature
difference ∆T at the end of the sample; other parameters are
as in Figure A.5, Edc = 0.

Fig. A.8. Dependence of the gradient of electron density g(ν1)
on temperature difference ∆T at the end of the sample; other
parameters are as in Figure A.5, Edc = 0.

https://epjb.epj.org/
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Fig. A.9. Dependence of Seebeck coefficient S on K the sys-
tem with harmonic confinement V = V3 in (1) at Kh = 0.002
for L = 250, Ly = 5 and T = 0.1 (black points), T = 0.15
(green point), T = 0.2 (red point); cyan and blue points show
data at T = 0.1 for L = 120, Ly = 5 and L = 60, Ly = 5
respectively.

1.6 corresponding to the incommensurate crystal electron
density ν ≈ 1.618.

A typcal linear response regime is shown in Figure A.4.
In Figures A.5–A.8 we show the variation of electron

density induced by an external static field Edc and tem-
perature gradient dT/dx ∝ ∆T/T0 (here T0 is the average
sample temperature and ∆T is the temperature difference
at the ends of the sample)

Figure A.9 shows the dependence S(K) for the har-
monic channel at different temperature and system size
values.
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