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Electron pairing by Coulomb repulsion in narrow band structures
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We study analytically and numerically dynamics and eigenstates of two electrons with Coulomb repulsion on
a tight-binding lattice in one and two dimensions. The total energy and momentum of electrons are conserved
and we show that for a certain momentum range the dynamics is exactly reduced to an evolution in an effective
narrow energy band where the energy conservation forces the two electrons to propagate together through the
whole system at moderate or even weak repulsion strength. We argue that such a mechanism of electron pair
formation by the repulsive Coulomb interaction is rather generic and that it can be at the origin of unconventional
superconductivity in twisted bilayer graphene.
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I. INTRODUCTION

The interactions of electrons in narrow band structures
play an important role in various physical processes. Often
the theoretical analysis is done in the framework of electrons
on a lattice with short-range on-site interactions as described
in works of Gutzwiller [1,2] and Hubbard [3]. Recently,
the interest in narrow band structures with strong Coulomb
electron-electron interactions has been inspired by the ob-
servation of unconventional superconductivity in magic-angle
twisted bilayer graphene (MATBG) [4]. Such structures are
characterized by a very high ratio of the critical tempera-
ture of the superconducting transition to the Fermi energy
Tc/EF [4] and complex phase diagrams of superconducting
and insulating phases [5,6]. Experimental results for MATBG
clearly show the importance of long-range Coulomb electron-
electron interactions in these structures [4–7]. From the the-
oretical side it has been shown that for small twisted angles
the moiré pattern leads to a formation of a superlattice with a
unit cell containing more than 10, 000 atoms that significantly
modifies the low-energy structure. Extensive numerical stud-
ies by quantum-chemistry methods show the appearance of
flat lowest-energy minibands [8–11]. These bands are rather
narrow and thus the Coulomb interactions play an important
role as pointed out in early theoretical studies [12]. The
existence of narrow flat bands was also confirmed in recent
MATBG experiments [13].

In this work we show that the narrow band structure of the
free-electron spectrum leads to a number of unusual properties
of their propagation in the presence of strong, moderate,
or even weak Coulomb repulsion between electrons. We
discuss these properties for a model of two electrons with
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Coulomb interaction propagating on a standard tight-binding
lattice considered in [1–3]. For the simple case of short-
range Hubbard-type interactions it was shown [3,14] that the
quantum problem can be mapped to an implicit equation for
the energy eigenvalues, allowing one to identify individual
bound pair states at strong interaction values. However, in
the case of long-range Coulomb interactions, this mathemat-
ical simplification is not possible and the physical situation,
especially in two dimensions with potentially chaotic dy-
namics in the relative coordinate, is more complicated. Our
results take these complications into account and show the
appearance of pairing of two electrons induced even by a
moderate Coulomb repulsion with ballistic pairs propagating
over the whole system size. Below we describe the physical
properties of such pairs of two interacting particles (TIPs).
Furthermore, we show that this effect strongly depends on the
values of the conserved center of mass momenta.

II. QUANTUM TIGHT-BINDING MODEL OF
TWO ELECTRONS

The quantum Hamiltonian of the model in d = 1 or 2
dimensions has the standard form [1–3]

H = −
∑

〈 j,l〉
| j〉〈l| +

∑

j

U

1 + r( j)
| j〉〈 j|, (1)

where j = (x1, x2) [ j = (x1, x2, y1, y2)] is a multi-index
for d = 1 (d = 2); each index variable takes values
x1, x2, y1, y2 ∈ {0, . . . , N − 1}, with N the linear system size
with periodic boundary conditions. The first sum in (1) de-
scribes the electron hopping between nearby sites on a one-
dimensional (1D) (or 2D square) lattice with a hopping ampli-
tude taken as the energy unit. The second sum in (1) represents
a (regularized) Coulomb-type long-range interaction with am-
plitude U and the distance r( j) between two electrons. For one
dimension we have, due to the periodic boundary conditions,
r( j) = �x̄ with �x̄ = min(�x, N − �x) and relative coor-
dinate �x = x2 − x1, which is taken modulo N (i.e., �x =
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x2 − x1 + N for x2 − x1 < 0). For two dimensions we have
r( j) =

√
�x̄2 + �ȳ2. Furthermore, we consider symmetric

(spatial) wave functions with respect to particle exchange, as-
suming an antisymmetric spin-singlet state (similar results are
obtained for antisymmetric wave functions). In the absence
of interactions at U = 0 the spectrum of free electrons has
the standard band structure E = −2

∑
μ=1,2;α cos pμα , with

μ = 1, 2 the electron index and α = x in one dimension (α ∈
{x, y} in two dimensions) the index for each spatial dimension.
With periodic boundary conditions, each momentum pμα is an
integer multiple of 2π/N .

III. CLASSICAL DYNAMICS OF ELECTRON PAIRS

The corresponding classical dynamics in two dimensions
is described by the Hamiltonian

H = −2
∑

μ=1,2;α∈{x,y}
cos pμα + UC (x1, x2, y1, y2), (2)

with UC = U/[1 +
√

(x1 − x2)2 + (y1 − y2)2] and conjugated
variables of momentum pμx and pμy and coordinates xμ and
yμ [in one dimension we have in (2) only pμx and xμ]. In one
dimension there are two integrals of motion, with the total
energy E = H and total momentum p+ = p1x + p2x leading
to integrable TIP dynamics. In two dimensions we have three
integrals of motion E , p+x, and p+y for four degrees of
freedom and therefore the dynamics of the two electrons is
generally chaotic, as it is shown in Fig. S1 of [15], Sec. S1.

Writing cos(p1x ) + cos(p2x ) = 2 cos(p+x/2) cos[(p2x −
p1x )/2] (and similarly for y), we see that at given
values of p+x and p+y the kinetic energy is bounded
by �E = 4

∑
α | cos(p+α/2)|. Therefore, for TIP states

with E > �E , the two electrons cannot separate and they
propagate as one pair. In particular, for p+x = p+y = π + δ

(with |δ| � 1) close to π , there are compact Coulomb
electron pairs even for very small interactions U as soon
as �E ≈ 2d|δ| < U � Bd , with Bd = 8d + U the maximal
energy bandwidth in d dimensions. The center of mass
velocity of such pairs [in direction α ∈ {x, y}] is v+α =
(v1α + v2α )/2 = 2 cos(δ/2) sin(p1α − δ/2) ≈ 2 sin p1α and it
may be close to a maximal velocity v+α = 2. Figure S1 of
[15] clearly confirms the pair formation at small U values and
the pair propagation through the whole system.

IV. QUANTUM TIP EIGENSTATES AND DYNAMICS IN
ONE AND TWO DIMENSIONS

The factor 2 cos(p+/2) for the kinetic energy (in one di-
mension) at a given value of p+ can also be obtained from the
quantum model. Using a suitable unitary transformation (see
[15], Sec. S2), one can transform the quantum Hamiltonian
(1) to a block diagonal form where the different blocks on the
diagonal correspond, for each value of the conserved quantum
number p+, to an effective one-particle tight-binding model
(in �x space) with nearest-neighbor hopping matrix element
−2 cos(p+/2) and a diagonal potential given by U/(1 + �x̄)
(see [15], Sec. S2 for details, in particular the boundary
conditions and the generalization to the 2D case). Physically,
this corresponds to a single particle in �x space with a

FIG. 1. Plot of wave function amplitudes obtained from the
exact quantum time evolution in one dimension at times t = 138�t
and 105�t in left and right panels, respectively (�t = 1/B1 is an
elementary time step of inverse bandwidth B1 = 8 + U ). The top
panels show the TIP wave function amplitude |ψ (x1, x2, t )| at x1 and
x2 for both axes. The bottom panels show |ψ̄ (p+, �x, t )| with �x =
x2 − x1 (taken modulo N) the relative coordinate (horizontal axis)
and 0 � p+ < 2π the total momentum (vertical axis). The initial
state at t = 0 is a symmetrized state with one electron localized at
N/2 and the other one at N/2 + 1, i.e., initial distance �x̄ = 1. The
other parameters are U = 1 and N = 128. The color bar represents
(here and in certain subsequent figures) the ratio of the quantity
shown (here the modulus of the wave function amplitude) to its
maximal value. Related videos are available in [15,16].

kinetic energy rescaled by 2 cos(p+/2) and moving in a given
potential with a maximal value U for �x close to 0 or N .

The eigenstates can be efficiently calculated for large sys-
tem sizes since each block for a given value of p+ can be
diagonalized individually. Also the quantum time evolution
(for h̄ = 1) can be efficiently computed (up to N = 1024) by
transforming the initial state ψ (x1, x2) into a block represen-
tation ψ̄ (p+,�x) and computing the time evolution exactly
in each p+ sector using the exact block eigenstates (details in
[15], Sec. S2).

A typical example of the TIP time evolution in one dimen-
sion is shown in the top panels of Fig. 1 for the initial electron
positions (localized at xμ ≈ N/2) at a distance R = �x̄ = 1
for U = 1 and N = 128. We see a wave front of free propa-
gating separated electrons (square at short times in the top left
panel) and at the same time free propagation of the Coulomb
electron pair along the diagonal x1 = x2. At long times the
density for separated electrons is uniformly distributed over
the whole system, while the density for Coulomb pairs is
homogeneously distributed over the whole diagonal, keeping
a relatively small pair size (top right panel). The bottom panels
show the block representation |ψ̄ (p+,�x, t )| of the same
states as in the top panels. In this representation the initial state
corresponds to two red vertical lines at �x = 1 and �x =
N − 1 for perfect localization at these values and a uniform
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FIG. 2. Plot of wave function amplitude |ψ̄ (p+x, p+y, �x, �y)|
in block representation obtained from the 2D quantum time evolution
at iteration time t = 105�t in the �x-�y plane for certain p+x and
p+y sectors and U = 2 [�t = 1/B2 = 1/(16 + U )]. The initial block
state at t = 0 is localized at �x = �y = 1. All panels show a close-
up of the region (0 � �x, �y < 32). The values of p+ = p+x = p+y

and N are p+ = 0 and N = 128 (top left), p+ = 21π/32 ≈ 2π/3 and
N = 128 (top right), p+ = 63π/64 ≈ π and N = 128 (bottom left),
and k = 85π/128 ≈ 2π/3 and N = 512 (bottom right). Related
videos are available in [15,16].

distribution in the p+ direction. With increasing time a part of
the density stays quite well localized at the initial values with
some modest increase of the initial width. The other fraction
of the density propagates horizontally and becomes roughly
uniform at sufficiently long times. The speed of the horizontal
propagation is apparently proportional to cos(p+/2) and for
p+ ≈ π there is actually a small regime of strong, nearly
perfect localization, where the weight of the propagating
density is close to 0. In this case the kinetic energy can be
considered as a small perturbation of the interaction due to the
small ratio 2| cos(p+/2)|/U � 1. However, even for larger
values of this ratio there is still a considerable fraction of the
density that stays localized.

Further results of the 1D quantum case are given in Figs.
S2–S5 of [15], Sec. S3, including an analysis of the Husimi
functions (see, e.g., [17,18]).

In order to access larger system sizes up to N = 512 we
compute, for the 2D case, the exact quantum time evolution
only in individual sectors with p+x = p+y (and exploiting
certain symmetries [15]). The initial state is localized at
�x̄ = �ȳ = 1 but also at the chosen value of p+x = p+y. This
corresponds to a wave in the center of mass direction with
momenta p+x and p+y, which is however perfectly localized
in the relative coordinate.

Figure 2 clearly shows that there is a considerable prob-
ability that both electrons stay together even at very long
times. There is however, for p+x,y = 0 or p+x,y ≈ 2π/3, also
a certain complementary density for free-electron propagation
which becomes less visible for larger N = 512. For p+x,y ≈ π

there is actually nearly perfect localization even at N = 128.

FIG. 3. Two-dimensional wave function densities obtained from
the time evolution shown at times t = 445�t and 104�t in left
and right panels, respectively, for initial electron positions at ap-
proximately (N/2, N/2), with N = 128 and U = 2 [�t = 1/B2 =
1/(16 + U ) is the Trotter integration time step]. The top panels show
a close-up of the density for (0 � �x, �y < 32) in the �x-�y plane
of relative coordinates obtained from a sum over x1 and y1. The
bottom panels show the density in the x1-x2 plane obtained from a
sum over y1 and y2. The corresponding values of the probability near
the diagonal w10 are w10 = 0.106 and 0.133 for the left and right
panels, respectively (see the text). Related videos are available in
[15,16].

This confirms the formation of Coulomb electron pairs in the
2D quantum case and as in one dimension also the particularly
strong localization in relative coordinates for sectors with
p+x,y ≈ π .

We also computed the full space 2D quantum time evo-
lution using the Trotter formula approximation (see, e.g.,
[19] for computational details) with a Trotter time step �t =
1/B2 = 1/(16 + U ) = 1/18 for U = 2 and N = 128. Here
we choose an initial condition with both particles localized
at approximately (N/2, N/2) such that �x̄ = �ȳ = 1. The
results of Fig. 3 clearly show that there is a significant
probability of electron pair formation with a propagation of
pairs over the whole system (high probability of �x and �y
at values close to zero in the top panels and near the diagonal
x1 ≈ x2 in the bottom panels). At the same time there is also a
certain probability to have practically independent electrons
with ballistic propagation through the lattice at moderate
times (bottom left panel) and an approximate homogeneous
distribution over the whole system at long times (bottom right
panel).

In order to characterize the pair formation probability we
compute the quantum probability w10(t ) to find both electrons
at a finite distance from each other �x̄ � �R = 10 and �ȳ �
�R. At long times we find that the pair formation probability
is w10 = 0.133, while the probability to have independent
electrons is 1 − w10.

The time dependence of the pair formation probabil-
ity w10 for both types of 2D quantum time evolution is
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FIG. 4. Time dependence of the pair formation probability w10

for U = 2 and different cases of either the exact 2D time evolution
in certain sectors of conserved momenta p+ = p+x = p+y or the full
space 2D time evolution using the Trotter formula approximation
(initial states as in Figs. 2 and 3). The precise values of p+ are
p+ = 0, p+ = 85π/128 ≈ 2π/3, and p+ = 255π/256 ≈ π for N =
512 and p+ = 21π/32 ≈ 2π/3 for N = 128. The top blue line at
w10 = 1 is accurate with a numerical error below 10−14 for all time
values.

shown in Fig. 4 for U = 2 and N ∈ {128, 512}. For p+ ≈
π we have w10 = 1 with numerical accuracy, while for
p+ ≈ 2π/3 and p+ = 0 this probability decreases with time
but saturates at rather high values of w10 ≈ 0.2 and 0.13,
respectively. The saturation value w10 ≈ 0.133 for the full
space Trotter formula approximation is very close to the
case p+ = 0.

The initial state with the pair momentum p+ approx-
imately corresponds to the electron Fermi energy EF ≈
−4 cos(p+/2), assuming a relatively moderate or weak in-
teraction U � Bd . Thus the variation of p+ in the range
0 � p+ � 2π corresponds to the variation of the filling factor
ν in the range 0 � ν � 1 with ν = [1 − cos(p+/2)]/2. The
dependence w10(ν) on ν is shown in Fig. 5 for U = 0.5, 2 and
N = 256 (the data for N = 512 are very close). We see that
for small ν � 1/2 the electron pair formation probability is
relatively small, but for 1/3 � ν � 1/2 it takes, for U = 2
(U = 0.5), values from w10 = 0.17 (w10 = 0.11) to w10 =
1. The values of w10 are significantly above the ergodic
probability werg = (21/N )2 ≈ 0.0067 for N = 256, assuming
a uniform distribution.

More results for the quantum time evolution and eigen-
states properties in two dimensions are given in [15] (see
Figs. S6–S11). In particular, there is a clear scaling depen-
dence of w10 (and other related characteristics) on the ratio
2 cos(p+/2)/U (Figs. S10 and S11 of [15])

FIG. 5. Dependence of the pair formation probability w10 on
the filling factor ν for U = 2 (red curve) and 0.5 (blue curve) for
N = 256 in two dimensions. The dashed line shows the ergodic
probability werg assuming a uniform wave function.

V. DISCUSSION

The presented analytical and numerical analysis definitely
shows that a specific energy dispersion law of free electrons in
narrow bands leads to the possibility of pair formation induced
by Coulomb repulsion between electrons. The pairing of elec-
trons already exists for a relatively moderate, or even small,
repulsion strength U . Of course, this analysis is performed in
the framework of only two interacting electrons. However, we
conjecture that these Coulomb electron pairs will still exist
even at finite electron density ν. Indeed, a propagating pair
can feel interactions from other electrons as a certain mean
field potential which should not destroy pairs with a relatively
strong coupling. In the presence of an external space inhomo-
geneous potential the independent electrons can be localized
by the potential, while the pairs, protected by their effective
coupling energy �c ∼ U/�R, can remain insensitive to the
potential propagating through the whole system (we assume
that �R is of the order of several lattice units as for w10

computations). Thus such pairs can form a condensate leading
to the emergence of a superconducting state. We argued that
the emergence of Coulomb electron pairs in narrow band
structures can be at the origin of superconductivity in MATBG
experiments.
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Supplementary Material for

Electron pairing by Coulomb repulsion in narrow
band structures
by K. M. Frahm and D. L. Shepelyansky.

Here, we present additional material for the main part
of the article.

S1. CLASSICAL CHAOTIC DYNAMICS AND
PROPAGATION OF TWO ELECTRONS IN 2D

We show in Fig. S1 for U = 2 and U = 0.5 two typical
trajectories obtained from the canonical equations with
respect to the classical 2D Hamiltonian (2) using initial
conditions with |x1 − x2| ≈ |y1 − y2| ≈ 1 and conserved
total momenta px1 + px2 = py1 + py2 = π + ∆p close
to π. The projection of the trajectory on the (x1 − x2)-
(y1 − y2) plane clearly shows a bounded and chaotic dy-
namics of two electrons. Obviously both electrons stay
close together even though the interaction values are sig-
nificantly smaller than the total energy width B2 = 16
of two free electrons. The compact electron pair propa-
gates quasi-ballistically through the whole system which
can be seen from the global quasi-linear dependence of
y1 on x1 and of r =

√
x2

1 + y2
1 on t even though there are

some loop like structure on short length scales.

S2. NUMERICAL METHODS FOR THE
COMPUTATION OF TIP EIGENSTATES AND

QUANTUM DYNAMICS IN 1D AND 2D

In this section we present some technical details about
the properties of the quantum Hamiltonian (1) and how
to exploit its symmetries in order to efficiently compute
eigenfunctions and solve exactly the quantum time evo-
lution of this Hamiltonian. We remind that in (1) the
first sum for the kinetic energy is over nearest neighbors
j and l such in both multi-indices exactly one of the four
indices x1, x2, y1, y2 differs exactly by ±1 (or ±(N − 1) if
one index is 0 and the other N − 1 according to the peri-
odic boundary conditions) while the other three indices
are equal.

We also remind the particular notation for the relative
coordinate ∆x = (x2−x1+N) mod N (and similarly for
∆y), i.e. ∆x = x2−x1 for x2 ≥ x1 and ∆x = x2−x1 +N
for x2 < x1 such that ∆x ∈ {0, . . . N − 1}. However, in
order to correctly characterize a physical distance in the
space of coordinates with periodic boundary conditions
(e.g. for the interaction dependence on distance) it is
the quantity ∆x̄ = min(∆x,N −∆x) (and similarly ∆ȳ)
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FIG. S1: Classical dynamics for 2D case with a classical
trajectory obtained by the standard Runge-Kutta 4th order
method using a time step of dt = 0.005. The initial condition
corresponds to |x1 − x2| ≈ |y1 − y2| ≈ 1 and conserved total
momenta being px1 + px2 = py1 + py2 = π + ∆p close to
π. Panels of left (right) column correspond to U = 2, ∆p =
0.1 and maximal time tmax = 1500 (U = 0.5, ∆p = 0.02,
tmax = 5000). Top panels show the dependence of y1 − y2

on x1 − x2; 2nd row of panels show the propagation of y1

versus x1 and 3rd row of panels provide a zoomed view of
the blue rectangles visible in 2nd row panels revealing a loop
like structures of the curves; bottom panels show the time
dependence of r =

√
x2

1 + y2
1 .

which is relevant since a value of ∆x being close to N
corresponds in reality to a physical distance N −∆x �
∆x.
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Discussion of 1D case

In order to keep simpler notations we will use in the
remainder this section the notation k instead of p+ for
the total momentum (in 1D) and similarly k1, k2 for p1, p2

which is also more usual for momenta or wave numbers
in the quantum case.

In the following we describe some technical details how
to exploit the different symmetries for the 1D quantum
case. If we denote by |k1, k2〉 a non-interacting eigenstate
with kµ = 2πlµ/N , µ = 1, 2 and lµ ∈ {0, . . . , N − 1} it is
obvious that also in the presence of interaction the Hamil-
tonian (1) only couples states such the total momentum
k = k1+k2 is conserved leading to a block diagonal struc-
ture when expressing H in the basis of non-interacting
eigenstates.

However, for numerical purposes this basis is not very
convenient and we prefer to introduce a different basis of
states given by:

|k,∆x〉 =
1√
N

N−1∑
x1=0

eik(x1+∆x/2) |x1, x1 + ∆x〉 (S1)

where |x1, x1 + ∆x〉 corresponds to a basis vector in po-
sition space |x1, x2〉 with x2 = x1 + ∆x for x1, x2,∆x ∈
{0, . . . , N − 1} (the sum x1 + ∆x is to be taken mod-
ulo N). Furthermore, k = 2πlk/N corresponds to the
total discrete momentum with lk ∈ {0, . . . , N − 1}. The
quantity (x1 + ∆x/2) mod N corresponds to the center
of mass (note that this quantity may be different from
(x1 + x2)/2 due to complications related to the periodic
boundary conditions). In the following we call the states
|k,∆x〉 block basis states. For a given state |ψ〉 we in-
troduce in the usual way the wave functions ψ(x1, x2) in
position space and ψ̄(k,∆x) in combined (k,∆x) space
(also called block representation) by :

|ψ〉 =
∑
x1,x2

ψ(x1, x2) |x1, x2〉 =
∑
k,∆x

ψ̄(k,∆x) |k, ∆x〉

(S2)
implying:

ψ̄(k,∆x) =
1√
N

∑
x1

e−ik(x1+∆x/2) ψ(x1, x1+∆x) . (S3)

One can easily work out that the Hamiltonian has also
a block diagonal structure when expressed in terms of
the block basis states, i.e. the block matrix elements are
given by:

〈k̃,∆x̃|H |k,∆x〉 = δk̃,k h̄
(k)
∆x̃,∆x (S4)

with symmetric N ×N matrices h̄(k), to be called block
Hamiltonians, depending on k and with non-vanishing

matrix elements:

h̄
(k)
∆x,∆x = U(∆x) , (S5)

h̄
(k)
∆x+1,∆x = h̄

(k)
∆x,∆x+1 = −2 cos(k/2) , (S6)

h̄
(k)
0,N−1 = h̄

(k)
N−1,0 = −2fk cos(k/2) , (S7)

where (S6) applies to 0 ≤ ∆x < N − 1 and in (S7)
fk = exp(−kN/2) = (−1)lk with lk = kN/(2π) being
the integer index associated to k. U(∆x) = U/[1 +
min(∆x,N −∆x)] is the interaction potential for the 1d
case. The matrix h̄(k) corresponds to a one-dimensional
nearest neighbor tight binding Hamiltonian with hopping
matrix elements: −2 cos(k/2), potential: U(∆x) and with
periodic (anti-periodic) boundary conditions if lk is even
(odd).

This form is the quantum manifestation of the classical
Hamiltonian when rewritten using the total momentum
p+ = p1 + p2, the relative coordinate ∆x = x2 − x1 with
associated momentum ∆p = (p2 − p1)/2 :

Hclass = −4 cos(p+/2) cos(∆p) + U(∆x) . (S8)

The amplitude of the kinetic energy (hopping matrix el-
ement) is proportional to 2 cos(p+/2) (2 cos(k/2)) and
becomes very small for p+ ≈ π (k ≈ π). At even N there
is actually one precise value k = π where the hopping
matrix element vanishes.

Qualitatively, the eigenvectors of h̄(k) at largest ener-
gies are expected to be localized at ∆x close to 0 (or
N − 1) depending on the ratio C = 2| cos(k/2)|/U . If
C � 1 there is even a perturbative regime with strong
localization and for k being sufficiently close to π this
scenario is already possible for modest interaction values
such as U = 2 or U = 0.5 which are below the kinetic
energy bandwidth 8. Also for C ∼ 1 the eigenfunction
amplitudes at small ∆x are enhanced and a state initially
localized at small R = ∆x, e.g. R = 1, will retain upon
quantum time evolution an enhanced probability to stay
close to small ∆x (or small N−∆x) values and propagate
only partially to the remaining space.

These expectations are well confirmed by Fig. S5 show-
ing for U = 2, N = 1024, the Husimi functions, defined in
classical phase space of the relative coordinate (∆x,∆p),
(see [18] for precise definition and computational details

using FFT) of certain eigenvectors ϕ
(k)
l (∆x) of h̄(k). The

Husimi function for a given block eigenstate at energy

E
(k)
l is maximal on lines corresponding to the solution

of E
(k)
l ≈ Hclass(∆x,∆p) with Hclass is given by (S8)

at fixed value of conserved total momentum p+ = k.

Depending on the energy E
(k)
l there is either clear lo-

calization at ∆x close to 0 or N for larger energies and
more or less free propagation for lower energies. If the
ratio C = 2| cos(p+/2)|/U is small the range of localized
states covers a larger energy interval and the remaining
delocalized states feel stronger the shape of the interac-
tion potential as can be seen in bottom-right panel of
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Fig. S5. Note that in Fig. S5 we have chosen a quite
large value of N = 1024 in order to have a nice spatial
resolution of the Husimi functions. We have actually also
computed certain Husimi functions for even larger values
N = 4096 or N = 16384, corresponding to smaller ef-
fective values of ~, which perfectly confirms the above
observations but with a reduced width of the classical
lines where the Husimi function is maximal.

An important issue concerns the particle exchange
symmetry implying that the eigenfunctions of the ini-
tial Hamiltonian are either symmetric (bosons) or anti-
symmetric (fermions) with respect to particle exchange
x2 ↔ x1. In the relative coordinate the symmetry
should be visible by replacing ∆x with (N−∆x) mod N .
However, due to the discrete finite lattice with periodic
boundary conditions the situation is more subtle. To see
this we consider the particle exchange operator P de-
fined by Pψ(x1, x2) = ψ(x2, x1). From (S3) we find that:
Pψ̄(k, 0) = ψ̄(k, 0) and Pψ̄(k,∆x) = fkψ̄(k,N − ∆x)
for 1 ≤ ∆x < N with the same k dependent sign factor
fk = exp(−kN/2) = (−1)lk used in (S7). Therefore a
symmetric (anti-symmetric) state ϕ(∆x) (in ∆x space)
with Pϕ = sϕ, s = +1 (s = −1) satisfies ϕ(0) = sϕ(0)
and ϕ(∆x) = s fkϕ(N − ∆x) for 1 ≤ ∆x < N im-
plying ϕ(0) = 0 for the anti-symmetric case and also
ϕ(N/2) = 0 for even N and the anti-symmetric (sym-
metric) case for fk = 1 (fk = −1).

The block Hamiltonian (S5-S7) obviously commutes
with P and using a basis of symmetrized and anti-
symmetrized states in ∆x space according to the above
transformation rule one can transform h̄(k) in a diagonal
2 × 2 block structure for the two symmetric and anti-
symmetric sectors. The dimension of the symmetric sec-
tor is NS = (N+1+fk)/2 for even N and NS = (N+1)/2
for odd N and the anti-symmetric sector has the dimen-
sion NA = N −NS . The dependence of NS on the sign
factor fk for even N is due to the fact that the basis
state |∆x〉 at ∆x = N/2 either belongs to the symmetric
sector for even lk (with k = 2πlk/N) or to the anti-
symmetric sector for odd lk while for ∆x = 0 it always
belongs to the symmetric sector. In all other cases for
0 < ∆x < N/2 the (anti-)symmetrized basis states are
(|∆x〉 + sfk|N − ∆x〉)/

√
2 with s = +1 (s = −1). The

matrix elements of the (anti-)symmetrized block Hamil-
tonian are similar to (S5) and (S6) with some slight mod-
ifications: (i) the coupling matrix element (S6) implicat-
ing the states |0〉 and |N/2〉 (for even N) if they belong to
the sector are multiplied with

√
2, (ii) there is no corner

matrix element corresponding to (S7) and (iii) for odd
N one has to add −2sfk cos(k/2) to the diagonal matrix
element (S5) for ∆x = (N − 1)/2.

Our aim is to numerically compute the quantum time
evolution of a state |ψ(t)〉 = e−iHt|ψ(0)〉 with initial state
|ψ(0)〉 which we choose to be symmetric with respect to
particle exchange. An exact way for this is to diagonalize
H (eventually in its symmetric sector) and expand |ψ(0)〉

in the basis of (symmetrized) eigenstates. Without any
further optimization this requires O(N6) operations for
the diagonalization and O(N4) operations for each time
value t for which |ψ(t)〉 is computed (the limitation to
the symmetrized sector reduces the numerical prefactors
by 8 or 4).

However, using the block Hamiltonians and the block
diagonal structure of (S4) we can simplify the numeri-
cal diagonalization significantly by diagonalizing N (or
∼ N/2, see below) N ×N matrices (or even N/2×N/2
matrices in the symmetric sector) which can be done with
NO(N3) operations (or even NO(N2) operations when
exploiting the tridiagonal structure of the symmetrized
block Hamiltonian of each sector). Once the eigenfunc-

tions ϕ
(k)
l (∆x) of h̄(k) are known one can reconstruct the

eigenfunctions φ
(k)
l (x1, x2) of the initial Hamiltonian H

by the inverse of the transformation (S3):

φ
(k)
l (x1, x2) =

1√
N
eik(x1+∆x/2) ϕ(k)(∆x) (S9)

with ∆x = (x2 − x1 + N) mod N . Note that usually
the inverse transformation from block to position rep-
resentation for an arbitrary state would also require a
sum over k. However, for eigenstates there is only one
k sector with non-vanishing values and the value of k
is simply fixed. From the numerical point of view the
eigenstate (S9) is not convenient since it is complex (for
k 6= 0 and k 6= π). Therefore we take the real and imag-
inary part which provides actually two eigenstates that
are linear combinations of the eigenstates (S9) at k and
2π − k. This is related to the time reversal symmetry
which provides the identity: h̄(2π−k) = T h̄(k)T where T
is a diagonal matrix in ∆x space with non-vanishing el-
ements T∆x,∆x = (−1)∆x. Due to this h̄(2π−k) and h̄(k)

have the same eigenvalues and the operator T provides
the transformation of the eigenvectors from the latter to
the former. Therefore it is only necessary to diagonalize
N/2 of the N block Hamiltonians numerically. For k = 0
and k = π (for even N) the eigenstates (S9) are already
real (or purely imaginary) and for k = π the block Hamil-
tonian is already diagonal since in this case the hopping
matrix element (S6) vanishes.

In this way, we can very efficiently construct a basis
of real eigenstates of the Hamiltonians which provides
a significant acceleration of the time evolution compu-
tation. However, for larger values of N we still need a
lot of storage for all eigenstates and also the transforma-
tions between the initial basis and the eigenstate basis
are still quite expensive. Therefore, we apply a further
optimization where we transform the initial vector |ψ(0)〉
in block representation using (S3) and then we apply the
time evolution individually for each sector of k which is
highly efficient and furthermore it only requires to store

the “small” block eigenstates ϕ
(k)
l (∆x) . The state |ψ(t)〉

is transformed back from block to position presentation
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(in addition both transformations can also be accelerated
by FFT). A further advantage is that we can also ana-
lyze easily the state |ψ(t)〉 in block representation which
is physically very interesting since it shows the (absence
or presence of) propagation or localization individually
for each k sector corresponding to different hopping ma-
trix elements “−2 cos(k/2)” (see bottom panels of Fig. 1).
Using this very highly efficient method we have been able
to compute the exact full space 1D time evolution up to
N = 1024 corresponding to a Hilbert space dimension
≈ 106. We have also verified that the three variants (and
further sub-variants with respect to symmetry) of the
method provide identical results up to numerical preci-
sion for sufficiently small values of N where all methods
are possible.

Discussion of 2D case

The block representation (S3) can be generalized to
the 2D case providing wave functions ψ̄(kx, ky,∆x,∆y)
depending on two total conserved momenta kx, ky in x
or y-direction, ∆x and ∆y. In this case the matrix ele-
ments in block basis states provide also a block diagonal
structure:

〈k̃x, k̃y,∆x̃,∆ỹ|H |kx, ky,∆x,∆y〉 = (S10)

δk̃x,kxδk̃y,ky h̄
(kx,ky)

(∆x̃,∆ỹ),(∆x,∆y)

with symmetric N2 × N2 matrices h̄(kx,ky) correspond-
ing to a 2D-tight binding model in (∆x,∆y) space with
diagonal matrix elements given by U(∆x,∆y) = U/(1 +√

∆x̄2 + ∆ȳ2) and nearest neighbor coupling matrix el-
ements −2 cos(kx/2) (−2 cos(ky/2)) in x (y) direction.
The boundary conditions are either periodic or anti-
periodic in x (or y) direction according to the parity of
the integer number Nkx/(2π) (Nky/(2π)).

The two discrete symmetries ∆x ↔ N − ∆x (corre-
sponding to x1 ↔ x2) and ∆y ↔ N−∆y allow to simplify
the diagonalization problem to matrices of size ≈ N2/4.
(Note that the particle exchange symmetry corresponds
to the simultaneous application of both of these symme-
tries.) If kx = ky one can even exploit a third symmetry
with respect to ∆x ↔ ∆y allowing a further reduction
of the matrix size to ≈ N2/8 ≈ 3.3 × 104 for N = 512
which is still accessible to simple full numerical diago-
nalization. The additional symmetries with respect to
the particle exchange symmetry are due to the particu-
lar simple form of the initial tight-binding model given
as a simple sum of 1D tight-binding models for each di-
rection (for the kinetic energy).

The details with many different cases for the parity of
both kx, ky values, and also of N , together with several
cases of symmetric or anti-symmetric sectors are quite
complicated. For the time evolution of the 2D case we
limit ourselves to a single sector with k = kx = ky, even

N and also to the totally symmetric case (with respect
to the three exchange symmetries mentioned above). In
this case each (totally symmetrized) block Hamiltonian
has a dimension Dk = (N+1+fk)(N+3+fk)/8 ≈ N2/8
where fk = (−1)lk is the sign factor associated to k. As
initial state we use a totally symmetrized state localized
at ∆x̄ = ∆ȳ = R where we choose typically R = 1 but we
have also performed certain computations for R = 3 (see
e.g. Fig. S9 below). In the original full 4D space of TIP
such a state corresponds to a plane wave in the center
of mass direction and perfect localization in the relative
coordinate. Therefore, the initial spreading along the
diagonal (center of mass coordinate) is not visible with
such a state (contrary to the full space 1D time evolution
where an initial state localized in the center of mass was
used as can be seen in top panels of Fig. 1). However
the more important spreading in the relative coordinate,
which determines the pair formation probability, is of
course clearly visible.

In addition to the exact block 2D time evolution we
also computed the full space time evolution using the
Trotter formula approximation:

exp[−i(Hkin +Hpot)t] ≈ (S11)

[exp(−iHkin∆t) exp(−iHpot∆t)]
t/∆t

which is valid for a sufficiently small Trotter time step
∆t and time values t being integer multiples of ∆t. Here
Hkin represents the kinetic energy part of the Hamilto-
nian (diagonal in Fourier space) and Hpot represents the
part with potentials and interactions (diagonal in ini-
tial position space). Using a 4D-FFT to transform effi-
ciently between initial position space and Fourier space
one can compute the approximate time evolution of an
arbitrary given initial state. Further technical details of
this method for the case of 2D TIP can be found in [19].

As Trotter time step we choose the inverse bandwidth
∆t = 1/B2 = 1/(16 + U) (which is below ∆t = 0.1 used
in [19]). Also for the exact time evolution (in 1D and
2D) we measure/present all time values in units of the
inverse bandwidth ∆t = 1/Bd which corresponds to the
smallest time scale of the system. However, for the latter
the ratio t/∆t may be arbitrary and is not limited to
integer values as for the Trotter formula approximation.
Concerning the Trotter formula time evolution we choose
a system size of N = 128 (as in [19]) and an initial state
being roughly localized at ≈ N/2 for each of the four
coordinates with exact initial distance ∆x̄ = ∆ȳ = R and
totally symmetrized with respect to the above mentioned
three discrete symmetries.

The considered time range for all types of quantum
time evolution computations is ∆t×10−1 ≤ t ≤ ∆t×106

(∆t ≤ t ≤ ∆t×104) for the exact 1D/2D (Trotter formula
2D) time evolution using an (approximate) logarithmic
scale for the chosen time values. We provide here two
example videos and at [16] further videos (see Sec. S5 for
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details) for several of the densities shown in Figs. 1,2,3
and S8.

S3. ADDITIONAL DATA FOR THE 1D
QUANTUM CASE
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FIG. S2: Color plots of certain symmetric eigenstates
ψ(x1, x2) of the 1D Hamiltonian for U = 1 and N = 128
in x1-x2 plane. Top panels correspond to two states in the
sector p+ = 0 of total momentum with relative level number
(of this sector and with states ordered by increasing energies)
being l = 64 (left) and l = 44 (right). Center panels corre-
spond to p+ = 21π/32 ≈ 2π/3 with l = 64 (left) and l = 43
(right). Bottom panels correspond to p+ = 63π/64 ≈ π with
l = 62 (left) and l = 43 (right).

In Fig. S2 we show some examples of 1D eigenstates
of the quantum Hamiltonian (1) obtained from (the real
or imaginary part of) Eq. (S9) as explained in the last
section from symmetrized block eigenstates (with 65 or
64 levels per symmetrized p+ sector). The parameters
are U = 1, N = 128 and three values of k = p+ = 0,
p+ ≈ 2π/3 and p+ ≈ π. For states with (near) maximal
energy (for their respective p+ sector) one sees a strong
localization on the diagonal indicating a strong localiza-
tion in the relative coordinate ∆x. For relative level num-
bers close to 2/3 of the maximal level number the states
extend to the full space except for p+ ≈ π where a small
strip close to the diagonal is excluded. This is a clear
effect of energy miss-match and the very strong interac-
tion on the diagonal if compared to the strongly reduced
kinetic energy. The (presence or absence of) change of

colors in the center of mass direction indicate the periodic
oscillations due the wave number p+ in this direction.
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FIG. S3: Schematic representation of all symmetric block
eigenstates for the 1D case and U = 1, N = 128 in relative
coordinate ∆x corresponding to the horizontal axis and with
block level number l corresponding to the vertical axis. The
different panels correspond to different values of the conserved
total momentum which are: p+ = 0 (top left), p+ = 21π/32 ≈
2π/3 (top right), p+ = 63π/64 ≈ π (bottom left) and p+ = π
exactly (bottom right).

Fig. S3 shows a schematic representation of all sym-
metrized 1D block eigenstates of certain p+ sectors (for
U = 1, N = 128). The horizontal axis of each panel cor-
responds to 0 ≤ ∆x . N/2 and the vertical axis to the
level number 0 ≤ l . 64 (bottom/top for lowest/largest
sector energies) of the shown p+ sectors. For p+ = 0 and
p+ ≈ 2π/3 there is at top energies a very small number
of states with rather strong localization at ∆x close to
0 (values ∆x close to N are not visible due to the sym-
metrization). Then there is a big majority of states which
are completely delocalized on the full ∆x interval with
certain wavelength values depending on the level num-
ber. At lowest energies there is also a very small number
of states with significant localization close at ∆x ≈ N/2
which is the minimum of the 1D interaction potential.
For p+ ≈ π but different from π the top (bottom) en-
ergy ranges of strong localization at ∆x ≈ 0 (∆x ≈ N/2)
are strongly enhanced and the intermediate “delocalized”
states are quite strongly excluded from small ∆x values
due to an energy miss-match caused by the very strong
relative interaction (if compared to the reduced kinetic
energy). At p+ = π exactly there is perfect localization
at single ∆x sites for each state since in this case the
kinetic energy vanishes exactly and the corresponding
block Hamiltonian is already diagonal with eigenvalues
given by the interaction values U(∆x).

These observations of Fig. S3 explain quite clearly
the behavior of the time evolution of the wave function



6

in block representation visible in the bottom panels of
Fig. 1. For sectors with p+ ≈ π an initial block state
localized at ∆x = 1 will have only contributions from
the strongly localized block eigenstates at top energies
while other extended block eigenstates have nearly no
amplitude at small ∆x and do not contribute in the ini-
tial state (when the latter is expanded in terms of block
eigenstates). Therefore there is nearly perfect localiza-
tion for these sectors (with p+ ≈ π) also for long times.
For other values of p+ quite different from π the number
of localized top energy states is reduced. However, they
still produce an enhanced contribution in the eigenvector
expansion of the initial state. Now (most of) the other
extended block eigenstates are not excluded/forbidden at
small ∆x values and they have also a certain contribution
in the eigenvector expansion, but still with smaller coef-
ficients than the localized top energy states. Therefore
in the time evolution a quite significant fraction of prob-
ability stays localized while the complementary fraction
of density propagates through the whole system.
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N=1024, U=1, R=1
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FIG. S4: Time dependence of the quantum probability w10 to
find both particles in the relative strip ∆x̄ ≤ 10 for the exact
1D time evolution for different values of the parameters N , U
and R with an initial symmetrized state where both particles
are localized (at x1 ≈ x2 ≈ N/2) at distance ∆x̄ = R.

To characterize the quantum probability to form com-
pact electron pairs we compute (for the 1D case) the
following quantity:

w10 =

N−1∑
x1=0

10∑
∆x=−10

|ψ(x1, x1 + ∆x)|2 (S12)

where the sum x1 +∆x is taken modulo N and ψ(x1, x2)
represents the wave function (in position representation)
of the quantum state for which we want to compute
w10, typically a state obtained from the exact 1D quan-
tum time evolution. This quantity is just the quantum
probability to find both particles in the relative strip
∆x̄ ≤ 10. One can also compute w10 from the wave
function ψ̄(k,∆x) in block representation by sums over

all k values and ∆x values such that either ∆x ≤ 10 or
∆x ≥ N − 10.

Fig. S4 shows the time dependence of w10 using the
same (type of) time evolution data used for Fig. 1 for
different parameter combinations with N = 128, 1024,
U = 1, 6 for R = 1 or U = 1 for R = 3 (here R is the
initial distance of the particles). We see in all cases that
w10 saturates at long times at a finite value which is sig-
nificantly above its ergodic values werg. = 21/N (maybe
except for N = 128, U = 1 and R = 3) assuming a
perfectly uniform wave function amplitude. Increasing
R = 1 to R = 3 clearly reduces the pair formation prob-
ability while increasing the interaction from U = 1 to
U = 6 increases the value of w10. For the data atN = 128
there is also a considerable finite size effect.
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FIG. S5: Examples of Husimi functions of symmetrized 1D
block eigenstates in relative coordinates ∆x ∈ [0, N [ (x-axis)
and corresponding momentum ∆p ∈ [0, 2π[ (y-axis) in cer-
tain p+ sectors for N = 1024, U = 1. Top (bottom) panels
correspond to p+ = 341π/512 ≈ 2π/3 (p+ = 511π/512 ≈ π).
Relative level numbers (ordered by increasing energies) inside
each p+ sector are 509 (top left), 474 (top right), 464 (bottom
left), 374 (bottom right).

Fig. S5 shows certain Husimi functions of 1D block
eigenstates obtained from the smoothing of the Wigner
function on the scale of ~ for two sectors p+ ≈ 2π/3 and
p+ ≈ π. For larger energies there is a clear localization
in ∆x at ∆x ≈ 0 and ∆x ≈ N where the interaction po-
tential is maximal and for medium/lower energies there
is a near ballistic movement over the full ∆x range. For
p+ ≈ 2π/3 there is also localization in ∆p with two values
close to π in top right panel but the typical localized ∆p
value may be different for other eigenstates (not shown)
except for the few eigenstates with top energies which
are localized in ∆x. For p+ ≈ π, where the effective ki-
netic energy is strongly reduced, there is a larger number
of states with localization in ∆x for larger energies and
for all cases ∆p appears to be rather delocalized. The
states with localization in ∆x contribute mostly in the
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quantum time evolution shown in Fig. 1 due to the initial
localized state at ∆x = 1 thus explaining the significant
probability for both particles staying together.

S4. ADDITIONAL DATA FOR THE 2D
QUANTUM CASE

Before presenting some additional data for the 2D
quantum case, we provide here explicit formulas for
the quantities shown in Figs. 3, 4. Assuming that
ψ(x1, y1, x2, y2) is the wave function in position space
obtained from the Totter formula 2D time evolution top
panels of Fig. 3 show the density in ∆x-∆y plane ob-
tained from:

ρrel(∆x,∆y) =
∑
x1,x2

|ψ(x1, y1, x1 +∆x, y1 +∆y)|2 (S13)

(with position sums taken modulo N) and bottom panels
show the density in x1-x2 plane obtained from:

ρXX(x1, x2) =
∑
y1,y2

|ψ(x1, y1, x2, y2)|2 . (S14)

The quantum probability w∆R to find both electrons at
∆x̄ ≤ ∆R and ∆ȳ ≤ ∆R is computed from:

w∆R =
∑

∆x̄≤∆R,∆ȳ≤∆R

ρrel(∆x,∆y) (S15)

(with ∆x̄ = min(∆x,N − ∆x) and similarly for ∆y).
For the case of exact 2D block time evolution w∆R is
computed as in (S15) but with ρrel(∆x,∆y) replaced
by |ψ̄(p+x, p+y,∆x,∆y)|2 (at certain given values of
p+x, p+y). Here we mostly use the quantity w10 corre-
sponding to ∆R = 10 but below we also show some data
for w2 corresponding to ∆R = 2.

In Fig. S6, we show for the same cases and raw data
(same 2D time evolution wave functions) used for Fig. 3
the time dependence of the inverse participation ratio
defined by:

ξIPR =

 ∑
∆x,∆y

ρ2
rel,sym(∆x,∆y)

−1

(S16)

(ρrel,sym is the symmetrized density with respect to the
two symmetries ∆x ↔ N −∆x and ∆y ↔ N −∆y ob-
tained from ρrel) and the typical particle distance:

rtyp = exp[〈ln(
√

∆x̄2 + ∆ȳ2 + 1)〉]− 1 (S17)

where the average 〈· · · 〉 is done with respect to the sym-
metrized density ρrel,sym.

The inverse participation ratio provides roughly the
number of sites over which ρrel,sym(∆x,∆y) is mostly
concentrated or localized. The saturation values at long
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FIG. S6: Time dependence of the inverse participation ratio
ξIPR (see Eq. (S16); top panel) and typical distance rtyp

(see Eq. (S17); bottom panel) computed from the density
in ∆x-∆y plane for the same cases and raw data of Fig. 3.
The dashed grey (dashed-dotted black) line shows the ergodic
value for N = 128 (N = 512) assuming a uniform density
in ∆x-∆y plane given by ξIPR,erg = (N/2)2 and rtyp,erg =
0.692× (N/2).

times well below the ergodic value clearly indicate a con-
siderable pair formation probability confirming the find-
ings of Fig. 4. For p+ ≈ π (case of near perfect localiza-
tion) one can see values slightly above unity (ξIPR . 1.2)
for all time scales. Note that for this case w10 shown in
Fig. 4 takes the value 1 with numerical precision (error
below 10−14).

The other quantity rtyp is mostly dominated by the
fraction of density associated to free electron propaga-
tion. Therefore the ratio rtyp/rtyp,erg corresponds to the
complementary non-pair formation probability and in-
deed the quantity 1 − rtyp/rtyp,erg behaves qualitatively
similarly as w10. For the case of near perfect localization
at p+ ≈ π we have for all time scales rtyp ≈

√
2 (corre-

sponding to ∆x = ∆y = 1) with some slight fluctuations
±0.02 at long times.

Globally, we believe that w10 is more useful and suit-
able than ξIPR or rtyp to describe the pair formation prob-
ability which is the reason why we have chosen to show
in the main part of this work the time dependence of w10
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in Fig. 3.
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FIG. S7: Certain 2D (totally symmetrized) block eigenstates
in ∆x-∆y plane for U = 2, N = 128. Top panels correspond
to conserved total momentum p+ = p+x = p+y = 0 and
block level numbers l = 2143 (left) and l = 2135 (right).
Center panels correspond to p+ = 21π/32 ≈ 2π/3, l = 2143
(left), l = 2131 (right). Bottom panels correspond to p+ =
63π/64 ≈ π, l = 2072 (left), l = 1991 (right).

Some examples of localized and delocalized 2D block
eigenfunctions for the three sectors p+ = p+x = p+y = 0,
p+ ≈ 2π/3 and p+ ≈ π and N = 128, U = 2 are pre-
sented in Fig. S7. As in 1D top energy eigenstates (with
respect to their p+ sector) are localized at ∆x ≈ ∆y ≈ 0
and lower energy eigenstates are delocalized. For p+ = 0
and p+ ≈ 2π/3 the number of localized states is very
small and already at sector level numbers slightly below
their maximal value delocalization sets in. For p+ ≈ π
the number of localized states is larger and for the delo-
calized states the zone close to ∆x ≈ ∆y ≈ 0 is forbidden
such that these states do not contribute in the time evo-
lution if the initial state is localized at ∆x = ∆y = R
for some small value of R = 1 or R = 3. These findings
are very similar to the 1D case (see above discussion of
Figs. S3,S4) and help to understand the 2D time evolu-
tion results shown in Figs. 2-4.

One can also see, especially for the delocalized eigen-
states, a spatial node structure indicating a rough
and very approximate angular momentum conservation.
However, this is not exact due to the square form of
available space, discrete lattice structure and also the
cosinus 2D band form of kinetic energy (for the relative
coordinates). Furthermore, our limitation to totally sym-
metrized block eigenstates (with respect to the discrete

symmetries explained in Sec. S2) plays a role here.
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0.25

0.5

0.75

1

FIG. S8: Certain wave function densities for different cases
of the 2D time evolution and weak interaction U = 0.5. Top
and center panels correspond to the same type of quantity
as shown in Fig. 2 with p+ = p+x = p+y = 0 (top left),
p+ = 85π/128 ≈ 2π/3 (top right), p+ = 255π/256 ≈ π
(center left), all three for N = 512 and t = 105 ∆t, and
p+ = 63π/64 ≈ π, N = 128, t = 3090 ∆t (center right).
Bottom panels correspond to the Trotter formula approxima-
tion for N = 128 and t = 9487 ∆t with left panel showing
the density in relative coordinates obtained from a sum over
x1 and y1 and with right panel showing the density in x1-x2

plane obtained from a sum over y1 and y2. All panels (except
bottom right) show to a zoomed region 0 ≤ ∆x,∆y < 32 in
∆x-∆y plane. At [16] videos corresponding to the cases of all
panels of this figure (and also for N = 128 with p+ = 0 and
p+ = 21π/32 ≈ 2π/3) are provided.

The 2D pair formation effect still exists at the smaller
interaction value U = 0.5 even though it is less pro-
nounced as can be seen in Fig. S8 showing certain wave
function densities obtained from both types of 2D time
evolution methods. For N = 128 the Trotter formula
results indicate the formation of a very slight diagonal
in the density ρXX(x1, x2) and a modest localization ef-
fect in ρrel(∆x,∆y). However, here the density weight
corresponding to free electron propagation is quite high.
For N = 128 this is also confirmed by the 2D block time
evolution results (not shown in Fig. S8 except for one
special case) but for N = 512 the density related to
free propagation is quite strongly reduced in compari-
son to N = 128. As can be seen in both top and left
center panels of Fig. S8 for N = 512 there is a consider-
able density for the compact electron pair. However, for
p+ = 0 (p+ ≈ 2π/3) one still clearly see a quite strong
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(quite modest) density related to free propagation while
for p+ ≈ π the latter is absent. The right center panel
shows the case N = 128 and p+ ≈ π (strong localization
case at N = 512) at a certain intermediate time when
one can briefly see a density related to free propagation
which is however smeared out at longer times.
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FIG. S9: Time dependence of the quantum probability w10 to
find both particles in the relative square ∆x̄ ≤ 10, ∆ȳ ≤ 10.
Top panel corresponds to the full space 2D time evolution
using the Trotter formula approximation for N = 128 and
different values of U and initial particle distance R. Bottom
panel corresponds to U = 0.5, R = 1 and compares certain
cases of the exact 2D block time evolution in certain sectors of
conserved momenta p+ = p+x = p+y with the result obtained
from the Trotter formula approximation. The precise values
of p+ are : p+ = 0, p+ = 85π/128 ≈ 2π/3, p+ = 255π/256 ≈
π all three for N = 512 and p+ = 63π/64 ≈ π for N = 128.
The top blue line has at t = 106 a numerical of 0.99918. In
both panels the grey dashed horizontal line corresponds to
the value of werg. = (21/128)2 ≈ 0.0269 assuming a constant
(ergodic) density on a square of size N = 128. In bottom
panel the black dashed-dotted horizontal line corresponds to
the value of werg. = (21/512)2 ≈ 0.00168 assuming a constant
density on a square of size N = 512.

The qualitative findings of Fig. S8 for U = 0.5 are
confirmed by the time dependence of w10 shown in the
lower panel of Fig. S9 for the cases of Fig. S8. For N =
512 and p+ = 0 or p+ ≈ 2π/3 the saturation values of
w10 are below 0.1 but still significantly above the ergodic
value. For p+ ≈ π and N = 512 the saturation value

w10 = 0.99988 is nearly maximal while for N = 128 it
is lower but still quite elevated, w10 ≈ 0.45, showing a
certain finite size effect for this case. The saturation of
the Trotter formula case at N = 128 is w10 ≈ 0.05 which
is rather low but still roughly twice the ergodic value
which is 0.027.

The top panel of Fig. S9 shows the time dependence
of w10 for the Trotter formula case and other parameter
values U = 0.5, 2, 12 at R = 1 and U = 2 at R = 3 with
R being the initial value of ∆x̄ = ∆ȳ. As in 1D (see
Fig. S4) stronger (lower) interaction increases (reduces)
the pair formation probability and when R is increased
the pair formation probability is reduced.
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FIG. S10: Dependence of w∆R with ∆R = 2 (∆R = 10)
in top (bottom) panel to find both particles in the relative
square ∆x̄ ≤ ∆R on the scaling parameter 2 cos(p+/2)/U for
different interaction values 0.25 ≤ U ≤ 12, N = 256 and
p+ = p+x = p+y ∈ [0, π]. The dashed gray line corresponds
to the ergodic probability werg. = ((2∆R+1)/256)2 assuming
a constant density on a square of size N = 256. The value of
w∆R has been computed from the exact 2D time evolution in
different p+ sectors using a time average over 21 time values
t with logarithmic density such 104 ≤ t/∆t ≤ 106.

In Fig. S10 we show for N = 256 the dependence of
the saturation value of w∆R for ∆R = 2 (top panel) and
∆R = 10 (bottom panel), computed as the average over
21 time values t with 104 ≤ t/∆t ≤ 106, on the scaling
parameter C = 2 cos(p+/2)/U (here we only consider
0 ≤ p+ ≤ π such that C ≥ 0). This parameter is the
ratio of the hopping matrix element and the interaction
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FIG. S11: Dependence of the 2D inverse participation ratio
ξIPR in symmetrized ∆x-∆y plane on the scaling parame-
ter 2 cos(p+/2)/U . The dashed grey line corresponds to the
ergodic value ξIPR,erg. = (N/2)2 ≈ 1.6× 104 assuming a uni-
form distribution on a square of size N/2 = 128 (due to sym-
metrization). ξIPR has been computed from the same raw
data (time dependent wave functions), using the same pa-
rameters and same time average as in Fig. S10.

amplitude of the effective 2D one-particle tight binding
model of the block at p+ = p+x = p+y (see Sec. S2 for
details). We have also computed the same scaling curves
for N = 512 with a reduced density of data points. These
curves are identical to (slightly below) the case N = 256
for C . 2 (C & 2) with a rough factor of 0.5 at C = 8.

The scaling dependence is quite obvious and clearly
confirms the role of the total conserved momentum p+ for
the kinetic energy amplitude of the relative coordinates.
At small values of C � 1 we have perfect localization
(perfect pair formation) with w2 ≈ w10 ≈ 1 and then
the curves decrease down to a modest local minimum
at C ≈ 0.2 which is followed by a local maximum at
C ≈ 0.3. Then they continue to decrease down to the
value of 2.2 × 10−3 (1.8 × 10−2) for w2 (w10) at C = 8.
These minimal values are still clearly above the ergodic
values 3.8× 10−4 (6.7× 10−3).

Fig. S11 shows the same type of scaling curve but for
the inverse participation ratio ξIPR which has a value of
≈ 1 for C � 1 for the case of perfect localization (perfect
pair formation). Then the curve increases up to a modest
local maximum at C ≈ 0.2 followed by a local minimum
at C ≈ 0.3. After this it continues to increase until it
saturates for C & 3 at the value ξIPR ≈ 6.9 × 103 which
is clearly below the ergodic value 1.6× 104.

S5. VIDEOS OF TIP TIME EVOLUTION IN 2D

Two videos of the 2D time evolution for the cases of
(i) Fig. 2 (videoforfig2.avi), top right panel (exact 2D
block time evolution of sector p+ = 21π/32 ≈ 2π/3) and
(ii) Fig. 3 (videoforfig3.avi), bottom panels (density in
x1-x2 plane obtained from the Trotter formula 2D time
evolution) are provided. For (i) the video is composed of
702 images (25 images per second of video) at time values
t0 = 0 and ti = ∆t× 10(i−101)/100 for 1 ≤ i ≤ 701 (with
∆t = 1/B2 = 1/(16+U)) corresponding to a logarithmic
time scale in the range ∆t×10−1 ≤ t ≤ ∆t×106. For (ii)
the video is composed of 464 images at integer multiples
of ti = li∆t with li = i for 0 ≤ i ≤ 87 and roughly
li+1 ≈ 101/100 li for 87 ≤ i < 463 (such that l463 = 104)
corresponding roughly to a logarithmic (linear) time scale
for t/∆t > 87 (t/∆t ≤ 87) in the range ∆t ≤ t ≤ ∆t ×
104.

At our web page [16] http://www.quantware.

ups-tlse.fr/QWLIB/coulombelectronpairs further
videos corresponding to the panels of Fig. 1 (exact full
space 1D time evolution), Fig. S8 (both cases of 2D time
evolution for U = 0.5), and other panels of Figs. 2,3 are
available. The time scales are always as in the cases
(i) (exact 1D, with modified ∆t = 1/B1 = 1/(8 + U),
or block 2D time evolution) or (ii) (Trotter formula 2D
time evolution).

http://www.quantware.ups-tlse.fr/QWLIB/coulombelectronpairs
http://www.quantware.ups-tlse.fr/QWLIB/coulombelectronpairs

