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Jaynes-Cummings model under monochromatic driving
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We study analytically and numerically the properties of the Jaynes-Cummings model under monochromatic
driving. The analytical results allow us to understand the regime of two branches of multiphoton excitation in the
case of close resonance between resonator and driven frequencies. The rotating wave approximation allows us to
reduce the description of the original driven model to an effective Jaynes-Cummings model with strong coupling
between photons and qubit. The analytical results are in good agreement with the numerical ones even if there
are certain deviations between the theory and numerics in the close vicinity of the resonance. We argue that the
rich properties of the driven Jaynes-Cummings model represent a new area for experimental investigations with
superconducting qubits and other systems.
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I. INTRODUCTION

The Jaynes-Cummings model (JCM) [1] is the cornerstone
system of quantum optics describing interactions of resonator
photons with atom, considered in a two-level approximation.
The usual experimental conditions correspond to a weak cou-
pling constant between photons and atom. In this regime the
quantum evolution of the system is integrable demonstrating
revival energy exchange between photons and atom [1–4].
Such revival behavior had been first observed in experiments
with Rydberg atoms inside a superconducting cavity [5]. The
overview of applications of JCM for various physical systems
is given in [6,7].

With the appearance of long living superconducting
qubits [8], the coupling of such a qubit (or an artificial
two-level atom) to microwave photons of cavity quantum elec-
trodynamics (QED resonator or oscillator) became an active
field of experimental research [9]. Thus single artificial-atom
lasing [10] and a nonlinearity of QED system [11] have
been realized and tested experimentally. In the frame of QED
coupling between qubit and resonator it is very natural to
consider the case of resonator pumping by a monochromatic
microwave field (see, e.g. [10,12,13]). Thus the problem of
a monochromatically driven resonator with photons coupled
to a qubit represents an interesting fundamental extension of
JCM. This system can be viewed as a quantum monochromat-
ically driven oscillator coupled to a qubit (or two-level atom
or spin-1/2).

The first studies of JCM under monochromatic driving
had been performed for the case of a dissipative quantum
oscillator studied numerically in the frame of quantum tra-
jectories [14]. It was shown that under certain conditions the
qubit is synchronized with the phase of monochromatic driv-
ing providing an example of quantum synchronization in this,

on a first glance, rather simple system. The unusual regime of
bistability induced by quantum tunneling has been reported
which still requires a better understanding [14,15]. It was
shown that many photons can be excited even at a relatively
weak driving amplitude. It was also shown that two different
qubits can be synchronized and entangled by the driving under
certain conditions [16]. Thus the driven JCM represents a very
interesting example of a fundamental problem of quantum
synchronization [17]. From the discovery of synchronization
by Christian Huygens in 1665 [18] this fundamental nonlinear
phenomenon has been observed and studied in a variety of
real systems described by the classical dynamics [19]. At
present the development of quantum technologies and espe-
cially superconducting qubits led to a significant growth of
interest in the phenomenon of quantum synchronization (see,
e.g., [20–22] and references therein). Thus the interest to the
JCM under driving is growing with the appearance of new
experiments (see, e.g., [23–25]). The theoretical investigations
by different groups are also in progress [14,15,26,27].

We note that the unitary evolution of driven JCM has been
considered in [28] in the rotating wave approximation (RWA)
for the specific resonance case showing that above a certain
driving border the Floquet eigenstates are not normalizable.
In [29] the comparison between the RWA and non-RWA
evolution was considered showing the existence of a certain
difference between these two cases.

With the aim of deeper understanding of the properties of
driven JCM we study here the nondissipative case where the
system evolution is described by the quantum time-dependent
Hamiltonian and the related Schrödinger equation. We present
here the comparative analysis of analytical and numerical
treatment of this system. We develop the semiclassical de-
scription of quantum evolution considering mainly the case

2469-9926/2020/102(3)/033729(9) 033729-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0964-3929
https://orcid.org/0000-0001-7061-6474
https://orcid.org/0000-0002-2752-0765
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.033729&domain=pdf&date_stamp=2020-09-30
https://doi.org/10.1103/PhysRevA.102.033729


LEONARDO ERMANN et al. PHYSICAL REVIEW A 102, 033729 (2020)

of close (but not exact) resonance driving with high excitation
of oscillator states.

The paper is organized as follows: in Sec. II we give
the system description, the analytical analysis is described in
Sec. III, the numerical results are presented in Sec. IV, the
time evolution of coherent states is described in Sec. V, and
discussion of results and conclusion are given in Sec. VI. The
Appendix provides additional complementary material.

II. SYSTEM DESCRIPTION

The monochromatically driven JCM is described by the
Hamiltonian already considered in [14]:

Ĥ = ω0n̂ + �

2
σ̂z + gω0(â + â†)σ̂x + f cos (ωt )(â + â†),

(1)

where σ̂i are the usual Pauli operators describing a qubit, g is a
dimensionless coupling constant, the driving force amplitude
and frequency are f and ω, the oscillator frequency is ω0, and
� is the qubit energy spacing. The operators â, â† describe the
quantum oscillator with the number of photons being n̂ = â†â
(n̂|n〉 = n|n〉). Here and in the following we take h̄ = 1.

In the RWA the Hamiltonian (1) takes the form

Ĥ = ω0n̂ + �

2
σ̂z + gω0(âσ̂+ + â†σ̂−) + f

2
(âeiωt + â†e−iωt ).

(2)

The Floquet theory can be applied to the time periodic
Hamiltonians (1) and (2) that give the Floquet eigenstates
[|� j (t )〉] and Floquet modes [|� j (t )〉]

|� j (t )〉 = exp (−iε jt/h̄)|� j (t )〉, (3)

where ε j are quasienergy levels defined in the interval
[0, 2π/T ] and |� j (t )〉 = |� j (t + T )〉 are periodic in time.

In the rotating frame the time dependence can be elimi-
nated. Thus a state |�〉, evolving via the Schrödinger equa-
tion ih̄∂t� = H�, can be transformed to |�̃〉 = Û †|�〉 =
exp (iÂt/h̄)|�〉 where Û † is a unitary operator generated by
a Hermitian operator Â = ω(â†â + σ̂+σ̂−). Then the system
in the rotating frame of RWA is described by the transformed
stationary Hamiltonian

Ĥr = 
0n̂ + 
�

2
σ̂z + gω0(âσ̂+ + â†σ̂−) + f

2
(â + â†), (4)

with 
0 = ω0 − ω and 
� = � − ω. In the following we
mainly discuss a typical set of system parameters being ω0 =
1, � = 1.2, g = 0.04, and f = λ

√
np = 0.02

√
20 = 5−3/2 �

0.0894 (this corresponds to the main set of parameters λ =
0.02 and np = 20 discussed in [14] for the dissipative case
with the dissipative constant λ for the oscillator). We also
check other parameter sets ensuring that the main set cor-
responds to a typical situation. Below in our studies we use
dimensionless units for parameters being proportional to fre-
quencies (ω0, ω, λ given in figures), the physical quantities
are restored from the ratios ω/ω0, λ/ω0, the physical values
of system energies are obtain by multiplication of reported
energies by ω0h̄ where h̄ is the Planck constant,

The eigenstates ψ j of the RWA Hamiltonian (4) are deter-
mined by the equation Ĥrψ j (n, σz ) = Ejψ j (n, σz ). We order

FIG. 1. Participation ratio ξ of eigenstates ψ j of RWA Hamil-
tonian (4) as a function of rescaled resonance detuning 
0/ω and
eigenstate index j which counts eigenenergies in their monotonically
increasing order; here f = 5−3/2 � 0.0894, g = 0.04, and g = 0.08
in left (a) and right (b) panels, respectively; xi values are shown by
color with the corresponding color bar. Here and in all other figures
we use dimensionless units explained in the text.

the index j in such a way that the energy eigenvalues Ej are
monotonically growing with j.

The numerical computation of eigenstates ψ j is done by
a direct matrix diagonalization with a truncated basis of os-
cillator eigenstates with 0 � n � N − 1. We checked that the
value of N = 700 is sufficient to have stable eigenstates with
j < 100 so thus the following numerical results are obtained
with this N value. Thus, with qubit, in total we have 2N =
1400 states. We also use the same N to obtain the time evolu-
tion of initial Hamiltonian (1). The time evolution is obtained
by the Trotter decomposition with the time step 
 = 0.005
(the results are not sensitive to further decrease of the time
step).

We characterize the eigenstates of H (1) and
Hr (4) by their participation ratio (PR) defined as
ξ j = ∑

nσz
|ψ j (n, σz )|2/∑

nσz
|ψ j (n, σz )|4. Here ψ j (n, σz )

represents the eigenfunction expansion in the eigenbasis at
g = 0. Thus ξ j gives an effective number of decoupled states
(at g = 0) contributing to a given eigenstate at g > 0. For
a given eigenstate we also compute the average photon
number 〈ψ j |n̂|ψ j〉 = 〈n〉 and the average qubit (spin)
polarization 〈σz〉.

The dependencies of ξ , 〈n〉, 〈σz〉, for eigenstates ψ j of
Hamiltonian (4), on j and rescaled detuning frequency 
0/ω,
are shown in Figs. 1, 2, and 3, respectively. These results

FIG. 2. Average oscillator number 〈n〉 for eigenstates of Hamil-
tonian (4) shown by color for the parameters of Fig. 1 with g = 0.04
and g = 0.08 in left (a) and right (b) panels, respectively.
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FIG. 3. Average spin 〈σz〉 for eigenstates of Hamiltonian (4)
shown by color for the parameters of Fig. 1 with g = 0.04 and
g = 0.08 in left (a) and right (b) panels, respectively.

show that in a vicinity of resonance many oscillator states
are populated, which is rather natural. The polarization de-
pendence is more tricky being close to zero in direct resonance
vicinity and becoming mainly negative with detuning increase
and later followed by a polarization change from positive to
negative. We will return to the discussion of these properties
in the next sections.

According to the analytical result obtained in the RWA
frame in [28] for the case of exact resonance, the Flo-
quet eigenstates become fully delocalized over all oscillator
states (being non-normalizable) for f � g. Our numeri-
cal results confirm this delocalization both for non-RWA
case of Hamiltonian (1) and for RWA case of Hamilto-
nian (4). These results are presented in Fig. 12 in the
Appendix.

III. ANALYTICAL RESULTS

For analytical analysis of driven JCM we perform in (4) an
additional transformation using the replacement â = b̂ − f

2
0
that gives us a transformed Hamiltonian

Ĥrt = 
0n̂b + 
�

2
σ̂z + gω0(b̂σ̂+ + b̂†σ̂−) + Bxσ̂x + K.

(5)

This shows an appearance of an effective field Bx =
f gω0/(2
0) and a constant term K = f 2/(4
0). The interest-
ing feature of expression (5) is that even for small g values we
obtain an effective JCM with strong effective values of effec-
tive coupling constant geff = gω0/
0 � g at small resonance
detunings 
0 � ω0.

It is important to note that in (5) we effectively obtain the
JCM with a strong coupling geff > 1 between oscillator and
spin. In fact it is known that without RWA the original JCM
at strong coupling is characterized by a chaotic dynamics for
the corresponding classical equations of motion [30,31]. In the
quantum case such a chaotic dynamics leads to quantum chaos
for several spins interacting with a resonator with the level
spacing statistics as for random matrix theory [32]. Thus the
monochromatically driven JCM can be used for investigations
of many-spin quantum chaos induced by an effective strong
coupling to a resonator.

On the other hand, the semiclassical version of Eq. (4) can
be written in spin-1/2 basis as

Hsc = p2

2
+ 
2

0x2

2
+ f

√

0

2
x

+
⎛
⎝ 1

2
�

√

0g2ω2

0
2

(
x + ip


0

)√

0g2ω2

0
2

(
x − ip


0

) − 1
2
�

⎞
⎠, (6)

which can be diagonalized, with the corresponding solution:

h = h0 + f

√

0

2
x ±

√
g2ω2

0


0
h0 + 
2

�

4
,

h0 = p2

2
+ 
2

0x2

2
. (7)

Here (x.p) are classical coordinate and momentum of oscilla-
tor which mass is taken to be unity m = 1. The linear term in
x in (7) simply gives a shift of oscillator center position.

The above expressions also allow us to obtain the semiclas-
sical expression for the average spin polarization being

〈σz〉 = ±(
1 + 4g2ω2

0〈n〉/
2
�

)−1/2
. (8)

The semiclassical theoretical expressions (7) gives us the
dependence of RWA energy h on unperturbed energy h0 which
we compare with the results of numerical simulations in the
next section. We also compare the theoretical spin polariza-
tion (8) with the numerical results.

IV. NUMERICAL RESULTS

The eigenstates of Hamiltonian (4) are obtained by a direct
numerical matrix diagonalization with the numerical param-
eter described above. The eigenstate probability distribution
of ψ j is shown in Fig. 4 as a function of oscillator number n
and eigenenergy E = Ej . We clearly see the presence of two
branches corresponding to two spin polarization. The mean
values of 〈n〉 are shown by green dotted curves marking the
average dependence n(E ) for each branch. In Fig. 13 in the
Appendix, for comparison we show the same characteristics
as in Fig. 4 but for eigenstates of transformed Hamiltonian (5).
We obtain good agreement between the eigenstates of these
two Hamiltonians confirming the validity of the analytical
transformation from one to another. At the same time, at very
small resonance detunings 
0 = 0.01, there are certain differ-
ences between these two representations which we attribute to
high order corrections in a resonance vicinity.

Averaging the semiclassical Hamiltonian over an oscil-
lation period, we find the mean oscillator quantum number
〈n〉 = h0/
0 as a function of the eigenstate energy E = h as
the positive solutions of the equation

E = 
0〈n〉 ±
√

g2ω2
0〈n〉 + 
2

�

4
, (9)

the two possible signs correspond to the two spin eigenstates
of Eq. (6). As can be seen from Fig. 4, the probability P(n) is
in general not peaked at its average value 〈n〉, instead (for a
fixed eigenstate) P(n) is nonzero for n in a range (nmin, nmax)
with maxima at both nmin and nmax. The position of the
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FIG. 4. Probability distribution P(n) = |〈n|ψ j〉|2 (tracing out
spin space) of the jth eigenstate of (4) ordered by increasing en-
ergy H |ψ j〉 = Ej |ψ j〉. The values of parameters are g = 0.04, and

0 = ω0 − ω = 0.01, 0.025, 0.05, and 0.1 in (a), (b), (c), and (d),
respectively. The green dotted curves show the mean value 〈n〉 of the
corresponding eigenstate ψ j . The color map goes from black at 0 to
yellow at maximum value given by 0.14 for (a), 0.3 for (b), 0.45 for
(c), and 0.7 for (d).

maxima can be understood from the following argument. For
simplicity we neglect the change in the Zeeman-like energy
term of Eq. (6), the conservation of energy for semiclassical

motion is then h � h0 + f
√


0
2 x(t ) where the position x(t )

follows an oscillation with amplitude
√

2〈n〉/
0. The change

in potential energy f
√


0
2 x(t ) is approximately compensated

by a change of h0 = 
0n. The most likely value of h0 corre-
sponds to inflection points of the trajectory giving the estimate

nmax,min = 〈n〉 ± f
√〈n〉

0

. (10)

This estimation is compared with numerical data in Fig. 5 for
different strengths of the force f showing good agreement
with the rotating-wave Hamiltonian wave functions. It is in-
teresting that these simple semiclassical arguments allow us
to understand some nontrivial wave function properties of the
driven Jaynes-Cummings model wave functions.

The comparison between the numerical results obtained
from the eigenstates of Hamiltonian (4) and the semiclassical
theory of (7) is also shown in Fig. 6. It shows good agreement
between the theory and numerical results.

The validity of the semiclassical description (7) is con-
firmed by the numerical results presented in Fig. 6 showing
the dependence h0(h) for two spin (or qubit) projections.
Indeed, there is good agreement between the numerical results
obtained for the Hamiltonian (4).

It is important to compare the numerical results obtained
in the RWA of (4) with the those obtained from the Floquet
eigenstates of (1). The index j for Floquet eigenstates is

FIG. 5. Probability distribution P(n) of the eigenstates of ψ

Eq. (4) ordered by increasing energy Ĥψ = Eψ for different values
of the driving force f . The other parameters of the Hamiltonian
are set to 
� = 0.25, 
0 = 0.05, gω0 = 0.15. The red and orange
lines show the semiclassical estimate expressions for the positions
of P(n) maxima for the two-spin eigenstates of the semiclassical
Hamiltonian given by Eqs. (9) and (10). The semiclassical curves
are in a good agreement with the data from quantum wave functions
and give a physical interpretation for the position of the maxima
of P(n).

defined for increasing value of 〈H〉 averaged over a period.
We present the comparison for the participation ratio ξ shown
in Fig. 7. It shows a qualitative agreement between the Floquet
results of (1) and those obtained for the RWA Hamiltonian (4).
However, the quantitative agreement is absent showing that
ξ values from RWA are by a factor 2 different from Floquet
values of (1). We attribute this difference to the fact that the
results are obtained in close vicinity to the resonance with ω0

being very close to the driven frequency ω. In such a case
next order corrections beyond RWA can produce additional
frequency shifts providing rescaling of an effecting value of
frequency detuning that would notably affect the values of
participation ration ξ of eigenstates. We note that the dif-
ference between RWA and non-RWA cases in a resonance
vicinity was also pointed in [29] even if the regime of strong
oscillator excitation was not analyzed in detail there.

According to the above argument the agreement between
data obtained from (1), (4), and (5) should become better
with the increase of resonance detuning 
0. We check this
determining the dependence of average spin polarization 〈σz〉
on an average quantum number of oscillator 〈n〉 as it is pre-
sented in Fig. 8. The comparison shows that the semiclassical
theory (8) well describes the numerical results of RWA from
the Hamiltonians of (4) and (5). However, there is a notable
deviation between the theory and RWA numerical results from
the Floquet results. At the same time, the results presented
in Figs. 14 and 15 of the Appendix show that the agreement
between the Floquet results of (1) and the RWA results of (4)
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FIG. 6. Quantum harmonic oscillator Hamiltonian h0 vs h
from (7). Two branches of (7) for f = 0 are shown by the black
line, while mean values of 〈h0〉 as a function of 〈h〉 obtained from
the numerical diagonalization of Hamiltonian (4) are shown by red
(gray) dots. The parameter values are g = 0.04, ω = 1, ω0 = 0.975,
� = 1.2, g = 0.04, and f = h̄λ

√
np with λ = 0.02 and np = 20

which are the same as in Fig 4(b).

becomes better with an increase of resonance detuning 
0

and a decrease of coupling strength g. This confirms our argu-
ment that the difference between the Floquet and RWA results
are related to higher order corrections related to coupling g
which play a more significant role in a close vicinity to the
resonance.

FIG. 7. Participation ratio ξ of eigenstates of Hamiltonian H (4)
as a function of eigenstate index j. Here the values ξ , computed for
eigenstates of both n̂ and σ̂z, are shown by black circles. Floquet
states (ordered by increasing mean value of 〈H〉 averaged in a pe-
riod) of (1) are shown with red (gray) circles. Here we have values
ω0 = 0.99 (
0 = 0.01) and ω0 = 0.975 (
0 = 0.025) in top (a) and
bottom (b) panels, respectively, with g = 0.04, ω = 1, � = 1.2, and
f = h̄λ

√
np with λ = 0.02 and np = 20. These values are the same

as in (a) and (b) of Fig 4, respectively.

FIG. 8. Average spin polarization as a function of mean oscillator
number (〈σz〉 vs 〈n〉) for eigenstates of H . Top (a), middle (b), and
bottom (c) panels show the cases of Hamiltonian (1), (4), and (5),
respectively. Parameter values are g = 0.04, ω = 1, � = 1.2, and
f = h̄λ

√
np with λ = 0.02 and np = 20, with 
0 = 0.01, 0.025,

0.05, and 0.1 in black circles, red (gray) circles, green squares,
and blue triangles, respectively. The semiclassical theoretical depen-
dence (8) curve given by is shown by red dashed red (gray) curve for

0 = 0.025.

In Fig. 9 we show the two branch dependence, correspond-
ing to two spin polarizations, of quantities h0, h described

FIG. 9. Quantum harmonic oscillator Hamiltonian h0 vs h for
Floquet eigenstates |� j (t = 0)〉. h0 = 〈� j (t = 0)|h̄ωn̂|� j (t = 0)〉
and h = 〈� j (t = 0)|Ĥ |� j (t = 0)〉 with Ĥ of Eq. (1). Parameter val-
ues are g = 0.04, ω = 1, ω0 = 0.975, � = 1.2, and f = 5−3/2 which
are the same as Fig. 4(b). Red and green circles represent the Floquet
states shown in Fig 10 in top [(a) and (b)] and bottom [(c) and (d)]
panels.
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FIG. 10. Husimi representation in phase space of two Floquet
states with t = 0. Left [(a) and (c)] and right [(b) and (d)] panels show
the �0 ≡ |0〉〈0| and �1 = |1〉〈1| projection in σ̂z respectively of two
Floquet states. The parameter values are the same as in Fig. 9, where
both Floquet modes are shown in (h, h0) plane with color circles:
red for (a) and (b) (h � 11.64, h0 � 8.99) and green for (c) and
(d) (h � 129.13, h0 � 65.0). The color map goes from black at 0 to
yellow at maximum value given by 0.06 for (a) and (b), and 0.04 for
(c) and (d).

above. h0 and h of Fig. 9 are computed for Floquet eigenstates
|� j (t = 0)〉 valued in initial state t = 0 as h0 = 〈� j (t =
0)|h̄ωn̂|� j (t = 0)〉 and h = 〈� j (t = 0)|Ĥ |� j (t = 0)〉 where
Ĥ is defined in Eq. (1). We also mark with red and green
circles the values of h0, h obtained for two given Floquet
states described in the next section. The presence of two
branches obtained from the developed semiclassical descrip-
tion corresponds to the bistability behavior found in [14]
for the evolution of Hamiltonian (1) in the presence of
dissipation.

V. HUSIMI FUNCTION EVOLUTION

In this section we consider the phase space representa-
tion in the plane coordinate and momentum (q, p) of certain
Floquet eigenmodes of (1) and the time evolution of cer-
tain initial coherent states. The phase space representation
of quantum states is done with the Husimi function which
gives the Wigner function smoothed on a scale of Planck
constant (see, e.g., [33,34]). The smoothing is done with the
oscillator coherent state corresponding to a Gaussian wave
packet that is localized in the classical phase space around
a point (q0, p0) in the phase space. The smoothing is given by
the relation 〈x|ϕ(p0, q0)〉 = Ae−(x−q0 )2/2+ i

h̄ p0(x−q0 ), with wave
packet the same widths coordinate and momentum 
p =

q = 1/2, and with the normalization constant A (see more
details in [33,34]). Then the Husimi function probability ρH in
the phase space (q0, p0) is given by the relation ρH (p0, θ0) =
|〈ϕ(p0, θ0) | ψ〉|2. We construct the Husimi function for

FIG. 11. Husimi representation in phase space the evolution of
a coherent state. Initial state is given by a coherent state centered at
(q0, p0 ) = (5, 0) and spin projection �0 = |0〉〈0| shown in (a). Time
evolution of �0 projection is also shown for times ωt/2π = 10, 20,
50, 400, and 1000 in (b), (c), (d), (e), and (f), respectively. Parameter
values are g = 0.04, ω = 1, ω0 = 0.975, � = 1.2, and f = 5−3/2

which are the same as in Fig. 4(b). The videos of time evolution are
available at [35].

up and down σz-spin components of the total wave
function.

In Fig. 10 we present the Husimi functions for spin up
and down for a typical Floquet eigenstate with λ = 0.02 and
system parameters given in Fig. 9. The results clearly show
that the eigenstate have double contribution of small and large
oscillator numbers n with a small circle in the top panels and
a large circle in the bottom panels, respectively (this doublet
structure is present for both spin projections shown in left and
right panels). This example shows that all phases of a circle
in (q, p) plane are present but the distribution over the phases
is inhomogeneous. The two sizes of the circle corresponds to
the two semiclassical branches appearing in (7).

The snapshots of time evolution of the Husimi function
of an initial coherent state are shown in Fig. 11. At large
times the localized coherent state, shown in videos available
at [35], spreads over the whole circle corresponding to a
given oscillator number that is in agreement with the Floquet
eigenstate structure shown in Fig. 10 where the probability
is distributed over all circle phases even if the distribution
is inhomogeneous. The videos are obtained from the Floquet
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system (1) and from the RWA Hamiltonian (2). The evolu-
tion in both cases is similar but not exactly the same. More
details about videos are given in the Appendix. The time of
such a spreading tsp over the whole circle is rather long with
ωtsp/2π ≈ 1000.

We attribute it to the nonlinear energy dispersion correction
appearing in driven JCM due to coupling between the spin and
oscillator with δω = δEn ≈ ±gω0

√
n/
0 [see (7)]. In fact this

nonlinear dependence of energy shift δEn on level number n
(or classical action) should lead to the appearance of a nonlin-
ear resonance with the driving frequency ω. In principle, such
a resonance can be treated in the pendulum approximation of
an isolated resonance as described in [36]. Due to two spin ori-
entations we will have two resonances corresponding to spin
up and down branches discussed above. Thus there should
exist a tunneling between this two branches with a certain
tunneling time τ . The results presented in [14] (see Fig. 5
there) show that the tunneling times τ , expressed in number
of driving periods, can be rather long with τ ∼ 103–104. We
expect that further development of the nonlinear resonance
theory can allow us to understand the mechanism of this
long time tunneling process and obtain the estimates for its
dependence on system parameters. However, this requires us
to perform additional investigations going beyond the studies
presented here. In the language of the Floquet eigenvalues the
tunneling process should be related to the appearance of very
tiny splittings between Floquet eigenenergies ε j in (3).

VI. DISCUSSION

In this work we analyzed the JCM behavior under a
monochromatic driving. Our analytical and numerical results

FIG. 12. Time evolution of total probability Pb at 20 highest
oscillator levels (with both spin components) for numerical simu-
lations with a basis of 1000 oscillator states. At the initial state the
oscillator is at level n = 1 and the spin is at its down component.
Parameter values are ω = ω0 = 1, � = 1, g = 0.04, and f = g/2
(black curves), f = g [red (gray) curves], f = 2g [blue (dark gray)
curves], where the dashed curves represent the computations within
RWA frame and full curves are for results without RWA for the
Hamiltonian (1). Black curves are saturated at the level of Pb ≈ 10−24

at ωt = 30; at the level Pb ≈ 10−16 the blue (dark gray) curves are
located at ωt ≈ 4 and the red (gray) curves are located at ωt ≈ 7.5.

show that the system can be effectively reduced to a modified
JCM with a strong coupling between photons and qubit. The
obtained results allow us to understand the process of two
branches of excitation of many photons induced by the driving
in the presence of nonlinear frequency dispersion induced by
coupling between photons and qubit. The obtained analytical
semiclassical formula gives a good description of obtained
numerical results. However, in a very close vicinity of the res-
onance between frequencies of oscillator and monochromatic
driving there appear certain deviations which we attribute
to high order corrections to RWA approach which become
important in close resonance vicinity. The obtained results
still keep certain open questions on properties on the driven
JCM, in particular the question about the physical estimates
of long tunneling times between two branches corresponding
to up and down qubit polarization, which are also present in
the dissipative case [14].

Here we analyzed the case of the unitary driven JCM
system. In experiments the dissipative effects start to play
an important role. However, at a weak dissipation the results
obtained for the unitary evolution will allow us to have a
better understanding of dissipative quantum behavior. Thus
our semiclassical theory for the unitary evolution explains the
appearance of bistability in the dissipative case [14].

Since the JCM is the fundamental system of quantum op-
tics, we hope that the reach properties of driven JCM will
attract the interest of experimental groups working with su-
perconducting qubits and other systems of quantum optics.
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FIG. 13. Same quantities and parameters as in Fig. 4 but the
eigenstates are obtained from the numerical diagonalization of trans-
formed Hamiltonian (5). The color map goes from black at 0 to
yellow at maximum value given by 0.25 for (a), 0.45 for (b), 0.8
for (c), and 0.9 for (d).
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FIG. 14. 〈σz〉 vs 〈n〉 for eigenstates of H with 
0 = 0.01 and
different values of g. Black and red (gray) circles show the cases
of Hamiltonian of Eqs. (1) and (4), respectively. Parameter values
are ω = 1, � = 1.2, and f = 5−3/2 with a different value of g en
each panel: 0.0025 (a), 0.005 (b), 0.0088 (c), 0.0138 (d), 0.0375 (e),
and 0.05 (f).

APPENDIX

Here we present supplementary figures complementing the
main text of the paper.

In Fig. 12 we show that for the case of exact resonance ω =
ω0 the probability is rapidly transferred to highest oscillator
levels, available for a given computational basis, for f � g
while for f < g the probability of high levels remains very
small. This numerical result is obtained both in RWA frame
and without RWA for the Hamiltonian (1). Thus for f � g the
Floquet states are delocalized and non-normalizable. This re-
sult is in agreement with the analytical result obtained within
RWA in [28]. Figure 13 shows properties of eigenstates of
Hamiltonian (5) for parameters of Fig. 4.

FIG. 15. 〈σz〉 vs 〈n〉 for eigenstates of H with 
0 = 0.025. Black
and red (gray) circles show the cases of Hamiltonian of Eqs. (1)
and (4), respectively. Parameter values are the same as in Fig. 14
but with 
0 = 0.025. Each panel represent a different value of g =
0.0025 (a), 0.005 (b), 0.0088 (c), 0.0138 (d), 0.0375 (e), and 0.05 (f).

Figures 14 and 15 show the average spin polarization as a
function of the mean oscillator number (〈σz〉 vs 〈n〉) for eigen-
states of the Hamiltonian of Eq. (1) (black circles) and Eq. (4)
(red circles) with 
0 = 0.01 and 
0 = 0.025, respectively.
Each panel on both figures represent a different value of g:
0.0025 (a), 0.005 (b), 0.0088 (c), 0.0138 (d), 0.0375 (e), and
0.05 (f).

Videos in [35] present the time evolution of Husimi
function for parameters of Fig. 11; videohusimi1.mp4 is ob-
tained from the time evolution given by Floquet system (1)
and videohusimi2.mp4 is obtained from the RWA Hamilto-
nian (2). Initial state is given by a coherent state centered
at (q0, p0) = (5, 0) with a spin projection in |0〉. Parameter
values are g = 0.04, ω = 1, ω0 = 0.975, � = 1.2, and f =
h̄λ

√
np with λ = 0.02 and np = 20.
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