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Abstract. We study the properties of two electrons with Coulomb interactions in a tight-binding model
of La-based cuprate superconductors. This tight-binding model is characterized by long-ranged hopping
obtained previously by advanced quantum chemistry computations. We show analytically and numerically
that the Coulomb repulsion leads to a formation of compact pairs propagating through the whole sys-
tem. The mechanism of pair formation is related to the emergence of an effective narrow energy band
for Coulomb electron pairs with conserved total pair energy and momentum. The dependence of the pair
formation probability on an effective filling factor is obtained with a maximum around a filling factor of
20 (or 80) percent. The comparison with the case of the nearest neighbor tight-binding model shows that
the long-ranged hopping provides an increase of the phase space volume with high pair formation proba-
bility. We conjecture that the Coulomb electron pairs discussed here may play a role in high temperature
superconductivity.

1 Introduction

The phenomenon of high temperature superconductiv-
ity (HTC), discovered in [1], still requires its detailed
physical understanding as discussed by various experts
of this field (see e.g. [2–4]). The analysis is complicated
by the complexity of the phase diagram and strong
interactions between electrons (or holes). As a generic
model, that can be used for a description of most super-
conducting cuprates, it was proposed to use a simplified
one-body Hamiltonian with nearest-neighbor hopping
on a square lattice formed by the Cu ions [5]. In addition
the interactions between electrons are considered as a
strongly screened Coulomb interaction that results in
the 2D Hubbard model [5]. However, a variety of exper-
imental results cannot be described by the 2D Hub-
bard model (see e.g. discussion in [6]). Other models of
type Emery [7–10] were developed and extended on the
basis of extensive computations with various numerical
methods of quantum chemistry (see e.g. [6,11] and Refs.
therein). These studies demonstrated the importance of
next-nearest hopping and allowed to determine reliably
the longer-ranged tight-binding parameters.

In this work we use the 2D longer-ranged tight-
binding parameters reported in [6] and study the effects
of Coulomb interactions between electrons in the frame
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work of this tight-binding model. There are different
reasons indicating that long-range interactions between
electrons may lead to certain new features as com-
pared to the Hubbard case (see [3,4,6]). Recently, we
demonstrated that for two electrons on a 2D lattice
with nearest-neighbor hopping the energy and momen-
tum conservation laws lead to the appearance of an
effective narrow energy band for energy dispersion of
two electrons [12]. In such a narrow band even a repul-
sive Coulomb interaction leads to electron pairing and
ballistic propagation of such pairs through the whole
system. The internal classical dynamics of electrons
inside such a pair is chaotic suggesting nontrivial prop-
erties of pair formation in the quantum case. In this
work we extend the investigations of the properties of
such Coulomb electron pairs for a more generic longer-
ranged tight-binding lattice of one-body Hamiltonian
typical for La-based cuprate superconductors. We find
that the long-ranged hopping leads to new features of
Coulomb electron pairs. We note that in this work we
consider the case of two interacting electrons but the
same results are valid also for two interacting holes with
positive charges.

In Sect. 2 a detailed description of the tight-binding
model for two interacting electrons for general lat-
tices with a particular application to HTC is pre-
sented together with an analysis of the effective band
width at fixed conserved total pair momentum. Sec-
tion 3 provides first results of the full space time evo-
lution obtained in the frame work of the Trotter for-
mula approximation. Section 4 introduces the theoret-
ical basis for the description in terms of an effective
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block Hamiltonian for a given sector of fixed momentum
of a pair with technical details provided in Appendix A.
In Sect. 5 the phase diagram of the long time average
of the pair formation probability in the plane of total
momentum is discussed while Sect. 6 provides some
results for the intermediate time evolution of pair for-
mation. An overview of the results for the pair forma-
tion probability at different filling factors is given in
Sect. 7. The final discussion is presented in Sect. 8.

2 Generalized tight-binding model on a 2D
lattice

We assume that each electron moves on a square lattice
of size N × N with periodic boundary conditions with
respect to the following generalized one-particle tight-
binding Hamiltonian:

H1p = −
∑

r

∑

a∈A
ta

(|r〉〈r + a| + |r + a〉〈r|) (1)

where the first sum is over all discrete lattice points
r (measured in units of the lattice constant) and a
belongs to a certain set of neighbor vectors A such that
for each lattice state |r〉 there are non-vanishing hop-
ping matrix elements ta with |r + a〉 and |r − a〉 for
a ∈ A. To be more precise, due to notational reasons,
we choose the set A to contain all neighbor vectors
a = (ax, ay) in one half plane with either ax > 0 or
ay > 0 if ax = 0 such that A′ = A ∪ (−A) is the full
set of all neighbor vectors. For each vector a of the full
set A′, we require that any other vector ã which can
be obtained from a by a reflection at either the x-axis,
y-axis or the x-y diagonal also belongs to the full set
A′ and has the same hopping amplitude ta = tã.

For the usual nearest neighbor tight-binding model
(NN-model), already considered in [12], we have the
set ANN = {(1, 0), (0, 1)} with t(1,0) = t(0,1) = t = 1.
The numerical results presented in this work corre-
spond either to the NN-model (for illustration and
comparison) or to a longer-ranged tight-binding lattice
according to [6] which we denote as the HTC-model.
For this case the set of neighbor vectors is AHTC =
{(1, 0), (0, 1), (2, 0), (0, 2), (1,±2), (2,±1), (1,±1), (2, ±2)}
and the hopping amplitudes are: t = t(1,0) = 1, t′ =
t(1,1) = − 0.136, t′′ = t(2,0) = 0.068, t′′′ = t(2,1) = 0.061
and t(4) = t(2,2) = − 0.017 corresponding to the values
given in Table 2 of [6] (all energies are measured in units
of the hopping amplitude t = t(1,0) = t(0,1) which is
therefore set to unity here; see also Fig. 6a of [6] for the
neighbor vectors of the different hopping amplitudes).
The hopping amplitudes for other vectors such as (0, 1),
(1,− 1), (2, 1), (1,− 2) etc. are obtained from the above
amplitudes by the appropriate symmetry transforma-
tions, e.g. t(1,−1) = t(1,1) = t′ = − 0.136 etc.

Even though that most of our numerical results
presented in this work apply to the HTC-model (or
the NN-model), we emphasize that certain theoretical

considerations given below, especially for the effective
block Hamiltonian in relative coordinates at given total
momentum, are valid for arbitrary generalized tight
binding models with more general sets A and also with
a potential generalization to other dimensions.

The eigenstates of H1p given in (1) are simple plane
waves:

|p〉 =
1
N

∑

r

eip·r (2)

with energy eigenvalues:

E1p(p) = −2
∑

a∈A
ta cos(p · a) (3)

and momenta p = (px, py) such that px and py are
integer multiples of 2π/N (i.e. pα = 2πlα/N , lα =
0, . . . , N −1, α = x, y). For the HTC model, we can give
a more explicit expression of the energy dispersion:

E1p(px, py) = −2 [cos(px) + cos(py)]

− 4t′ cos(px) cos(py)

− 2t′′ [cos(2px) + cos(2py)]

− 4t′′′ [cos(2px) cos(py)+cos(2py) cos(px)]

− 4t(4) cos(2px) cos(2py)
(4)

which corresponds to eq. (30) of [6] (assuming t = 1
and t(5) = t(6) = t(7) = 0).

The quantum Hamiltonian of the model with two
interacting particles (TIP) has the form:

H = H
(1)
1p ⊗1(2)+1(1)⊗H

(2)
1p +

∑

r1,r2

Ū(r2−r1)|r1, r2〉〈r1, r2|

(5)
where H

(j)
1p is the one-particle Hamiltonian (1) of parti-

cle j = 1, 2 with positional coordinate rj = (xj , yj) and
1(j) is the unit operator of particle j. The last term
in (5) represents a (regularized) Coulomb type long-
range interaction Ū(r2 − r1) = U/[1 + r(r2 − r1)] with
amplitude U and the effective distance r(r2 − r1) =√

Δx̄2 + Δȳ2 between the two electrons on the lat-
tice with periodic boundary conditions. (Here Δx̄ =
min(Δx,N − Δx); Δȳ = min(Δy,N − Δy); Δx =
x2 − x1; Δy = y2 − y1 and the latter differences are
taken modulo N , i.e. Δx = N + x2 − x1 if x2 − x1 < 0
and similarly for Δy). Furthermore, we consider sym-
metric (spatial) wavefunctions with respect to particle
exchange assuming an antisymmetric spin-singlet state
(similar results are obtained for antisymmetric wave-
functions).

In absence of interaction (U = 0) the energy eigen-
values (the classical energy) of the two electron Hamil-
tonian (5) (the two electrons) at given momenta p1 and
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p2 are (is) given by:

Ec(p1,p2) = E1p(p1) + E1p(p2)

= −4
∑

a∈A
ta cos(p+ · a/2) cos(Δp · a) (6)

where p+ = p1 +p2 is the total momentum and Δp =
(p2 −p1)/2 is the momentum associated to the relative
coordinate Δr = r2 − r1. For the NN-model Eq. (6)
becomes Ec(p1,p2) = −4

∑
α=x,y cos(p+α/2) cos(Δpα).

Due to the translational invariance the total momen-
tum p+ is conserved even in the presence of inter-
action (U �= 0). Indeed, like in a periodic crystal
we have Bloch waves with conserved quasimomentum
[6] (in the following we speak about the momentum).
Thus only two-particle plane wave states with identi-
cal p+ are coupled by non-vanishing interaction matrix
elements. For the case of the NN-model, analyzed in
[12], the kinetic energy at fixed p+ is bounded by
ΔEb = 4

∑
α=x,y | cos(p+α/2)|. Thus for TIP states

with E > ΔEb the two electrons cannot separate and
propagate as one pair even if their interaction is repul-
sive. For p+x = p+y = π+δ being close to π and |δ| � 1
there are compact Coulomb electron pairs even for very
small interactions U as soon as ΔEb ≈ 4|δ| < U � B2

with B2 = 16+U being the maximal energy bandwidth1

in 2D. Thus the conservation of the total momentum of
a pair with p+x = p+y ≈ π leads to the appearance
of an effective narrow energy band with formation of
coupled electron pairs propagating through the whole
system. However, the results obtained in [12] show that
even for other values of p+x, p+y the probability of pair
formation is rather high.

For the NN-model the effective band width for pairs
ΔEb can be exactly zero for the specific pair momen-
tum p+ = (π, π). However, this is not the case for the
HTC-model where due to the longer-ranged hopping
the minimal width ΔEb is finite due to the additional
terms with factors cos(p+ · a/2) in (6). Therefore, we
determined numerically for each given value of total
momentum p+ the effective bandwidth as:

ΔEb(p+) = max
Δp

[Ec(p1,p2)] − min
Δp

[Ec(p1,p2)] (7)

with p1 = p+/2−Δp and p2 = p+/2+Δp. Top panels
of Fig. 1 show density color plots of ΔEb(p+) for the
NN- and the HTC-model. For the HTC-case ΔEb(p+)
is maximal at p+ = (0, 0) with value ΔEb,max = 17.952
and minimal at p+ = (π, π) with value ΔEb,min = 2.176
while for the NN-model we have ΔEb,max = 16 at
p+ = (0, 0) and ΔEb,min = 0 at p+ = (π, π). The value
ΔEb,min = 2.176 for the HTC-model is still rather small
compared to the maximal value ΔEb,max ≈ 18 and we
may expect a somewhat stronger pair formation prob-
ability for total momenta p+ close to (π, π). However,
this situation is qualitatively different as compared to

1 In the following we use the notation B2 = 16 + U for the
bandwidth of the NN-model.
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Fig. 1 Top panels show the dependence of the effective
electron pair band width ΔEb(p+) on the pair momen-
tum p+ = (p+x, p+y). Bottom panels show the kinetic elec-
tron pair energy Ec(p1,p2) (in absence of interaction) at
momenta p1 = p2 = p+/2. Left panels correspond to the
NN-model and right panels to the HTC-model. In all panels
the horizontal axis corresponds to p+x ∈ [0, π] and the ver-
tical axis to p+y ∈ [0, π]. The numbers of the color bar
correspond for top panels to the ratio of the bandwidth
over its maximal value and for lower panels to the quan-
tity sgn(Ec)

√|Ec|/Ec,max with Ec,max being the maximum
of |Ec|. In all subsequent color plot figures the numerical val-
ues of the color bar corresponds to the ratio of the shown
quantity over its maximal value

the NN-model and the HTC-case requires new careful
studies.

For comparison, we also show in the lower panels of
Fig. 1 the kinetic energy Ec at p1 = p2 = p+/2 (for the
square p+ ∈ [0, π] × [0, π]) corresponding to Δp = 0.
While for the NN-model this quantity vanishes at p+ =
(π, π) there is for the HTC-model a zero-line between
the two points (βπ, π) and (π, βπ) where β ≈ 0.877 ≈
7/8 is a numerical constant slightly below unity.

3 Full space time evolution of electron pairs

As in [12] the full time evolution of two electrons is
computed numerically for N = 128 using the Trotter
formula approximation (see e.g. [12,13] for computa-
tional details). We use the Trotter time step Δt =
B2 = 1/(16 + U) which is the inverse bandwidth for
the case of NN-model. A further decrease of the time
step does not affect the obtained results. At the ini-
tial time both electrons are localized approximately at
(N/2, N/2) with the distance Δx̄ = Δȳ = 1 using a lin-
ear combination of 8 states with all combinations due
to particle exchange symmetry and reflection symmetry
at the Δx- and Δy-axis. The method provides for each
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time value a wavefunction ψ(x1, y1, x2, y2) from which
we extract different quantities such as the density in
x1-x2 plane:

ρXX(x1, x2) =
∑

y1,y2

|ψ(x1, y1, x2, y2)|2 (8)

or the density Δx-Δy plane:

ρrel(Δx,Δy) =
∑

x1,y1

|ψ(x1, y1, x1 + Δx, y1 + Δy)|2 (9)

(with position sums taken modulo N). We also compute
the quantity w10 by summing the latter density (9) over
all values such that |Δx̄| ≤ 10 and |Δȳ| ≤ 10 which
corresponds to a square of size 21 × 21 in Δx-Δy plane
(due to negative values of x2 − x1 etc.). This quantity
gives the quantum probability to find both electrons at
a distance ≤ 10 (in each direction) and we will refer to
it as the pair formation probability.

In Fig. 2 the density ρXX is shown for U = 2, both
NN- and HTC-models at two time values t = 445Δt
and t = 104 Δt. These results show that the wavefunc-
tion has a component with electrons separating from
each other and a component where electrons stay close
to each other forming a pair propagating through the
whole system that corresponds to a high density near
a diagonal with x1 ≈ x2. For t = 445Δt the value of
w10 is roughly 10% and for t = 104 Δt it is roughly
13% for both models. However, the remaining diffusing
component of about 87-90% probability has a stronger
periodic structure for the NN-model as compared to the
HTC-model.

Figure 3 shows the density ρrel(Δx,Δy) for the same
cases of Fig. 2. We clearly see a strong enhancement of
the probability at small values Δx̄ ≈ Δȳ < 5 (< 6 − 7)
for the NN-model (HTC-model) showing that there is a
considerable probability that both electrons stay close
to each other forming a Coulomb electron pair. Fur-
thermore, the remaining wavefunction component of
independently propagating electrons, clearly visible in
Fig. 2, is not visible in the density shown in Fig. 3 even
though this component corresponds to 87-90% proba-
bility.

The supplementary material contains two videos (for
∼ 460 time values in the range Δt ≤ t ≤ 104Δt with
roughly uniform logarithmic density) of the two den-
sities ρXX and ρrel where both models NN and HTC
are directly compared in the same video. The raw-data
used for these videos is the same as in Figs. 2 and 3.

4 Time evolution in sectors of fixed total
momentum

As already mentioned in Sect. 3 the total momentum
p+ is conserved by the TIP dynamics of the Hamil-
tonian (5). In order to exploit this more explicitly, we
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Fig. 2 2D Wavefunction density ρXX(x1, x2) in x1-x2

plane (see Eq. (8)) obtained from the time evolution using
the Trotter formula approximation for initial electron posi-
tions at ≈ (N/2, N/2) with distance Δx̄ = Δȳ = 1 for
N = 128, U = 2 and Trotter integration time step Δt =
1/B2 = 1/(16 + U). Top (bottom) panels correspond to the
time value t = 445 Δt (t = 104Δt) and left (right) pan-
els correspond to the NN-lattice (HTC-lattice). The corre-
sponding values of the pair formation probability w10 are
0.106 (top left), 0.133 (bottom left), 0.0940 (top right) and
0.125 (bottom right). Related videos are available at [14,15]
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Fig. 3 2D Wavefunction density ρrel(Δx, Δy) in Δx-Δy
plane of relative coordinates (see Eq. (9)) for the same
states, cases and parameters of Fig. 2 (N = 128, U = 2).
All panels show the zoomed density for 0 ≤ Δx, Δy < 32.
Related videos are available at [14,15]

introduce as in [12], block basis states by:

|p+,Δr〉 =
1
N

∑

r1

eip+·(r1+Δr/2)|r1, r1 + Δr〉 (10)
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where p+ = (p+x, p+y) (with p+α = 2πl+α/N ; l+α =
0, . . . , N − 1; α = x, y) is a fixed value of the total
momentum and r1, Δr are vectors on the square lat-
tice (with position sums in each spatial direction taken
modulo N). One can show (see Appendix A for details)
that the TIP Hamiltonian (5) applied to such state gives
a linear combination of such states for different Δr val-
ues but the same total momentum value p+ which pro-
vides for each value or sector of p+ an effective block
Hamiltonian:

h̄(p+) = −
∑

Δr

∑

a∈A
t̄(p+)
a

(|Δr + a〉〈Δr| + |Δr〉〈Δr + a|)

+
∑

Δr

Ū(Δr)|Δr〉〈Δr|
(11)

where t̄
(p+)
a = 2 cos(p+ · a/2) ta is an effective rescaled

hopping amplitude depending also on p+ and we have
for simplicity omitted the index p+ in the block basis
states. This effective block Hamiltonian corresponds to
a tight-binding model in 2D of similar structure as (1)
with modified hopping amplitudes and an additional
“potential” Ū(Δr). We note that in absence of this
external potential (U = 0) the eigenfunctions of (11)
are plane waves and we immediately recover the expres-
sion (6) for its energy eigenvalues where Δp is the
momentum associated to the relative coordinate Δr.
For the simple NN-model the result for the effective
block Hamiltonian was already given in [12] and the
above expression (11) provides the generalization to
arbitrary tight-binding lattices characterized by a cer-
tain set of neighbor vectors A and associated hopping
amplitudes ta (the generalization to arbitrary spatial
dimension is also obvious). As already discussed in [12]
the boundary conditions of (11) in x− (y−)direction
are either periodic if the integer index l+x (l+y) of p+x

(p+y) is even or anti-periodic if this index is odd. This
can be understood by the fact that the expression (10)
is modified by the factor e±ip+xN/2 = e±iπl+x = (−1)l+x

if Δx is replaced by Δx±N and similarly for Δy (with
Δr = (Δx,Δy)).

Diagonalizing the effective block Hamiltonian (11),
we can rather efficiently compute the exact quantum
time evolution |ψ̄(t)〉 = e−ih̄(p+) t |ψ̄(0)〉 inside a given
sector of p+. As initial state |ψ̄(0)〉 we choose a state (in
the reduced block space) given as the totally symmetric
superposition of four localized states where Δx and Δy
are either 1 or N − 1. Such a state corresponds in full
space to a plane wave in the center of mass direction
with total fixed momentum p+ and strongly localized
in the relative coordinate Δr. The matrix size of (11)
is N2 which corresponds to a complexity of N6 for the
numerical diagonalization.

However, for a general lattice, such as the HTC-
model, one can exploit the particle exchange symmetry
to reduce the effective matrix size to roughly N2/2 and
for the special cases of p+x = p+y or either p+x = 0
or p+y = 0 a second symmetry allows a further reduc-
tion of the effective matrix size to ≈ N2/4 (for the

NN-model there are two or three symmetries for these
cases with effective matrix sizes of ≈ N2/4 or ≈ N2/8
respectively; see [12] and Appendix A for details).

In view of this, we have been able to compute numer-
ically the exact time evolution for the HTC-model in
certain p+ sectors for a lattice size up to N = 384 for
the case of two symmetries and a limited number of
different other parameters (values of p+ and U). For
the case of one symmetry and the exploration of all
possible values of p+x and p+y we used the maximum
system size N = 192. We also implemented more expen-
sive computations where no or less possible symmetries
are used to verify (at smaller values of N) that they
provide identical numerical results.

We compute the wavefunction in block representa-
tion ψ̄(p+,Δr) for about 700 time values t = 0 and
10−1 ≤ t/Δt ≤ 106 (with a uniform density in loga-
rithmic scale) where Δt = 1/B2 = 1/(16 + U) is the
time step already used for the Trotter formula approx-
imation given as the inverse bandwidth for the case of
the NN-model which is the smallest time (inverse of the
largest energy) scale of the system.

From the wavefunction we extract in a similar
way as in Sect. 3 the pair formation probability w10

by summing the (normalized) wavefunction density
|ψ̄(p+,Δr)|2 at fixed p+ over the 21 × 21 square with
|Δx̄| ≤ 10 and |Δȳ| ≤ 10. We also compute the inverse
participation ratio:

ξIPR =

(
∑

Δr

|ψ̄(p+,Δr)|4
)−1

(12)

which gives roughly the number of lattice sites (in Δr
space) over which the wavefunction is localized. Both
quantities w10 and ξIPR converge typically rather well
to their stationary values at times t > 103Δt with
some time dependent fluctuations. Therefore for the
cases where we are interested in the long time limit
we compute the wavefunction only for 70 times values
(in the same interval as above with uniform logarith-
mic density) and take the average over the 21 values
with 104 ≤ t/Δt ≤ 106. We note that for the case
of a uniform wavefunction density the ergodic values
are w10,erg = (21/N)2 and ξIPR,erg = N2. Values of
w10 significantly above w10,erg or of ξIPR below ξIPR,erg

indicate an enhanced probability for the formation of
compact electron pairs.

We also mention that both quantities w10 and ξIPR

are invariant with respect to the three transforma-
tions p+x ↔ p+y, p+x → −p+x and p+y → −p+y

(or p+x → 2π − p+x and p+y → 2π − p+y) corre-
sponding to reflections at the x-y diagonal, the y-axis
and the x-axis. Even though the effective block Hamil-
tonian (11) is not (always) invariant with respect to
all three of these transformations (see Appendix A for
details), the choice of an invariant initial state ensures
that at finite times the wavefunction in block space sat-
isfies for example the identity ψ̄(p+x, p+y,Δx,Δy) =
ψ̄(p+y, p+x,Δy,Δx) (and similarly for the other reflec-
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tions). In other words a certain reflection transforma-
tion for p+ results in the equivalent transformation for
the time dependent block space wavefunction in Δr
space. Obviously the two quantities w10 and ξIPR do
not change with respect to these transformations (in
Δr space) and therefore they are conserved. As a result
it is sufficient to compute these quantities only for the
triangle 0 ≤ p+y ≤ p+x ≤ π.

In the following sections we present the results for
these quantities and the wavefunction in block repre-
sentation.

5 Phase diagram of pair formation

The phase diagram of the long time average of the pair
formation probability w10 in the p+-plane is shown
in Fig. 4 for both models and the interaction values
U = 0.5, 2. As expected from the features of the effec-
tive bandwidth shown in (the top panels of) Fig. 1, we
find that globally for both models the pair formation
probability is clearly maximal at p+ = (π, π) and min-
imal at p+ = (0, 0). Furthermore, the size of the maxi-
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Fig. 4 Phase diagram of electron pair formation in the
plane of pair momentum p+ = (p+x, p+y) for the NN-lattice
(left panels), the HTC-lattice (right panels) and the inter-
action values U = 0.5 (top panels), U = 2 (bottom panels).
Shown is the pair formation probability w10 for N = 192
obtained from the exact time evolution for each sector of
p+ with an initial electron distance Δx̄ = Δȳ = 1 and com-
puted from an average over 21 time values in the interval
104 ≤ t/Δt ≤ 106. In all panels the horizontal (vertical)
axis corresponds to p+x (p+y) ∈ [0, π] and the numeri-
cal values of the color bar correspond to the ratio of w10

over its maximal value. The maximum values correspond-
ing to the red region at the top right corner p+ = (π, π) are
w10 = 1 (both left panels), w10 = 0.4510 (top right) and
w10 = 0.8542 (bottom right). For comparison the ergodic
value is w10,erg. = (21/192)2 = 0.01196

mum region is significantly stronger for U = 2 than for
U = 0.5 which is also to be expected. Thus for these
p+ values even a relatively weak or moderate Coulomb
repulsion creates quite strongly coupled electron pairs.

For the NN-model the top (p+y = π) or right (p+x =
π) boundary also provide large values with w10 ≈ 0.5
and the width of these regions is stronger for U = 2
than for U = 0.5. However, for U = 2 also the remain-
ing region provides values between 0.14 and 0.25 of the
maximum value which are clearly above the ergodic
value 0.012. Even for U = 0.5 the remaining region
is mostly ≈ 0.04 (with some part close to 0.25) which
is still above the ergodic value.

For the HTC-model the situation is more compli-
cated. The boundary regions are more limited, espe-
cially for U = 0.5. However, for the remaining region
there is a new interesting feature which is a signifi-
cantly enhanced “green-circle” of approximate radius
rg =

√
p2+x + p2+y ≈ 0.85π for U = 0.5 (w10 ≈ 0.14).

For U = 2 there is also a circle (w10 ≈ 0.20) with
approximate radius rg ≈ 0.75π. This circle seems to be
less pronounced despite its larger value of w10 as com-
pared to U = 0.5 due to the fact that the maximum
value for U = 2 (w10 ≈ 0.85 at p+ = (π, π)) is roughly
twice the maximum value for U = 0.5 (w10 ≈ 0.45).
This structure cannot be explained by the behavior of
the effective bandwidth. The minimum values of w10 at
p+ ≈ (0, 0) are w10 ≈ 0.02 − 0.03 (w10 ≈ 0.09 − 0.10)
for U = 0.5 (U = 2) which are slightly (significantly)
above the ergodic value 0.012.

Globally, nearly for all values of p+, for both mod-
els and both interaction values U = 0.5, 2 there is an
enhanced probability to create coupled electron pairs.

The above observations are perfectly confirmed by
the phase diagram for the inverse participation ratio
ξIPR which is shown in Fig. 5 for the same cases and raw
data of Fig. 4. Large (small) values of ξIPR corresponds
to small (large) values of w10 and a small (strong) pair
formation probability. Here minimum (maximum) val-
ues are at p+ = (π, π) (p+ = (0, 0)) as for the effective
bandwidth of Fig. 1 (see figure caption for the numerical
minimum, maximum and ergodic values). The bound-
ary structure of the NN-model and the circle-structure
of the HTC-case are also clearly visible.

We have also computed the long time average of the
pair formation probability for the HTC-model at larger
system size N = 256 and the special cases of either
p+x = p+y or p+y = 0 where the additional second
symmetry (see discussion in the previous section and
Appendix A) reduces the computational effort. In this
way we can explore the diagonal and right boundary of
the phase diagram in more detail.

Figure 6 shows w10 for the HTC-model, N = 256,
p+ = p+x = p+y and both interaction values U = 0.5, 2
as a function of the parameter ν = (1 − cos(p+/2))/2.
Both curves clearly confirm some of the observations of
the phase diagrams, i.e. strongest pair formation prob-
ability at ν = 0.5 (p+x,y = π) with a somewhat larger
maximum range for U = 2 as compared to U = 0.5
and a minimal pair formation probability at ν = 0
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Fig. 5 Phase diagram of the inverse participation ratio
ξIPR in the plane of pair momentum p+ = (p+x, p+y) and
computed from the same states, data and cases as in Fig. 4
(U = 0.5; 2 in top/bottom panels; N = 192). The maxi-
mum values corresponding to the red region close to the
bottom left corner p+ = (0, 0) are ξIPR = 15300 (top
left), ξIPR = 4300 (bottom left), ξIPR = 18200 (top right)
and ξIPR = 8600 (bottom right). The minimum values at
the top right corner p+ = (π, π) are ξIPR = 14.87 (top
left), ξIPR = 4 (bottom left), ξIPR = 126 (top right) and
ξIPR = 9.8 (bottom right). For comparison the ergodic value
is ξIPR,erg = 1922 = 36864 and the value for the totally sym-
metrized and localized initial state is ξIPR,init = 4

10-2

10-1

100

0 0.2 0.4 0.6 0.8 1

N=256, p+=p+x=p+y

w
10

ν=(1-cos(p+/2))/2

U=2
U=0.5
ergodic

Fig. 6 Dependence of the electron pair formation proba-
bility w10 on ν = (1 − cos(p+/2))/2 for p+ = p+x = p+y

and the HTC-model at U = 0.5, 2 and N = 256. w10 is
computed from the same long time average as in Fig. 4.
The maximum value at ν = νmax = 0.5 is w10 = 0.8535
(w10 = 0.4456) for U = 2 (U = 0.5). See Fig. 5 of [12]
for the corresponding figure for the NN-model. For the NN-
model the maximum value at ν = νmax = 0.5 is exactly
w10 = 1 for both interaction values

(p+x,y = 0) or ν = 1 (p+x,y = 2π) but still clearly
above the ergodic limit for all cases. The precise numer-
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Fig. 7 Dependence of the electron pair formation proba-
bility w10 on ν = (1 − cos(p+/2))/2 for p+ = p+x, p+y = 0
and the HTC-model at U = 0.5, 2 and N = 256. w10 is
computed from the same long time average as in Fig. 4.
The value at ν = 0.5 is w10 = 0.2302 (w10 = 0.01479) for
U = 2 (U = 0.5)

ical maximum values of w10 at ν = 0.5 are slightly dif-
ferent from, but still in general agreement with, those
of Fig. 4 due to the different system size. The corre-
sponding figure for the NN-model was already given in
[12].

Figure 7 shows w10 for the HTC model, N = 256
and both interaction values U = 0.5, 2 at the bound-
ary p+y = 0 as a function of the parameter ν =
(1−cos(p+/2))/2 with p+ = p+x. The curve for U = 0.5
clearly shows a strong local maximum at ν ≈ 0.5 ± 0.1
(p+ ≈ π ± π/8) corresponding to green-circle with
radius rg ≈ 0.85π visible in the phase diagram. For
U = 2 there are higher but less pronounced local max-
ima at ν ≈ 0.5 ± 0.19 corresponding to the slightly
visible circle for this case. However, at U = 2 the value
of w10 at ν = 0.5 is rather high while at U = 0.5 its
value at ν = 0.5 is quite low but still clearly above the
ergodic limit.

Figures S1 and S2 of the supplementary material are
similar to Figs. 6 and 7 respectively but for the inverse
participation ratio ξIPR.

We note that of course in the limit of strong inter-
action between electrons being significantly larger than
the energy band width of noninteracting particles (U �
8) there appear coupled states of pairs forming a sepa-
rated energy band. However, our theory and numerical
results show that the pair formation takes place even at
much smaller interactions (e.g. U = 0.5 � 8). This is
the result of an effective narrow energy band appearing
due to pair momentum conservation.

6 Time evolution of pair formation

We also computed a more precise time evolution of the
pair formation probability w10 for the larger system
size N = 384 and certain specific cases p+x = p+y
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Fig. 8 Time dependence of the pair formation probability
w10 for U = 0.5 (top panel) and U = 2 (bottom panel)
and different cases of the exact time evolution in certain
p+ = (p+x, p+y) sectors at N = 384 and the full space
Trotter formula time evolution at N = 128. The dashed
lines correspond to the ergodic values (21/N)2 = 0.0269 for
N = 128 (grey dashed) and (21/N)2 = 0.00299 for N = 384
(black dashed)

∈ {0, 2π/3, π} and p+y = 0 with p+x ∈ {7π/8, π}.
The results together with the full space results using
the Trotter formula approximation at N = 128 are
shown in Fig. 8 for U = 0.5, 2. In all cases the value
of w10 starts decaying from its initial value w10 = 1 at
t/Δt > 20-30 and converges to a long time saturation
value for t/Δt > 103 sometimes with some temporal
quasi-periodic fluctuations. In most cases the satura-
tion values at U = 2 are clearly larger than for U = 0.5
except for the case p+y = 0 and p+x = 7π/8 where both
saturation values are somewhat comparable. In partic-
ular, at U = 0.5 the value for p+y = 0 and p+x = 7π/8
is significantly larger than the value for p+y = 0 and
p+x = π while at U = 2 it is the inverse. This observa-
tion is in agreement with the appearance of the green-
circle in the phase diagram where for U = 0.5 the circle
is dominant in comparison to the right boundary while
for U = 2 it is dominated by the right boundary.

The saturation value of the data obtained by the
Trotter formula approximation, which somehow corre-
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Fig. 9 Color plot of wavefunction amplitude |ψ̄(p+, Δr)|
in block representation in Δr = (Δx, Δy) plane obtained
from the 2D quantum time evolution for the HTC lattice
with N = 384 and the sector p+x = 7π/8, p+y = 0. All
panels show a zoomed region 0 ≤ Δx, Δy < 32. Left (right)
panels correspond to t = 100 Δt (t = 105Δt; with Δt =
1/B2 = 1/(16+ U)) and top (bottom) panels correspond to
interaction strength U = 0.5 (U = 2). Related videos are
available at [15]

sponds to an average over all possible p+ values, is quite
low if compared to the case p+ = 0 but still clearly
above the corresponding ergodic value (for its reduced
system size). Also for most of the other cases the sat-
uration value is clearly above the ergodic value except
for U = 0.5, p+y = 0 and p+x = π where the curve is a
t ≈ 103Δt even below the ergodic value and saturates
later at a value only slightly above the ergodic value.

Motivated by the observation of the green-circle at
radius rg ≈ 0.85π in the phase diagram for U = 0.5,
we show in Fig. 9 the wavefunction amplitude at p+x =
7π/8, p+y = 0, N = 384 and both interaction values
U = 0.5, 2 and two time values t/Δt = 100, 105. The
first observation is that the diffusive spreading in x-
direction is strongly suppressed if compared to the y-
direction which is expected since p+x is rather close to
π while p+y = 0.

At U = 0.5 the steady-state at t/Δt = 105, despite a
smaller value of w10 = 0.0754 if compared to w10 =
0.1342 at U = 2, has a larger spatial extension of
∼ 30 lattice sites compared to ∼ 12 lattice sites for
U = 2. This in rough qualitative agreement with the
values ξIPR = 940 (for U = 0.5) and ξIPR = 268 (for
U = 2). However, a large amount of the contribution to
the inverse participation ratio comes from the remain-
ing probability of about 87-90% which has uniformly
spread over the full lattice thus explaining the differ-
ence between ξIPR and the visible spatial extension in
Fig. 9 (for this reason we consider w10 to be a more suit-
able quantity than ξIPR to describe the pair formation
probability).
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7 Comparison of two lattice models

Above we studied the properties of Coulomb pairs in the
two lattice models: the nearest neighbor tight-binding
model (NN-model) and the HTC model with the long-
ranged hoppings based on the results reported in [6] (see
Eq. (4)). We point that our developed general formalism
allows to consider the two interacting electrons on a
broad type of lattices with long-ranged hoppings. Here
we presented the results only for two lattices of NN-
and HTC-models.

The main features of the NN-model have been
reported in [12]. This model has a certain somewhat
specific property that the width of an effective mini-
mal energy band ΔEb,min(p+) (see Eq. (7)) becomes
zero for a certain momentum. However, for the HTC-
model the minimal width ΔEb,min(p+) remains small
but finite. Inspite of this difference between the two
models the formation of Coulomb pairs exists in both
models for moderate interactions as it is shown by
the results presented above. Another difference between
two models is that the kinetic energy Ec (see Eq.(6))
at p1 = p2 = p+/2 is zero only at one point in the
momentum plane for the NN-model and it is zero along
a finte line segment for the HTC-model (see Fig. 1).

In presence of interaction the above differences
between two models lead to a very different structure
of probability of Coulomb pair formation in the phase
diagram in the plane of pair momentum as it is shown
in Fig. 4: there is only one maximum of this probabil-
ity for the NN-model in one point of the plane, while
for the HTC-model there is an additional maximum
of probability along a “green-circle” in the momentum
plane. Thus the phase volume with a significant prob-
ability of pair formation is significantly larger for the
HTC-model. This feature can play a significant role at
finite electron densities where the high space volume
is important for specific dopping values corresponding
to energies of this “green-circle”. Indeed, the results of
Fig. 10 show that the range of high pair formation prob-
ability, in dependence of doping ν2D, is broader for the
HTC-model.

Finally, we point out that the phase diagram of the
Coulomb pair formation of Fig. 4 is obtained for both
models only in this work (in [12] for the NN-model this
probability was obtained only along a line p+x = p+y

and not in the whole momentum plane).

8 Results overview

The discussion of the phase diagram given in Fig. 4 has
shown that the pair formation probability is maximal
at the point p+ = (π, π). However, the surrounding
region to this point is quite small if compared to the
green-circle where we have a somewhat more modest
pair formation probability. In terms of available values
of p+ the latter region is possibly more important. In
order to analyze this point in a more quantitative way,
we assume a simple model where both electrons have
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Fig. 10 Dependence of the electron pair formation prob-
ability w10 on the effective 2D filling factor ν2D for the
NN-lattice (top) and the HTC-lattice (bottom). The val-
ues of w10 have been obtained from the data of Fig. 4
(for N = 192) by an average along lines of constant elec-
tron pair energy Ec at momenta p1 = p2 = p+/2 with
p+x, p+y ∈ [0, 2π]. Lowest (largest) energy corresponds to
ν2D = 0 (ν2D = 1). The data points shown correspond
to an effective histogram with bin width Δν2D ≈ 0.01.
The red (blue) curve corresponds to the interaction value
U = 2 (U = 0.5) and the grey dashed line corresponds to
the ergodic value (21/192)2 = 0.01196

the same momentum p+/2 (i.e. Δp = 0) and where the
available states of this type are filled from smallest to
largest energies. We subdivide these states, ordered in
energy, in slices of equal number (∼ 1/100 of all avail-
able states) and compute the average of w10 for each
slice which is equivalent to the average of w10 at lines of
constant energy. In Fig. 10, we show the dependence of
this average on the effective 2D-filling factor ν2D which
is the weight of slices below a certain energy.

For the NN-model we observe a strong peak at ν2D =
0.2 (and similarly at ν2D = 0.8 due to symmetry).
This peak is caused by the combination of the maxi-
mum point at p+ = (π, π) and rather strong (top or
right) boundary contributions visible in the left pan-
els of Fig. 4. For the HTC-model at U = 2 this peak
is still visible but its value is reduced. However, for
U = 0.5, there are two separated peaks, a stronger one
at ν2D ≈ 0.15 related to the average over the green cir-
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cle at radius rg ≈ 0.85 and a second lower peak at ν2D ≈
0.24 related to the average of the maximum region close
to p+ = (π, π). For this particular case, the green circle
has a stronger global contribution to the pair formation
probability than the maximum region at p+ = (π, π).

We note that the size of pairs δr2e is rather small
being given by only a few lattice sizes (e.g. δr2e ≈ 3 at
U = 0.5 according to Fig. 9). Thus the effective cou-
pling energy of a pair can be estimated as E2e ≈ U/δr2e.
Thus we suppose that for temperatures being smaller
than this effective energy gap (T < E2e) the ther-
mal fluctuations, decoherence and dissipative effects
will be significantly suppressed. However, the analysis
of decoherence effects should be investigated in further
detailed studies.

9 Discussion

In our studies we analyzed the electron pair formation
in a tight-binding model of La-based cuprate supercon-
ductors induced by Coulomb repulsion. Our analyti-
cal and numerical results show that even a repulsive
Coulomb interaction can form two electron pairs with
a high probability. Such pairs have a compact size and
propagate through the whole system. We expect that
such pairs may contribute to the emergence of super-
conductivity in La-based cuprates.

Of course, our analysis only considers two electrons
and in a real system at finite electron density there
is a Fermi sea which can modify electron interactions.
However, we expect that electrons significantly below
the Fermi energy will only create a mean-field poten-
tial which will not significantly affect interacting elec-
trons with energies in the vicinity of the Fermi energy. A
detailed investigation of effects of finite electron density
on the Coulomb pair formation represents an important
task for future studies.

In this work we did not solve the problem of La-
based cuprate superconductors. Indeed, this is a very
complex problem which remains unsolved since 1986 till
present. Here we discuss a new mechanism of formation
of electron pairs by the Coulomb repulsion. We show
that our mechanism is rather generic and it works for
repulsive electrons on various types of long-ranged or
nearest neighbor hopping lattices. The effects of finite
electron density still should be investigated for this
new mechanism. But we hope that the two repulsive
particles approach described here will allow to under-
stand deeper the physics of La-based cuprate supercon-
ductors. Indeed, the size of pairs in cuprates is rather
small (about 15 angstroms [2] being only by a factor 10
larger than the inter-atomic distance) compared to the
BCS case (with a typical size of about 1000 angstroms
and more [2]). For the Coulomb pairs studied here the
pair size is only by a factor 10 larger than the lattice
constant (see e.g. Fig. 3). Thus we expect that future
investigations of properties of Coulomb electron pairs
at finite density will bring new insights in cuprate type
superconductivity. Finally, the Cooper pairs were also
first studied only for two electrons [16].
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A Appendix

In this appendix we present the derivation of the block
Hamiltonian (11) and a more detailed discussion about its
discrete symmetries. In order to simplify the notations, we
will use here the full set A′ = A ∪ (−A) of neighbor vectors
(in the full and not only half plane) for the summation over
the vectors a which allows to reduce the number of terms
in the following expressions. The TIP Hamiltonian (5) can
then be written in a more explicit form as:

H = −
∑

r1,r2

∑

a∈A′
ta

(|r1, r2〉〈r1 + a, r2| + |r1, r2〉〈r1, r2 − a|)

+
∑

r1,r2

Ū(r2 − r1)|r1, r2〉〈r1, r2| (13)

where for convenience we have written “r2 − a” instead of
“r2+a” (in the second term of the first line) since for a ∈ A′

also −a ∈ A′. Furthermore, the terms with shifts of a in the
left side have been absorbed by the increased set A′ (with
respect to A used in (1)) combined with a subsequent shift
of the summation index r1 or r2 and exploiting the periodic
boundary conditions.

Applying (13) to a block basis state (10) we find that:

H|p+, Δr〉 = − 1

N

∑

r1

∑

a∈A′
ta

(
|r1 − a, r1 + Δr〉

×eip+·(r1+Δr/2)

+|r1, r1 + Δr + a〉 eip+·(r1+Δr/2)
)

+Ū(Δr)|p+, Δr〉. (14)

Using the shift r1 → r1 + a in the r1-sum of the first line
of this expression we obtain:
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H|p+, Δr〉 = − 1

N

∑

r1

∑

a∈A′
ta

(
|r1, r1 + Δr + a〉

×eip+·(r1+a+Δr/2)

+|r1, r1 + Δr + a〉 eip+·(r1+Δr/2)
)

+Ū(Δr)|p+, Δr〉 (15)

which can be rewritten as:

H|p+, Δr〉 = − 1

N

∑

r1

∑

a∈A′
ta |r1, r1 + Δr + a〉

× eip+·[r1+(Δr+a)/2]
(
eip+·a/2 + e−ip+·a/2

)

︸ ︷︷ ︸
2 cos(p+·a/2)

+Ū(Δr)|p+, Δr〉
= −2

∑

a∈A′
ta cos(p+ · a/2) |p+, Δr + a〉

+Ū(Δr)|p+, Δr〉 . (16)

The last expression provides exactly the effective block
Hamiltonian (11) if we replace the sum over a ∈ A′ by a
sum over a ∈ A with two contributions “+a” and “−a”
and applying for the latter contribution a subsequent shift
Δr → Δr + a in the Δr sum. However, there is one addi-
tional complication if Δr + a = (Δx + ax, Δy + ay) in
(16) leaves the initial square of Δx, Δy ∈ {0, . . . N − 1}.
Then we have to add (subtract) N to (from) Δx + ax

and/or Δy + ay which provides according to (10) the factor

e±ip+xN/2 = e±iπl+x = (−1)l+x (for Δx and similarly for
Δy) resulting in either periodic or anti-periodic boundary
conditions in x- (y-)direction depending on the parity of the
integer index l+x (l+y).

We close this appendix with a short discussion about the
discrete reflection symmetries of the block Hamiltonian (11)
and the possibility to reduce its effective matrix size N2

due to such symmetries. For the NN-model, as already dis-
cussed in detail in [12], there are at least two symmetries
with respect to Δx → N − Δx (reflection at the Δy-axis)
or Δy → N − Δy (reflection at the Δx-axis) and in case
if p+x = p+y there is a third symmetry with respect to
Δx ↔ Δy (reflection at the Δx-Δy diagonal) which allows
for an effective matrix size of roughly either N2/4 or N2/8
(if p+x = p+y).

However, for a more general lattice, such as the HTC-
model, or more generally in presence of at least one neigh-
bor vector a = (ax, ay) with both ax 
= 0 and ay 
= 0
(e.g. a = (1, 1)) the number of symmetries is reduced.
For the most generic case with p+x 
= p+y, p+x 
= 0 and
p+y 
= 0 there is only one symmetry corresponding to
particle exchange with two simultaneous transformations
Δx → N −Δx and Δy → N −Δy which allows for a reduc-
tion of the effective matrix size to ≈ N2/2. In this case the
factors cos(p+ ·a/2) = cos[(p+xax +p+yay)/2] appearing in

the effective hopping amplitudes are not modified because
the replacement a → −a due the symmetry transformation
only changes the global sign inside the cosine argument.
However, this is no longer true if we apply for example the
transformation Δx → N −Δx without modifying Δy which
is equivalent to the replacement of (ax, ay) → (−ax, ay) of
the neighbor vectors. Therefore a single reflection at the
Δy (or Δx) axis modifies the hopping amplitude (if both
ax 
= 0, ay 
= 0 and also both p+x 
= 0, p+y 
= 0) and (11) is
(in general) not invariant with respect to such transforma-
tions. However, if either p+x = 0 or p+y = 0 the effective
hopping amplitudes are not modified with respect to these
two individual reflections and we have two symmetries with
an effective matrix size of ≈ N2/4. Also if p+x = p+y 
= 0
we have two symmetries (particle exchange and reflection
at the Δx-Δy diagonal) leading also to an effective matrix
size of ≈ N2/4. Finally, for the special case p+x = p+y = 0,
we have even three symmetries (as in the NN-Model for
p+x = p+y) with effective matrix size of ≈ N2/8.
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FIG. S1: As Fig. 6 but for the inverse participation ratio
ξIPR.
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Supplementary Material for

Coulomb electron pairing in a tight-binding
model of La-based cuprate superconductors
by K. M. Frahm and D. L. Shepelyansky.

Here, we present additional material for the main part
of the article.

Figure S1 presents data for the inverse participation
ratio for the case of Fig. 6.

Figure S2 presents data for the inverse participation
ratio for the case of Fig. 7.

Two video files for the time evolution obtained by
the Trotter formula approximation corresponding to
the parameters of Fig. 2 and Fig. 3 are presented in
files videofig2.avi for the density ρXX(x1, x2) de-
fined in Eq. (8) and in videofig3.avi for the density
ρrel(∆x,∆y) defined in Eq. (9) (here N = 128, U = 2).
Both video files provide a direct comparison between the
NN-model (right box in video) and the HTC-model (left
box in video) and correspond to 464 time values t = lj ∆t
(25 values per second of video) with integer l0 = 0,
1 ≤ lj ≤ 104 for j = 1, . . . , 463 and roughly uniform
logarithmic density.


