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Abstract. We study the properties of two electrons with Coulomb interactions in a tight-binding model
of La-based cuprate superconductors. This tight-binding model is characterized by long-ranged hopping
obtained previously by advanced quantum chemistry computations. We show analytically and numerically
that the Coulomb repulsion leads to a formation of compact pairs propagating through the whole sys-
tem. The mechanism of pair formation is related to the emergence of an effective narrow energy band
for Coulomb electron pairs with conserved total pair energy and momentum. The dependence of the pair
formation probability on an effective filling factor is obtained with a maximum around a filling factor of
20 (or 80) percent. The comparison with the case of the nearest neighbor tight-binding model shows that
the long-ranged hopping provides an increase of the phase space volume with high pair formation proba-
bility. We conjecture that the Coulomb electron pairs discussed here may play a role in high temperature
superconductivity.

1 Introduction1

The phenomenon of high temperature superconductiv-2

ity (HTC), discovered in [1], still requires its detailed3

physical understanding as discussed by various experts4

of this field (see e.g. [2–4]). The analysis is complicated5

by the complexity of the phase diagram and strong6

interactions between electrons (or holes). As a generic7

model, that can be used for a description of most super-8

conducting cuprates, it was proposed to use a simplified9

one-body Hamiltonian with nearest-neighbor hopping10

on a square lattice formed by the Cu ions [5]. In addition11

the interactions between electrons are considered as a12

strongly screened Coulomb interaction that results in13

the 2D Hubbard model [5]. However, a variety of exper-14

imental results cannot be described by the 2D Hub-15

bard model (see e.g. discussion in [6]). Other models of16

type Emery [7–10] were developed and extended on the17

basis of extensive computations with various numerical18

methods of quantum chemistry (see e.g. [6,11] and Refs.19

therein). These studies demonstrated the importance of20

next-nearest hopping and allowed to determine reliably21

the longer-ranged tight-binding parameters.22

In this work we use the 2D longer-ranged tight-23

binding parameters reported in [6] and study the effects24

of Coulomb interactions between electrons in the frame25
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work of this tight-binding model. There are different 26

reasons indicating that long-range interactions between 27

electrons may lead to certain new features as com- 28

pared to the Hubbard case (see [3,4,6]). Recently, we 29

demonstrated that for two electrons on a 2D lattice 30

with nearest-neighbor hopping the energy and momen- 31

tum conservation laws lead to the appearance of an 32

effective narrow energy band for energy dispersion of 33

two electrons [12]. In such a narrow band even a repul- 34

sive Coulomb interaction leads to electron pairing and 35

ballistic propagation of such pairs through the whole 36

system. The internal classical dynamics of electrons 37

inside such a pair is chaotic suggesting nontrivial prop- 38

erties of pair formation in the quantum case. In this 39

work we extend the investigations of the properties of 40

such Coulomb electron pairs for a more generic longer- 41

ranged tight-binding lattice of one-body Hamiltonian 42

typical for La-based cuprate superconductors. We find 43

that the long-ranged hopping leads to new features of 44

Coulomb electron pairs. We note that in this work we 45

consider the case of two interacting electrons but the 46

same results are valid also for two interacting holes with 47

positive charges. 48

In Sect. 2 a detailed description of the tight-binding 49

model for two interacting electrons for general lat- 50

tices with a particular application to HTC is pre- 51

sented together with an analysis of the effective band 52

width at fixed conserved total pair momentum. Sec- 53

tion 3 provides first results of the full space time evo- 54

lution obtained in the frame work of the Trotter for- 55

mula approximation. Section 4 introduces the theoret- 56

ical basis for the description in terms of an effective 57
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block Hamiltonian for a given sector of fixed momentum58

of a pair with technical details provided in Appendix A.59

In Sect. 5 the phase diagram of the long time average60

of the pair formation probability in the plane of total61

momentum is discussed while Sect. 6 provides some62

results for the intermediate time evolution of pair for-63

mation. An overview of the results for the pair forma-64

tion probability at different filling factors is given in65

Sect. 7. The final discussion is presented in Sect. 8.66

2 Generalized tight-binding model on a 2D67

lattice68

We assume that each electron moves on a square lattice69

of size N × N with periodic boundary conditions with70

respect to the following generalized one-particle tight-71

binding Hamiltonian:72

H1p = −
�

r

�

a∈A

ta
�

|r��r + a| + |r + a��r|
�

(1)73

where the first sum is over all discrete lattice points74

r (measured in units of the lattice constant) and a75

belongs to a certain set of neighbor vectors A such that76

for each lattice state |r� there are non-vanishing hop-77

ping matrix elements ta with |r + a� and |r − a� for78

a ∈ A. To be more precise, due to notational reasons,79

we choose the set A to contain all neighbor vectors80

a = (ax, ay) in one half plane with either ax > 0 or81

ay > 0 if ax = 0 such that A′ = A ∪ (−A) is the full82

set of all neighbor vectors. For each vector a of the full83

set A′, we require that any other vector ã which can84

be obtained from a by a reflection at either the x-axis,85

y-axis or the x-y diagonal also belongs to the full set86

A′ and has the same hopping amplitude ta = tã.87

For the usual nearest neighbor tight-binding model88

(NN-model), already considered in [12], we have the89

set ANN = {(1, 0), (0, 1)} with t(1,0) = t(0,1) = t = 1.90

The numerical results presented in this work corre-91

spond either to the NN-model (for illustration and92

comparison) or to a longer-ranged tight-binding lattice93

according to [6] which we denote as the HTC-model.94

For this case the set of neighbor vectors is AHTC =95

{(1, 0), (0, 1), (2, 0), (0, 2), (1, ±2), (2, ±1), (1,±1), (2, ±2)}96

and the hopping amplitudes are: t = t(1,0) = 1, t′ =97

t(1,1) = − 0.136, t′′ = t(2,0) = 0.068, t′′′ = t(2,1) = 0.06198

and t(4) = t(2,2) = − 0.017 corresponding to the val-99

ues given in Table 2 of [6] (all energies are measured100

in units of the hopping amplitude t = t(1,0) = t(0,1)101

which is therefore set to unity here; see also Fig. 6a102

of [6] for the neighbor vectors of the different hopping103

amplitudes). The hopping amplitudes for other vectors104

such as (0, 1), (1,− 1), (2, 1), (1,− 2) etc. are obtained105

from the above amplitudes by the appropriate symme-106

try transformations, e.g. t(1,−1) = t(1,1) = t′ = − 0.136107

etc.108

Even though that most of our numerical results109

presented in this work apply to the HTC-model (or110

the NN-model), we emphasize that certain theoretical 111

considerations given below, especially for the effective 112

block Hamiltonian in relative coordinates at given total 113

momentum, are valid for arbitrary generalized tight 114

binding models with more general sets A and also with 115

a potential generalization to other dimensions. 116

The eigenstates of H1p given in (1) are simple plane 117

waves: 118

|p� =
1

N

�

r

eip·r (2) 119

with energy eigenvalues: 120

E1p(p) = −2
�

a∈A

ta cos(p · a) (3) 121

and momenta p = (px, py) such that px and py are 122

integer multiples of 2π/N (i.e. pα = 2πlα/N , lα = 123

0, . . . , N −1, α = x, y). For the HTC model, we can give 124

a more explicit expression of the energy dispersion: 125

E1p(px, py) = −2 [cos(px) + cos(py)]

− 4t′ cos(px) cos(py)

− 2t′′ [cos(2px) + cos(2py)]

− 4t′′′ [cos(2px) cos(py)+cos(2py) cos(px)]

− 4t(4) cos(2px) cos(2py)
(4) 126

which corresponds to eq. (30) of [6] (assuming t = 1 127

and t(5) = t(6) = t(7) = 0). 128

The quantum Hamiltonian of the model with two 129

interacting particles (TIP) has the form: 130

H = H
(1)
1p ⊗1(2)+1(1)⊗H

(2)
1p +

�

r1,r2

Ū(r2−r1)|r1, r2��r1, r2|

(5) 131

where H
(j)
1p is the one-particle Hamiltonian (1) of parti- 132

cle j = 1, 2 with positional coordinate rj = (xj , yj) and 133

1(j) is the unit operator of particle j. The last term 134

in (5) represents a (regularized) Coulomb type long- 135

range interaction Ū(r2 − r1) = U/[1 + r(r2 − r1)] with 136

amplitude U and the effective distance r(r2 − r1) = 137
�

Δx̄2 + Δȳ2 between the two electrons on the lat- 138

tice with periodic boundary conditions. (Here Δx̄ = 139

min(Δx, N − Δx); Δȳ = min(Δy, N − Δy); Δx = 140

x2 − x1; Δy = y2 − y1 and the latter differences are 141

taken modulo N , i.e. Δx = N + x2 − x1 if x2 − x1 < 0 142

and similarly for Δy). Furthermore, we consider sym- 143

metric (spatial) wavefunctions with respect to particle 144

exchange assuming an antisymmetric spin-singlet state 145

(similar results are obtained for antisymmetric wave- 146

functions). 147

In absence of interaction (U = 0) the energy eigen- 148

values (the classical energy) of the two electron Hamil- 149

tonian (5) (the two electrons) at given momenta p1 and 150
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p2 are (is) given by:151

Ec(p1,p2) = E1p(p1) + E1p(p2)

= −4
�

a∈A

ta cos(p+ · a/2) cos(Δp · a) (6)152

where p+ = p1 + p2 is the total momentum and Δp =153

(p2 −p1)/2 is the momentum associated to the relative154

coordinate Δr = r2 − r1. For the NN-model Eq. (6)155

becomes Ec(p1,p2) = −4
�

α=x,y cos(p+α/2) cos(Δpα).156

Due to the translational invariance the total momen-157

tum p+ is conserved even in the presence of inter-158

action (U �= 0). Indeed, like in a periodic crystal159

we have Bloch waves with conserved quasimomentum160

[6] (in the following we speak about the momentum).161

Thus only two-particle plane wave states with identi-162

cal p+ are coupled by non-vanishing interaction matrix163

elements. For the case of the NN-model, analyzed in164

[12], the kinetic energy at fixed p+ is bounded by165

ΔEb = 4
�

α=x,y | cos(p+α/2)|. Thus for TIP states166

with E > ΔEb the two electrons cannot separate and167

propagate as one pair even if their interaction is repul-168

sive. For p+x = p+y = π+δ being close to π and |δ| ≪ 1169

there are compact Coulomb electron pairs even for very170

small interactions U as soon as ΔEb ≈ 4|δ| < U ≪ B2171

with B2 = 16+U being the maximal energy bandwidth1
172

in 2D. Thus the conservation of the total momentum of173

a pair with p+x = p+y ≈ π leads to the appearance174

of an effective narrow energy band with formation of175

coupled electron pairs propagating through the whole176

system. However, the results obtained in [12] show that177

even for other values of p+x, p+y the probability of pair178

formation is rather high.179

For the NN-model the effective band width for pairs180

ΔEb can be exactly zero for the specific pair momen-181

tum p+ = (π, π). However, this is not the case for the182

HTC-model where due to the longer-ranged hopping183

the minimal width ΔEb is finite due to the additional184

terms with factors cos(p+ · a/2) in (6). Therefore, we185

determined numerically for each given value of total186

momentum p+ the effective bandwidth as:187

ΔEb(p+) = max
Δp

[Ec(p1,p2)] − min
Δp

[Ec(p1,p2)] (7)188

with p1 = p+/2−Δp and p2 = p+/2+Δp. Top panels189

of Fig. 1 show density color plots of ΔEb(p+) for the190

NN- and the HTC-model. For the HTC-case ΔEb(p+)191

is maximal at p+ = (0, 0) with value ΔEb,max = 17.952192

and minimal at p+ = (π, π) with value ΔEb,min = 2.176193

while for the NN-model we have ΔEb,max = 16 at194

p+ = (0, 0) and ΔEb,min = 0 at p+ = (π, π). The value195

ΔEb,min = 2.176 for the HTC-model is still rather small196

compared to the maximal value ΔEb,max ≈ 18 and we197

may expect a somewhat stronger pair formation prob-198

ability for total momenta p+ close to (π, π). However,199

this situation is qualitatively different as compared to200

1 In the following we use the notation B2 = 16 + U for the
bandwidth of the NN-model.

-1

-0.5

0

0.5

1

Fig. 1 Top panels show the dependence of the effective
electron pair band width ΔEb(p+) on the pair momen-
tum p+ = (p+x, p+y). Bottom panels show the kinetic elec-
tron pair energy Ec(p1,p2) (in absence of interaction) at
momenta p1 = p2 = p+/2. Left panels correspond to the
NN-model and right panels to the HTC-model. In all panels
the horizontal axis corresponds to p+x ∈ [0, π] and the ver-
tical axis to p+y ∈ [0, π]. The numbers of the color bar
correspond for top panels to the ratio of the bandwidth
over its maximal value and for lower panels to the quan-
tity sgn(Ec)

�
|Ec|/Ec,max with Ec,max being the maximum

of |Ec|. In all subsequent color plot figures the numerical val-
ues of the color bar corresponds to the ratio of the shown
quantity over its maximal value

the NN-model and the HTC-case requires new careful 201

studies. 202

For comparison, we also show in the lower panels of 203

Fig. 1 the kinetic energy Ec at p1 = p2 = p+/2 (for the 204

square p+ ∈ [0, π] × [0, π]) corresponding to Δp = 0. 205

While for the NN-model this quantity vanishes at p+ = 206

(π, π) there is for the HTC-model a zero-line between 207

the two points (βπ, π) and (π, βπ) where β ≈ 0.877 ≈ 208

7/8 is a numerical constant slightly below unity. 209

3 Full space time evolution of electron pairs 210

As in [12] the full time evolution of two electrons is 211

computed numerically for N = 128 using the Trotter 212

formula approximation (see e.g. [12,13] for computa- 213

tional details). We use the Trotter time step Δt = 214

B2 = 1/(16 + U) which is the inverse bandwidth for 215

the case of NN-model. A further decrease of the time 216

step does not affect the obtained results. At the ini- 217

tial time both electrons are localized approximately at 218

(N/2, N/2) with the distance Δx̄ = Δȳ = 1 using a lin- 219

ear combination of 8 states with all combinations due 220

to particle exchange symmetry and reflection symmetry 221

at the Δx- and Δy-axis. The method provides for each 222
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time value a wavefunction ψ(x1, y1, x2, y2) from which223

we extract different quantities such as the density in224

x1-x2 plane:225

ρXX(x1, x2) =
�

y1,y2

|ψ(x1, y1, x2, y2)|
2 (8)226

or the density Δx-Δy plane:227

ρrel(Δx, Δy) =
�

x1,y1

|ψ(x1, y1, x1 + Δx, y1 + Δy)|2 (9)228

(with position sums taken modulo N). We also compute229

the quantity w10 by summing the latter density (9) over230

all values such that |Δx̄| ≤ 10 and |Δȳ| ≤ 10 which231

corresponds to a square of size 21 × 21 in Δx-Δy plane232

(due to negative values of x2 − x1 etc.). This quantity233

gives the quantum probability to find both electrons at234

a distance ≤ 10 (in each direction) and we will refer to235

it as the pair formation probability.236

In Fig. 2 the density ρXX is shown for U = 2, both237

NN- and HTC-models at two time values t = 445Δt238

and t = 104 Δt. These results show that the wavefunc-239

tion has a component with electrons separating from240

each other and a component where electrons stay close241

to each other forming a pair propagating through the242

whole system that corresponds to a high density near243

a diagonal with x1 ≈ x2. For t = 445Δt the value of244

w10 is roughly 10% and for t = 104 Δt it is roughly245

13% for both models. However, the remaining diffusing246

component of about 87-90% probability has a stronger247

periodic structure for the NN-model as compared to the248

HTC-model.249

Figure 3 shows the density ρrel(Δx, Δy) for the same250

cases of Fig. 2. We clearly see a strong enhancement of251

the probability at small values Δx̄ ≈ Δȳ < 5 (< 6 − 7)252

for the NN-model (HTC-model) showing that there is a253

considerable probability that both electrons stay close254

to each other forming a Coulomb electron pair. Fur-255

thermore, the remaining wavefunction component of256

independently propagating electrons, clearly visible in257

Fig. 2, is not visible in the density shown in Fig. 3 even258

though this component corresponds to 87-90% proba-259

bility.260

The supplementary material contains two videos (for261

∼ 460 time values in the range Δt ≤ t ≤ 104Δt with262

roughly uniform logarithmic density) of the two den-263

sities ρXX and ρrel where both models NN and HTC264

are directly compared in the same video. The raw-data265

used for these videos is the same as in Figs. 2 and 3.266

4 Time evolution in sectors of fixed total267

momentum268

As already mentioned in Sect. 3 the total momentum269

p+ is conserved by the TIP dynamics of the Hamil-270

tonian (5). In order to exploit this more explicitly, we271

0

0.25

0.5

0.75

1

Fig. 2 2D Wavefunction density ρXX(x1, x2) in x1-x2

plane (see Eq. (8)) obtained from the time evolution using
the Trotter formula approximation for initial electron posi-
tions at ≈ (N/2, N/2) with distance Δx̄ = Δȳ = 1 for
N = 128, U = 2 and Trotter integration time step Δt =
1/B2 = 1/(16 + U). Top (bottom) panels correspond to the
time value t = 445 Δt (t = 104Δt) and left (right) pan-
els correspond to the NN-lattice (HTC-lattice). The corre-
sponding values of the pair formation probability w10 are
0.106 (top left), 0.133 (bottom left), 0.0940 (top right) and
0.125 (bottom right). Related videos are available at [14,15]

0

0.25

0.5

0.75

1

Fig. 3 2D Wavefunction density ρrel(Δx, Δy) in Δx-Δy
plane of relative coordinates (see Eq. (9)) for the same
states, cases and parameters of Fig. 2 (N = 128, U = 2).
All panels show the zoomed density for 0 ≤ Δx, Δy < 32.
Related videos are available at [14,15]

introduce as in [12], block basis states by: 272

|p+, Δr� =
1

N

�

r1

eip+·(r1+Δr/2)|r1, r1 + Δr� (10) 273
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where p+ = (p+x, p+y) (with p+α = 2πl+α/N ; l+α =274

0, . . . , N − 1; α = x, y) is a fixed value of the total275

momentum and r1, Δr are vectors on the square lat-276

tice (with position sums in each spatial direction taken277

modulo N). One can show (see Appendix A for details)278

that the TIP Hamiltonian (5) applied to such state gives279

a linear combination of such states for different Δr val-280

ues but the same total momentum value p+ which pro-281

vides for each value or sector of p+ an effective block282

Hamiltonian:283

h̄(p+) = −
�

Δr

�

a∈A

t̄(p+)
a

�

|Δr + a��Δr| + |Δr��Δr + a|
�

+
�

Δr

Ū(Δr)|Δr��Δr|

(11)284

where t̄
(p+)
a = 2 cos(p+ · a/2) ta is an effective rescaled285

hopping amplitude depending also on p+ and we have286

for simplicity omitted the index p+ in the block basis287

states. This effective block Hamiltonian corresponds to288

a tight-binding model in 2D of similar structure as (1)289

with modified hopping amplitudes and an additional290

“potential” Ū(Δr). We note that in absence of this291

external potential (U = 0) the eigenfunctions of (11)292

are plane waves and we immediately recover the expres-293

sion (6) for its energy eigenvalues where Δp is the294

momentum associated to the relative coordinate Δr.295

For the simple NN-model the result for the effective296

block Hamiltonian was already given in [12] and the297

above expression (11) provides the generalization to298

arbitrary tight-binding lattices characterized by a cer-299

tain set of neighbor vectors A and associated hopping300

amplitudes ta (the generalization to arbitrary spatial301

dimension is also obvious). As already discussed in [12]302

the boundary conditions of (11) in x− (y−)direction303

are either periodic if the integer index l+x (l+y) of p+x304

(p+y) is even or anti-periodic if this index is odd. This305

can be understood by the fact that the expression (10)306

is modified by the factor e±ip+xN/2 = e±iπl+x = (−1)l+x
307

if Δx is replaced by Δx±N and similarly for Δy (with308

Δr = (Δx, Δy)).309

Diagonalizing the effective block Hamiltonian (11),310

we can rather efficiently compute the exact quantum311

time evolution |ψ̄(t)� = e−ih̄(p+) t |ψ̄(0)� inside a given312

sector of p+. As initial state |ψ̄(0)� we choose a state (in313

the reduced block space) given as the totally symmetric314

superposition of four localized states where Δx and Δy315

are either 1 or N − 1. Such a state corresponds in full316

space to a plane wave in the center of mass direction317

with total fixed momentum p+ and strongly localized318

in the relative coordinate Δr. The matrix size of (11)319

is N2 which corresponds to a complexity of N 6 for the320

numerical diagonalization.321

However, for a general lattice, such as the HTC-322

model, one can exploit the particle exchange symmetry323

to reduce the effective matrix size to roughly N 2/2 and324

for the special cases of p+x = p+y or either p+x = 0325

or p+y = 0 a second symmetry allows a further reduc-326

tion of the effective matrix size to ≈ N 2/4 (for the327

NN-model there are two or three symmetries for these 328

cases with effective matrix sizes of ≈ N 2/4 or ≈ N2/8 329

respectively; see [12] and Appendix A for details). 330

In view of this, we have been able to compute numer- 331

ically the exact time evolution for the HTC-model in 332

certain p+ sectors for a lattice size up to N = 384 for 333

the case of two symmetries and a limited number of 334

different other parameters (values of p+ and U). For 335

the case of one symmetry and the exploration of all 336

possible values of p+x and p+y we used the maximum 337

system size N = 192. We also implemented more expen- 338

sive computations where no or less possible symmetries 339

are used to verify (at smaller values of N) that they 340

provide identical numerical results. 341

We compute the wavefunction in block representa- 342

tion ψ̄(p+, Δr) for about 700 time values t = 0 and 343

10−1 ≤ t/Δt ≤ 106 (with a uniform density in loga- 344

rithmic scale) where Δt = 1/B2 = 1/(16 + U) is the 345

time step already used for the Trotter formula approx- 346

imation given as the inverse bandwidth for the case of 347

the NN-model which is the smallest time (inverse of the 348

largest energy) scale of the system. 349

From the wavefunction we extract in a similar 350

way as in Sect. 3 the pair formation probability w10 351

by summing the (normalized) wavefunction density 352

|ψ̄(p+, Δr)|2 at fixed p+ over the 21 × 21 square with 353

|Δx̄| ≤ 10 and |Δȳ| ≤ 10. We also compute the inverse 354

participation ratio: 355

ξIPR =

�

�

Δr

|ψ̄(p+, Δr)|4

�−1

(12) 356

which gives roughly the number of lattice sites (in Δr 357

space) over which the wavefunction is localized. Both 358

quantities w10 and ξIPR converge typically rather well 359

to their stationary values at times t > 103Δt with 360

some time dependent fluctuations. Therefore for the 361

cases where we are interested in the long time limit 362

we compute the wavefunction only for 70 times values 363

(in the same interval as above with uniform logarith- 364

mic density) and take the average over the 21 values 365

with 104 ≤ t/Δt ≤ 106. We note that for the case 366

of a uniform wavefunction density the ergodic values 367

are w10,erg = (21/N)2 and ξIPR,erg = N2. Values of 368

w10 significantly above w10,erg or of ξIPR below ξIPR,erg 369

indicate an enhanced probability for the formation of 370

compact electron pairs. 371

We also mention that both quantities w10 and ξIPR 372

are invariant with respect to the three transforma- 373

tions p+x ↔ p+y, p+x → −p+x and p+y → −p+y 374

(or p+x → 2π − p+x and p+y → 2π − p+y) corre- 375

sponding to reflections at the x-y diagonal, the y-axis 376

and the x-axis. Even though the effective block Hamil- 377

tonian (11) is not (always) invariant with respect to 378

all three of these transformations (see Appendix A for 379

details), the choice of an invariant initial state ensures 380

that at finite times the wavefunction in block space sat- 381

isfies for example the identity ψ̄(p+x, p+y, Δx, Δy) = 382

ψ̄(p+y, p+x, Δy, Δx) (and similarly for the other reflec- 383
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tions). In other words a certain reflection transforma-384

tion for p+ results in the equivalent transformation for385

the time dependent block space wavefunction in Δr386

space. Obviously the two quantities w10 and ξIPR do387

not change with respect to these transformations (in388

Δr space) and therefore they are conserved. As a result389

it is sufficient to compute these quantities only for the390

triangle 0 ≤ p+y ≤ p+x ≤ π.391

In the following sections we present the results for392

these quantities and the wavefunction in block repre-393

sentation.394

5 Phase diagram of pair formation395

The phase diagram of the long time average of the pair396

formation probability w10 in the p+-plane is shown397

in Fig. 4 for both models and the interaction values398

U = 0.5, 2. As expected from the features of the effec-399

tive bandwidth shown in (the top panels of) Fig. 1, we400

find that globally for both models the pair formation401

probability is clearly maximal at p+ = (π, π) and min-402

imal at p+ = (0, 0). Furthermore, the size of the maxi-403

0

0.25

0.5

0.75

1

Fig. 4 Phase diagram of electron pair formation in the
plane of pair momentum p+ = (p+x, p+y) for the NN-lattice
(left panels), the HTC-lattice (right panels) and the inter-
action values U = 0.5 (top panels), U = 2 (bottom panels).
Shown is the pair formation probability w10 for N = 192
obtained from the exact time evolution for each sector of
p+ with an initial electron distance Δx̄ = Δȳ = 1 and com-
puted from an average over 21 time values in the interval
104 ≤ t/Δt ≤ 106. In all panels the horizontal (vertical)
axis corresponds to p+x (p+y) ∈ [0, π] and the numeri-
cal values of the color bar correspond to the ratio of w10

over its maximal value. The maximum values correspond-
ing to the red region at the top right corner p+ = (π, π) are
w10 = 1 (both left panels), w10 = 0.4510 (top right) and
w10 = 0.8542 (bottom right). For comparison the ergodic
value is w10,erg. = (21/192)2 = 0.01196

mum region is significantly stronger for U = 2 than for 404

U = 0.5 which is also to be expected. Thus for these 405

p+ values even a relatively weak or moderate Coulomb 406

repulsion creates quite strongly coupled electron pairs. 407

For the NN-model the top (p+y = π) or right (p+x = 408

π) boundary also provide large values with w10 ≈ 0.5 409

and the width of these regions is stronger for U = 2 410

than for U = 0.5. However, for U = 2 also the remain- 411

ing region provides values between 0.14 and 0.25 of the 412

maximum value which are clearly above the ergodic 413

value 0.012. Even for U = 0.5 the remaining region 414

is mostly ≈ 0.04 (with some part close to 0.25) which 415

is still above the ergodic value. 416

For the HTC-model the situation is more compli- 417

cated. The boundary regions are more limited, espe- 418

cially for U = 0.5. However, for the remaining region 419

there is a new interesting feature which is a signifi- 420

cantly enhanced “green-circle” of approximate radius 421

rg =
�

p2
+x + p2

+y ≈ 0.85π for U = 0.5 (w10 ≈ 0.14). 422

For U = 2 there is also a circle (w10 ≈ 0.20) with 423

approximate radius rg ≈ 0.75π. This circle seems to be 424

less pronounced despite its larger value of w10 as com- 425

pared to U = 0.5 due to the fact that the maximum 426

value for U = 2 (w10 ≈ 0.85 at p+ = (π, π)) is roughly 427

twice the maximum value for U = 0.5 (w10 ≈ 0.45). 428

This structure cannot be explained by the behavior of 429

the effective bandwidth. The minimum values of w10 at 430

p+ ≈ (0, 0) are w10 ≈ 0.02 − 0.03 (w10 ≈ 0.09 − 0.10) 431

for U = 0.5 (U = 2) which are slightly (significantly) 432

above the ergodic value 0.012. 433

Globally, nearly for all values of p+, for both mod- 434

els and both interaction values U = 0.5, 2 there is an 435

enhanced probability to create coupled electron pairs. 436

The above observations are perfectly confirmed by 437

the phase diagram for the inverse participation ratio 438

ξIPR which is shown in Fig. 5 for the same cases and raw 439

data of Fig. 4. Large (small) values of ξIPR corresponds 440

to small (large) values of w10 and a small (strong) pair 441

formation probability. Here minimum (maximum) val- 442

ues are at p+ = (π, π) (p+ = (0, 0)) as for the effective 443

bandwidth of Fig. 1 (see figure caption for the numerical 444

minimum, maximum and ergodic values). The bound- 445

ary structure of the NN-model and the circle-structure 446

of the HTC-case are also clearly visible. 447

We have also computed the long time average of the 448

pair formation probability for the HTC-model at larger 449

system size N = 256 and the special cases of either 450

p+x = p+y or p+y = 0 where the additional second 451

symmetry (see discussion in the previous section and 452

Appendix A) reduces the computational effort. In this 453

way we can explore the diagonal and right boundary of 454

the phase diagram in more detail. 455

Figure 6 shows w10 for the HTC-model, N = 256, 456

p+ = p+x = p+y and both interaction values U = 0.5, 2 457

as a function of the parameter ν = (1 − cos(p+/2))/2. 458

Both curves clearly confirm some of the observations of 459

the phase diagrams, i.e. strongest pair formation prob- 460

ability at ν = 0.5 (p+x,y = π) with a somewhat larger 461

maximum range for U = 2 as compared to U = 0.5 462

and a minimal pair formation probability at ν = 0 463
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0

0.25

0.5

0.75

1

Fig. 5 Phase diagram of the inverse participation ratio
ξIPR in the plane of pair momentum p+ = (p+x, p+y) and
computed from the same states, data and cases as in Fig. 4
(U = 0.5; 2 in top/bottom panels; N = 192). The maxi-
mum values corresponding to the red region close to the
bottom left corner p+ = (0, 0) are ξIPR = 15300 (top
left), ξIPR = 4300 (bottom left), ξIPR = 18200 (top right)
and ξIPR = 8600 (bottom right). The minimum values at
the top right corner p+ = (π, π) are ξIPR = 14.87 (top
left), ξIPR = 4 (bottom left), ξIPR = 126 (top right) and
ξIPR = 9.8 (bottom right). For comparison the ergodic value
is ξIPR,erg = 1922 = 36864 and the value for the totally sym-
metrized and localized initial state is ξIPR,init = 4

10
-2

10
-1

10
0

0 0.2 0.4 0.6 0.8 1

N=256, p+=p+x=p+y

w
1

0

ν=(1-cos(p+/2))/2

U=2

U=0.5

ergodic

Fig. 6 Dependence of the electron pair formation proba-
bility w10 on ν = (1 − cos(p+/2))/2 for p+ = p+x = p+y

and the HTC-model at U = 0.5, 2 and N = 256. w10 is
computed from the same long time average as in Fig. 4.
The maximum value at ν = νmax = 0.5 is w10 = 0.8535
(w10 = 0.4456) for U = 2 (U = 0.5). See Fig. 5 of [12]
for the corresponding figure for the NN-model. For the NN-
model the maximum value at ν = νmax = 0.5 is exactly
w10 = 1 for both interaction values

(p+x,y = 0) or ν = 1 (p+x,y = 2π) but still clearly464

above the ergodic limit for all cases. The precise numer-465

10
-2

10
-1

10
0

0 0.2 0.4 0.6 0.8 1

N=256, p+=p+x, p+y=0

w
1

0

ν=(1-cos(p+/2))/2

U=2

U=0.5

ergodic

Fig. 7 Dependence of the electron pair formation proba-
bility w10 on ν = (1 − cos(p+/2))/2 for p+ = p+x, p+y = 0
and the HTC-model at U = 0.5, 2 and N = 256. w10 is
computed from the same long time average as in Fig. 4.
The value at ν = 0.5 is w10 = 0.2302 (w10 = 0.01479) for
U = 2 (U = 0.5)

ical maximum values of w10 at ν = 0.5 are slightly dif- 466

ferent from, but still in general agreement with, those 467

of Fig. 4 due to the different system size. The corre- 468

sponding figure for the NN-model was already given in 469

[12]. 470

Figure 7 shows w10 for the HTC model, N = 256 471

and both interaction values U = 0.5, 2 at the bound- 472

ary p+y = 0 as a function of the parameter ν = 473

(1−cos(p+/2))/2 with p+ = p+x. The curve for U = 0.5 474

clearly shows a strong local maximum at ν ≈ 0.5 ± 0.1 475

(p+ ≈ π ± π/8) corresponding to green-circle with 476

radius rg ≈ 0.85π visible in the phase diagram. For 477

U = 2 there are higher but less pronounced local max- 478

ima at ν ≈ 0.5 ± 0.19 corresponding to the slightly 479

visible circle for this case. However, at U = 2 the value 480

of w10 at ν = 0.5 is rather high while at U = 0.5 its 481

value at ν = 0.5 is quite low but still clearly above the 482

ergodic limit. 483

Figures S1 and S2 of the supplementary material are 484

similar to Figs. 6 and 7 respectively but for the inverse 485

participation ratio ξIPR. 486

We note that of course in the limit of strong inter- 487

action between electrons being significantly larger than 488

the energy band width of noninteracting particles (U ≫ 489

8) there appear coupled states of pairs forming a sepa- 490

rated energy band. However, our theory and numerical 491

results show that the pair formation takes place even at 492

much smaller interactions (e.g. U = 0.5 ≪ 8). This is 493

the result of an effective narrow energy band appearing 494

due to pair momentum conservation. 495

6 Time evolution of pair formation 496

We also computed a more precise time evolution of the 497

pair formation probability w10 for the larger system 498

size N = 384 and certain specific cases p+x = p+y 499
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N=384, p+x=p+y=0
N=384, p+x=p+y=2π/3

N=384, p+x=p+y=π

N=384, p+x=π, p+y=0

N=384, p+x=7π/8, p+y=0

N=128, Trotter
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Fig. 8 Time dependence of the pair formation probability
w10 for U = 0.5 (top panel) and U = 2 (bottom panel)
and different cases of the exact time evolution in certain
p+ = (p+x, p+y) sectors at N = 384 and the full space
Trotter formula time evolution at N = 128. The dashed
lines correspond to the ergodic values (21/N)2 = 0.0269 for
N = 128 (grey dashed) and (21/N)2 = 0.00299 for N = 384
(black dashed)

∈ {0, 2π/3, π} and p+y = 0 with p+x ∈ {7π/8, π}.500

The results together with the full space results using501

the Trotter formula approximation at N = 128 are502

shown in Fig. 8 for U = 0.5, 2. In all cases the value503

of w10 starts decaying from its initial value w10 = 1 at504

t/Δt > 20-30 and converges to a long time saturation505

value for t/Δt > 103 sometimes with some temporal506

quasi-periodic fluctuations. In most cases the satura-507

tion values at U = 2 are clearly larger than for U = 0.5508

except for the case p+y = 0 and p+x = 7π/8 where both509

saturation values are somewhat comparable. In partic-510

ular, at U = 0.5 the value for p+y = 0 and p+x = 7π/8511

is significantly larger than the value for p+y = 0 and512

p+x = π while at U = 2 it is the inverse. This observa-513

tion is in agreement with the appearance of the green-514

circle in the phase diagram where for U = 0.5 the circle515

is dominant in comparison to the right boundary while516

for U = 2 it is dominated by the right boundary.517

The saturation value of the data obtained by the518

Trotter formula approximation, which somehow corre-519

0

0.25

0.5

0.75

1

Fig. 9 Color plot of wavefunction amplitude |ψ̄(p+, Δr)|
in block representation in Δr = (Δx, Δy) plane obtained
from the 2D quantum time evolution for the HTC lattice
with N = 384 and the sector p+x = 7π/8, p+y = 0. All
panels show a zoomed region 0 ≤ Δx, Δy < 32. Left (right)
panels correspond to t = 100 Δt (t = 105Δt; with Δt =
1/B2 = 1/(16 + U)) and top (bottom) panels correspond to
interaction strength U = 0.5 (U = 2). Related videos are
available at [15]

sponds to an average over all possible p+ values, is quite 520

low if compared to the case p+ = 0 but still clearly 521

above the corresponding ergodic value (for its reduced 522

system size). Also for most of the other cases the sat- 523

uration value is clearly above the ergodic value except 524

for U = 0.5, p+y = 0 and p+x = π where the curve is a 525

t ≈ 103Δt even below the ergodic value and saturates 526

later at a value only slightly above the ergodic value. 527

Motivated by the observation of the green-circle at 528

radius rg ≈ 0.85π in the phase diagram for U = 0.5, 529

we show in Fig. 9 the wavefunction amplitude at p+x = 530

7π/8, p+y = 0, N = 384 and both interaction values 531

U = 0.5, 2 and two time values t/Δt = 100, 105. The 532

first observation is that the diffusive spreading in x- 533

direction is strongly suppressed if compared to the y- 534

direction which is expected since p+x is rather close to 535

π while p+y = 0. 536

At U = 0.5 the steady-state at t/Δt = 105, despite a 537

smaller value of w10 = 0.0754 if compared to w10 = 538

0.1342 at U = 2, has a larger spatial extension of 539

∼ 30 lattice sites compared to ∼ 12 lattice sites for 540

U = 2. This in rough qualitative agreement with the 541

values ξIPR = 940 (for U = 0.5) and ξIPR = 268 (for 542

U = 2). However, a large amount of the contribution to 543

the inverse participation ratio comes from the remain- 544

ing probability of about 87-90% which has uniformly 545

spread over the full lattice thus explaining the differ- 546

ence between ξIPR and the visible spatial extension in 547

Fig. 9 (for this reason we consider w10 to be a more suit- 548

able quantity than ξIPR to describe the pair formation 549

probability). 550
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7 Comparison of two lattice models551

Above we studied the properties of Coulomb pairs in the552

two lattice models: the nearest neighbor tight-binding553

model (NN-model) and the HTC model with the long-554

ranged hoppings based on the results reported in [6] (see555

Eq. (4)). We point that our developed general formalism556

allows to consider the two interacting electrons on a557

broad type of lattices with long-ranged hoppings. Here558

we presented the results only for two lattices of NN-559

and HTC-models.560

The main features of the NN-model have been561

reported in [12]. This model has a certain somewhat562

specific property that the width of an effective mini-563

mal energy band ΔEb,min(p+) (see Eq. (7)) becomes564

zero for a certain momentum. However, for the HTC-565

model the minimal width ΔEb,min(p+) remains small566

but finite. Inspite of this difference between the two567

models the formation of Coulomb pairs exists in both568

models for moderate interactions as it is shown by569

the results presented above. Another difference between570

two models is that the kinetic energy Ec (see Eq.(6))571

at p1 = p2 = p+/2 is zero only at one point in the572

momentum plane for the NN-model and it is zero along573

a finte line segment for the HTC-model (see Fig. 1).574

In presence of interaction the above differences575

between two models lead to a very different structure576

of probability of Coulomb pair formation in the phase577

diagram in the plane of pair momentum as it is shown578

in Fig. 4: there is only one maximum of this probabil-579

ity for the NN-model in one point of the plane, while580

for the HTC-model there is an additional maximum581

of probability along a “green-circle” in the momentum582

plane. Thus the phase volume with a significant prob-583

ability of pair formation is significantly larger for the584

HTC-model. This feature can play a significant role at585

finite electron densities where the high space volume586

is important for specific dopping values corresponding587

to energies of this “green-circle”. Indeed, the results of588

Fig. 10 show that the range of high pair formation prob-589

ability, in dependence of doping ν2D, is broader for the590

HTC-model.591

Finally, we point out that the phase diagram of the592

Coulomb pair formation of Fig. 4 is obtained for both593

models only in this work (in [12] for the NN-model this594

probability was obtained only along a line p+x = p+y595

and not in the whole momentum plane).596

8 Results overview597

The discussion of the phase diagram given in Fig. 4 has598

shown that the pair formation probability is maximal599

at the point p+ = (π, π). However, the surrounding600

region to this point is quite small if compared to the601

green-circle where we have a somewhat more modest602

pair formation probability. In terms of available values603

of p+ the latter region is possibly more important. In604

order to analyze this point in a more quantitative way,605

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
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Fig. 10 Dependence of the electron pair formation prob-
ability w10 on the effective 2D filling factor ν2D for the
NN-lattice (top) and the HTC-lattice (bottom). The val-
ues of w10 have been obtained from the data of Fig. 4
(for N = 192) by an average along lines of constant elec-
tron pair energy Ec at momenta p1 = p2 = p+/2 with
p+x, p+y ∈ [0, 2π]. Lowest (largest) energy corresponds to
ν2D = 0 (ν2D = 1). The data points shown correspond
to an effective histogram with bin width Δν2D ≈ 0.01.
The red (blue) curve corresponds to the interaction value
U = 2 (U = 0.5) and the grey dashed line corresponds to
the ergodic value (21/192)2 = 0.01196

we assume a simple model where both electrons have 606

the same momentum p+/2 (i.e. Δp = 0) and where the 607

available states of this type are filled from smallest to 608

largest energies. We subdivide these states, ordered in 609

energy, in slices of equal number (∼ 1/100 of all avail- 610

able states) and compute the average of w10 for each 611

slice which is equivalent to the average of w10 at lines of 612

constant energy. In Fig. 10, we show the dependence of 613

this average on the effective 2D-filling factor ν2D which 614

is the weight of slices below a certain energy. 615

For the NN-model we observe a strong peak at ν2D = 616

0.2 (and similarly at ν2D = 0.8 due to symmetry). 617

This peak is caused by the combination of the maxi- 618

mum point at p+ = (π, π) and rather strong (top or 619

right) boundary contributions visible in the left pan- 620

els of Fig. 4. For the HTC-model at U = 2 this peak 621

is still visible but its value is reduced. However, for 622

U = 0.5, there are two separated peaks, a stronger one 623
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at ν2D ≈ 0.15 related to the average over the green cir-624

cle at radius rg ≈ 0.85 and a second lower peak at625

ν2D ≈ 0.24 related to the average of the maximum626

region close to p+ = (π, π). For this particular case,627

the green circle has a stronger global contribution to the628

pair formation probability than the maximum region at629

p+ = (π, π).630

We note that the size of pairs δr2e is rather small631

being given by only a few lattice sizes (e.g. δr2e ≈ 3 at632

U = 0.5 according to Fig. 9). Thus the effective cou-633

pling energy of a pair can be estimated as E2e ≈ U/δr2e.634

Thus we suppose that for temperatures being smaller635

than this effective energy gap (T < E2e) the ther-636

mal fluctuations, decoherence and dissipative effects637

will be significantly suppressed. However, the analysis638

of decoherence effects should be investigated in further639

detailed studies.640

9 Discussion641

In our studies we analyzed the electron pair formation642

in a tight-binding model of La-based cuprate supercon-643

ductors induced by Coulomb repulsion. Our analyti-644

cal and numerical results show that even a repulsive645

Coulomb interaction can form two electron pairs with646

a high probability. Such pairs have a compact size and647

propagate through the whole system. We expect that648

such pairs may contribute to the emergence of super-649

conductivity in La-based cuprates.650

Of course, our analysis only considers two electrons651

and in a real system at finite electron density there652

is a Fermi sea which can modify electron interactions.653

However, we expect that electrons significantly below654

the Fermi energy will only create a mean-field poten-655

tial which will not significantly affect interacting elec-656

trons with energies in the vicinity of the Fermi energy. A657

detailed investigation of effects of finite electron density658

on the Coulomb pair formation represents an important659

task for future studies.660

In this work we did not solve the problem of La-661

based cuprate superconductors. Indeed, this is a very662

complex problem which remains unsolved since 1986 till663

present. Here we discuss a new mechanism of formation664

of electron pairs by the Coulomb repulsion. We show665

that our mechanism is rather generic and it works for666

repulsive electrons on various types of long-ranged or667

nearest neighbor hopping lattices. The effects of finite668

electron density still should be investigated for this669

new mechanism. But we hope that the two repulsive670

particles approach described here will allow to under-671

stand deeper the physics of La-based cuprate supercon-672

ductors. Indeed, the size of pairs in cuprates is rather673

small (about 15 angstroms [2] being only by a factor 10674

larger than the inter-atomic distance) compared to the675

BCS case (with a typical size of about 1000 angstroms676

and more [2]). For the Coulomb pairs studied here the677

pair size is only by a factor 10 larger than the lattice678

constant (see e.g. Fig. 3). Thus we expect that future679

investigations of properties of Coulomb electron pairs680

at finite density will bring new insights in cuprate type 681

superconductivity. Finally, the Cooper pairs were also 682

first studied only for two electrons [16]. 683

Acknowledgements This work has been partially sup- 684

ported through the grant NANOX No ANR-17-EURE- 685

0009 in the framework of the Programme Investissements 686

d’Avenir (project MTDINA). This work was granted access 687

to the HPC resources of CALMIP (Toulouse) under the allo- 688

cation 2020-P0110. 689

Data Availability Statement This manuscript has data 690

included as electronic supplementary material. The online 691

version of this article contains supplementary material, 692

which is available to authorized users. 693

A Appendix 694

In this appendix we present the derivation of the block 695

Hamiltonian (11) and a more detailed discussion about its 696

discrete symmetries. In order to simplify the notations, we 697

will use here the full set A′ = A ∪ (−A) of neighbor vectors 698

(in the full and not only half plane) for the summation over 699

the vectors a which allows to reduce the number of terms 700

in the following expressions. The TIP Hamiltonian (5) can 701

then be written in a more explicit form as: 702

H = −
�

r1,r2

�

a∈A′

ta
�
|r1, r2��r1 + a, r2| + |r1, r2��r1, r2 − a|

�
703

+
�

r1,r2

Ū(r2 − r1)|r1, r2��r1, r2| (13) 704

where for convenience we have written “r2 − a” instead of 705

“r2+a” (in the second term of the first line) since for a ∈ A′
706

also −a ∈ A′. Furthermore, the terms with shifts of a in the 707

left side have been absorbed by the increased set A′ (with 708

respect to A used in (1)) combined with a subsequent shift 709

of the summation index r1 or r2 and exploiting the periodic 710

boundary conditions. 711

Applying (13) to a block basis state (10) we find that: 712

H|p+, Δr� = −
1

N

�

r1

�

a∈A′

ta
�

|r1 − a, r1 + Δr� 713

×eip+·(r1+Δr/2)
714

+|r1, r1 + Δr + a� eip+·(r1+Δr/2)
�

715

+Ū(Δr)|p+, Δr�. (14) 716

Using the shift r1 → r1 + a in the r1-sum of the first line 717

of this expression we obtain: 718
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H|p+, Δr� = −
1

N

�

r1

�

a∈A′

ta
�

|r1, r1 + Δr + a�719

×eip+·(r1+a+Δr/2)
720

+|r1, r1 + Δr + a� eip+·(r1+Δr/2)
�

721

+Ū(Δr)|p+, Δr� (15)722

which can be rewritten as:723

H|p+, Δr� = −
1

N

�

r1

�

a∈A′

ta |r1, r1 + Δr + a�724

× eip+·[r1+(Δr+a)/2]
�

eip+·a/2 + e−ip+·a/2
�

� �� �

2 cos(p+·a/2)

725

+Ū(Δr)|p+, Δr�726

= −2
�

a∈A′

ta cos(p+ · a/2) |p+, Δr + a�727

+Ū(Δr)|p+, Δr� . (16)728

The last expression provides exactly the effective block729

Hamiltonian (11) if we replace the sum over a ∈ A′ by a730

sum over a ∈ A with two contributions “+a” and “−a”731

and applying for the latter contribution a subsequent shift732

Δr → Δr + a in the Δr sum. However, there is one addi-733

tional complication if Δr + a = (Δx + ax, Δy + ay) in734

(16) leaves the initial square of Δx, Δy ∈ {0, . . . N − 1}.735

Then we have to add (subtract) N to (from) Δx + ax736

and/or Δy + ay which provides according to (10) the factor737

e±ip+x
N/2 = e±iπl+x = (−1)l+x (for Δx and similarly for738

Δy) resulting in either periodic or anti-periodic boundary739

conditions in x- (y-)direction depending on the parity of the740

integer index l+x (l+y).741

We close this appendix with a short discussion about the742

discrete reflection symmetries of the block Hamiltonian (11)743

and the possibility to reduce its effective matrix size N 2
744

due to such symmetries. For the NN-model, as already dis-745

cussed in detail in [12], there are at least two symmetries746

with respect to Δx → N − Δx (reflection at the Δy-axis)747

or Δy → N − Δy (reflection at the Δx-axis) and in case748

if p+x = p+y there is a third symmetry with respect to749

Δx ↔ Δy (reflection at the Δx-Δy diagonal) which allows750

for an effective matrix size of roughly either N 2/4 or N2/8751

(if p+x = p+y).752

However, for a more general lattice, such as the HTC-753

model, or more generally in presence of at least one neigh-754

bor vector a = (ax, ay) with both ax �= 0 and ay �= 0755

(e.g. a = (1, 1)) the number of symmetries is reduced.756

For the most generic case with p+x �= p+y, p+x �= 0 and757

p+y �= 0 there is only one symmetry corresponding to758

particle exchange with two simultaneous transformations759

Δx → N −Δx and Δy → N −Δy which allows for a reduc-760

tion of the effective matrix size to ≈ N2/2. In this case the761

factors cos(p+ ·a/2) = cos[(p+xax +p+yay)/2] appearing in

the effective hopping amplitudes are not modified because 762

the replacement a → −a due the symmetry transformation 763

only changes the global sign inside the cosine argument. 764

However, this is no longer true if we apply for example the 765

transformation Δx → N −Δx without modifying Δy which 766

is equivalent to the replacement of (ax, ay) → (−ax, ay) of 767

the neighbor vectors. Therefore a single reflection at the 768

Δy (or Δx) axis modifies the hopping amplitude (if both 769

ax �= 0, ay �= 0 and also both p+x �= 0, p+y �= 0) and (11) is 770

(in general) not invariant with respect to such transforma- 771

tions. However, if either p+x = 0 or p+y = 0 the effective 772

hopping amplitudes are not modified with respect to these 773

two individual reflections and we have two symmetries with 774

an effective matrix size of ≈ N2/4. Also if p+x = p+y �= 0 775

we have two symmetries (particle exchange and reflection 776

at the Δx-Δy diagonal) leading also to an effective matrix 777

size of ≈ N2/4. Finally, for the special case p+x = p+y = 0, 778

we have even three symmetries (as in the NN-Model for 779

p+x = p+y) with effective matrix size of ≈ N2/8. 780
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