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ABSTRACT

We study numerically and analytically the behavior of classical Yang–Mills color fields in a random one-dimensional potential described by
the Anderson model with disorder. Above a certain threshold, the nonlinear interactions of Yang–Mills fields lead to chaos and deconfinement
of color wavepackets with their subdiffusive spreading in space. The algebraic exponent of the second moment growth in time is found to
be in the range of 0.3–0.4. Below the threshold, color wavepackets remain confined even if a very slow spreading at very long times is not
excluded due to subtle nonlinear effects and the Arnold diffusion for the case when initially color packets are located in close vicinity. In the
case of large initial separation of color wavepackets, they remain well confined and localized in space. We also present the comparison with
the behavior of the one-component field model of discrete Anderson nonlinear Schrödinger equation with disorder.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0057969

The spacial dynamics of classical Yang–Mills color fields in a
disorder potential is investigated. The nonlinear interactions of
colors are characterized by a certain interaction constant. It is
shown that for the constant being above a chaos threshold, there
is a deconfinement of color packets with a subdiffusive spreading
in space. Below the threshold, color wavepackets remain confined
in space for extremely large times. For initially separated color
packets, the interactions drop exponentially with the separation
so that the packets are confined due to the phenomenon of Ander-
son localization of quantum waves in a disorder potential. It is
argued that this system captures generic features of interacting
nonlinear oscillators with disordered frequencies distributed in
space.

I. INTRODUCTION

Yang–Mills (YM) gauge fields were introduced1 for an
isotropic-invariant description of strong interactions. The inves-
tigation of properties of these fields still remains an interesting
and important problem. The studies of classical YM fields are
also important for applications in solving several problems of

quantization.2,3 The classical dynamics of these fields is essen-
tially nonlinear and nontrivial. Its analysis is rather important for
semiclassical description of strong YM vacuum fluctuations.4–7

Thus, the investigation of nonlinear dynamics and time evolution
of classical YM fields represents a relevant topic.

An important class of classical YM models was introduced in
Ref. 8, where the YM fields are homogeneous in space so that the
time evolution is described only by nonlinear dynamics of inter-
acting colors. In general, this Hamiltonian dynamics of color YM
fields was shown to be chaotic9–11 even if certain integrable solu-
tions also exist. Thus, the YM dynamics belongs to a generic class
of chaotic Hamiltonian systems with divided phase space with small
integrability islands embedded in a chaotic sea.13,14 Even if impor-
tant mathematical results have been obtained for chaotic dynamics
(see, e.g., Refs. 15 and 16), the properties of chaos with such a
divided phase space, composed of integrable islands surrounded by a
chaotic component, still remain very difficult for mathematical anal-
ysis. The existence of chaos of classical homogeneous YM fields has
been reported already some time ago,8–11 but still these YM fields
and related models attract the attention of researchers (see, e.g.,
Refs. 17–19).

The above dynamics of YM color fields can be reduced
to a rather simple Hamiltonian, for which NC = 2, 3
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colors reads

H =
NC
∑

µ=1

(pµ
2 + mxµ

2)/2 + β
∑

µ′ 6=µ

xµ′ 2xµ
2/2, (1)

where (pµ, xµ) are the effective conjugated momentum and coordi-
nate, color index is µ = 1, . . . , NC, m is the mass, which is zero or
finite in the presence of Higgs mechanism, and β determines the
strength of nonlinear interactions of colors. The derivation of these
models and their properties are described in detail in Refs. 8–12. An
interesting feature of the finite mass case (e.g., m = 1 in dimension-
less units used here) is that the measure of chaos remains finite and
large (about 50%) even in the limit of very weak nonlinearity β → 0
since the Kolmogorov–Arnold–Moser (KAM) theorem14 is not valid
when all color masses (or oscillator frequencies) are the same.11

To date, the classical dynamics of YM colors was analyzed for
fields that are homogeneous in space. Here, we consider the case of
space nonhomogeneous fields. In particular, we study the spreading
of such YM fields in space in the presence of random (or disor-
der) potential, which corresponds to another generic limiting case
of space properties. Such a disorder corresponds to random prop-
erties of vacuum in Quantum Chromodynamics (QCD) discussed
in Refs. 20–23. It is well known that in quantum mechanics, a ran-
dom potential may lead to a localization of probability spreading
due to quantum interference effects. This phenomenon is known as
the Anderson localization24 and plays an important role for electron
transport in solid-state systems with disorder.25–27 The eigenstates of
such a system are exponentially localized in one and two dimensions
(1D and 2D) while in three dimensions (3D), a delocalization transi-
tion takes place at a disorder below a certain threshold (see, e.g., the
review of Ref. 27).

The effects of nonlinearity on Anderson localization in 1D
lattice were investigated in Ref. 28, where it was shown that the
localization is preserved at weak nonlinearity while above a cer-
tain threshold, a subdiffusive spreading over the whole lattice takes
place. The detailed numerical studies of this phenomenon in Dis-
ordered Anderson Nonlinear Schrödinger Equation (DANSE) have
been reported in Refs. 29–32, and the results of different groups
were reviewed in Refs. 33 and 34. The subdiffusive spreading has
been studied for various nonlinear models in 1D and 2D (see,
e.g., Refs. 35–39). Thus, spreading continuing up to enormously
long times t ∼ 2 × 1012 (expressed in map iterations) was reported
for a 1D nonlinear map model.38 The interest of nonlinear effects
for Anderson localization is also supported by related experimen-
tal studies of wave propagation in disordered nonlinear media40,41

and spreading of Bose–Einstein cold atom condensates in optical
lattices42,43 described by the Gross–Pitaevskii equation.

All of the above investigations of packet spreading in a ran-
dom potential with nonlinearity have been done for one-component
nonlinear field of DANSE with nonlinear self-interaction (see, e.g.,
Ref. 30, 33, and 34). The case of YM color dynamics is different
since nonlinearity appears only due to interactions of color com-
ponents. In fact, possible implications of randomness, dynamical
chaos, Anderson localization, and confinement have been discussed
in Refs. 21 and 22. The deconfinement transition in QCD at finite
temperature is also under active investigation (see, e.g., Refs. 44–46,
and references therein). Here, we find that under certain conditions,

the nonlinear interaction of YM colors leads to deconfinement of
YM fields and their unlimited subdiffusive spreading in space. In the
case of weak nonlinearity or spacial separation of YM color compo-
nents, the Anderson localization is preserved and color fields remain
localized in space. We hope that the obtained results may be of
interest for the deconfinement phenomenon of quantum YM fields,
which attracts significant interest.

This paper is organized as follows: in Sec. II, we give the system
description; the numerical and analytical results are given in Sec. III;
and discussion of results is given in Sec. IV.

II. MODEL DESCRIPTION

A. DANSE

We start with a brief description of the DANSE model stud-
ied in Refs. 30 and 33–35. The wavefunction evolution of DANSE is
described by the equation

i~
∂ψn

∂t
= Enψn + β| ψn |2ψn + V(ψn+1 + ψn−1). (2)

Here, β determines nonlinearity strength, V gives near-neighboring
hopping matrix element, on-site disorder energies are randomly
distributed in the range −W/2 < En < W/2, and the total proba-
bility is conserved and normalized to unity

∑

n | ψn |2 = 1. Thus, W
determines the strength of disorder. For β = 0, all eigenstates are
exponentially localized with |ψ | ∝ exp(−|n − n0|/`) and localiza-
tion length is ` ≈ 96(V/W)2 at the energy band center and weak
disorder.47 Here, n0 marks a center of wavefunction. We consider a
case of relatively weak disorder with ` > 1. For convenience, we set
~ = V = 1 so that the energy coincides with the frequency.

Above a certain threshold β > βc, the nonlinearity leads
to a destruction of localization with a subdiffusive spreading of
wavepacket width1n = n − n0,

σ = 〈(1n)2〉 ∝ tα , (3)

where brackets mark averaging over wavefunction at time t and α
is the subdiffusion exponent. The numerical simulations give its
value being in the range of 0.3 ≤ α ≤ 0.4. Certain analytical argu-
ments were given for values α = 0.428,30,35 and α = 1/3 (see Ref. 32,
review of Ref. 34, and references therein). An introduction of ran-
domness in eigenstate phases of linear problem produces spreading
with α = 0.5 (see Refs. 34 and 48, and references therein). Indeed, an
increase of dephasing, modeled by an increase of number of driving
frequencies, leads to a growth of α approaching the value α = 0.5.37

It is difficult to give an exact estimate of the threshold value
βc. The numerical results show that at β = 0.1, 0.03, the wavepacket
square width σ remains bounded without a significant increase up
to times t = 108.30 However, it is possible that some type of Arnold
diffusion along tiny chaotic layers13,14,49 may lead to a very slow
spreading of a very small wavepacket fraction. It should be pointed
that the Anderson localization is characterized by a pure-point dense
spectrum and its perturbation by nonlinearity represents a very dif-
ficult problem for mathematical analysis. A reader can find some
mathematical results for this problem reported in Refs. 50 and 51.

A surprising feature of unlimited spreading at β > βc is that
with growth of 1n, the relative local contribution of nonlinear
term in (2) decreases as β|ψ |2 ∼ β/1n ∝ β/tα/2 and on a first
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glance, it seems that nonlinearity becomes weaker and weaker with
time. In Ref. 28, it was argued that even being small this term
gives a local nonlinear frequency spreading δω ∼ β/1n, which at
β > βc ∼ 1 remains larger than the typical spacing 1ω ∼ 1/1n
between frequencies of linear eigenmodes populated due to subd-
iffusive spreading of wavepacket at time t. As soon as δω > 1ω, the
spectrum of motion remains continuous and thus the spreading can
continue unlimitedly in time. However, a better understanding of
such unlimited spreading is still highly desirable.

B. YM color models

In a similarity with dynamics of homogeneous YM fields
described by Hamiltonian (1) and DANSE (2), we model the dynam-
ics of YM color fields in a potential by the nonlinear Schrödinger
equation

i
∂ψµ

n

∂t
= Enψ

µ
n + β





∑

µ′ 6=µ

| ψµ′
n |

2



ψµ
n + (ψ

µ

n+1 + ψ
µ

n−1). (4)

Here, µ = 1, . . . , NC is the color index changing from 1 to 2 for
two YM colors NC = 2 or from 1 to 3 for three colors NC = 3. We
denote these two cases as YMCA2 and YMCA3, respectively (with
A for agent and YMCA for Yang–Mills Color Model Agent). At
zero nonlinearity β = 0, each color evolution is described by 1D
Anderson model with the same disorder En for all colors and being
the same as in (2). In the absence of hopping to nearby sites and
all energies En being equal, we have the dynamics of color fields
described by equations similar to those for the homogeneous YM
fields from Hamiltonian (1). We do not provide a mathematical
derivation of Eq. (4) but we argue that they capture important phys-
ical effects: Anderson localization in a random potential for linear
waves without color interactions, lattice description of propagation
in space often used in QCD lattices, color interactions are the same
as for homogeneous YM fields, and a similar lattice description is
used in DANSE to model effects of disorder for the Gross–Pitaevskii
equation. Thus, we consider Eq. (4) as a realistic model of the
evolution of classical YM color fields in a disorder potential.

Here, we consider the cases with only two or three colors stud-
ied previously for homogeneous YM fields. In principle, Eq. (4) can
also describe a model with four colors by extending the summation
over µ index up to NC = 4. This may be useful for investigations
of various mathematical models of supersymmetric YM theory (see,
e.g., Ref. 52, and references therein).

We discuss some generic properties of YM dynamics (4) in
Secs. III and IV. The numerical results are presented in Sec. III.

As for DANSE, the evolution of YM fields (4) has the energy
conservation, and also the probability is conserved for each com-
ponent normalized to unity

∑

n | ψµ
n |2= 1. The numerical simula-

tions of DANSE and Klein–Gordon nonlinear (KGN) model with
disorder (see Refs. 34, 36, and 53, and references therein) show that
the exponent α is approximately the same in these two models even
if only energy is conserved in the KGN case. Thus, we also expect
that the probability conservation for each color component will not
affect the spreading exponent α. Indeed, the number of degrees of
freedom in (4) is given by the number of lattice sites multiplied by

NC, which is much larger than the number of integrals NC + 1 of
energy and component probabilities.

From the structure of YM equation (4), we can make certain
direct observations. First, it is possible to consider the symmetric
case when initially all color components ψµ

n are the same. Then,
their evolution is described by the DANSE Eq. (2) with some rescal-
ing of β for NC = 3. However, since the field evolution is chaotic,
this solution is unstable and small corrections to this symmetric
state grow exponentially with time so that this symmetry is com-
pletely destroyed very rapidly. Still such a symmetric case allows us
to expect that the spreading exponent α will have a value similar to
those found for DANSE. As for DANSE, we expect that YM fields
remain confined or localized below a certain chaos threshold with
β � βc ∼ 1. In spite of this possible similarity between DANSE and
YMCA models, there are two important differences between them.
Thus, if initially color wavepackets are located far from each other
with a typical distance between them, with RC being significantly
larger than the localization length ` of the linear case (Rc � `),
then an effective interaction between colors becomes exponentially
small βeff ∝ β exp(−2RC/`) so that we have βeff � βc ∼ 1. Thus, we
expect that such initial states will remain exponentially localized or
confined for all times. Another new element of YMCA, compared to
DANSE case, is that the eigenenergies εm of linear problem eigen-
modes at β = 0 are the same for all colors. Thus, for one site and
three colors, we have a dynamics that is very similar to those of
Higgs case with finite mass (1) studied in detail in Ref. 11. Due to this
degeneracy, the KAM theorem cannot be applied to this system and
the measure of chaos remains about 50% even in the limit of non-
linearity going to zero.11 However, the initial wavepackets of colors
should populate the same linear eigenmodes (this requires RC < `).
Such a situation also generally appears in other nonlinear systems
with many degrees of freedom.54 Since in YMCA at NC = 3 [Eq.
(4)], there are many eigenenergies εm (linear frequencies) that are
the same; we expect that there are many initial configurations when
colors are initially located at a distance Rc ∼ ` and their dynamics
remains chaotic even for very small nonlinearity β → 0. However, a
question about the spreading of such chaos over lattice sites remains
open.

III. NUMERICAL RESULTS FOR TIME EVOLUTION OF

YM COLORS

Following the approach used in Ref. 30, the numerical integra-
tion of Eqs. (2) and (4) is done by the Trotter decomposition with a
time step1t = 0.05 and the total number of sites N = 1001 for each
color with the fast Fourier transform from coordinate to momen-
tum representation and back. This integration scheme is symplectic
and conserves probability exactly. Its efficiency has been confirmed
by various numerical simulations (see, e.g., Refs. 30 and 33–35). We
checked that the variation of system size N and integration time step
1t does not affect the results. Usually, as in Refs. 30, 33, and 35,
we used initial conditions with a population of one or a few nearby
sites for each color and energy being in the middle of a linear energy
band.

The properties of the above integration scheme had been
discussed in detail in Refs. 30, 33, and 35. It exactly preserves
the probability thus being symplectic. The energy of the system,
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which is also an exact integral of (4), is preserved with an accu-
racy of 1%. On a first glance, the accuracy seems to be not so
high but there is an important physical argument behind, which
we illustrate on an example of such an integration scheme (also
known as the Euler or Trotter scheme) for pendulum Hamiltonian
H = p2/2 − cos x. Indeed, for a pendulum, this symplectic integra-
tion leads to the Chirikov standard map with a chaos parameter
K = (1t)2 = 2.5 × 10−3. From the properties of this map,13,14 it is
known that the main part of the phase space remains integrable
with the invariant curves being only slightly deformed compared
to the case of the pendulum. The chaos remains only in a tiny
chaotic layer around a separatrix of resonances. For the main res-
onance, its width in frequency is approximately13 δωs1t = δp1t ≈
(32π 2/K) exp(−π 2/

√
K) ∼ 10−80, thus being enormously small for

K = (0.05)2. We think that this physical argument well justifies the
integration scheme used in our simulations here and in Refs. 30, 33,
and 35.

We present here the results mainly for a typical disor-
der strength W = 4 and nonlinearity values β = 0, 1, 2, 4. The
spreading of color probabilities is characterized by the squared
wavepacket width at different times defined as σ1 = 〈n2

1〉 − 〈n1〉2 for

DANSE, σ1 =
∑NC

µ=1

(

〈n2
µ〉 − 〈nµ〉2〉

)

/NC for YMCA2 and YMCA3,

relative square moments σ2 =
〈

(n1 − n2)
2
〉

for YMCA2, and σ2

=
[〈

(n1 − n2)
2
〉

+
〈

(n1 − n3)
2
〉

+
〈

(n2 − n3)
2
〉]

/3 for YMCA3. Here,
brackets mark the average over wavefunction. The results are also
averaged over 20 disorder realizations.

A. Deconfinement and subdiffusive spreading of YM

colors

The time dependence of second moments σ1 for DANSE and
YMCA3 models is shown in Fig. 1 for different values of β and disor-
der W = 4. At such a disorder and β = 0, the wavepacket spreads on
approximately 1n ≈ 7 sites in agreement with the theoretical value
of the localization length ` = 96/W2 = 6. In the presence of non-
linear interactions, there is a subdiffusive spreading of wavepacket,
which is somewhat stronger for YMCA3 compared to the DANSE
case. The time evolution of the second moment σ2 for YMCA3 case
is shown in Fig. 2 for the same values of β as in Fig. 1. The growth
of both moments σ1 and σ2 is very similar. This means that the
color packets spread in such a way that they remain close to each
other so that their effective interactions allow us to make correlated
joint transitions over localized eigenstates of the Anderson model at
β = 0. It is clear that interactions of colors lead to deconfinement of
YM fields with the unlimited subdiffusive spreading over the whole
lattice. The growth of moments σ1, σ2 for the YMCA2 case is very
similar to those of YMCA3 and we do not show it here (but the
obtained exponents α are discussed below for both cases).

In Fig. 3, we show directly the probability distribution over lat-

tice sites w(n) =
∑NC

µ=1 | ψµ
n |2/NC at different moments of time for

YMCA3 case with β = 2. There is a formation of quasi-plateau dis-
tribution of size1n growing with time. Outside of plateau, there are
probability tails that drop exponentially with the site number that
corresponds to exponentially localized Anderson modes of linear
problem.

FIG. 1. Time evolution of the second moment σ1 of the probability distribution,
defined in the text, for YMCA3 model with three colors [Eq. (4)] (solid curves)
and the DANSE model [Eq. (2)] (dashed curves) at β = 0 (black curves), β = 1
(red curves), β = 2 (green curves), and β = 4 (blue curves) atW = 4. At initial
time, the three color packets are located at three different sites at n = −1, 0, 1 for
YMCA3; for DANSE, the initial probability is at n = 0. The average is done over 20
random realizations of disorder and over logarithmic equidistant intervals of time;
a typical error bar from these 20 realizations at a given time is δσ1/σ1 = 0.124
at t = 107 and β = 4.

The distributions w(n) at largest reached time t = 107 and dif-
ferent values of nonlinearity β are shown in Fig. 4. The width of the
above quasi-plateau size 1n increases with β being approximately
1n ≈ 220, 320, 440 for β = 1, 2, 4, respectively (1n is defined as a
size at which an average probability drops by a factor 10 compared
to the center). These 1n values are much larger than the Ander-
son localization length ` ≈ 6. Also, the corresponding nonlinear
frequency width 1ω ∼ 1/1n � 1/` becomes significantly smaller
than a typical frequency spacing between modes inside localization

FIG. 2. Same as in Fig. 1 but for the second moment σ2 of the probability
distribution for the YMCA3 model defined in the text.
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FIG. 3. Probability distributions w(n) =
∑NC

µ=1 | ψµ
n |2 /NC for the YMCA3

model (NC = 3, β = 2, W = 4) are shown at times t = 103 (black curve),
t = 105 (red curve), and t = 107 (blue curve); probabilities are averaged over
20 disorder realizations.

length `. Due to these reasons, we can argue that the numerical
results show an asymptotic spreading of wavepacket of YM colors.

The comparison of probability distributions for DANSE,
YMCA2, and YMCA3 models is shown in Fig. 5 for fixed β , W, and
t = 107. The most broad spreading corresponds to YMCA3 case.
This is in a qualitative agreement with an expectation that, similar to
Hamiltonian (1), there is an exact degeneracy of linear color eigen-
modes so that here chaos is present even in the limit of very small
β similar to the situation discussed in Refs. 11 and 54 (of course,
this assumes that the initial state has a close location of three colors
so that degenerate linear modes are well populated; see discussion
below).

FIG. 4. Same as in Fig. 3 but all distributions w(n) of YMCA3 are shown at time
t = 107 for β = 0 (black curve), β = 1 (red curve), β = 2 (green curve), and
β = 4 (blue curve); probabilities are averaged over 20 disorder realizations.

FIG. 5. Probability distributions w(n) are shown for DANSE (black curve),
YMCA2 (red curve), and YMCA3 (blue curve) at β = 2,W = 4, and t = 107;
probabilities are averaged over 20 disorder realizations.

According to the results of Figs. 1 and 2, the growth of σ1, σ2 at
large times is well described by an algebraic function of time with
the exponent α. The values of α, obtained from the fit for time
range 100 ≤ t ≤ 107, are given in Table I for DANSE, YMCA2, and
YMCA3 models. For DANSE at β = 1, the obtained value of α is a
bit smaller than the one reported in Ref. 30 with α = 0.306 ± 0.002.
We attribute this difference to a different number of realizations and
the longer time range used in Refs. 30. We also should note that the
spreading is rather slow in time and thus very long time simulations
and a large number of realizations are required to obtain accurate
values of α. Formal statistical errors reported here and in Ref. 30
are relatively small but the contribution of certain systematic effects,
related to slow transitions between localized linear modes, may give
more significant corrections to formal statistically averaged α values.
From Table I, we see a moderate increase of α for higher β values.
We also find that YMCA3 and YMCA2 models have a moderately
higher values of α compared to DANSE case. We attribute this to
a stronger chaos for YM colors compared to DANSE. Indeed, YM
colors have additional color degrees of freedom that are supposed
to generate a stronger chaos, thus facilitating deconfinement and
spreading of YM fields. However, due to the above points related to a
slow spreading process, further more advanced studies are required
to firmly state if α is independent, or not, of β , W, and the number
of colors NC.

We also did other checks by using another independent sets of
random realizations for specific parameter values (e.g., β = 2 and
3 colors). Thus, as an example, for such a set, the fit of the subdif-
fusive speading of σ1 for the same time range 100 < t ≤ 107 gives
the exponent α = 0.361 ± 0.010, which is well in agreement with
the corresponding value in Table I. This gives a confirmation that α
values are statistically reliable in a given time range.

B. Confinement and localization of YM colors

Above, we discussed the cases with moderate strength of
interactions of colors given by β . It is natural to expect that at
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TABLE I. Exponent α of growth of second moments σ 1,2 ∝ tα for DANSE, YMCA2,

and YMCA3 models at different values of nonlinearity β atW = 4; the values of expo-

nent are obtained by a fit in the time interval 2≤ log 10 t≤ 7 for data averaged over 20

disorder realizations; initial states have colors located close to each other withRC = 1.

α

β DANSE YMCA2 YMCA3

1 0.26 ± 0.02 0.297 ± 0.020 0.316 ± 0.010
2 0.317 ± 0.010 0.327 ± 0.020 0.363 ± 0.010
4 0.371 ± 0.020 0.378 ± 0.020 0.406 ± 0.010

small β � βc ∼ 1 Anderson localization is preserved and fields
remain localized in space. Indeed, the numerical results reported
for DANSE30 indicate that localization is preserved at small
β = 0.1, 0.03. At the same time, we note that in this limit, the effects
of slow processes like Arnold diffusion13,49 are still possible with a
very slow spreading of a very small fraction of probability via tiny
chaotic layers. The mathematical results are not able to clarify the
behavior in this regime (see, e.g., Refs. 50 and 51).

For the YMCA3 case, at such small values of nonlinearity
β = 0.1, 0.03, we show the time dependence of the second moment
σ1 in Fig. 6. Here, the second moment σ1 remains substantially
smaller compared to β = 1, 2, 4 cases shown in Fig. 1. However, a
slow increase of σ1 at very large times t > 105 is not excluded. We
attribute this to a degeneracy of linear eigenmodes which, similar
to the case of YMCA3 Hamiltonian (1), leads to a high fraction of
chaotic phase space even for β → 0, as discussed in Refs. 11 and 54
for three colors [we note that for Hamiltonian with two colors (1),
there is no chaos in the limit of small β but only a significant energy
exchange between two colors11]. Thus, a slow spreading at very large
times for YMCA3 case may take place due to frequency degener-
acy present for color fields initially located on a distance RC < `.
The effect of very slow Arnold diffusion13,49 can also be present for a
small fraction of global probability.

The interesting point is that the above exact frequency degener-
acy is present only if initial color packets are close to each other. In
the opposite case with their initial significant separation on a dis-
tance RC � `, the effective nonlinear interactions between colors
drop exponentially with RC due to the localization of linear eigen-
modes. In addition, the frequencies of eigenmodes populated for
such packets with large separation RC � ` and statistically different
and have no exact degeneracy in contrast to the case with RC < `.
Thus, for RC � `, we argue that this case corresponds to a very small
effective interactions with βeff ∝ β exp(−2RC/`) � 1 and that the
color YM fields remain confined and localized. This is confirmed
by the results shown in Figs. 7 and 8, where we compare the close
and distant location of initial color packets. We have clear decon-
finement and spreading for RC = 1 (for W = 8, β = 2, and Rc = 1,
the fit gives α = 0.30 ± 0.02 which smaller than the value at W = 4
in Table I). In contrast, for RC � `, there is confinement and local-
ization of YM color fields. The increase of disorder strength from
W = 4 in Fig. 7 to W = 8 in Fig. 8 gives at RC = 250 a strong
enhancement of localization of color YM fields. For distant initial

FIG. 6. Time evolution of the second moment σ1 of the probability distribution
defined in the text for the YMCA3 model with three colors for β = 0.1 (black
curve) and β = 0.03 (red curve) at W = 4. At the initial time, the three color
packets are located at three different sites n = −1, 0, 1. The results are shown
for ten disorder realizations and logarithmic equidistant intervals of time.

positions of color fields RC = 250, the second moment σ1(t) shows
absolutely no growth with time as it is shown in Fig. 9.

It is interesting to note that the situation with localiza-
tion–delocalization of color YM fields reminds those of a quantum
problem of two interacting particles coherently propagating in a dis-
order potential and being localized if separated by a distance being
larger than a one-particle localization length (see, e.g., Refs. 55–57).

C. Simple estimates for spreading exponent of YM

colors

Here, we present simple estimates for the spreading exponent
α of the second moment growth σ1,2 ∝ tα . Following the approach
described in Refs. 28 and 35, it is useful to rewrite Eq. (4) on the basis
of eigenstates of the linear system at β = 0. The transformation from
lattice representation to eigenstate basis reads ψµ

n =
∑

m Qµ
nmCµm for

each color µ. Then, the time evolution Eq. (4) takes the form

i
∂Cµm
∂t

= εmCµm + β
∑

µ′ 6=µ

∑

m1m2m3

Uµ′
mm1m2m3

Cµm1
Cµ

′∗
m2

Cµ
′

m3
, (5)

where εm are the eigenenergies of a linear system, which is the same
for all colors. The transitions between linear eigenmodes take place
only due to the nonlinear β-term with the transition matrix elements

Uµ′
mm1m2m3

=
∑

n (Q
µ
nm)

−1Qµ′
nm1
(Qµ′

nm2
)
∗
Qµ

nm3
. Due to the exponential

localization of linear eigenstates, the sum over each m-index in (5)
contains about ` terms.

In Ref. 28, it was argued that with an assumption that there
is a plateau of size 1n with random coefficients of approximately
equal amplitudes and random signs or phases and zero amplitudes
outside the plateau. Then, the population of states outside of plateau
should go with the rate0 ∼ |C|6 ∼ 1/(1n)3 on nearby sites on a dis-
tance `. This gives a diffusion rate D ∼ `20 ∼ `2/(1n)3 ∼ (1n)2/t
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FIG. 7. Probability distribution as a function of time t for the YMCA3 model at
β = 2 andW = 4; initial positions of three colors are n = −1, 0, 1 with RC = 1
(a); n = −250, 0, 250 with RC = 250 (b) for one disorder realization; the color
bar shows probability w(n) of YM color fields.

leading to the growth (1n)2 ∼ σ1,2 ∼ tα with the spreading expo-
nent α = 2/5.

There are also other types of arguments leading to the same
exponent α = 2/5. In fact, the time evolution of (5) represents the
nonlinear field dynamics involving many random frequency com-
ponents describing a continuous chaotic flow. The spreading 1n
in time is very slow and its Lyapunov exponent λ at given 1n
is given by the nonlinear frequency λ ∼ δω ∼ β/1n.28,35 It is well
established that for such a continuous chaotic flows with many fre-
quency components, the diffusion rate D is related to the Lyapunov
exponent λ, or typical nonlinear frequency δω, by the relation estab-
lished in Refs. 58 and 59: D ∼ λ3 ∼ (δω)3. This relation was well
confirmed for the Chirikov typical map which represents a generic
model of such continuous chaotic flows60 (see also recent work61).

FIG. 8. Same as in Fig. 7 but forW = 8.

Since for (5) we have δω ∼ β/1n, this gives us D ∝ 1/(1n)3

∝ (1n)2/t and thus the spreading exponent is α = 2/5, which is
in agreement with the estimate given at Ref. 28. We note that for
spreading in a disorder potential in higher dimension d > 1, this
approach gives the spreading (1n)2 = R2 ∼ tα with the exponent
α = 2/(3d + 2) with α = 1/4 for d = 2 (here, R is a 1D wavepacket
size).35

Another estimate of α, proposed in Ref. 48, is based on the
assumption that the transition rate is given by the Fermi golden rule
as in linear equations of quantum mechanics. This gives 0 ∝ |C|4
∼ 1/(1n)2 and leads to α = 1/2,

More complicated estimate arguments were pushed forward in
Ref. 34 leading to the value α = 1/3.

There are various physical arguments behind each of the esti-
mate described above. However, the time evolution of nonlinear
YM fields in the presence of a disorder is rather a complicated
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FIG. 9. Time dependence of σ1(t) for YMCA3 at β = 2 for the initial distance
between color positions: RC = 1 (full black curve for 20 disorder realizations
at W = 4 same as in Fig. 1); RC = 250 (dashed black curve for one disorder
realization at W = 4 same as in Fig. 7); RC = 1 (full red curve for 10 disorder
realizations atW = 8); RC = 250 (dashed red curve for one disorder realization
atW = 8 same as in Fig. 8).

problem. The obtained numerical values of the spreading exponent
are found to be approximately in the range of 0.3 ≤ α ≤ 0.4. Fur-
ther numerical studies are required, with longer time evolution and
larger number of disorder realizations, to determine more exactly
the exponent value.

D. Dynamical thermalization

The studies of DANSE showed that in lattices of finite size,
there is an emergence of dynamical thermalization with a ther-
mal distribution of probabilities over linear eigenmodes.53,62 This
dynamical thermalization appears in DANSE only for nonlinearity
β > βc. We expect that this phenomenon will also take place for the
YM models considered here. However, there is an important differ-
ence comparing to DANSE case: for YM models with a significant
distance separation between color components, an effective nonlin-
earity becomes below the chaos border and thermalization is absent.
We note that a thermalization in QCD is actively discussed in high
energy physics (see, e.g., Ref. 63). However, here the dynamical ori-
gins of thermalization are never considered. Of course, the QCD is
a purely quantum theory, in contrast to classical fields considered
here, but the dynamical thermalization in finite quantum systems
is now actively discussed in the field of quantum chaos and it is
shown that at weak interactions between quantum fields, there is no
thermalization (see, e.g., Ref. 64, and references therein). Thus, we
expect that the concepts of classical and quantum chaos can high-
light interesting research directions also for QCD as it happened to
be the case for the SYK model of quantum gravity (see Ref. 64).

E. YM color breathers?

The mathematical proof given in Ref. 65 guarantees that
nonlinear classical Hamiltonian lattices have generic solutions called

discrete breathers. They represent time-periodic nonlinear fields
localized, usually exponential, in space. Such breathers find a variety
of applications as discussed in Ref. 66. It was shown that breathers
exist also for the DANSE model with and without disorder.67,68 Usu-
ally the breathers appear at a strong nonlinearity of self-interacting
field that effectively creates a solution similar to an impurity energy
level outside of the energy band in quantum mechanics. For the YM
color fields (4), nonlinearity appears only due to interactions of dif-
ferent colors. We suppose that the breather solutions still can exist
for the YM color dynamics on a discrete lattice. However, the verifi-
cation of this conjecture requires further studies that are outside of
the scope of this work.

IV. DISCUSSION

The dynamics of classical homogeneous Yang–Mills color
fields and their chaotic properties have been investigated and well
understood about two decades ago (see, e.g., Refs. 8–11). Here, we
analyzed the spacial aspects of classical YM color fields and proper-
ties of their propagation in disorder potential in 1D. In the absence
of interactions of YM fields, the color wavepackets are confined and
exponentially localized by disorder similar to the Anderson localiza-
tion of electron transport induced by disorder.24–27 The interactions
of YM fields lead to the deconfinement of colors, which, above a
certain interaction threshold, spreads subdiffusively over the whole
disordered lattice. The exponent of this algebraic spreading is found
to be approximately in the range of 0.3 < α < 0.4, which is simi-
lar to the value found for the DANSE model28,30,34 and observed in
experiments on cold atoms Bose–Einstein condensate spreading in
a disordered optical lattices.43 Compared to the DANSE model, we
show that YM color fields can be deconfined and delocalized only
when the color components remain close to each other. In contrast,
separated color wavepackets remain confined and localized by the
disorder. Of course, the QCD theory is a theory of purely quan-
tum fields, whereas here we studied dynamics of classical nonlinear
fields. However, we expect that the obtained results for classical YM
color field dynamics in a disorder potential will also be useful for
solving the problem of YM fields deconfinement in the full quantum
problem.

ACKNOWLEDGMENTS

This research has been partially supported through Grant
NANOX No. ANR-17-EURE-0009 (Project MTDINA) in the frame
of the Programme des Investissements d’Avenir, France.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

REFERENCES
1C. N. Yang and R. L. Mills, “Conservation of isotopic spin and isotopic gauge
invariance,” Phys. Rev. 96, 191 (1954).
2A. M. Polyakov, “Particle spectrum in quantum field theory,” Pis’ma Zh. Eksp.
Teor. Fiz. 20, 430 (1974) [JETP Lett. 20, 194 (1974)].
3A. M. Polyakov, “Isomeric states of quantum fields,” Zh. Eksp. Teor. Fiz. 68, 1975
(1975) [Sov. Phys. JETP 41(6), 988 (1976)].

Chaos 31, 093106 (2021); doi: 10.1063/5.0057969 31, 093106-8

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1103/PhysRev.96.191


Chaos ARTICLE scitation.org/journal/cha

4A. M. Polyakov, “Compact gauge fields and the infrared catastrophe,”
Phys. Lett. B 59, 82 (1975).
5A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Y. S. Tyupkin, “Pseudoparticle
solutions of the Yang-Mills equations,” Phys. Lett. B 59, 85 (1975).
6A. I. Vainstein, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, “ABC of
instantons,” Sov. Phys. Usp. 25, 195 (1982).
7D. M. Ostrovsky, G. W. Carter, and E. V. Shuryak, “Forced tunneling and turning
state explosion in pure Yang-Mills theory,” Phys. Rev. D 66, 036004 (2002).
8S. G. Matinyan, G. K. Savvidi, and N. G. Ter-Arutunyan-Savvidi, “Classical
Yang-Mills mechanics. Nonlinear color oscillations,” Zh. Eksp. Teor. Fiz. 80, 830
(1981) [Sov. Phys. JETP 53(3), 421 (1981)].
9B. V. Chirikov and D. L. Shepelyanskii, “Stochastic oscillations of classical Yang-
Mills fields,” Pis’ma Zh. Eksp. Teor. Fiz. 34(4), 171 (1981) [JETP Lett. 34, 163
(1981)].
10S. G. Matinyan, G. K. Savvidi, and N. G. Ter-Arutyunyan-Savvidi, “Stochas-
ticity of classical Yang-Mills mechanics and its elimination by using the Higgs
mechanism,” Pis’ma Zh. Eksp. Teor. Fiz. 34(11) 613 (1981) [JETP Lett. 34, 590
(1981)].
11B. V. Chirikov and D. L. Shepelyanskii, “Dynamics of some homogeneous mod-
els of classical Yang-Mills fields,” Yad. Fiz. 36, 1563 (1982) [Sov. J. Nucl. Phys.
36(6), 908 (1982)].
12T. S. Biro, S. G. Matinyan, and B. Muller, Chaos and Gauge Field Theory (World
Scientific Publishing, Singapore, 1994).
13B. V. Chirikov, “A universal instability of many-dimensional oscillator sys-
tems,” Phys. Rep. 52, 263 (1979).
14A. Lichtenberg and M. Lieberman, Regular and Chaotic Dynamics (Springer,
New York, 1992).
15V. Arnold and A. Avez, Ergodic Problems in Classical Mechanics (Benjamin,
New York, 1968).
16I. P. Cornfeld, S. V. Fomin, and Y. G. Sinai, Ergodic Theory (Springer-Verlag,
New York, 1982).
17D. Berenstein and D. Kawai, “Smallest matrix black hole model in the classical
limit,” Phys. Rev. D 95, 106004 (2017).
18T. Akutagawa, K. Hashimoto, T. Sasaki, and R. Watanabe, “Out-of-time-order
correlator in coupled harmonic oscillators,” J. High Energ. Phys. 2020, 13 (2020).
19G. Savvidy, “Maximally chaotic dynamical systems,” Ann. Phys. 421, 168274
(2020).
20E. V. Shuryak, “Quantum chromodynamics and the theory of superdense
matter,” Phys. Rep. 61, 71 (1980).
21P. Olesen, “Confinement and random fluxes,” Nucl. Phys. B 200(FS4), 381
(1982).
22S. M. Apenko, D. A. Kirzhnits, and Y. E. Lozovik, “Dynamical chaos, Ander-
son localization, and confinement,” Pis’ma Zh. Eksp. Teor. Fiz. 36(5), 172 (1982)
[JETP Lett. 36(5), 213 (1982)].
23E. V. Shuryak and J. J. M. Verbaarschot, “Random matrix theory and spectral
sum rules for the Dirac operator in QCD,” Nucl. Phys. A 560, 306 (1993).
24P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev.
109, 1492 (1958).
25Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford,
2002).
26E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons
(Cambridge University Press, Cambridge, 2007).
27F. Evers and A. D. Mirlin, “Anderson transitions,” Rev. Mod. Phys. 80, 1355
(2008).
28D. L. Shepelyansky, “Delocalization of quantum chaos by weak nonlinearity,”
Phys. Rev. Lett. 70, 1787 (1993).
29M. I. Molina, “Transport of localized and extended excitations in a nonlinear
Anderson model,” Phys. Rev. B 58, 12547 (1998).
30A. S. Pikovsky and D. L. Shepelyansky, “Destruction of Anderson localization
by a weak nonlinearity,” Phys. Rev. Lett. 100, 094101 (2008).
31C. Skokos, D. O. Krimer, S. Komineas, and S. Flach, “Delocalization of wave
packets in disordered nonlinear chains,” Phys. Rev. E 79, 056211 (2009).
32S. Flach, D. O. Krimer, and C. Skokos, “Universal spreading of wave packets in
disordered nonlinear systems,” Phys. Rev. Lett. 102, 209903 (2009).
33M. Mulansky and A. Pikovsky, “Energy spreading in strongly nonlinear disor-
dered lattices,” New J. Phys. 15, 053015 (2013).

34T. V. Lapteva, M. I. Ivanchenko, and S. Flach, “Nonlinear lattice waves in
heterogeneous media,” J. Phys. A: Math. Theor. 47, 493001 (2014).
35I. Garcia-Mata and D. L. Shepelyansky, “Delocalization induced by nonlinearity
in systems with disorder,” Phys. Rev. E 79, 026205 (2009).
36C. Skokos and S. Flach, “Spreading of wave packets in disordered systems with
tunable nonlinearity,” Phys. Rev. E 82, 016208 (2010).
37L. Ermann and D. L. Shepelyansky, “Destruction of Anderson localization by
nonlinearity in kicked rotator at different effective dimensions,” J. Phys. A: Math.
Theor. 47, 335101 (2014).
38I. Vakulchyk, M. V. Fistul, and S. Flach, “Wave packet spreading with dis-
ordered nonlinear discrete-time quantum walks,” Phys. Rev. Lett. 122, 040501
(2019).
39B. Many Manda, B. Senyange, and C. Skokos, “Chaotic wave-packet spread-
ing in two-dimensional disordered nonlinear lattices,” Phys. Rev. E 101, 032206
(2020).
40T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson
localization in disordered two-dimensional photonic lattices,” Nature (London)
446, 52 (2007).
41Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides,
and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional
disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
42J. E. Lye, L. Fallani, M. Modugno, D. S. Wiersma, C. Fort, and M. Inguscio,
“Bose-Einstein condensate in a random potential,” Phys. Rev. Lett. 95, 070401
(2005).
43E. Lucioni, B. Deissler, L. Tanzi, G. Roati, M. Zaccanti, M. Modugno, M.
Larcher, F. Dalfovo, M. Inguscio, and G. Modugno, “Observation of subdiffusion
in a disordered interacting system,” Phys. Rev. Lett. 106, 230403 (2011).
44P. Petreczky, “Lattice QCD at non-zero temperature,” J. Phys. G: Nucl. Part.
Phys. 39, 093002 (2012).
45O. Philipsen, “The QCD equation of state from the lattice,” Prog. Part. Nucl.
Phys. 70, 55 (2013).
46U. Reinosa, J. Serreau, M. Tissier, and N. Wchebor, “Deconfinement transition
in SU(2) Yang-Mills theory: A two-loop study,” Phys. Rev. D 91, 045035 (2015).
47B. Kramer and A. MacKinnon, “Localization: Theory and experiment,” Rep.
Prog. Phys. 56, 1469 (1993).
48D. Basko, “Kinetic theory of nonlinear diffusion in a weakly disordered non-
linear Schrödinger chain in the regime of homogeneous chaos,” Phys. Rev. E 89,
022921 (2014).
49B. V. Chirikov and V. V. Vecheslavov, “Arnold diffusion in large systems,” Zh.
Eksp. Teor. Fiz. 112, 1132 (1997) [JETP 85(3), 616 (1997)].
50S. Fishman, Y. Krivopalov, and A. Soffer, “On the problem of dynamical local-
ization in the nonlinear Schrödinger equation with a random potential,” J. Stat.
Phys. 131, 843 (2008).
51J. Bourgain and W.-M. Wang, “Quasi-periodic solutions of nonlinear random
Schrödinger equations,” J. Eur. Math. Soc. 10, 1 (2008).
52G. P. Korchemsky, “Review of AdS/CFT integrability, chapter IV.4: Integrability
in QCD and N < 4 SYM,” Lett. Math. Phys. 99, 425 (2012).
53L. Ermann and D. L. Shepelyansky, “Quantum Gibbs distribution from dynam-
ical thermalization in classical nonlinear lattices,” New J. Phys. 15, 12304 (2013).
54M. Mulansky, K. Ahnert, A. Pikovsky, and D. L. Shepelyansky, “Strong and
weak chaos in weakly nonintegrable many-body Hamiltonian systems,” J. Stat.
Phys. 145, 1256 (2011).
55D. L. Shepelyansky, “Coherent propagation of two interacting particles in a
random potential,” Phys. Rev. Lett. 73, 2607 (1994).
56Y. Imry, “Coherent propagation of two interacting particles in a random
potential,” Europhys. Lett. 30(7), 405 (1995).
57K. M. Frahm, “Eigenfunction structure and scaling of two interacting particles
in the one-dimensional Anderson model,” Eur. Phys. J. B 89, 115 (2016).
58B. V. Chirikov, “Research concerning the theory of nonlinear resonance and
stochasticity,” Preprint N 267 (Institute of Nuclear Physics, Novosibirsk, 1969)
[CERN Trans. 71-40, Geneva, October (1971)].
59A. B. Rechester, M. N. Rosenbluth, and R. B. White, “Calculation of the Kol-
mogorov entropy for motion along a stochastic magnetic field,” Phys. Rev. Lett.
42, 1247 (1979).
60K. M. Frahm and D. L. Shepelyansky, “Diffusion and localization for the
Chirikov typical map,” Phys. Rev. E 80, 016210 (2009).

Chaos 31, 093106 (2021); doi: 10.1063/5.0057969 31, 093106-9

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1016/0370-2693(75)90162-8
https://doi.org/10.1016/0370-2693(75)90163-X
https://doi.org/10.1070/PU1982v025n04ABEH004533
https://doi.org/10.1103/PhysRevD.66.036004
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1103/PhysRevD.95.106004
https://doi.org/10.1007/JHEP08(2020)013
https://doi.org/10.1016/j.aop.2020.168274
https://doi.org/10.1016/0370-1573(80)90105-2
https://doi.org/10.1016/0550-3213(82)90094-3
https://doi.org/10.1016/0375-9474(93)90098-I
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevLett.70.1787
https://doi.org/10.1103/PhysRevB.58.12547
https://doi.org/10.1103/PhysRevLett.100.094101
https://doi.org/10.1103/PhysRevE.79.056211
https://doi.org/10.1103/PhysRevLett.102.209903
https://doi.org/10.1088/1367-2630/15/5/053015
https://doi.org/10.1088/1751-8113/47/49/493001
https://doi.org/10.1103/PhysRevE.79.026205
https://doi.org/10.1103/PhysRevE.82.016208
https://doi.org/10.1088/1751-8113/47/33/335101
https://doi.org/10.1103/PhysRevLett.122.040501
https://doi.org/10.1103/PhysRevE.101.032206
https://doi.org/10.1038/nature05623
https://doi.org/10.1103/PhysRevLett.100.013906
https://doi.org/10.1103/PhysRevLett.95.070401
https://doi.org/10.1103/PhysRevLett.106.230403
https://doi.org/10.1088/0954-3899/39/9/093002
https://doi.org/10.1016/j.ppnp.2012.09.003
https://doi.org/10.1103/PhysRevD.91.045035
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1103/PhysRevE.89.022921
https://doi.org/10.1134/1.558346
https://doi.org/10.1007/s10955-007-9472-0
https://doi.org/10.4171/JEMS/102
https://doi.org/10.1007/s11005-011-0516-7
https://doi.org/10.1088/1367-2630/15/12/123004
https://doi.org/10.1007/s10955-011-0335-3
https://doi.org/10.1103/PhysRevLett.73.2607
https://doi.org/10.1209/0295-5075/30/7/005
https://doi.org/10.1140/epjb/e2016-70114-7
https://doi.org/10.1103/PhysRevLett.42.1247
https://doi.org/10.1103/PhysRevE.80.016210


Chaos ARTICLE scitation.org/journal/cha

61T. Goldfriend and J. Kurchan, “Quasi-integrable systems are slow to thermalize
but may be good scramblers,” Phys. Rev. E 102, 022201 (2020).
62M. Mulansky, K. Ahnert, A. Pikovsky, and D. L. Shepelyansky, “Dynamical
thermalization of disordered nonlinear lattices,” Phys. Rev. E 80, 056212 (2009).
63J. Berges, M. P. Heller, A. Mazeliauskas, and R. Venugopalan, “Thermalization
in QCD: theoretical approaches, phenomenological applications, and interdisci-
plinary connections,” arXiv:2005.12299[hep-th] (2020).
64K. M. Frahm and D. L. Shepelyansky, “Dynamical decoherence of a qubit
coupled to a quantum dot or the SYK black hole,” Eur. Phys. J. B 91, 257 (2018).

65R. S. MacKay and S. Aubry, “Proof of existence of breathers for time-reversible
or Hamiltonian networks of weakly coupled oscillators,” Nonlinearity 7, 1623
(1994).
66S. Flach and A. V. Gorbach, “Discrete breathers—Advances in theory and
applications,” Phys. Rep. 467, 1 (2008).
67G. Kopidakis, S. Komineas, S. Flach, and S. Aubry, “Absence of wave packet
diffusion in disordered nonlinear systems,” Phys. Rev. Lett. 100, 084103 (2008).
68S. Iubini and A. Politi, “Chaos and localization in the discrete nonlinear
Schrödinger equation,” arXiv:2103.11041[nlin.CD] (2021).

Chaos 31, 093106 (2021); doi: 10.1063/5.0057969 31, 093106-10

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1103/PhysRevE.102.022201
https://doi.org/10.1103/PhysRevE.80.056212
http://arxiv.org/abs/arXiv:2005.12299[hep-th]
https://doi.org/10.1140/epjb/e2018-90296-0
https://doi.org/10.1088/0951-7715/7/6/006
https://doi.org/10.1016/j.physrep.2008.05.002
https://doi.org/10.1103/PhysRevLett.100.084103
http://arxiv.org/abs/arXiv:2103.11041[nlin.CD]

	I. INTRODUCTION
	II. MODEL DESCRIPTION
	A. DANSE
	B. YM color models

	III. NUMERICAL RESULTS FOR TIME EVOLUTION OF YM COLORS
	A. Deconfinement and subdiffusive spreading of YM colors
	B. Confinement and localization of YM colors
	C. Simple estimates for spreading exponent of YM colors
	D. Dynamical thermalization
	E. YM color breathers?

	IV. DISCUSSION
	ACKNOWLEDGMENTS

