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We study numerically and analytically the behavior of classical Yang-Mills color fields in a random
one-dimensional potential described by the Anderson model with disorder. Above a certain threshold
the nonlinear interactions of Yang-Mills fields lead to chaos and deconfinement of color wavepackets
with their subdiffusive spreading in space. The algebraic exponent of the second moment growth in
time is found to be in a range of 0.3 to 0.4. Below the threshold color wavepackets remain confined
even if a very slow spreading at very long times is not excluded due to subtle nonlinear effects and
the Arnold diffusion for the case when initially color packets are located in a close vicinity. In a case
of large initial separation of color wavepackets they remain well confined and localized in space. We
also present comparison with the behavior of the one-component field model of discrete Anderson
nonlinear Schrödinger equation with disorder.

PACS numbers:

I. INTRODUCTION

The Yang-Mills (YM) gauge fields were introduced [1]
for an isotropic-invariant description of strong interac-
tions. The investigation of properties of these fields still
remains an interesting and important problem. The stud-
ies of classical YM fields are also important for appli-
cations in several problems of quantization [2, 3]. The
classical dynamics of these fields is essentially nonlinear
and nontrivial. Its analysis is rather important for semi-
classical description of strong YM vacuum fluctuations
[4–7]. Thus the investigation of nonlinear dynamics and
time evolution of classical YM fields represents a relevant
topic.

The important class of classical YM models was in-
troduced in [8] where the YM fields are homogeneous
in space so that the time evolution is described only by
nonlinear dynamics of interacting colors. In general this
Hamiltonian dynamics of color YM fields was shown to
be chaotic [9–11] even if certain integrable solutions also
exist. Thus the YM dynamics belongs to a generic class
of chaotic Hamiltonian systems with divided phase space
with small integrability islands embedded in a chaotic sea
[12, 13]. Even if important mathematical results have
been obtained for chaotic dynamics (see e.g. [14, 15])
the properties of chaos with such a divided phase space,
composed of integrable islands surrounded by a chaotic
component, still remain very difficult for mathematical
analysis. The existence of chaos of classical homogeneous
YM fields has been reported already some time ago [8–
11] but still these YM fields and related models attract
attention of researchers (see e.g. [16–18]).

The above dynamics of YM color fields can be reduced
to a rather simple Hamiltonian which forNC = 2, 3 colors

reads:

H =

NC∑
i=1

(pµ
2 +mxµ

2)/2 + β
∑
µ′ 6=µ

xµ′
2xµ

2/2 , (1)

where (pµ, xν) are effective conjugated momentum and
coordinate, color index is µ = 1, ...NC , m is mass, which
is zero or finite in presence of Higgs mechanism, and β de-
termines the strength of nonlinear interactions of colors
[8–11]. An interesting feature of the finite mass case (e.g.
m = 1 in dimensionless units used here) is that the mea-
sure of chaos remains finite and large (about 50%) even
in the limit of very weak nonlinearity β → 0 since the
Kolmogorov-Arnold-Moser (KAM) theorem [13] is not
valid when all color masses (or oscillator frequencies) are
the same [11].

Till present the classical dynamics of YM colors was
analyzed for fields homogeneous in space. Here we con-
sider the case of space nonhomogeneous fields. Namely,
we study a spreading of such YM fields in space in pres-
ence of disorder potential which corresponds to another
generic limiting case of space properties. Such a disorder
corresponds to random properties of vacuum in Quan-
tum Chromodynamics (QCD) discussed in the literature
(see e.g. [19–22]). It is well known that in quantum me-
chanics a disorder potential may lead to a localization
of probability spreading due to quantum interference ef-
fects. This phenomenon is known as the Anderson lo-
calization [23] and plays an important role for electron
transport in solid-state systems with disorder [24–26].
The eigenstates of such a system are exponentially lo-
calized in 1 and 2 dimensions (1D and 2D) while in 3
dimensions (3D) a delocalization transition takes place
at a disorder below certain threshold (see e.g. review
[26]).

The effects on nonlinearity on Anderson localization in
1D lattice were investigated in [27] where it was shown
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that the localization is preserved at weak nonlinearity
while above a certain threshold a subdiffusive spreading
over the whole lattice takes place. The detailed numer-
ical studies of this phenomenon in Disordered Anderson
Nonlinear Schrödinger Equation (DANSE) have been re-
ported in [28–30] and results of different groups were re-
viewed in [31, 32]. The subdiffusive spreading has been
studied for various nonlinear models in 1D and 2D (see
e.g. [33–37]) with a spreading continuing up to enor-
mously long dimensional times t ∼ 2×1012 reported for a
1D model in [36]. The interest to the effects of nonlinear-
ity on Anderson localization is also supported by related
experimental studies of wave propagation in a disordered
nonlinear media [38, 39] and spreading of Bose-Einstein
cold atom condensates in optical disorder lattices [40, 41]
described by the Gross-Pitaevskii equation.

All above investigations of packet spreading in a disor-
der potential with nonlinearity have been done for one-
component nonlinear field of DANSE with nonlinear self-
interaction (see e.g. [29, 31, 32]). The case of YM color
dynamics is different since nonlinearity appears only due
to interactions of color components. In fact possible im-
plications of randomness, dynamical chaos, Anderson lo-
calization and confinement has been discussed in [20, 21].
The deconfinement transition in QCD at finite temper-
ature is also under active investigation (see e.g. [42–44]
and Refs. therein). Here, we find that under certain con-
ditions the nonlinear interaction of YM colors leads to
deconfinement of YM fields and their unlimited subdiffu-
sive spreading in space. In the case of weak nonlinearity
or spacial separation of YM color components the Ander-
son localization is preserved and fields remain localized
in space. We hope that the obtained results may be of
interest for the deconfinement phenomenon of quantum
YM fields which attracts a significant interest.

The paper is organized as follows: in Section II, we
give the system description, the numerical and analytical
results are given in Section III, discussion of results is
given in Section IV.

II. MODEL DESCRIPTION

A. DANSE

Me start with a brief description of DANSE model
studied in [29, 31–33]. The wavefunction evolution of
DANSE is described by the equation:

i~
∂ψn
∂t

= Enψn + β| ψn |2ψn + V (ψn+1 + ψn−1) . (2)

Here β determines nonlinearity strength, V gives near-
neighboring hopping matrix element, on-site disorder en-
ergies are randomly distributed in the range −W/2 <
En < W/2, and the total probability is conserved and

normalized to unity
∑
n | ψn |

2
= 1. For β = 0 all eigen-

states are exponentially localized with |ψ| ∝ exp(−|n −

n0|/`) and localization length is ` ≈ 96(V/W )2 at the en-
ergy band center and weak disorder [45]. Here n0 marks
a center of wavefunction. We consider a case of rela-
tively weak disorder with ` > 1. For convenience we set
~ = V = 1 so that the energy coincides with the fre-
quency.

Above a certain threshold β > βc the nonlinearity leads
to a destruction of localization with a subdiffusive spread-
ing of wavepacket width ∆n = n− n0:

σ =< (∆n)2 >∝ tα , (3)

where brackets mark averaging over wavefunction at time
t and α is the subdiffusion exponent. The numerical
simulations give its value being in a range 0.3 ≤ α ≤
0.4. Certain analytical arguments were given for values
α = 0.4 [27, 29, 33] and α = 1/3 [32]. An introduction
of randomness in eigenstate phases of linear problem is
supposed to produce a spreading with α = 0.5 [32, 46].
Indeed, an increase of dephasing leads to a growth of α
approaching the value α = 0.5 [35].

It is difficult to give an exact estimate of the thresh-
old value βc. The numerical results show that at β =
0.1; 0.03 the wavepacket square width σ remains bounded
without significant increase up to times t = 108 [29].
However, it is possible that some type of Arnold diffu-
sion along tiny chaotic layers [12, 13, 47] may lead to
a very slow spreading of a very small wavepacket frac-
tion. It should be pointed that the Anderson localization
is characterized by a pure-point dense spectrum and its
perturbation by nonlinearity represents a very difficult
problem for mathematical analysis. A reader can find
some mathematical results for this problem reported in
[48, 49].

A surprising feature of unlimited spreading at β > βc
is that with growth of ∆n the relative local contribution
of nonlinear term in (2) decreases as β|ψ|2 ∼ β/∆n ∝
β/tα/2 and on a first glance it seems that nonlinearity
becomes weaker and weaker with time. In [27] is was ar-
gued that even being small this term gives a local nonlin-
ear frequency spreading δω ∼ β/∆n which at β > βc ∼ 1
remains larger than the typical spacing ∆ω ∼ 1/∆n be-
tween frequencies of linear eigenmodes populated due to
subdiffusive spreading of wavepacket at time t. As soon
as δω > ∆ω the spectrum of motion remains continu-
ous and thus the spreading can continue unlimitedly in
time. However, a better understanding of origins of such
unlimited spreading is still highly desirable.

B. YM color models

In a similarity with dynamics of homogeneous YM
fields described by Hamiltonian (1) and DANSE (2) we
model the dynamics of YM color fields in a disorder po-
tential by the nonlinear Schrödinger equation:

i
∂ψµn
∂t

= Enψ
µ
n+β(

∑
µ′ 6=µ

| ψµ
′

n |
2
)ψµn+(ψµn+1+ψµn−1) . (4)
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FIG. 1: Time evolution of the second moment σ1 of probabil-
ity distribution, defined in the text, for YMCA3 model with
3 colors (4) (solid curves) and DANSE model (2) (dashed
curves) at β = 0 (black curves), β = 1 (red curves), β = 2
(green curves) and β = 4 (blue curves) at W = 4. At ini-
tial time the 3 color packets are located at 3 different sites
n = −1, 0, 1 for YMCA3; for DANSE initial probability is at
n = 0. The average is done over 20 random realizations of
disorder and over logarithmic equidistant intervals of time.

Here µ = 1, ..., NC is color index changing from 1 to 2
for two YM colors NC = 2 or from 1 to 3 for three colors
NC = 3. We denote these two cases as YMCA2 and
YMCA3 respectively (with A for agent). At zero non-
linearity β = 0 each color evolution is described by 1D
Anderson model with the same disorder En for all colors
and being the same as in (2). In absence of hopping to
nearby sites and all energies En being equal we have the
dynamics of color fields described by equations similar to
those for the homogeneous YM fields from Hamiltonian
(1). Thus we consider the equations (4) as a realistic
model of evolution of classical YM color fields in a disor-
der potential.

As for DANSE, the evolution of YM fields (4) has the
energy conservation, also the probability is conserved for
each component normalized to unity

∑
n | ψµn |2= 1. The

numerical simulations of DANSE and Klein-Gordon non-
linear (KGN) model with disorder [32, 34, 50] show that
the exponent α is approximately the same in these two
models even if only energy is conserved in the KGN case.
Thus we also expect that the probability conservation for
each color component will not affect the spreading expo-
nent α. Indeed, the number of degrees of freedom in (4)
is given by number of lattice sites multiplied by NC be-
ing much larger than the number of integrals NC + 1 of
energy and component probabilities.

From the structure of YM equations (4) we can make
certain direct observations. At first, it is possible to con-
sider the symmetric case when initially all color com-
ponents ψµn are the same. Then their evolution is de-
scribed by the DANSE equation (2) with some rescaling
of β for NC = 3. However, since the field evolution is
chaotic this solution is unstable and small corrections

FIG. 2: Same as in Fig. 1 but for the second moment σ2

of probability distribution for YMCA3 model, defined in the
text.

to this symmetric state grow exponentially with time so
that this symmetry is completely destroyed very rapidly.
Still such a symmetric case allows to expect that the
spreading exponent α will have a value similar to those
found for DANSE. As for DANSE we expect that YM
fields remain confined or localized below a certain chaos
threshold with β � βc ∼ 1. In spite of this possible
similarity between DANSE and YMCA models there are
two important differences between them. Thus if initially
color wavepackets are located far from each other with
a typical distance between them RC being significantly
larger than the localization length ` of the linear case
(Rc � `) then an effective interaction between colors be-
comes exponentially small βeff ∝ β exp(−2RC/`) so that
we have βeff � βc ∼ 1. Thus we expect that such initial
states will remain exponentially localized or confined for
all times. Another new element of YMCA, compared to
DANSE case, is that the eigenenergies εm of linear prob-
lem eigenmodes at β = 0 are the same for all colors. Thus
for one site and 3 colors we have a dynamics being very
similar to those of Higgs case with finite mass (1) studied
in detail in [11]. Due to this degeneracy the KAM theo-
rem cannot be applied to this system and the measure of
chaos remains about 50% even in the limit of nonlinear-
ity going to zero [11]. However, the initial wavepackets of
colors should populate the same linear eigenmodes (this
requires RC < `). Such situation also generally appears
in other type on nonlinear systems with many degrees of
freedom [51]. Since in YMCA at NC = 3 (4) there many
eigenenergies εm (linear frequencies) which are the same
we expect that there are many initial configurations when
colors are initially located on a distance Rc ∼ ` and their
dynamics remains chaotic even for very small nonlinear-
ity β → 0. However, a question about spreading of such
chaos over lattice sites remains open.
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FIG. 3: Probability distributions w(n) =
∑NC
µ=1 | ψ

µ
n |2 /NC

for YMCA3 model (NC = 3, β = 2, W = 4) are shown at
times t = 103 (black curve), t = 105 (red curve) and t =
107 (blue curve); probabilities are averaged over 20 disorder
realizations.

III. NUMERICAL RESULTS FOR TIME
EVOLUTION OF YM COLORS

Following the approach used in [29], the numerical
integration of Eqs. (2), (4) is done by the Trotter decom-
position with a time step ∆t = 0.05 and the total number
of sites N = 1001 for each color with the fast Fourier
transform from coordinate to momentum representation
and back. This integration scheme is symplectic and
conserves probability exactly. Its efficiency has been
confirmed by various numerical simulations (see e.g.
[29, 31–33]). We checked that the variation of system
size N and integration time step ∆t does not affect
the results. We present here the results mainly for
a typical disorder strength W = 4 and nonlinearity
values β = 0, 1, 2, 4. The spreading of color probabilities
is characterized by the squared wavepacket width
at different times defined as: σ1 = 〈n21〉 − 〈n1〉2
for DANSE, σ1 =

∑NC

µ=1

(
〈n2µ〉 − 〈nµ〉2〉

)
/NC

for YMCA2, YMCA3 and relative square mo-
ments σ2 =

〈
(n1 − n2)2

〉
for YMCA2 and

σ2 =
[〈

(n1 − n2)2
〉

+
〈
(n1 − n3)2

〉
+
〈
(n2 − n3)2

〉]
/3

for YMCA3. Here brackets mark the average over
wavefunction. The results are also averaged over 20
disorder realisations.

A. Deconfinement and subdiffusive spreading of
YM colors

The time dependence of second moments σ1 for
DANSE and YMCA3 models is shown in Fig. 1 for dif-
ferent values of β and disorder W = 4. At such a disor-
der and β = 0 the wavepacket spreads on approximately
∆n ≈ 7 sites in agreement with the theoretical value of
the localization length ` = 96/W 2 = 6. In presence of

FIG. 4: Same as in Fig. 3 but all distributions w(n) of
YMCA3 are shown at time t = 107 for β = 0 (black curve),
β = 1 (red curve), β = 2 (green curve) and β = 4 (blue curve);
probabilities are averaged over 20 disorder realizations.

FIG. 5: Probability distributions w(n) are shown for DANSE
(black curve), YMCA2 (red curve) and YMCA3 (blue curve)
at β = 2,W = 4 and t = 107; probabilities are averaged over
20 disorder realizations.

nonlinear interactions there is a subdiffusive spreading
of wavepacket which is somewhat stronger for YMCA3
compared to DANSE case. The time evolution of the
second moment σ2 for YMCA3 case is shown in Fig. 2
for the same values of β as in Fig. 1. The growth of both
moments σ1 and σ2 is very similar. This means that
the color packets spread in such a way that they remain
close to each other so that their effective interactions al-
low to make correlated joint transitions over localized
eigenstates of the Anderson model at β = 0. It is clear
that interactions of colors leads to deconfinement of YM
fields with the unlimited subdiffusive spreading over the
whole lattice. The growth of moments σ1, σ2 for YMCA2
case is very similar to those of YMCA3 and we do not
show it here (but the obtained spearing exponents α are
discussed below for both cases).

In Fig. 3 we show directly the probability distribution
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α

β DANSE YMCA2 YMCA3

1 0.26± 0.02 0.297± 0.020 0.316± 0.010

2 0.317± 0.010 0.327± 0.020 0.363± 0.010

4 0.371± 0.020 0.378± 0.020 0.406± 0.010

TABLE I: Exponent α of growth of second moments σ1,2 ∝ tα
for DANSE, YMCA2, YMCA3 models at different values of
nonlinearity β at W = 4; the values of exponent are obtained
by a fit in the time interval 2 ≤ log10 t ≤ 7 for data averaged
over 20 disorder realisations; initial states have colors located
close to each other with RC = 1.

FIG. 6: Time evolution of the second moment σ1 of prob-
ability distribution, defined in the text, for YMCA3 model
with 3 colors for β = 0.1 (black curve), β = 0.03 (red curve)
at W = 4. At initial time the 3 color packets are located at
3 different sites n = −1, 0, 1. The results are shown for 10
disorder realizations and logarithmic equidistant intervals of
time.

over lattice sites w(n) =
∑NC

µ=1 | ψµn |2 /NC at different
moments of time for YMCA3 case with β = 2. There is
a formation of quasi-plateau distribution which size ∆n
increases with time. Outside of plateau there are proba-
bility tails which drop exponentially with the site num-
ber that corresponds to exponentially localized Anderson
modes of linear problem.

The distributions w(n) at largest reached time t = 107

and different values of nonlinearity β are shown in Fig. 4
The width of the above quasi-plateau size ∆n increases
with β being approximately ∆n ≈ 220, 320, 440 for β =
1, 2, 4 respectively. These ∆n values are much larger than
the Anderson localization length ` ≈ 6. Also the corre-
sponding nonlinear frequency width ∆ω ∼ 1/∆n � 1/`
becomes significantly smaller than a typical frequency
spacing between modes inside localization length `. Due
to these reasons we can argue that the numerical results
show an asymptotic spearing of wavepacket of YM colors.

The comparison of probability distributions for
DANSE, YMCA2, YMCA3 models is shown in Fig. 5
for fixed β,W and t = 107. The most broad spreading
corresponds to YMCA3 case. This is in a qualitative

agreement with an expectation that, similar to Hamil-
tonian (1), there is an exact degeneracy of linear color
eigenmodes modes so that here chaos is present even in
the limit of very small β similar to the situation discussed
in [11, 51] (of course, this assumes that initial state have a
close location of 3 colors so that degenerate linear modes
are well populated, see discussion below).

According to the results of Figs. 1, 2 the growth of
σ1, σ2 at large times is well described by an algebraic
function of time with the exponent α. The values of
α, obtained from the fit for time range 100 ≤ t ≤ 107

are given in Table I for DANSE, YMCA2, YMCA3
models. For DANSE at β = 1 the obtained value of
α is a bit smaller than the one reported at [29] with
α = 0.306 ± 0.002. We attribute this difference to a
different number of realisations and longer time range
used in [29]. We also should note that the spreading is
rather slow in time and thus very long time simulations
and large number of realizations are required to obtain
accurate values of α. Formal statistical errors reported
here and in [29] are relatively small but the contribution
of certain systematic effects, related to slow transitions
between localized linear modes, may give more signifi-
cant corrections to formal statistically averaged α values.
From Table I we see a moderate increase of α for higher
β values. We also find that YMCA3 and YMCA2 mod-
els have a moderately higher values of α compared to
DANSE case. We attribute this to a stronger chaos for
YM colors compared to DANSE. Indeed, YM colors have
additional color degrees of freedom that are supposed to
generate a stronger chaos thus facilitating deconfinement
and spreading of YM fields. However, due to the above
points related to a slow spreading process further more
advanced studies are required to firmly state if α is inde-
pendent, or not, of β,W and number of colors NC .

B. Confinement and localization of YM colors

Above we discussed the cases with moderate strength
of interactions of colors given by β. It is natural to expect
that at small β � βc ∼ 1 the Anderson localization is
preserved and fields remain localized in space. Indeed,
the numerical results reported for DANSE [29] indicate
that localization is preserved at small β = 0.1; 0.03. At
the same time we note that in this limit the effects of
slow processes like the Arnold diffusion [12, 47] are still
possible with a very slow spreading of very small fraction
of probability via tiny chaotic layers. The mathematical
results are not able to clarify the behavior in this regime
(see e.g. [48, 49]).

For YMCA3 case at such small values of nonlinearity
β = 0.1; 0.03 we show the time dependence of second
moment σ1 in Fig. 6 Here the second moment σ1 remains
substantially smaller compared to β = 1, 2, 4 cases shown
in Fig. 1. However, a slow increase of σ1 at very large
times t > 105 is not excluded. We attribute this to a
degeneracy of linear eigenmodes which, similar to the
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FIG. 7: Probability distribution as a function of time t for
YMCA3 model at β = 2, W = 4, initial positions of 3 colors
are n = −1, 0, 1 with RC = 1 (a); n = −250, 0, 250 with
RC = 250 (b) for one disorder realisation; color bar shows
probability w(n) of YM color fields.

case of YMCA3 Hamiltonian (1), leads to a high fraction
of chaotic phase space even for β → 0, as discussed in
[11, 51] for 3 colors (we note that for Hamiltonian with 2
colors (1) there is no chaos in the limit of small β but only
a significant energy exchange between two colors [11]).
Thus, a slow spreading at very large times for YMCA3
case may take place due to frequency degeneracy present
for color fields initially located on a distance RC < `.
The effect of very slow Arnold diffusion [12, 47] can be
also present for a small fraction of global probability.

The interesting point is that the above exact frequency
degeneracy is present only if initial color packets are close
to each other. In the opposite case with their initial sig-
nificant separation on a distance RC � ` the effective
nonlinear interactions between colors drop exponentially
with RC due to localization of linear eigenmodes. In ad-
dition the frequencies of eigenmodes populated for such
packets with large separation RC � ` and statistically

FIG. 8: Same as in Fig. 7 but for W = 8.

different and have no exact degeneracy in contrast to
the case with RC < `. Thus for RC � ` we argue that
this case corresponds to a very small effective interactions
with βeff ∝ β exp(−2RC/`)� 1 and that the color YM
fields remain confined and localized. This is confirmed by
the results shown in Figs. 7, 8 were we compare close and
distant location of initial color packets. We have clear de-
confinement and spreading forRC = 1 (forW = 8, β = 2,
Rc = 1 the fit gives α = 0.30 ± 0.02 being smaller than
the value at W = 4 in Table I). In contrast, for RC � `
there is confinement and localization of YM color fields.
The increase of disorder strength from W = 4 in Fig. 7 to
W = 8 in Fig. 8 gives at RC = 250 a strong enhancement
of localization of color YM fields. For distant initial po-
sitions of color fields RC = 250 the second moment σ1(t)
shows absolutely no growth with time as it is shown in
Fig. 9.

It is interesting to note that the situation with
localization-delocalization of color YM fields reminds
those of a quantum problem of two interacting particles
coherently propagating in a disorder potential and being
localized if separated by a distance being larger than a
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FIG. 9: Time dependence of σ1(t) for YMCA3 at β = 2 for
initial distance between color positions: RC = 1 (full black
curve for 20 disorder realisations at W = 4 same as in Fig. 1);
RC = 250 (dashed black curve for one disorder realisation
at W = 4 same as in Fig. 7); RC = 1 (full red curve for 10
disorder realisations at W = 8); RC = 250 (dashed red curve
for one disorder realisation at W = 8 same as in Fig. 8).

one-particle localization length (see e.g. [52–54]).

C. Simple estimates for spreading exponent of YM
colors

Here we present simple estimates for the spreading ex-
ponent α of the second moment growth σ1,2 ∝ tα. Fol-
lowing the approach described in [27, 33] it is useful to
rewrite Eq. (4) in the basis of eigenstates of the linear
system at β = 0. The transformation from lattice repre-
sentation to eigenstate basis reads ψµn =

∑
mQ

µ
nmC

µ
m for

each color µ. Then the time evolution Eq. (4) takes the
form:

i
∂Cµm
∂t

= εmC
µ
m + β

∑
µ′ 6=µ

∑
m1m2m3

Uµ
′

mm1m2m3
Cµm1

Cµ
′∗

m2
Cµ

′

m3

(5)
where εm are the eigenenergies of linear system being
the same for all colors. The transitions between lin-
ear eigenmodes take place only due to the nonlinear β-
term with the transition matrix elements Uµ

′

mm1m2m3
=∑

n(Qµnm)−1Qµ
′

nm1
(Qµ

′

nm2
)∗Qµnm3

. Due to the exponen-
tial localization of linear eigenstates the sum over each
m-index in (5) contains about ` terms.

In [27] it was argued that in the assumption that there
is a plateau of size ∆n with random coefficients of approx-
imately equal amplitudes and random signs or phases and
zero amplitudes outside the plateau. Then the popula-
tion of states outside of plateau should go with the rate
Γ ∼ |C|6 ∼ 1/(∆n)3 on nearby sites on a distance `. This
gives a diffusion rate D ∼ `2Γ ∼ `2/(∆n)3 ∼ (∆n)2/t
leading to the growth (∆n)2 ∼ σ1,2 ∼ tα with the spread-
ing exponent α = 2/5.

There are also other type of arguments leading to the
same exponent α = 2/5. In fact the time evolution of (5)
represents the nonlinear field dynamics involving many
random frequency components describing a continuous
chaotic flow. The spreading ∆n in time is very slow
and its Lyapunov exponent λ at given ∆n is given by
the nonlinear frequency λ ∼ δω ∼ β/∆n [27, 33]. It is
well established that for such a continuous chaotic flows
with many frequency components the diffusion rate D is
related with the Lyapunov exponent λ, or typical nonlin-
ear frequency δω, by the relation established in [55, 56]:
D ∼ λ3 ∼ (δω)3. This relation was well confirmed for the
Chirikov typical map which represents a generic model of
such continuous chaotic flows [57] (see also recent work
[58]). Since for (5) we have δω ∼ β/∆n this gives us
D ∝ 1/(∆n)3 ∝ (∆n)2/t and thus the spreading expo-
nent is α = 2/5 in agreement with the estimate given at
[27]. We note that for spreading in a disorder potential in
higher dimension d > 1 this approach gives the spreading
(∆n)2 = R2 ∼ tα with the exponent α = 2/(3d+ 2) with
α = 1/4 for d = 2 (here R is a 1D wavepacket size) [33].

Another estimate of α was proposed in [46] on the as-
sumption that the transition rate is given by the Fermi
golden rule as in linear equations of quantum mechanics.
This gives Γ ∝ |C|4 ∼ 1/(∆n)2 and leads to α = 1/2,

More complicated estimate arguments were pushed for-
wards at [32] leading to the value α = 1/3.

There are various physical arguments behind each of
estimates described above. However, the time evolution
of nonlinear YM fields in presence of disorder is a rather
complicated problem. The obtained numerical values of
the spreading exponent are found to be approximately in
the range 0.3 ≤ α ≤ 0.4. Further numerical studies are
required, with longer times evolution and larger number
of disorder realisations, to determine more exactly the
exponent value.

D. YM color breathers?

The mathematical proof given in [59] guaranties that
nonlinear classical Hamiltonian lattices have generic so-
lutions called discrete breathers. They represent time-
periodic nonlinear field localized, usually exponential,
in space. Such breathers find a variety of applications
as discussed in [60]. It was shown that breathers exist
also for the DANSE model with and without disorder
[61, 62]. Usually the breaths appear at a strong non-
linearity of self-interacting field that effectively creates
a solution similar to an impurity energy level outside of
energy band in quantum mechanics. For the YM color
fields (4) nonlinearity appears only due to interactions of
different colors. We suppose that the breather solutions
still can exist for the YM color dynamics on a discrete
lattice. However, the verification of this conjecture re-
quires further studies which are outside of the scope of
this work.
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IV. DISCUSSION

The dynamics of classical homogeneous Yang-Mills
color fields and its chaotic properties have been inves-
tigated and well understood about 2 decades ago (see e,g
[8–11]). Here we analyzed the spacial aspects of classi-
cal YM color fields and properties of their propagation
in disorder potential in 1D. In absence of interactions of
YM fields the color wavepackets are confined and expo-
nentially localized by disorder similar to the Anderson lo-
calization of electron transport induced by disorder [23–
26]. The interactions of YM fields leads to deconfinement
of colors which, above a certain interaction threshold,
spread subdiffusively over the whole disordered lattice.
The exponent of this algebraic spreading is found to be
approximately in a range of 0.3 < α < 0.4 being simi-
lar to the value found for the DANSE model [27, 29, 32]
and observed in experiments on cold atoms Bose-Einstein

condensate spreading in a disordered optical lattices [41].
Compared to the DANSE model we show that YM color
fields can be deconfined and delocalized only when color
component remain close to each other. In contrast sepa-
rated color wavepackets remain confined and localized by
disorder. We expect that the obtained results for classi-
cal YM color field dynamics in a disorder potential will
be also useful for the problem of YM fields deconfinement
in the full quantum problem.
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