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Abstract
We study numerically the properties of entanglement of two interacting, or non-
interacting, particles evolving in a regime of quantum chaos in the quantum
Chirikov standard map. Such pairs can be viewed as interacting, on nonin-
teracting, Einstein–Podolsky–Rosen pairs in a regime of quantum chaos. The
analysis is done with such tools as the Loschmidt echo of entanglement and the
Poincaré recurrences of entanglement in presence of absorption. The obtained
results show unusual features of the entropy of entanglement and the spectrum
of Schmidt decomposition with their dependence on interactions at different
quantum chaos regimes.
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1. Introduction

The ancient dispute between Loschmidt and Boltzmann about emergence of statistical laws
from time reversible dynamical equations [1–3] (see also [4]) found its modern resolution
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on the basis of phenomenon of dynamical chaos with its exponential instability of trajec-
tories which breaks the time reversal in presence of exponentially small errors [5–8]. In
quantum mechanics this exponential instability of chaos has been shown to exist only on a
logarithmically short Ehrenfest time scale [9–12]:

tE ∼ (ln q)/h = ln(I/h̄)/h, (1)

where q = I/h̄ is a typical quantum number, I is a corresponding classical action, h̄ is the
Planck constant and h � Λ is the Kolmogorov–Sinai entropy [5–8] which is larger or equal
to the Lyapunov exponent of a dynamical chaotic trajectory. This time tE is so short due to
an exponentially rapid spreading of minimal coherent wave packet so that after this time the
Ehrenfest theorem [13] looses its validity.

Various properties of quantum chaos of one-particle quantum evolution, which is chaotic
in the classical limit, are described and reviewed in [9, 11, 14, 15]. While the classical chaotic
dynamics breaks time reversal due to the exponential growth of errors, in [16] it was shown
that in the regime of quantum chaos the time reversal remains stable even if the numerical sim-
ulations are done on the same computer for classical and quantum evolution. This result was
obtained for the Chirikov standard map which describes the generic features of chaotic dynam-
ics with divided phase space [7, 8, 17]. The studies of effects of Hamiltonian perturbations
acting on the quantum evolution during the return path of time reversal have been extended
in [18] and the decoherence effects for this Loschmidt echo have been analyzed in [19] with
links to the Lyapunov exponent. Various interesting properties of Loschmidt echo have been
studied by different groups being described in [20–23]. In the context of quantum comput-
ing the properties of fidelity and Loschmidt echo for time reversal were reported in [24, 25].
The time reversal of atomic Bose–Einstein condensate in the regime of quantum chaos of the
Chirikov standard map was experimentally realized by the Hoogerland group [26], following
the theoretical proposal [27].

The above studies of the time reversal and Loschmidt echo are done for one particle quantum
evolution. However, it is also interesting to analyze the properties of entanglement in systems
of quantum chaos. Indeed, the fundamental work of Einstein–Podolsky–Rosen (EPR) [28]
about a distant entanglement [29] of a pair of noninteracting distinguishable particles is now
at the foundations of quantum information and communications [30–32].

Recently, the properties of chaotic EPR pairs without interactions, the effects of time rever-
sal and measurements were analyzed for the quantum Chirikov map in [33]. Here, the Schmidt
decomposition of the EPR wavefunction [34] (see also [35]) is found to be especially use-
ful. Without interactions the entropy of entanglement S of the EPR pair [30, 31] is preserved
during a quantum evolution. Thus it is interesting to study how this quantity and Loschmidt
echo M(t) are affected by interactions between particles. With this aim we present here the
analysis of these quantities for chaotic EPR pairs with interactions in the quantum Chirikov
standard map. This model was already investigated in [36, 37] in the context of interac-
tion effects on the dynamical localization but the entropy of entanglement was not studied
there.

In addition, we also study how the entropy of entanglement S in this model is affected by the
absorption of one or two particles. In a certain sense the absorption can be considered as some
kind of measurement and it is interesting to understand its influence on EPR characteristics. We
note that in the case of quantum evolution of one particle the effects of absorption have been
studied in this system in [38–43]. The probability that a particle remains inside the system can
be considered as a quantum version of Poincaré recurrences [44] which in the classical case of
fully chaotic system decays exponentially with time while in the case of divided phase space
with stability islands the decay is algebraic (see [45, 46] and references therein). Thus, in this
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work we study the decay of Poincaré recurrences of entanglement for a chaotic EPR pair with
and without interactions.

This paper is constructed as follows: the model is described in section 2, the Loschmidt
echo of entanglement is studied in section 3, various cases of Poincaré recurrences of entan-
glement are analyzed in sections 4–6 and discussion of the results is given in section 7 (specific
points are presented in the appendix A and additional data are given in supplementary material
(https://stacks.iop.org/JPA/55/234004/mmedia) (SupMat)).

2. Model description

For one particle the classical dynamics is described by the Chirikov standard map [7]:

p̄ = p+ k sin x, x̄ = x + T p̄. (2)

Here x represents a cyclic variable 0 � x < 2π for the case of the kicked rotator, p is the
particle momentum. The bars denote the new values of variables after one iteration of this
symplectic map. The dynamics depends on a single chaos parameter K = kT with a transition
from integrability to unlimited chaotic diffusion in momentum for K > Kc = 0.9715 . . . [7, 8].
The system dynamics is reversible in time, e.g. by inverting all velocities in a middle of free
rotation between two kicks [16]. This map captures the generic properties of chaos in systems
with integrable islands surrounded by chaotic components, its applications to various physical
systems are summarized in [17].

The dynamics in a chaotic component has a positive Kolmogorov–Sinai entropy h
which characterizes the exponential divergence of nearby trajectories. For K > 4 we have
h ≈ ln(K/2) [7]. For K > Kc there is an unlimited diffusive momentum growth with time t,
measured in number of map iterations: 〈(Δp)2〉 = 2Dt with a diffusion coefficient D ≈ k2/4
(see more details in [7, 47]).

The quantum state |ψ〉 propagation over a period is given by a unitary operator (here still
for one particle) U(1)

KR [9, 11]:

|ψ̄〉 = U(1)
KR|ψ〉 = e−iT p̂2/2 e−ik cos x̂|ψ〉. (3)

Here the momentum p is measured in recoil units of the optical lattice with p̂ = −i∂/∂x.
Hence, T = h̄ plays the role of an effective dimensionless Planck constant and the classi-
cal limit corresponds to T = h̄ → 0, k →∞, K = kT = const. Here we consider the case of
a kicked rotator with a wave function (in position representation)ψ(x) = 〈x|ψ〉 being periodic
on a circle ψ(x + 2π) = ψ(x). In this case the free rotation corresponds (in momentum repre-
sentation) to the phase shift ψ̄n = exp (−iTn2/2)ψn with ψn = 〈p|ψ〉 being the wave function
(in momentum representation) at p = n. The effects of quantum interference lead to dynamical
localization of chaotic diffusion on a time scale tD ≈ D/h̄2 	 tE and an exponential localiza-
tion of quasienergy eigenstates with a localization length � = D/(h̄2) ≈ k2/4 [11, 47–49]. This
dynamical localization is similar to the Anderson localization of electrons in a disordered solid
[50] and it has been observed in experiments with cold atoms in kicked optical lattices in [51,
52]. The time reversal of atomic waves in this system has been realized in [26] following the
theoretical proposal [27].

For two noninteracting or interacting particles the evolution operator UKR is given by:

UKR = exp (−iT( p̂2
1 + p̂2

2)/4 + iÛ/2)× (4)

exp (−ik cos θ̂1 − ik cos θ̂2)× (5)

3
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exp (−iT( p̂2
1 + p̂2

2)/4 + iÛ/2). (6)

Here Û is the interaction operator which is diagonal in momentum representation with eigen-
values being either U for p1 = p2, U/2 for 0 < |p1 − p2| � Ur or 0 for other cases with
|p1 − p2| > Ur with p1,2 = n1,2 being momentum of first and second particle. Here U is the
interaction strength parameter and Ur is the interaction range (chosen as Ur = 0 or Ur = 1 in
this work). At Ur = 0 we have the case of Hubbard on-site interaction which was first stud-
ied in [36, 37] for the kicked rotator. The difference |p1 − p2| is computed with respect to the
periodic boundary conditions, i.e., |p1 − p2| = 1 if for example p1 = N/2 − 1 and p2 = −N/2
and similarly for other cases; θ̂ j represents the usual phase operator of particle j. Here N gives
the number of momentum states for each kicked rotator, for two of them there N2 momentum
states.

We also mention that in (4)–(6), we use, in contrast to (3), the symmetrized version of
the map where a half free rotation is applied before and after the kick operator. This point
is important to keep the time reversal symmetry and in particular for the studies in the next
section.

Here we consider a short range interaction between two rotators in momentum space. This
is very natural due to the analogy with disordered solid-state systems since for one rotator
the chaotic diffusion and Anderson like localization [50] takes place in momentum space (the
momentum space in the rotator plays the role of coordinate space in such solid-state systems,
see references [36, 37, 47–49]).

3. Loschmidt echo of entanglement

In this section we consider the case of Hubbard on-site interaction of the quantum kicked
rotator given by equation (4)–(6) with Ur = 0 and U = 2. The other system parameter values
are N = 210 = 1024, T = h̄ = ε = 5/8, and K = 5 such that k = K/h̄ = 8. As initial state we
take a non-entangled state with p1 = 0, p2 = 1:

|ψ(t = 0)〉 = |p1 = 0〉 ⊗ |p2 = 1〉. (7)

The entropy of entanglement is given by (see e.g. [30]; see also the next section and
appendix A.1 for additional details on the entropy computation and the numerical method for
the quantum time evolution)

S(t) = −Tr[ρ1 log2(ρ1)], (8)

where ρ1 is the reduced density matrix for the first particle obtained by a trace over the second
particle.

In order to study the Loschmidt echo, we compute the time evolution forward in time
with parameter values Uf and kf : UKR(Uf , kf) till t = tr where the time reversal takes place
and then backward in time UKR(Ub, kb) till reaching t = 2tr. We analyze the cases of Uf = U,
Ub = Uf +ΔU, kb = kf = k; and Uf = Ub = U, kf = k, kb = kf +Δk.

Figure 1 shows the time dependence of the entropy of entanglement (8) with tr = 50 and:
Uf = U = 2, Ub = U +ΔU and kb = kf = k = 8 with ΔU = 0, 0.3, 0.5 in left panel; and
Uf = Ub = 2, kf = k = 8 and kb = k +Δk with Δk = 0, 0.03, 0.05. We have verified that a
further increase of N to values of 1011 = 2048 and 1012 = 4096 provide identical results up
to numerical round-off errors. The results show that finite perturbations ΔU or Δk break time
reversal of entropy of entanglement S(2tr).
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Figure 1. Time dependence of the entropy of entanglement S for the initial state
|ψ(t = 0)〉 = |p1 = 0〉 ⊗ |p2 = 1〉 with time evolution given by the quantum Chirikov
standard map. The time reversal is performed after tr = 50 quantum map iterations.
The blue curve in both panels show the forward time evolution 0 � t � tr, the black
curves show the backward time evolution tr � t � 2tr = 100 with the exact time rever-
sal using T = 4π − ε. (Left panel) Curves of other colors show the backward time
evolution with perturbation Ub = Uf +ΔU at ΔU = 0.3 (red curve) and ΔU = 0.5
(green curve). (Right panel) Curves of other colors show the backward time evo-
lution with kb = kf +Δk at Δk = 0.03 (red curve) and Δk = 0.05 (green curve);
Uf = Ub = U. The system parameters are: N = 1024, T = h̄ = ε = 5/8, U = Uf = 2,
and k = K/h̄ = 8.

The probability distributions in momentum of the first particle (p1 = n1)
w(p1, t) = 〈p1|ρ1(t)|p1〉, taken at different moments in time, are presented in color in
figure 2 for ΔU = 0 (left panel) and ΔU = 0.5 (right panel) with tr = 50 and the same
other parameter values of figure 1. The color bar scale correspond to [w(p1, t)/wmax (t)] with
wmax(t) = maxp1 w(p1, t) being the density maximum at a given value of t. We see that the
perturbation ΔU is relatively weak and the global profile of density distribution w(p1, t) is
only weakly perturbed as compared to the case of exact time reversal. However, in the next
figures we show that the echo characteristics are more sensitive to perturbations.

The entropy of entanglement of the initial state is obviously zero S(t = 0) = 0, and when
Ub = Uf and kb = kf the initial state is perfectly recovered for t = 2tr. We also analyze the
entropy of entanglement after 2tr steps given by G = S(2tr) as a function of tr at various pertur-
bation values ΔU = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 with Ub = Uf +ΔU and kb = kf = k = 8. The
results are shown in figure 3. Left and right panels show the cases for U = 0 and U = 2
respectively. Initially G(tr) grows linearly with time reversal tr and it can be described as
G(tr) = S(2tr) = αtr. At higher times the growth is saturated since both particles are localized
in this system (see [36, 37]).

We also study the usual Loschmidt echo defined as (see e.g. [19]):

M(tr) = |〈ψ(t = 0)|U†
KR(Ub, kb)trUKR(Uf, kf)tr |ψ(t = 0)〉|2, (9)

where the initial state evolves tr steps with forward parameter values Uf , kf and then tr steps
with backward parameter values Ub, kb. Figure 4 shows the Loschmidt echo as a function of
time reversal tr for the same parameters of figure 1 with U = 0 and U = 2 in left and right
panels respectively where ΔU = 0.1; 0.2; 0.3; 0.4; 0.5; 0.6 and kb = kf = 8. At short times
the decrease of the echo M(tr) can be described as the exponential decay M(tr) = exp (−Γtr).

We have fitted curves of figure 3 in the interval tr ∈ [0, 10/ΔU] by the linear fit G(tr) = αtr.
The obtained values of α for U = 0, U = 2, and ΔU = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 are shown in
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Figure 2. Time evolution of probability of the first particle w(p1, t) (color density plot)
for U = 0, tr = 50, N = 1024, h̄eff = ε = 5/8, k = Keff/h̄eff = 8 and −60 � p1 � 60
(y-axis), 0 � t � 100 (x-axis). The color bar gives values of [w(p1, t)/wmax (t)] with
wmax(t) = maxp1 w(p1, t) being the density maximum at a given value of t. (Left panel)
Shows the case ofΔU = 0 (corresponding to the black curve of figure 1 left panel); (right
panel) represents the case of ΔU = 0.5 (corresponding to the green curve of figure 1 left
panel).

Figure 3. Loschmidt echo of entropy of entanglement at time 2tr (G = S(2tr)) as a func-
tion of tr. (Left panel and right panel) Show the cases of U = 0 and U = 2 respectively
with ΔU = 0.1; 0.2; 0.3; 0.4; 0.5; 0.6. Other parameter values are the same as in
figure 1.

the right panel of figure 5. Since the Loschmidt echo decays exponentially with time reversal
tr for short times, we have fitted the curves of figure 4 in the interval tr ∈ [0, 10/ΔU] with
M(tr) = exp (−Γtr). The obtained values Γ for U = 0 and U = 2, and ΔU =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6 are shown in the left panel of figure 5.

The results presented in figure 5 show that the dependence of Γ and α of perturbation ΔU
is well described by the quadratic growth: Γ = A(ΔU)2 and α = B(ΔU)2 with the fit val-
ues A = 0.030 ± 0.001 (for U = 0), A = 0.031 ± 0.001 (for U = 2); B = 0.169 ± 0.002 (for
U = 0), B = 0.172 ± 0.002 (for U = 2). Such a dependence appears naturally from the Fermi
golden rule and is well known for the usual Loschmidt echo in the case of a small parameter
perturbation (see e.g. [20–22]). For the Loschmidt echo of entanglement G(tr) the linear growth
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Figure 4. Loschmidt echo M = |〈ψ(t = 0)|ψ(t = 2tr)〉|2 as a function of tr. (Left
panel and right panel) Show the cases of U = 0 and U = 2 respectively with
ΔU = 0.1; 0.2; 0.3; 0.4; 0.5; 0.6. Other parameter values are the same as in figure 1.

Figure 5. (Left) Exponential decay rate Γ of the Loschmidt echo vs ΔU for U = 0
(black circles) and U = 2 (red circles); the values of Γ are obtained from the expo-
nential fit M(tr) = exp (−Γtr) for tr ∈ [0, 10/ΔU] from the curves of figure 4. (Right)
Linear growth rate of final entropy of entanglement G(tr) = S(2tr) vs ΔU for U = 0
(black circles) and U = 2 (red circles); the values of α are obtained from the linear fit
G(tr) = αtr for tr ∈ [0, 10/ΔU] from the curves of figure 3. The dashed curves in both
panels show the fits of Γ and α by square dependence on ΔU (see text).

of G with time tr and the proportionality of the growth rate α ∝ (ΔU)2, as the Fermi golden
rule, is less obvious since this implies that the number of involved states grows exponentially
with time tr. We expect that the linear time dependence G = αtr (at small times) is in some way
linked to an exponential spreading of the wave packet with time, which results from the posi-
tive classical Kolmogorov–Sinai entropy h. In fact for the classical chaotic dynamics h gives
the entropy growth rate in time [5, 6]. In this context the perturbation ΔU gives a quadratic
correction to this rate.

We note that various properties of entropy of entanglement have been discussed in the litera-
ture, including links of its growth rate with the Kolmogorov–Sinai entropy (see e.g. references
[53–57]). However, here we stress the properties of entanglement with respect to time reversal
operation which is a certain new element in the context of entanglement studies.

Of course, there are various physical characteristics which are potentially interesting to
study with respect to time reversal. However, a specific feature of time dependence of the

7



J. Phys. A: Math. Theor. 55 (2022) 234004 L Ermann et al

entropy of entanglement S(t) is that its change in time takes place only due to interactions
which is the reason for its investigations here.

4. Poincaré recurrences of entanglement

Here we consider the kicked rotator for two interacting particles with absorption. The time
evolution is given by:

|ψ(t + 1)〉 = UaUKR|ψ(t)〉. (10)

Here, the operator UKR is given by (4)–(6) and the operator Ua represents absorption at the
borders ±L/2 = ±N/4, i.e., it is a non-unitary operator which is diagonal in momentum rep-
resentation and with eigenvalues being either 1 if −L/2 � p1 < L/2 and −L/2 � p2 < L/2
or 0 for all other cases. Due to the non-unitarity of this operator the survival probability
P(t) = ‖|ψ(t)〉‖2 of both particles decays with time. In the following, we compute all quanti-
ties (except for P(t) itself ) by first renormalizing the state |ψ(t)〉 → |ψ(t)〉/‖|ψ(t)〉‖. This model
was already extensively studied for the case of one particle in [38, 39, 42, 43].

We note that there are various interesting regimes of Poincare recurrences of entanglement
S(t) that requires presentation of various cases given in this section and next two sections.
Additional results are also given in supplementary material.

We start with the initial entangled state:

|ψ(t = 0)〉 = α1(0)|u1(0)〉 ⊗ |v1(0)〉+ α2(0)|u2(0)〉 ⊗ |v2(0)〉 (11)

with α1(0) = α2(0) = 1/
√

2 and

|u1(0)〉 = |p1 = 6Δp〉 (12)

|u2(0)〉 = |p1 = 7Δp〉 (13)

|v1(0)〉 = |p2 = 7Δp〉 (14)

|v2(0)〉 = |p2 = 8Δp〉, (15)

where N is the total system size which is chosen as a multiple of the minimal size 128 and
Δp = N/128 is a size dependent scaling factor. Here the state |pj〉 ( j = 1, 2) is the momentum
eigenstate of particle j with integer (quantum) momentum values −N/2 � pj < N/2 and p̂j

is the associated momentum operator of particle j. In particular, the states |u1,2〉 correspond to
the first and the states |v1,2〉 correspond to the second particle.

In this and the following sections, we present in figures results for U = 0 and U = 2, Ur = 1.
For this section, we have also computed additional results for other three interaction cases
U = −2, Ur = 1 and U = ±2, Ur = 0 which are qualitatively similar. The corresponding data
are not shown in figures but we mention in the discussions the important differences.

Concerning the parameters T and k we choose: T = h̄, k = K/h̄ with K = 7 and h̄ is fixed
by the condition that k = N/8 implying h̄ = K/k = 56/N. The value K = 7 corresponds to
strong chaos with two small islands and has the particular feature that the classical decay (in
case with of absorption at some border), described by the statistics of Poincaré recurrences,
is also exponential in contrast to a typical subtle power law decay in presence of significant
stable islands [45, 46, 58].

To compute numerically the application of the operator UKR to the state |ψ(t)〉 given in
momentum representation we apply first the diagonal phase shift due to (a half of) the free
rotation (the term (6)), transform the state to phase representation using a backward 2D-FFT,
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apply the diagonal kick operator (the term (5)), transform the state back to momentum rep-
resentation using a forward 2D-FFT, and then we apply the second half of the free rotation
(the term (4)). In absence of interaction U = 0, it also possible to use 1D-FFT and one-particle
operators for free rotation and the kick operator applied directly to the Schmidt states |u1,2〉
and |v1,2〉 (see also [33] for some technical details on this).

We note that in classical momentum units: pcl = h̄pj the absorption border is
pmax = h̄L/2 = (56/N) · N/4 = 14 = (2π) · 2.228 corresponding to 2.228 classical momen-
tum cells in each direction (from 0 to ±pmax). The classical momentum values of the two
states |u2〉 and |v1〉, given in (13) and (14) and used in the initial state (11), correspond to:
h̄ (7N/128) = (56/N) (7N/128) = 49/16 = (2π) · 0.4874 ≈ (2π) · 0.5, which is in the mid-
dle of the classical cell in order to avoid the two small stable islands at pcl = 0 (and some
non-trivial phase values). The other two states |u1〉 and |v2〉 are close by to |u2〉 or |v1〉 by a
factor of 6/7 or 8/7 respectively.

Assuming a simple 1D classical diffusive process

∂ρcl(p, t)
∂t

= D
∂2ρcl(p, t)

∂p2
(16)

for the classical density ρcl(p) (of one particle), with diffusion constant D = k2/4 = N2/256
and absorption at p = ±L/2 = ±N/4, i.e., Dirichlet boundary conditions ρcl(±L/2) = 0 at
the absorption border, one can show that the classical survival probability (for one particle)
decays (for long times) as P1(t) ∼ exp(−t/tTh) with tTh = L2/(π2D) = 64/π2 ≈ 6.4846 being
the Thouless time. For both particles we expect P(t) = P2

1(t) such that P(t)1/2 ∼ exp(−t/tTh).
When applying the quantum iteration (10), the state at a given (integer) iteration time t takes

the more general form (after renormalization):

|ψ(t)〉 =
L∑

i=1

αi(t)|ui(t)〉 ⊗ |vi(t)〉. (17)

We describe in appendix A.1 some details on the practical computation of the general Schmidt
decomposition and also some other related properties. Furthermore, we also show in appendix
A.2, that in absence of interaction there is indeed a more efficient numerical scheme to recom-
pute the Schmidt decomposition and in particular at arbitrary time t there are only two non-
vanishing singular values being α1 and α2 and αi = 0 for i = 3, . . . , L (note that the effective
matrix size of ψ(p1, p2) is L × L with L = N/2 due to the absorption process).

Using the singular values one can compute the entropy of entanglement defined as [30]:

S(t) = −Tr[ρ j log2(ρ j)] = −
L∑

i=1

α2
i (t)log2[α2

i (t)] (18)

(for either j = 1 or j = 2). In this definition we use the logarithm with respect to the base 2
such that the entropy of the initial state (11) is exactly S(t = 0) = 1.

For U = 0, we stop the iteration when |u1〉 converges (up to a global phase factor) with an
error below 10−12 (for the norm of the difference vector with proper phase) between two time
steps (and then we also iterate up to the next power of two for the iteration time).

For U �= 0, we stop the quantum interaction when the change of entropy between two time
steps is below 10−14 (and then we iterate up to the next power of two for the iteration time).
It turns that for the two cases with Ur = 1 also the state |ψ(t)〉 converges up to a global phase
factor to a limit state |ψ∞〉, i.e., |ψ(t)〉 → eiφ(t)|ψ∞〉 for t →∞ with a time dependent phase
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Figure 6. (Left) Decay of P(t)1/2 = ‖|ψ(t)〉‖ where the norm is obtained before
renormalization of the state |ψ(t)〉 for interaction value U = 0 and system size
128 � N � 65 536. The dashed blue line shows the classical decay corresponding to
P(t)1/2 = exp (−t/tTh) (for two particles) and with tTh = 64/π2 ≈ 6.4846 being the
Thouless time. (Right) Decay of P(t)1/2 = ‖|ψ(t)〉‖ for interaction values U = 2, Ur = 1
and system size 128 � N � 2048. The curves for N = 1024 (pink) and N = 2048 (cyan)
are very close.

factor. This is coherent with the picture that the non-unitary iteration operator UaUKR has com-
plex eigenvalues of the form exp(−γi/2 + iωi) with 0 < γ1 < γ2 < . . . and that |ψ∞〉 is the
eigenvector of the leading mode with absorption rate γ1 and furthermore the time dependent
phase factor is φ(t) = ω1t+ const. For Ur = 1 this convergence is rather fast and comparable
in speed to the convergence of the entropy. However, for Ur = 0 this convergence to the limit
state is quite slower. We have also verified that for U = 0 the general method of computing
all singular values, suitable for arbitrary U values, produces the same results (up to numerical
precision) as the more efficient method explained in appendix A.2.

Figure 6 shows the quantity P(t)1/2 obtained from the quantum iteration (10) for the two
cases U = 0 with system size 128 � N � 65 536 (left panel) and the interaction case U = 2,
Ur = 1 with system size 128 � N � 2048 (right panel). In the left panel also the classical decay
based on the model of simple classical diffusion is shown. For U = 0 the quantum decay is for
long time scales strongly reduced with respect to the classical decay and this effect is strongest
for small values of N. For larger values of N the time scale where the semiclassical limit is valid
increases as can be seen from the two curves for N = 32 768 and N = 65 536. However, even
for this semiclassical quantum decay the exponential decay time is by a factor ∼ 1.6 longer
than the classical Thouless time. This can be explained by the fact that the simple diffusive
model is not very accurate on a quantitative level due to the small number of classical cells
(∼ 4.5 in total). In this case, despite the strong chaos for K = 7, the effects of the classical phase
space structure may cause significant deviations with respect to the simple diffusive model.
For the interaction case, the decay visible for the more modest system sizes up to N = 2048
is comparable to the decay for U = 0 at same system size values. This also holds for the other
interaction cases not shown in the figure.

Figure 7 shows for U = 0 and different values of N the decay of the entropy of entanglement
S(t) which converges to 0 for t →∞ for all cases. However, the exponential decay rates for long
time scales vary strongly with system size in a non-systematic way, e.g., the long time decay
for N = 32 768 is significantly slower than for the other cases. Furthermore, even for a case
with strong long time decay, the onset of this decay may be quite late, e.g., for N = 65 536 the
entropy is rather constant close to unity for t � 500 with values clearly above the data for most
of the other cases and starts to decay quite strongly at t ≈ 1000 with final values clearly below
the values for several of the other cases.
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Figure 7. (Left) Decay of the entropy of entanglement S(t) for interaction value U = 0
and system size 128 � N � 65 536. (Right) As left panel but using a logarithmic scale
for the entropy and an increased time range.

In particular, we find that α1(t) → 1 and α2(t) → 0 for t →∞ and (up to phase
factors) |v1(t)〉 = |u1(t)〉 and |v2(t)〉 = |u2(t)〉. (See below for the corresponding Husimi
functions for some examples.) In absence of interaction the non-unitary iteration operator is
simply a tensor product of two independent (and identical) one-particle non-unitary iteration
operators: UaUKR = (U(1)

a U(1)
KR) ⊗ (U(2)

a U(2)
KR). During the time iteration both |u1(t)〉 and |v1(t)〉

converge to the leading eigenvector of the one-particle non-unitary iteration operator and the
long time decay of the survival probability (of both particles) is simply P(t) ∼ exp(−2γ(1)

1 t)
where γ(1)

1 is the absorption rate of this leading eigenvector. However, after global renormal-
ization, the entropy is determined by α2 via

S(t) ≈ −α2
2 log2(α2

2) − α2
1 log2(α2

1) ≈ −α2
2 log2(α2

2) + α2
2/ ln(2) (19)

for α2 � 1 since α2
1 = 1 − α2

2. We expect that α2 ∼ exp[−(γ(1)
2 − γ(1)

1 )t] where γ(1)
2 is the

absorption rate of the second eigenvector (of the non-unitary one-particle iteration operator)
which is ∼ |v2(t)〉 = |u2(t)〉 (up to a phase factor) for t →∞. Therefore, the entropy should
decay as:

S(t) ∼
(

(γ(1)
2 − γ(1)

1 )t + const.
)

exp[−2(γ(1)
2 − γ(1)

1 )t]. (20)

For U = 0 and N = 1024, we obtain from exponential fits of P(t) and α2(t) that
γ(1)

1 = 0.042 1459 and γ(1)
2 − γ(1)

1 = 0.001 060 19 (with virtually no statistical fit error for both
quantities) and also (20) is numerically very well confirmed. The inverse of γ(1)

1 provides
the decay time tq ≈ 23.73 which is about 3.66 times larger than the classical decay time
tTh = 64/π2 = 6.4846 (see also pink full line and blue dashed line in the left panel of figure 6).

Figure 8 shows the behavior of the entropy S(t) for the case of U = 2, Ur = 1 and system
size 128 � N � 2048. Initially the entropy increases to maximum values between Smax ≈ 4.2
at t ≈ 25 (for N = 128) and Smax ≈ 3.0 at t ≈ 50 (for N = 2048) and then it decays for t →∞
exponentially to a limit value S∞ which is significantly larger than unity and slightly below 2.
The values of S∞ for each case of N are also given in the right panel of figure 8 which shows
the (modulus of the) difference S(t) − S∞ versus time on a longer time scale and logarithmic
scale for the vertical axis. One also observes that for long time scales there are small amplitude
oscillations of S(t) around S∞.

The behavior for the case U = −2, Ur = 1 (not shown in the figure) is qualitatively similar
with an initial increase of S(t) and similar maximum values and with slightly different values
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Figure 8. (Left) Entropy of entanglement S(t) versus iteration time for interaction val-
ues U = 2, Ur = 1 and system size 128 � N � 2048. (Right) Decay of the difference
|S(t) − S∞| for the same values of interaction and system size with S∞ = limt→∞ S(t).
The shown time scale is increased and a logarithmic scale for the vertical axis is used.
The modulus of the difference is taken because S(t) is for certain time values t below the
limit value due to small amplitude oscillations for long time scales. The value of S∞ is
significantly larger than unity.

of S∞. However, the decays for the two cases of N = 256 and N = 512 are significantly faster
with a convergence time scale for S(t) at tmax ≈ 9000 or 3000 respectively (the other two cases
N = 128 and N = 1024 have similar values of the convergence time as for U = 2, Ur = 1 and
visible in figure 8).

For the two cases of U = ±2, Ur = 0 (not shown in the figure) the limit value is pre-
cisely S∞ = 1 and it turns out that the limit state has only two non-vanishing singular values
α1 = α2 = 1/

√
2 while αi = 0 for i � 3. However, also here the entropy initially increases

to the maximum values between Smax ≈ 3.5 at t ≈ 25 (for N = 128) and Smax ≈ 2.5 at t ≈ 25
(for N = 512) and with Smax ≈ 2.6 at t ≈ 50 (for N = 1024). At these intermediate iteration
times also the singular values αi for i � 3 provide significant contributions to the state |ψ(t)〉.
The decay of S(t) − S∞ for t →∞ is here very close to a pure exponential decay without any
amplitude oscillations (except for N = 1024 with some deviations from the pure exponen-
tial behavior) and with a convergence time scale of tmax between 300 (for N = 128) and tmax

between 2400 (for N = 1024) such that S(t) − S∞ < 10−10 for t > tmax.
For U = ±2, Ur = 1 all singular values contribute to the limit state as can be seen in figure 9

(for U = 2, Ur = 1; the other case U = −2, Ur = 1 being very similar). However the first two
singular values α1 = α2 ≈ 0.66–0.69 (see caption of figure 9 for more precise values) are
dominant while αi � 0.1 for i � 3. Furthermore the singular values of the limit state appear
in degenerate pairs. This is due to the fact that for all four interaction cases the limit state is
anti-symmetric with respect to particle exchange and a general property for the singular values
of a complex skew-symmetric matrix [61] (see also appendix A.1 for some explanations on
this).

We show in supplementary material (SupMat) that the weight of the symmetric component
of the wavefunction decays exponentially to zero (see figure S1) for long time scales.

We have also computed for U = 0 and the interaction cases the first Schmidt vectors |u1,2〉,
|v1,2〉 and the associated Husimi functions (see e.g. [33, 59, 60] for details on the definition
and computation of Husimi functions). The vectors |u1,2〉 for U = 0 and U = 2, Ur = 1 (all
for N = 1024) are shown in figure 10 for three time values being t = 1, t = 4 and some very
long time being t = tmax = 16 384 for U = 0 or t = tmax = 4096 for U = 2, Ur = 1. For t = 1,
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Figure 9. Singular values αi (appearing in the Schmidt decomposition of the
limit state limt→∞|ψ(t)〉) versus index i for interaction values U = 2, Ur = 1
and system size 128 � N � 2048. Both axis are shown on a logarithmic scale.
The singular values appear in degenerate pairs since the limit state is anti-
symmetric with respect to particle exchange. The values of the top pair of
singular values are α1 = α2 = 0.671 52, 0.663 17, 0.685 10, 0.689 65, 0.699 24 for
N = 128, 256, 512, 1024, 2048 respectively.

these states occupy the same manifold but for the two interaction cases the densities at some
positions on this manifold are reduced in comparison to the non-interacting case.

For t = 4 the phase space structure is quite complicated but rather similar between the inter-
acting and non-interacting cases for both states |u1,2〉. At long times the state |u1〉 of U = 0 is
very close to the state |u2〉 of U = 2, Ur and similarly between |u2〉 of U = 0 and |u1〉 of U = 2,
Ur = 1.

The states |v1,2〉 are not shown but for long times they are determined by |u1,2〉 depending on
the interaction: for U = 0 they are given by : |u1〉 = |v1〉 and |u2〉 = |v1〉 (up to phase factors),
or more explicitly:

|ψ∞〉 = C1α1|u1〉 ⊗ |u1〉+ C2α2|u2〉 ⊗ |u2〉, (21)

whereα1 ≈ 1,α2 =
√

1 − α2
1 � 1 and C1, C2 represent unknown (and time dependent) phase

factors.
For U = ±2 and Ur = 0, 1 we have a different situation where (up to a global phase factor)

|v1〉 = |u2〉 and |v2〉 = −|u1〉 which is confirmed by the Husimi functions of these states and
the sign is due to the established anti-symmetry of the limit state, or more explicitly:

|ψ∞〉 = Cα1

(
|u1〉 ⊗ |u2〉 − |u2〉 ⊗ |u1〉

)
+ α3(. . .) + · · · (22)

where α1 = α2 ≈ 0.7, C is an unknown phase factor and (for Ur = 1) there are also smaller
contributions due to αi for i � 3.

As already discussed above, the limit state (21) for U = 0 has a decay rate γ(1)
1 = 0.042 1459

(for N = 1024) since both modes |u1〉 = |v1〉 in the first term have the decay rate γ(1)
1 /2 (of the

non-interacting one-particle iteration operator). For the anti-symmetric state (22) in presence
of interaction, neglecting the contributions of αi for i � 3 and assuming that |u1,2〉 represent
well the first two decay modes of the non-interacting one-particle iteration operator, one would
expect a decay rate of (γ(1)

1 + γ(1)
2 )/2 = 0.042 6760 where γ(1)

2 is extracted from the difference
γ(1)

2 − γ(1)
1 = 0.001 060 19 which is according to the discussion above just the decay rate of

α2(t) at U = 0.
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Figure 10. Husimi functions of the Schmidt states |u1〉, |u2〉, for U = 0 or U = 2
(with Ur = 1) and N = 1024 at three iteration times t = 1, t = 4 and t = tmax with
tmax = 16 384 for U = 0 or tmax = 4096 for U = 2. The horizontal axis corresponds
to the phase θ ∈ [−π,π] and the vertical axis to the momentum pcl ∈ [−pmax, pmax]
where pmax = (2π) · 2.228 is the momentum absorption border in classical units. The
colors red/green/blue correspond to maximal/medium/minimal values of the Husimi
function.

Numerically, we find that the decay rates of the limit state in presence of interaction (for
Ur = 1) are γ(U=2,Ur=1)

1 = 0.045 5464 and γ(U=−2,Ur=1)
1 = 0.045 960. Even though these values

are quite close to the above expectation the difference is still 2 or 3 times larger than γ(1)
2 − γ(1)

1 ,
indicating that the interaction has a significant influence on the decay rate as such (in addition
to ‘imposing’ the anti-symmetric limit state (22)). This is also plausible since for Ur = 1 the
contributions of the other singular values αi for i � 3 are still quite important which can be
seen from the limit value of S∞ which is closer to 2 than to 1.

However, for the short range interaction Ur = 0 we have: γ(U=±2,Ur=0)
1 = 0.042 649 47

which is indeed very close to the theoretical expectation (difference being the fraction 1/40
of γ(1)

2 − γ(1)
1 ). For this case, the interaction is responsible for the anti-symmetric combina-

tion of the first two terms in (22) but has otherwise no strong effect on the decay. This
is also coherent with the fact that for this case αi = 0 for i � 3 (for the limit state at
t →∞).

One should note that for pairwise degenerate singular values the Schmidt decomposition
is not unique and does not change if one applies to |u1,2〉 and |v1,2〉 an arbitrary 2 × 2 uni-
tary rotation (same rotation for both pairs). Therefore, the numerical procedure that computes
the Schmidt vectors selects in some random way the precise choice of these vectors. How-
ever, despite this degree of liberty we have been able to verify that essentially the vectors

14



J. Phys. A: Math. Theor. 55 (2022) 234004 L Ermann et al

Figure 11. Husimi functions of the Schmidt states |u1〉, |u2〉, for U = 0 and N = 65 536
at final iteration time t = 16 384. The signification of both axes and the color codes is
the same as in figure 10.

|u1,2〉 in the limit t →∞ for U = 0 coincide roughly with the first two Schmidt vectors for
the four interaction cases. For Ur = 0 there are no other Schmidt components but for Ur = 1
there are with a modest weight further Schmidt components due to the interaction which also
provide a quite significant influence on the decay rate. Apparently, the interaction imposes
essentially an anti-symmetric limit state where both particles occupy the first two non-
interacting absorption modes in an anti-symmetric entangled combination. However, for Ur =
1 the other Schmidt components also have a significant weight in the entropy of entanglement
which is closer to 2 than to 1.

In figure 11, we also show the Husimi functions of |u1,2〉 for U = 0 and a larger system
size N = 65 536 at final iteration time t = 16 384. The overall phase space structure of these
modes is rather complicated but there are some positions, with very small red dots, where the
density is locally enhanced. The Husimi function has a fractal structure corresponding to a
fractal repeller of non-escaping classical orbits (compare with the one-particle case discussed
in [43]).

5. Poincaré recurrences of entanglement with absorption of one particle

In this section, we consider a different case with the same time evolution as in the previ-
ous section (exact same parameters; in particular K = 7) but the absorption at the absorption
border is applied only to the second particle while the first particle can move in the full avail-
able phase space (with periodic boundary conditions) and is never absorbed. We call this
the asymmetric absorption case (in contrast to the symmetric absorption case of the previous
section).

Figure 12 shows for this case the quantity P(t)1/2 obtained from the quantum iteration (10)
for U = 0 with system size 128 � N � 65 536 (left panel) and the interaction case U = 2,
Ur = 1 with system size 128 � N � 2048 (right panel). In the left panel also the classical
decay based on the model of simple classical diffusion (with absorption for only the second
particle) is shown.

The results shown in figure 12 are very similar to the results of figure 6 if one takes into
account that all decay times are increased by a factor of 2, i.e. we have roughly PAS(t) ≈ P(t/2)
where PAS(t) is a curve of figure 12 for the asymmetric absorption of only the second particle
and P(t) is a curve of figure 6 for the absorption of both particles.
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Figure 12. (Left) Decay of P(t)1/2 = ‖|ψ(t)〉‖ where the norm is obtained before renor-
malization of the state |ψ(t)〉 for interaction value U = 0, system size 128 � N �
65 536 and absorption only for the second particle. The dashed blue line shows the
classical decay corresponding to P(t)1/2 = exp (−t/(2tTh)) (for one particle) and with
tTh = 64/π2 ≈ 6.4846 being the Thouless time. (Right) Decay of P(t)1/2 = ‖|ψ(t)〉‖ for
interaction values U = 2, Ur = 1 and system size 128 � N � 2048.

Figure 13. (Left) Decay of the entropy of entanglement S(t) for interaction value U = 0,
system size 128 � N � 65 536 and absorption only for the second particle. (Right) As
left panel but using a logarithmic scale for the entropy and an increased time range.

Figure 13 shows for the case of asymmetric absorption, U = 0 and different values of N
the decay of the entropy of entanglement S(t) which converges also to 0 for t →∞ for all
cases. Qualitatively the overall (rather complicated) behavior is similar to the case of symmet-
ric absorption shown in figure 7, i.e. the decay times depend in a non-systematic way on N,
sometimes with a late onset of the decay. However, cases for slow, fast or late decay happen
for the same values of N as in figure 7.

We find again that α1(t) → 1 and α2(t) → 0 for t →∞. The state |v1(t)〉 is now of course
different from |u1(t)〉 but it is identical (up to a phase factor) for t →∞ to the state |v1(t)〉
for the case of symmetric absorption while |u1(t)〉 corresponds to the free (ergodic) quantum
evolution of the first particle. (See below for the corresponding Husimi functions for some
examples.)

The efficient computation method for U = 0 (see appendix A.1) is also valid here. How-
ever, the triangular 2 × 2 matrix Ru associated to the first particle is now always the unity
matrix since no orthogonalization procedure for the states |u1,2〉 is necessary during the iter-
ation (or in other words if it is done anyway one simply obtains for Ru the unit matrix).
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Figure 14. (Left) Entropy of entanglement S(t) versus iteration time for interaction val-
ues U = 2, Ur = 1, system size 128 � N � 2048 and absorption only for the second
particle. The horizontal axis is shown in logarithmic scale for (t + 1) (in order to keep
the first data point at t = 0 visible). (Right) Decay of the difference |S(t) − S∞| for the
same values of interaction and system size with S∞ = limt→∞ S(t). The shown time scale
is linear and a logarithmic scale for the vertical axis is used. The modulus of the differ-
ence is taken because S(t) is for certain time values t below the limit value due to small
amplitude oscillations for long time scales. The value of S∞ is significantly smaller than
unity.

However, the other matrix Rv for the second particle has a non-trivial behavior and therefore
the Schmidt decomposition still evolves in a non-trivial way similar to the scheme described in
appendix A.1.

The state |u1(t)〉 at arbitrary time t is a linear combination of both initial states |u1,2(t = 0)〉
to which the free one-particle kicked rotator time evolution is applied but the coefficients of
this linear combination depend on the way the second particle is absorbed (by the successive
products of the matrix Rv). This situation is quite similar to the case of measurement of the
second particle at some specific p2 values studied in [33] since such a measurement process
can be viewed as an extreme case of absorption for all p2 values being different from the
measured value.

Figure 14 shows for the asymmetric absorption case the behavior of the entropy S(t) for
the case of U = 2, Ur = 1 and system size 128 � N � 2048. Initially the entropy increases
to maximum values between Smax ≈ 4.2 at t ≈ 25 (for N = 128) and Smax ≈ 2.3 at t ≈ 60
(for N = 2048) and then it decays for t →∞ exponentially to a limit value S∞ which is now
significantly smaller than unity (but larger than zero). The values of S∞ for each case of N are
also given in the right panel of figure 14 which shows the (modulus of the) difference S(t) − S∞
versus time on a longer time scale and logarithmic scale for the vertical axis. As in the case
of symmetric absorption one also observes that for long time scales there are small amplitude
oscillations of S(t) around S∞. However, now the convergence of the entropy is considerably
slower than for the symmetric absorption case shown in figure 8, especially for N = 1024 and
N = 2048.

For U = 2, Ur and the asymmetric absorption, also all singular values contribute to the limit
state as can be seen in figure 15. However, now, due to the obvious absence of antisymmetry
in the limit state (with respect to particle exchange) the singular values are no longer pair-
wise degenerate and the top singular value α1 ≈ 0.98–0.99 (see caption of figure 15 for more
precise values) is dominant while αi < 0.062 for i � 2 (and N = 1024). However, despite the
dominating first singular value the resulting entropy (of the limit state) is still considerably
larger than zero with values ≈ 0.3–0.5 (except for N = 512 where the limit value is ≈ 0.1).
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Figure 15. Singular values αi (appearing in the Schmidt decomposition of
the limit state limt→∞|ψ(t)〉) versus index i for interaction values U = 2,
Ur = 1, system size 128 � N � 2048 and absorption only for the second
particle. Both axis are shown on a logarithmic scale. The values of the top
singular value are α1 = 0.981 86, 0.983 37, 0.996 12, 0.981 36, 0.991 07 for
N = 128, 256, 512, 1024, 2048 respectively.

As in the last section, we have also computed for U = 0 and the interaction cases the first
Schmidt vectors |u1,2〉, |v1,2〉 and the associated Husimi functions [33, 59, 60]. The vectors
|u1(t)〉, |v1(t)〉 for U = 0 and U = 2, Ur = 1 (all for N = 1024) are shown in figure 16 for three
time values being t = 1, t = 4 and some very long time being t = tmax = 16 384 for U = 0 or
t = tmax = 131 072 for U = 2, Ur = 1. Again for t = 1, these states occupy the same manifold
but for the two interaction cases the densities at some positions on this manifold are reduced
in comparison to the non-interacting case. (Note that the available phase space for |v1(t)〉 is
reduced by a factor of 2 concerning the maximal p value as compared to |u1(t)〉.)

Again for t = 4 the phase space structure is quite complicated but rather similar between
the interacting and non-interacting cases for both states |u1〉 and |v1〉 respectively.

At long times the state |u1〉 of U = 0 seems to be ergodic while the state |v1〉 coincides
(quite exactly and for both U = 0 and U = 2, Ur = 1) with the state |v1〉 for the symmetric
absorption case (U = 0) visible in figure 10 (see |u1〉 in this figure which coincides with |v1〉
for the symmetric absorption case at U = 0). However, for U = 2, Ur = 1 the state |u1〉 (at long
times) is quite strange with a strongly enhanced probability in the absorption area |p| > pmax

of the other particle. Furthermore, also in the region |p| < pmax the first particle has larger
(smaller) probability values at classical positions where the second particle is absent (present).
This indicates that the first particle is somehow repelled by the interaction from the second
particle which cannot enter the absorption area and which is in a quite stable limit state |v1〉.

In figure 17, we also show for the asymmetric absorption case the Husimi functions of
|u1〉 and |v1〉 for U = 0 and a larger system size N = 65 536 at final iteration time t = 16 384.
Similarly to the case N = 1024 the state |u1〉 is ergodic and |v1〉 coincides (quite precisely)
with the corresponding state for the symmetric absorption case (see state |u1〉 of figure 11).
The Husimi function of the second absorbed particle has a fractal structure corresponding to a
fractal repeller of non-escaping classical orbits, while the Husimi function of the first particle
is homogeneous in the phase space.
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Figure 16. Husimi functions of the Schmidt states |u1〉, |v1〉, for U = 0 or U = 2
(with Ur = 1), N = 1024 and absorption only for the second particle at three itera-
tion times t = 1, t = 4 and t = tmax with tmax = 16 384 for U = 0 or tmax = 131 072 for
U = 2. The horizontal axis corresponds to the phase θ ∈ [−π,π] and the vertical axis to
the momentum pcl ∈ [−2pmax, 2pmax] (for |u1〉) or pcl ∈ [−pmax, pmax] (for |v1〉) where
pmax = (2π) · 2.228 is the momentum absorption border in classical units (for the second
particle) and 2pmax is the maximal classical momentum value for the full phase space
in absence of absorption (for the first particle). The colors red/green/blue correspond to
maximal/medium/minimal values of the Husimi function.

6. Poincaré recurrences of entanglement with absorption of one particle for
K = 2.5

In this section, we consider the case of asymmetric absorption only for the second particle for
the classical chaos parameter K = 2.5 and same value of k = L/4 = N/8 implying that now
pmax = 5 = (2π) · 0.7958 corresponds to 0.7958 classical momentum cells between 0 and pmax.
The statistics of Poincaré recurrences for this case was studied in [42] and here the phase space
is mixed with remarkable stable islands (see Husimi figures below). This leads to a power
law decay of P(t) ∝ t−1 due to resonant classical modes outside but very close to the stable
islands [42]. Similarly as in [42], we choose as initial Schmidt states localized states in momen-
tum at (quantum) values close to L/3, more precisely: |u1(0)〉 = |p1 = 20Δp〉, |u2(0)〉 =
|p1 = 21Δp〉, |v1(0)〉 = |p2 = 21Δp〉 and |v2(0)〉 = |p2 = 22Δp〉 with Δp = N/128 = L/64
being the same scaling factor used in (12)–(15). For these values of p1,2 the initial momentum
lines have no intersections with the stable islands. Now, the entropy S(t) does not converge (for
U = 0) or not very well (for U = 2) and we choose for all cases a maximal iteration time of
tmax = 218.
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Figure 17. Husimi functions of the Schmidt states |u1〉, |v1〉, for U = 0, N = 65 536
and absorption only for the second particle at final iteration time t = 16 384. The
signification of both axes and the color codes is the same as in figure 16.

Figure 18. (Left) Decay of P(t)1/2 = ‖|ψ(t)〉‖ where the norm is obtained before renor-
malization of the state |ψ(t)〉 for interaction value U = 0, system size 128 � N � 65 536,
K = 2.5 and absorption only for the second particle. The long dashed blue (pink) straight
line corresponds to the power law ∝ t−1/2 (∝ t−1) for comparison. (Right) Decay of
P(t)1/2 = ‖|ψ(t)〉‖ for interaction values U = 2, Ur = 1 and system size 128 � N �
2048. Both panels are in a double logarithmic representation.

Figure 18 shows for this case the quantity P(t)1/2 obtained from the quantum iteration
(10) for U = 0 with system size 128 � N � 65 536 (left panel) and the interaction case
U = 2, Ur = 1 with system size 128 � N � 2048 (right panel). Now a double logarithmic
representation is chosen since the decay is for both cases close to the power law P(t) ∝ t−1

(P(t) ∝ t−1/2) for intermediate (longer) time scales confirming the findings of [42] for U = 0.
For the interaction case U = 2 the decay curves for modest values of N between 128 and 2048
do not strongly depend on N (in contrast to U = 0 for these size values) and are actually closer
to the curves of large N values for U = 0 and both types of power law decay (depending on
longer or intermediate time scales).

Figure 19 shows for asymmetric absorption, K = 2.5, U = 0 and different values of N the
behavior of the entropy of entanglement S(t). The entropy seems to decay for short time scales
and smaller N values but has a more complicated behavior for larger time scales where the
entropy may re-increase even up the initial unity value for some cases. For larger N values the
initial decay is very slow and small in amplitude.
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Figure 19. (Left) Time dependence of the entropy of entanglement S(t) for interaction
value U = 0, system size 128 � N � 65 536, K = 2.5 and absorption only for the second
particle. (Right) As left panel but using a logarithmic scale on the horizontal axis in
(t + 1) (in order to keep the first data point at t = 0 visible).

It seems that due to the weak decay of P(t) the Schmidt states |v1,2〉 of the second particle
retain partly their orthogonality such that both singular values stay close to their initial values
α1(t) ≈ α2(t) ≈ 1/

√
2 implying that the entanglement is rather well conserved. However, one

might expect that at extremely long exponential time scales (in N) the entropy should also
decay to 0 in a similar way the quantum decay of P(t) should become exponential for such
time scales [42].

The efficient computation method for U = 0 (see appendix A.1) was again used for the
data of figure 19. In a similar way, as for the case K = 7 (with absorption only for the sec-
ond particle), the state |u1(t)〉 at arbitrary time t is a linear combination of both initial states
|u1,2(t = 0)〉 to which the free one-particle kicked rotator time evolution is applied but the
coefficients of this linear combination depend on the way the second particle is absorbed. The
same holds for |v1,2(t)〉 which are also given by a linear combination of both initial states
|v1,2(t = 0)〉 to which the free one-particle kicked rotator with absorption is applied. However,
while for K = 7 both vectors converged quite well to the first two modes of the non-unitary
(one-particle) iteration operator, this is not the case for K = 2.5 due to the exponentially long
time scale for this type of convergence.

Figure 20 shows for the asymmetric absorption case and K = 2.5 the behav-
ior of the entropy S(t) for U = 2, Ur = 1 and system size 128 � N � 2048. Ini-
tially, the entropy increases to maximum values between Smax ≈ 5 at t ≈ 102 (for
N = 128) and Smax ≈ 7.2 at t ≈ 103 (for N = 2048). Interestingly, now the interme-
diate (first) maximum values of S(t) are larger for larger values of N (instead of
smaller values of N as for K = 7). For t →∞ the entropy decays exponentially to
a limit value S∞ which is now significantly larger than unity (except for N = 128)
but the decay times are very long of the order of tS ∼ 105 or even tS ∼ 106 for N = 128 and
the limit value is obtained by an exponential fit with a constant term for the time interval
217 � t � 218 (220 � t � 222 for N = 128). We note that for N = 128 the entropy has a mini-
mum at t ≈ 105 and a second maximum at t ≈ 106 ≈ 220 and some slight oscillatory behavior
around the fit line is visible. Due to the late onset of the decay of S(t) for N = 128, we have
increased the maximal iteration time here to tmax = 222 and in the (right panel) of figure 20 the
time axis for N = 128 is rescaled by a factor of 1/16.
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Figure 20. (Left) Entropy of entanglement S(t) versus iteration time for interaction
values U = 2, Ur = 1, system size 128 � N � 2048, K = 2.5 and absorption only for
the second particle. The horizontal axis is shown in logarithmic scale for (t + 1) (in order
to keep the first data point at t = 0 visible). (Right) Decay of the difference S(t) − S∞
for the same values of interaction and system size where S∞ is determined from the
exponential fit with a constant term S(t) = S∞ + SA exp (−t/tS) for the time interval
217 � t � 218 (220 � t � 222) for N � 256 (N = 128). The resulting fit values are:
S∞ = 0.3501 ± 0.0039, SA = 1.515 ± 0.010, tS = (1.403 ± 0.017) × 106 for N = 128;
S∞ = 1.9512 ± 0.0009, SA = 0.8298 ± 0.0006, tS = (2.808 ± 0.006) × 105 for
N = 256; S∞ = 2.8907 ± 0.0026, SA = 0.9865 ± 0.0029, tS = (1.452 ± 0.014) × 105

for N = 512; S∞ = 4.2734 ± 0.0004, SA = 0.6117 ± 0.0018, tS = (1.030 ±
0.004) × 105 for N = 1024; S∞ = 5.1298 ± 0.0004, SA = 0.8328 ± 0.0025, tS =
(9.63 ± 0.03) × 104 for N = 2048. The straight dashed lines of same color show for each
value of N the resulting fit curve. The inverse scaling factor tf on the horizontal time axis
is 1 (16) for N � 256 (N = 128) corresponding to a maximal iteration time tmax = 218

(tmax = 222). The shown time scale is linear and a logarithmic scale for the vertical axis is
used.

In principle, due to the obtained behavior at N = 128, we cannot exclude for certain that
also for N � 256 the entropy might re-increase at some long time with a second maximum.
However, the exponential fits shown in the figure are of good quality and for all time values
t > 102 the values of S(t) are clearly above the given value of S∞.

For the case of this section we present additional results for the spectrum of singular values
αi, and Husimi functions in figures S2–S4 of SupMat.

7. Discussion

In this work we studied the properties of entanglement of two particles using such tools of
quantum chaos as Loschmidt echo and Poincaré recurrences with absorption.

We find that the Loschmidt echo of entanglement G(tr) = αtr is characterized by a linear
growth at small times tr with the rate α being proportional to the square of the perturbation
as for the Fermi golden rule (α ∝ (ΔU)2). We attribute such a dependence to the perturbation
corrections to the Kolmogorov–Sinai entropy which is at the origin of exponentially fast wave
packet spreading.

For the case of Poincaré recurrences of entanglement, we find different unusual regimes for
the decay of the entropy of entanglement S(t). For the case of absorption of both particles and in
absence of interactions S always decays to zero. However this decay is very slow and depends
on the system size in a complex manner. Furthermore, it is related to the gap between the first
two decay rates obtained from the first two complex eigenvalues of the non-unitary one-particle
iteration operator. In presence of interactions S decays to a finite value and the decay rate to it
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can also be very small depending on the singular values of Schmidt decomposition. The Husimi
function of the asymptotic state has a fractal repeller structure for both particles. Furthermore,
the two particle state converges to an anti-symmetric state with respect to particle exchange
providing double degenerate singular values appearing in the Schmidt decomposition. The
entropy S∞ of this limit state is either significantly larger than or equal to unity depending on
the interaction range Ur = 1 or Ur = 0 respectively.

For the case of absorption of only one particle the interactions significantly modify the
asymptotic Husimi function of the particle without absorption, e.g., effective repulsion struc-
ture from the other absorbed particle or faster penetration inside stable islands. The entropy of
entanglement of two interacting particles also decays to a finite value. Depending on the chaos
parameter the limit entropy S∞ may be significantly below unity (K = 7) or quite large up to
S ≈ 4–5 (K = 2.5 and largest system sizes). For the case K = 2.5 the classical phase space has
a hierarchical structure of integrable islands and here the time scale for the exponential entropy
decay is enormously large.

Our studies are done for the case of the quantum Chirikov standard map which describes
a generic behavior in the regime of quantum chaos. Indeed, other systems, as e.g. the kicked
top, actively studied by Haake and his colleagues (see e.g. [62] and references therein), can
be locally described by the Chirikov standard map [63]. Due to this reason we expect that the
obtained results are generic.
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Appendix A. Schmidt decomposition and singular value decomposition

A.1. General case
The singular values αi(t) and Schmidt vectors |ui(t)〉 and |vi(t)〉 in (17) can be computed
from the singular value decomposition of the ‘matrix’ ψ(p1, p2) with p1, p2 being the matrix
indices. For this we introduce the density matrix of the first (second) particle ρ1(p1, q1) =∑

p2
ψ(p1, p2)ψ∗(q1, p2) (or ρ2(p2, q2) =

∑
p1
ψ∗(p1, p2)ψ(p1, q2)) where the p2- (p1-) sum

corresponds to the partial trace over the second (first) particle.
In matrix notation, we can also write ρ1 = ψψ† (or ρ2 = ψ†ψ). Note that for the asymmetric

case when only one particle is absorbed the matrix ψ may be rectangular and in this case ρ1 and
ρ2 may be of different size. Both matrices ρ1 and ρ2 are Hermitian and have real eigenvalues.
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Let ui be a normalized eigenvector of ρ1 with such an eigenvalue λi. Since

λi = 〈ui|ρ1ui〉 = 〈ui|ψψ†ui〉 = 〈ψ†ui|ψ†ui〉 = ‖ψ†ui‖2 � 0 (A1)

we write λi = α2
i with real αi � 0. For αi > 0 let us define the (normalized) vector

vi = ψ†ui/αi such that:

ρ2vi = (ψ†ψ)ψ†ui/αi = ψ†(ψψ†)ui/αi = ψ†(α2
i )ui/αi = α2

i vi (A2)

showing that vi is an eigenvector of ρ2 with the same eigenvalueαi. Inversely, for a given eigen-
vector vi of ρ2 with eigenvalueα2

i > 0 one can obtain by ũi = ψvi/αi a normalized eigenvector
of ρ1 (which may be different from ui for the case of a degenerate eigenvalue). Therefore, ρ1

and ρ2 have the same non-vanishing eigenvalues. Both of them may also have the eigenvalue
zero but for the case of different matrix sizes it is possible that only one of them has the eigen-
value zero while the other does not. Using the eigenvectors ui and vi, we construct unitary
matrices u and v containing these vectors in their columns respectively. (For the case of some
αi = 0, we add additional column vectors orthogonal to the eigenvectors for αi > 0 to obtain
full squared unitary matrices.) This provides the ‘singular value decomposition’ ψ = uαv†

where α is a matrix with diagonal elements αi and zero non-diagonal elements (this matrix
may be rectangular of the same size as ψ).

This scheme provides also a numerical procedure to compute the singular value decom-
position, by first diagonalizing ρ1 which gives the unitary matrix u with columns vectors ui

being the eigenvectors of ρ1. The singular values αi are obtained as the norm αi = ‖ψ†ui‖
(which is numerically more precise for small αi than taking αi =

√
λi if λi is the numerically

obtained eigenvalue of ρ1). The eigenvectors vi of ρ2 are then constructed as above from ui,
with eventually adding further orthogonal vectors for the case αi = 0. Once the singular value
decomposition is known one chooses the columns of u for |ui〉 and the rows of v† (i.e. columns
of v∗) for |vi〉 to obtain the Schmidt decomposition (17).

For the case of a square (complex) matrix ψ (absorption of both particles) being skew-
symmetricψT = −ψ (e.g. the anti-symmetric state with respect to particle exchange for t →∞
and U �= 0), there is a mathematical theorem [61] stating that the non-vanishing singular val-
ues come in degenerate pairs, i.e. the associated dimensions of the eigenspaces of ρ1,2 are
even. For the simple case of a real skew-symmetric matrix this is quite obvious since the
matrixψ is then also anti-Hermitian (ψ† = −ψ) with purely imaginary eigenvalues±iα j which
also come in complex conjugated pairs (since ψ is real). The matrix relation that diagonal-
izes ψ = uDu† (with D being the diagonal matrix with entries ±iα j) becomes immediately
the singular value decomposition ψ = uαv† with v† = Iu† where I is a diagonal matrix with
entries ±i.

However, the degeneracy for αi > 0 is also valid for a complex skew-symmetric matrix ψ
but in this case there is no simple link between the complex eigenvalues of ψ (which actually
come in pairs of opposite sign) and its singular values. To get a simple understanding of this
theorem (shown in [61]), we note that due to ψT = −ψ (now for the complex case) we have:
ρ2 = ψ†ψ = (−ψ)∗(−ψT) = (ψψ†)∗ = ρ∗1. Therefore, if ui is an eigenvector of ρ1 we know that
u∗

i is an eigenvector of ρ2 with the same eigenvalue and for αi > 0 we can construct, according
to the argument presented above, by ũi = ψu∗

i /αi an eigenvector of ρ1. It turns out that this
new eigenvector cannot be a multiple of the initial eigenvector ui. Assuming ui = Cũi, with
some phase factor C, we obtain:

ui = Cψu∗
i /αi = |C|2ψψ∗ui/α

2
i = |C|2(−ψψ†)ui/α

2
i = −ui (A3)
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which is impossible. Furthermore, ũi is even orthogonal to ui since

〈ũi|ui〉 = 〈ψu∗
i /αi|ui〉 = 〈u∗

i |ψ†ui/αi〉 (A4)

= 〈u∗
i | − ψ∗ui/αi〉 = −〈u∗

i |ũ∗
i 〉 = −〈ũi|ui〉

implying 〈ũi|ui〉 = 0. Therefore, for a given eigenvector ui we can construct a second lin-
early independent eigenvector ũi. Applying the same construction scheme to ũi we find −ui

with a similar calculation as in (A3). Therefore the singular values different from zero are at
least double degenerate and it is not difficult to argue that higher degeneracies must be even.
Figure 9 provides a numerical illustration of these degeneracies for the limit state of one of the
interaction cases.

A.2. Recomputation of Schmidt decomposition for U = 0

In absence of interaction the quantum iteration with absorption (10) does not increase the num-
ber of Schmidt components in the initial condition, i.e., in (17) there are only two non-vanishing
singular values being α1 and α2 and αi = 0 for i = 3, . . . , L.

To see this, let us assume that we know the Schmidt decomposition (17) with L = 2 compo-
nents of a state |ψ(t)〉 at a given iteration time t. In absence of interaction the iteration operator
(with absorption) acts independently on the Schmidt states |u1,2〉 → |ū1,2〉 and |v1,2〉 → |v̄1,2〉.
The new states are neither normalized neither orthogonal due to the non-unitarity of the itera-
tion operator. However, one can normalize |ū1〉 → |û1〉 and |v̄1〉 → |v̂1〉 and orthogonalize (by
the usual Gram–Schmidt procedure) |ū2〉 to |û1〉 and |v̄2〉 to |v̂1〉 resulting in new vectors |û2〉
and |v̂2〉 respectively. This procedure provides the QR-decomposition:

(|ū1〉, |ū2〉) = (|û1〉, |û2〉)Ru, (A5)

where Ru is the upper triangular 2 × 2 matrix:

Ru =

(
‖|ū1〉‖ 〈û1|ū2〉

0 ‖|ū2〉 − 〈û1|ū2〉|û1〉‖

)
. (A6)

For |v̄1,2〉 and |v̂1,2〉 a similar relation holds using an upper triangular matrix Rv . Then the state
|ψ(t + 1)〉 after one iteration can be formally written as:

|ψ(t + 1)〉 = (|û1〉, |û2〉)Ruα̂(t)RT
v

(
|v̂1〉T

|v̂1〉T

)
, (A7)

where α̂(t) is a 2 × 2 diagonal matrix with entries α1(t) andα2(t) and where the notation |v̂1.2〉T

indicates row vectors (due to the tensor product). This expression does not yet provide the
Schmidt decomposition of |ψ(t + 1)〉. For this it is necessary to compute the singular value
decomposition of the 2 × 2 matrix

A = Ruα̂(t)RT
v = Ouα̂(t + 1)OT

v , (A8)

where Ou and Ov are unitary 2 × 2 matrices and α̂(t + 1) is a diagonal matrix containing the
new singular values α1(t + 1) and α2(t + 1). The new Schmidt vectors at time (t + 1) are then
obtained by:

(|u1(t + 1)〉, |u2(t + 1)〉) = (|û1〉, |û2〉)Ou (A9)
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and similarly for |v1,2(t + 1)〉 using Ov . This procedure shows that in absence of interaction
the number of Schmidt components cannot increase and it provides also an efficient numerical
method for the case U = 0. During the iteration the renormalization due to the absorption
can be done by renormalizing the obtained new singular values (such that α2

1(t + 1) +
α2

2(t + 1) = 1).
Furthermore, for large times α2 decays exponentially while α1 → 1 (after renormalization)

but fortunately α2 can be numerically computed in a very stable way, even if α2 � α1, using
the determinant of the matrix (A8) which is |det(A)| = |det(Ru) det(Rv)|α1(t)α2(t) = α1(t +
1)α2(t + 1). First one computes α2

1(t + 1) as the leading eigenvalue of the matrix A†A which
is numerically stable and then α2(t + 1) is obtained from α2(t + 1) = |det(A)|/α1(t + 1).
This is also accurate for the case where the lower corner elements of the matrices Ru and
Rv become very small which is possible due to the absorption process which has for long
times t →∞ the tendency to produce vectors |ū1,2〉 which are nearly parallel (and similarly
for |v̄1,2〉).
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Appendix S: Supplementary Material for
“Loschmidt echo and Poincaré recurrences of entanglement”
by L.Ermann, K.M.Frahm and D.L.Shepelyansky

Here we present additional Figures for the main part of the article.
Additional results related to the case of absorption of two particles at the chaos

parameter value K = 7 (discussed in Section 4) are presented in Fig. S1.
In order to analyze the symmetry of the limit state (absorption of two particles at

K = 7) with respect to particle exchange, we decompose the state in an anti-symmetric
component and a symmetric component by:

ψasym(p1, p2) =
1

2
(ψ(p1, p2)− ψ(p2, p1)) (S1)

ψsym(p1, p2) =
1

2
(ψ(p1, p2) + ψ(p2, p1)) (S2)

and compute the norm of both components (after renormalization of the state |ψ�
itself). It turns out that for all four interaction cases the symmetric component decays
exponentially as can be seen in Fig. S1 (for the case U = 2, Ur = 1; the other cases
being similar) showing the time dependence of the norm �|ψsym(t)�� and also of the
difference |α1−α2| of the first two singular values. The latter decays, apart from some
oscillatory behavior, in the same way as the symmetric component showing the link
between the anti-symmetry and the pairwise degeneracy of the singular values of the
limit state for t → ∞.

We mention that for U = 0, the limit state (with only one Schmidt component)
is symmetric with respect to particle exchange. We have also numerically verified
that this symmetry persists for very small interactions values U = ±T/10, Ur = 0, 1
where T = � = 56/N is the parameter for the free rotation part of the kicked rotator
(see discussion at the beginning of section 4). Apparently, for sufficiently strong
interaction (with both signs) the leading mode of the non-unitary iteration operator is
anti-symmetric with respect to particle exchange which is in contrast to the behavior
of vanishing or very small interaction.

Additional results for the case of absorption of only one particle at the chaos
parameter value K = 2.5 (discussed in Section 6) are presented in Figs. S2, S3, S4.

The large values of S∞ (for K = 2.5 and N ≥ 256) imply that many singular
values contribute to the state at final iteration time tmax = 218 as can be seen in
Fig. S2. In contrast to the cases with K = 7, there is (for N ≥ 256) a considerable
fraction of αi � 0.1 values (roughly for i �

�
N/2) which contribute more uniformly

to the two-particle state. Only for the case N = 128 the first singular value α1 is
somewhat dominating.

As for the cases with K = 7, we have also computed for K = 2.5 the first
Schmidt vectors |u1,2�, |v1,2� and the associated Husimi functions [59, 60, 33]. The
vectors |u1(t)�, |v1(t)� for U = 0 and U = 2, Ur = 1 (all for N = 1024) are shown in
Fig. S3 for three time values being t = 1, t = 8 and t = tmax = 218 for both U = 0 and
U = 2, Ur = 1. Again for t = 1, these states occupy the same manifold but now there
is no visible difference between U = 0 and U = 2. Note that the available phase space
for |v1(t)� is reduced by a factor of 2 concerning the maximal p value as compared
to |u1(t)� and that in Fig. S3 the horizontal axis corresponds to θ ∈ [0, 2π] in order
to be coherent with the Husimi functions shown in [42] (instead of θ ∈ [−π,π] in the
Husimi figures for K = 7).
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SuppMat Figure S1. The full lines show the decay of the norm �|ψsym(t)�� of
the particle symmetrized state |ψsym(t)� obtained by ψsym(x1, x2) = (ψ(x1, x2)+
ψ(x2, x1))/2 (after renormalization of |ψ(t)�) for interaction values U = 2, Ur = 1
and system size 128 ≤ N ≤ 2048. The dashed lines show for each value of N the
decay of the difference |α1 − α2| where α1,2 are the first two singular values of
the state |ψ(t)� becoming degenerate for t → ∞.

Again for t = 8 the phase space structure is quite complicated but rather
similar between the interacting and non-interacting cases for both states |u1� and
|v1� respectively.

At long times the state |u1� of U = 0 seems to be ergodic in the chaotic region
of the phase space together with visible strong islands while the state |v1� of U = 0
is concentrated around the stable islands but without penetrating the main center
island (the other islands are quite small on the scale of the resolution of the Husimi
function for N = 1024). For U = 2 the state |u1� is localized at four structures
close to the corners indicating a strong repulsion of the first particle from the second
particle due to the interaction. For U = 2 the state |v1� is localized around the main
stable island but now it penetrates inside the island quite strongly. It seems that the
interaction reduces the penetration time which may be linked to the slow but well
visible exponential decay of S(t) to S∞.

In Fig. S3, we also show for the asymmetric absorption case with K = 2.5 the
Husimi functions of |u1� and |v1� for U = 0 and a larger system size N = 65536 at
final iteration time t = 218. Similarly to the case N = 1024 the state |u1� is ergodic in
the chaotic region of the phase space with very distinctly visible stable islands and |v1�
is strongly localized around the center island (with modest density) and around the
four secondary islands (with stronger density) but without penetrating these islands.
The figure of |v1� is similar to the Husimi figures of Fig. 4 of [42] (which correspond
to N = 13222 in our notation for N).
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SuppMat Figure S2. Singular values αi (appearing in the Schmidt
decomposition of the state |ψ(t = tmax)� at the final iteration time tmax = 218)
versus index i for interaction values U = 2, Ur = 1, system size 128 ≤ N ≤
2048, K = 2.5 and absorption only for the second particle. Both axis are
shown on a logarithmic scale. The values of the top singular value are α1 =
0.90055, 0.57604, 0.53490, 0.36280, 0.26346 for N = 128, 256, 512, 1024, 2048
respectively. (The red data point for N = 128 at i = 2 with α2 = 0.43810 is
hidden by the blue data point for N = 256 with α2 = 0.40901.)
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SuppMat Figure S3. Husimi functions of the Schmidt states |u1�, |v1�, for
U = 0 or U = 2 (with Ur = 1), N = 1024, K = 2.5 and absorption only for
the second particle at three iteration times t = 1, t = 8 and t = tmax = 218 for
both U = 0 and U = 2. The horizontal axis corresponds to the phase θ ∈ [0, 2π]
(different representation from former Husimi figures) and the vertical axis to the
momentum pcl ∈ [−2pmax, 2pmax] (for |u1�) or pcl ∈ [−pmax, pmax] (for |v1�)
where pmax = 5 = (2π) · 0.7958 is the momentum absorption border in classical
units (for the second particle) and 2pmax is the maximal classical momentum
value for the full phase space in absence of absorption (for the first particle).
The colors red/green/blue correspond to maximal/medium/minimal values of the
Husimi function.
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SuppMat Figure S4. Husimi functions of the Schmidt states |u1�, |v1�, for
U = 0, N = 65536, K = 2.5 and absorption only for the second particle at final
iteration time t = 218. The signification of both axes and the color codes is the
same as in Fig. S3.


	Loschmidt echo and Poincaré recurrences of entanglement
	1.  Introduction
	2.  Model description
	3.  Loschmidt echo of entanglement
	4.  Poincaré recurrences of entanglement
	5.  Poincaré recurrences of entanglement with absorption of one particle
	6.  Poincaré recurrences of entanglement with absorption of one particle for 
	7.  Discussion
	Acknowledgments
	Data availability statement
	A.1.  General case

	A.1. Schmidt decomposition and singular value decomposition
	A.2.  Recomputation of Schmidt decomposition for 

	ORCID iDs
	References


