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Abstract.
We study numerically, in the framework of the Cooper approach from 1956, mechanisms of pair formation
in a model of La-based cuprate superconductors with longer-ranged hopping parameters reported in the
literature at different values of center of mass momentum. An efficient numerical method allows to study
lattices with more than a million sites. We consider the cases of attractive Hubbard and d-wave type inter-
actions and a repulsive Coulomb interaction. The approach based on a frozen Fermi sea leads to a complex
structure of accessible relative momentum states which is very sensitive to the total pair momentum of
static or mobile pairs. It is found that interactions with attraction of approximately half of an electronvolt
give a satisfactory agreement with experimentally reported results for the critical superconducting tem-
perature and its dependence on hole doping. Ground states exhibit d-wave symmetries for both attractive
Hubbard and d-wave interactions which is essentially due to the particular Fermi surface structure and not
entirely to an eventual d-wave symmetry of the interaction. We also find pair states created by Coulomb
repulsion at excited energies above the Fermi energy and determine the different mechanisms of their
formation. In particular, we identify such pairs in a region of negative mass at rather modest excitation
energies which is due to a particular band structure.

1 Introduction

The properties and features of high-temperature super-
conductivity (HTC), discovered in [1], are still lacking
a complete physical understanding as admitted by vari-
ous experts of the field (see, e.g., [2–4]). The complexity
of the phase diagram and strong interactions between
electrons (or holes) create significant difficulties for the
theoretical and numerical analysis. As a simplified, but
still a generic model, it was proposed to use a one-
body Hamiltonian with nearest-neighbor hopping on a
two-dimensional (2D) square lattice formed by Cu ions
[5]. In this framework, the interactions between charges
are considered as the 2D Hubbard interaction resulting
from a screened Coulomb interaction [5]. Starting from
[6–9], other models were developed and extended on the
basis of extensive computations with various numerical
methods of quantum chemistry (see, e.g., [10–12] and
Refs. therein). They showed the importance of next-
nearest one-particle hoppings and allowed to determine
longer-ranged tight-binding parameters.

Supplementary Information The online version
contains supplementary material available at https://doi.
org/10.1140/epjb/s10051-022-00451-5.

a e-mail: dima@irsamc.ups-tlse.fr (corresponding author)

In this work, we extend the Cooper approach [13]
considering two interacting particles (holes or electrons)
in a vicinity of a frozen Fermi surface using the 2D
longer-ranged tight-binding parameters reported in [12]
for the one particle model of La-based cuprate super-
conductors. In contrast to the Cooper case [13] with a
spherical (3D) or circle (2D) Fermi surface, we show
that for the above model with the parameters taken
from [12] (called HTC model), the frozen Fermi sur-
face has a significantly more complex structure due to
the band structure of the lattice. The complexity of the
Fermi surface becomes really amazing for the case of
mobile pairs with nonzero total momentum (or twice
the center of mass momentum) of a pair (usually the
total pair momentum is considered to be zero in the
Cooper approach [13]). For comparison, we also present
some data for the case of only nearest-neighbor hop-
pings (called NN model).

We consider three types of interactions between par-
ticles: attractive Hubbard interaction, a specific type
of attractive d-wave interaction discussed in [11] and
a repulsive Coulomb interaction on the lattice studied
recently in [14,15]. The physical origins and reasons of
such model interactions are not discussed in this work.
We note that in [14,15], it was shown that pair for-
mation can take place even for a Coulomb repulsion
due to the appearance of an effective narrow or flat
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band for mobile pairs with certain values of nonzero
total momentum of a pair. However, it is important
to analyze the proximity of such Coulomb pair states
with respect to the Fermi surface that was not done in
[14,15] and is performed here in the framework of the
Cooper approach for a pair in the vicinity of a frozen
Fermi sea.

For the cases of attractive Hubbard and d-wave inter-
actions, we find the appearance of a gapped coupled
pair state below the Fermi surface and investigate the
gap dependence on interaction strength U and hole
doping. The obtained results are compatible with the
experimental findings for La2−xSrxCuO4 (LSCO) (see
[10]) at the attraction strength U ≈ −0.5 eV. We also
determine the gap dependence on total momentum of
mobile pairs. An efficient numerical method allows to
study lattices with about million sites providing results
in the limit of infinite lattice size.

For the case of Coulomb repulsion, the formation of
pairs takes place only for pair energies above the Fermi
surface. We establish three different mechanisms of such
Coulomb pair formation and discuss their possible rela-
tions with the pseudogap phenomenon.

Section 2 describes the basic features of the tight-
binding model for typical HTC materials with a model
of five different hopping matrix elements and other
details concerning the Cooper pair approach with a
frozen Fermi sea at given filling n. In particular,
the effective sector Hamiltonian in relative momentum
space for two interacting particles (holes) above (below)
the Fermi energy for a given conserved value of the total
momentum p+ is defined for three different types of
interactions being the attractive Hubbard interaction,
a similar attractive interaction with d-wave symmetry
and a repulsive Coulomb interaction. In Sects. 3 (for
p+ = 0; static pairs) and 4 (for p+ �= 0; mobile pairs)
results for various ground state properties of electron
pairs for the attractive Hubbard and d-wave interac-
tion are presented. Sections 5 (for p+ = 0) and 6 (for
p+ �= 0) concentrate on pairs of hole excitations, and
in particular in Sect. 5, we present numerical results
for the gap as a function of hole-doping which can be
compared to experimental data. In Sect. 7, we discuss
excited pair states for two particular examples in the
presence of repulsive Coulomb interaction and we iden-
tify three mechanisms of pair formation. The final dis-
cussion is presented in Sect. 8.

Additional Figures S1–S17 are given in Supporting
Material (SupMat).

2 Generalized tight-binding model on a 2D
lattice and sector Hamiltonian

In the NN and HTC models, each electron moves on
a square lattice of size N × N with periodic boundary
conditions. The one-particle tight-binding Hamiltonian

reads:

H1p = −
∑

r

∑

a∈A
ta

(|r〉〈r + a| + |r + a〉〈r|) . (1)

Here, the first sum is over all discrete lattice points
r (measured in units of the lattice constant) and a
belongs to a certain set of neighbor vectors A, such that
for each lattice state |r〉, there are non-vanishing hop-
ping matrix elements ta with |r + a〉 and |r − a〉 for
a ∈ A. The same model was used in [15] and we repeat
here its description for convenience, keeping the same
notations. The hopping parameters of the HTC model
are taken from [12]. The set A contains all neighbor vec-
tors a = (ax, ay) in one half plane with either ax > 0
or ay > 0 if ax = 0 such that A′ = A ∪ (−A) is the full
set of all neighbor vectors. For each vector a of the full
set A′, any other vector ã that can be obtained from
a by a reflection at either the x-axis, y-axis or the x-
y diagonal also belongs to the full set A′ and has the
same hopping amplitude ta = tã.

For the usual nearest neighbor tight-binding model
(NN model), considered in [14], we have the set
ANN = {(1, 0), (0, 1)} with t(1,0) = t(0,1) = t =
1. A part of the numerical results is presented for
the NN model (for illustration and comparison), but
the main studies are done for a longer-ranged tight-
binding lattice [12] denoted as the HTC model. For
this case the set of neighbor vectors is AHTC =
{(1, 0), (0, 1), (2, 0), (0, 2), (1,±2), (2,±1), (1,±1),
(2,±2)} and the hopping amplitudes are: t = t(1,0) = 1,
t′ = t(1,1) = −0.136, t′′ = t(2,0) = 0.068, t′′′ = t(2,1) =
0.061 and t(4) = t(2,2) = −0.017 corresponding to the
values given in Table 2 of [12] (all energies are measured
in units of the hopping amplitude t = t(1,0) = t(0,1),
which is set to unity here; see also Fig. 6a of [12] for the
neighbor vectors of the different hopping amplitudes).
The hopping amplitudes for other vectors such as (0, 1),
(1,−1), (2, 1), (1,−2), etc. are obtained from the above
amplitudes by the appropriate symmetry transforma-
tions, e.g., t(1,−1) = t(1,1) = t′ = −0.136 etc. For com-
parison with the experimental results in LSCO, we use
the physical value of hopping t = 0.43 eV from [10].
We also put the Planck constant to unity, � = 1, thus
using particle momentum px, py and related wave vec-
tors kx, ky to be the same.

The one-particle eigenstates of H1p (1) are simple
plane waves: |p〉 =

∑
r eip·r |r〉/N with energy eigen-

values:

E1p(p) = −2
∑

a∈A
ta cos(p · a) (2)

and momenta p = (px, py) such that px and py are
integer multiples of 2π/N (i.e., pα = 2πlα/N , lα =
0, . . . , N −1, α = x, y). For the HTC model, the energy
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Fig. 1 Fermi surface for different filling factors n for the
NN model (left panel) and the HTC model (right panel).
The value n = 0.7435 is close to the separatrix value n =
0.743465958 for the HTC model and n = 1 is the separatrix
value for the NN model

dispersion reads:

E1p(px, py)
= − 2 [cos(px) + cos(py)]

− 4t′ cos(px) cos(py) − 2t′′ [cos(2px) + cos(2py)]

− 4t′′′ [cos(2px) cos(py) + cos(2py) cos(px)]

− 4t(4) cos(2px) cos(2py),
(3)

which corresponds to Eq. (30) of [12] (assuming t = 1
and t(5) = t(6) = t(7) = 0).

The energy Fermi surface of one particle is deter-
mined by the dispersion relation (3) and depends on
the electron filling factor n and related Fermi energy
E1 = EF. Examples of the Fermi surface at various fill-
ings n are shown in Fig. 1. We note that the separatrix
case corresponds to the filling n = 0.74346... for the
HTC model and n = 1 for the NN model. The separa-
trix separates bounded and unbounded curves of fixed
energy on an infinite plane (px, py) (rotation from libra-
tion as for a pendulum). The filling n corresponds to the
electron filling while the hole filling is nh = 1 − n. The
dependencies of one-particle density ρ(E1) of states on
energy E1 and filling factor n are given in Fig. S1 of
SupMat. The density is strongly peaked at n = 1 (NN
model) and n = 0.74346... (HTC model) correspond-
ing to the separatrix (and related Van Hove singular-
ity). Indeed, on a separatrix the frequency of motion ωs

becomes zero and thus ρ(E1) ∝ 1/ωs becomes singular.
The quantum Hamiltonian of the model with two

interacting particles (TIP) has the form:

H = H
(1)
1p ⊗ 1(2) + 1(1) ⊗ H

(2)
1p

+
∑

r1,r2

Ū(r2 − r1)|r1, r2〉〈r1, r2|, (4)

where H
(j)
1p is the one-particle Hamiltonian (1) of parti-

cle j = 1, 2 with positional coordinate rj = (xj , yj) and
1(j) is the unit operator of particle j. The last term in

(4) represents, for the moment, a generic interaction to
be specified below.

In the absence of interaction (Ū(r2 − r1) = 0), the
energy eigenvalues of the two electron Hamiltonian (4)
with given momenta p1 and p2 are:

Ec(p1,p2) = E1p(p1) + E1p(p2)

= −4
∑

a∈A
ta cos(p+ · a/2) cos(Δp · a), (5)

where p+ = p1 + p2 is the total momentum (or
p+/2 = (p1 + p2)/2 is the center of mass momen-
tum) and Δp = (p2 − p1)/2 is the momentum asso-
ciated with the relative coordinate Δr = r2 − r1.
Note that the possible values of the components Δpα

(α = x, y) are either integer or half-integer multiples
of 2π/N depending on the center of the mass momen-
tum component p+,α/2 being an integer or half-integer
multiple of 2π/N . For the NN model, Eq. (5) becomes
Ec(p1,p2) = −4

∑
α=x,y cos(p+α/2) cos(Δpα).

Due to the translational invariance of the interac-
tion, it couples only pair momentum states |p1,p2〉
and |p′

1,p
′
2〉 with identical conserved total momentum

p+ = p′
+, i. e.:

〈p′
1,p

′
2|Ū |p1,p2〉 = δp′

+,p+ Up(Δp′ − Δp) , (6)

Up(Δp′ − Δp) =
1

N2

∑

Δr

e−i(Δp′−Δp)·ΔrŪ(Δr),

(7)

with N2 = N2 being the size of the square N × N
lattice and Up(Δp′ − Δp) being (proportional to) the
discrete Fourier transform of Û(r). Therefore, the two-
particle Hamiltonian (4) can be diagonalized separately
for each sector corresponding to a particular value of
total momentum p+.

In [15], the quantum time evolution inside such sec-
tors was computed (for the repulsive Coulomb inter-
action; see below) using sector eigenstates in Δr-
representation with periodic (or anti-periodic) bound-
ary conditions for the case of integer (half-integer) val-
ues of Np+,α/(4π) (α = x, y). In this work, we compute
the eigenstates in Δp-representation, using the diago-
nal energies (5) (minus two times the Fermi energy;
see below) in the absence of interaction plus the inter-
action coupling matrix elements (6). We have verified
that the resulting eigenstates coincide (in the absence
of a frozen Fermi sea; see below) up to numerical preci-
sion with those of [15] once the proper transformation
between Δp- and Δr-representations are applied (the
half-integer case corresponds now to periodic boundary
conditions in Δp-representation, but the possible val-
ues of Δpx,y are half-integer multiples of 2π/N). Fur-
thermore, as explained in [15], we consider symmetric
wavefunctions with respect to particle exchange, i.e.,
with respect to the parity symmetry in the relative
momentum Δp → −Δp. This case corresponds to an
antisymmetric spin-singlet state.
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Concerning the choice of the interaction, we consider
three cases here :

(i) As in [15], we use a (regularized) repulsive Coulomb
type long-range interaction (see Sect. 7) Ū(r2 −
r1) = U/[1+r(r2−r1)] with amplitude U > 0 and
the effective distance r(r2 − r1) =

√
Δx̄2 + Δȳ2

between the two electrons on the lattice with peri-
odic boundary conditions. (Here, Δx̄ = min(Δx,N
− Δx); Δȳ = min(Δy,N − Δy); Δx = x2 − x1;
Δy = y2 − y1 and the latter differences are taken
modulo N , i.e., Δx = N+x2−x1 if x2−x1 < 0 and
similarly for Δy). For the purpose of numerical
diagonalization in Δp-representation, we compute
the discrete Fourier transform of this interaction
numerically by (7) and do not use any analytical
approximation in this context. We mention that
the numerical Fourier transform gives the approx-
imate behavior Up(k) ∼ 1/|k|3/2 for large |k| (with
k = Δp′ − Δp), while the analytic 2D-Fourier
transform of the (non-regularized) Coulomb inter-
action (in infinite continuous space) behaves as
Up(k) ∼ 1/|k|.

(ii) We also consider the case of an attractive Hubbard
interaction Ū(r2 − r1) = Uδr1,r2 (U < 0) with
Up(Δp′−Δp) = U/N2 = −|U |/N2 being constant,
as it was the case for the Cooper problem [13].

(iii) We also analyze the case of an attractive inter-
action with d-wave symmetry and interaction
coupling matrix elements being Up(Δp′,Δp) =
(U/N2)gΔp′ gΔp (U < 0) with gΔp = (cos Δpx −
cos Δpy)/2. This interaction cannot simply be
obtained from some interaction potential Ū(r),
since the matrix elements do not depend on the
difference Δp′ − Δp. It corresponds to an effec-
tive interaction in the context of the Bardeen–
Cooper–Schrieffer (BCS) formalism assuming that
the superconducting gap obeys the d-wave symme-
try Δk ∼ gk (see for example Section 4.2 of [11]).
In particular, using this kind of interaction (in the
sector p+ = 0, i.e., p2 = −p1 = Δp), it is easy
to verify that the classical BCS variational ansatz
indeed produces the gap dependence Δk = gkΔ̄
where the universal parameter Δ̄ is determined
by some implicit equation. As with the classical
BCS approach, one can argue that this interac-
tion represents certain relevant contributions of
the global interaction which is more complicated.
We do not claim here that this “d-wave” inter-
action is “really” present as such in typical HTC
superconductors and our aim is more to compare
its influence on pair eigenstates and ground state
energies with the attractive Hubbard interaction
where no d-wave symmetry is “injected” in the
interaction itself.

In the following, we consider a model of two interact-
ing electrons (or holes) with momenta p1 = p+/2−Δp,
p2 = p+/2+Δp which are excitations of a frozen Fermi
sea where momentum states below the Fermi energy

EF, corresponding to a certain filling value n, are occu-
pied. In this case, only values of Δp are accessible such
that both E1p(�p+/2 ± Δ�p) > EF (or < EF for the hole
case). As we will see later, depending on the value of
p+, the structure of available states in the Δp-plane is
potentially quite complicated and very interesting. The
choice of p+ itself is actually quite arbitrary, as long as
the set of accessible Δp values is not empty. We may
choose p+ = 0 for static pairs or p+ �= 0 for mobile
pairs. Occasionally, we will use the notion of a “virtual
filling” nv if the center of mass p+/2 of a pair lies on
the Fermi surface at filling nv, which may be different
from the actual filling n used to determine the frozen
Fermi sea.

The effective Hamiltonian (for accessible values of
Δp), for each sector p+, also called sector Hamiltonian,
has diagonal matrix elements given by ±[Ec(p1,p2) −
2EF] (with “+” for electrons and “−” for holes)
which are coupled by the interaction matrix elements
Up(Δp′,Δp) according to the different types of inter-
actions we consider. Depending on the interaction, we
either use full numerical diagonalization of the effec-
tive Hamiltonian (for the case of the Coulomb interac-
tion; see Sect. 7) or compute by an efficient method,
described in Appendix A.1, the ground state and its
energy (for the cases of attractive Hubbard or d-wave
interaction; see Sects. 3–6) based on the ideas of Cooper
[13] and exploiting the rank-1 structure of the inter-
action matrix elements. As a consequence, the energy
eigenvalues can be obtained from the numerical solu-
tion of an implicit equation of the form of a sum over
all two-particle momentum states with each particle
being above the frozen Fermi sea (Cooper considered
the case of an infinite system where the sum is reduced
to an integral [13]) and the corresponding eigenstates
are obtained from an explicit formula once the energy
eigenvalues are known (see Appendix A.1 for details).
This method allows to significantly reduce the numeri-
cal effort and to find the ground state of a Cooper pair
for lattices with more than a million sites.

In the remainder of this work, when we speak of
eigenstate energies, etc., we refer to the eigenvalues of
the sector Hamiltonian introduced above, i.e., taking
into account a shift with “−2EF” and an additional
minus sign for the hole case concerning the diagonal
matrix elements of this Hamiltonian. Therefore, the
ground state energy Emin of such a sector Hamiltonian
is typically close to zero (corresponding to the Fermi
energy) except for the cases where we have a strong gap
Δ = −Emin/2 with possible negative values of Emin and
other eigenvalues are positive.

3 Properties of static Cooper pairs

We first consider static Cooper pairs of electrons cre-
ated by the Hubbard attraction when the total pair
momentum is �p+ = 0. The dependence of the quantity
Ec − 2EF with Ec given by (5) on the relative momen-
tum in the Δp-plane is shown in Fig. 2 (left column)
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Fig. 2 Landscape of kinetic pair energy of particles in
the Δ�p-plane. Left panels show color plots of Ec(�p+/2 −
Δ�p, �p+/2+Δ�p)−2EF for the HTC model in the Δpx −Δpy

plane for −π ≤ Δpx,y < π in the sector �p+ = 0. The
Fermi energy EF corresponds to the filling factor n = 0.3
(n = 0.74) for the top (bottom) panels. The colors red
(green) correspond to positive maximum (intermediate),
blue to zero value and yellow (cyan) to strongest (intermedi-
ate) negative values (the shown color bar applies to this and
all subsequent color density plot figures of the same style,
eventually with nonlinear rescaling to increase the visibility
of small value regions). Right panels are as left panels, but
the forbidden zones of Δ�p such that each one-particle energy
is below the Fermi energy EF, i.e., E1p(�p+/2 − Δ�p) < EF

and E1p(�p+/2+Δ�p) < EF, are replaced by white color. For
�p+ = 0, the white zones simply correspond to the colors
yellow (cyan) for negative values in the left panel. However,
for different sectors with �p+ �= 0 shown in later figures, this
simple correspondence is no longer true and the structure
of white zones is more complicated

for two filling factors n = 0.3; 0.74. The region of the
frozen Fermi sea is also shown by white color in Fig. 2
(right column). (In the following, we will refer to this
type of figures as “energy landscape” figures.) Thus in
the quantum case all transitions induced by interaction
between TIP states take place only outside the white
zone corresponding to the Cooper approach [13].

We compute numerically, by the method of Appendix
A.1, the ground state and its energy for the attractive
Hubbard interaction at different values of the interac-
tion strength. The numerically obtained dependence of
the gap Δ = −Emin/2 on the Hubbard attraction U
between electrons (excitation energy above the frozen
Fermi sea of electrons) is shown in Fig. 3 for fillings n =
0.3 and n = 0.74, where Emin is the ground state energy
of the effective sector Hamiltonian at p+ = 0 (with
the diagonal matrix elements being Ec(p1,p2) − 2EF,
p2,1 = p+/2 ± Δp as explained above and interac-
tion coupling matrix elements Up(Δp′,Δp) for Δp,Δp′
outside the forbidden zone due to the frozen Fermi sea).
As for the Cooper case [13], the gap sharply drops for

Fig. 3 Top (bottom) panel shows the ground state energy
gap Δ = −Emin/2 versus absolute Hubbard interaction
strength |U | (case of attractive interaction with U < 0)
for �p+ = 0, for N = 256, n = 0.3 (n = 0.74). (Here,
Emin is the Hubbard ground state energy of the sector
Hamiltonian at p+ = 0.) The red data points have been
obtained by a numerical solution of the implicit eigenvalue
equation and coincide up to numerical precision with a
full numerical diagonalization. Examples of ground states
at specific U values are shown in Fig. S2 of SupMat.
The full curves correspond to the analytical approximation
assuming a two-particle sector density of states of the form
ρ2(ε) = ρ2(0)/[1 + α(ε/εmax)], where εmax is the energy
bandwidth in the sector and the parameter α is either zero
(green curve; case of constant DOS case) or obtained by
a numerical fit (blue curve) from the integrated density of
states (see Fig. S4 of SupMat)

small interactions |U | < 1 and grows strongly for large
|U | > 1.

Examples of related ground states at specific U values
are shown in Fig. S2 of SupMat for U = −2.5 (n = 0.3)
and U = −1 (n = 0.74). In the coordinate space, the
ground state represents a compact pair state with a size
|Δr| ∼ 2 and in the momentum space (Δp-plane) the
probability of the ground state is concentrated near the
Fermi surface shown in Fig. 2. (We also show similar
ground states for the case of d-wave interaction at the
same fillings in Fig. S3 of SupMat).

Figure 3 also shows the analytical result (18) of
Appendix A.1 (blue curve) based on the fit ansatz
(17) for the density of states (of diagonal energies of
the sector Hamiltonian) assuming a power law decay
with exponent −1 for large energies. The green curve
corresponds to the analytical expression (16) assum-
ing a constant density of states and which is essen-
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tially Cooper’s well-known result [13] (with different
notations/parameters). Further details and analytical
expressions of Emin for small and strong interactions
values are given in Appendix A.1.

For the Cooper case [13], the gap Δ was determined
by the attraction strength and the density of states
near the Fermi surface, since only a small interval cor-
responding to the Debye energy contributes to the pair
formation. In our case, all energies above the Fermi sea
contribute to the formation of pairs. Thus the approx-
imation of a constant density of states does not work
well, especially for n = 0.74, which is close to the sep-
aratrix and the van Hove singularity. For this case, the
fit ansatz (17) works very well as can be seen in Fig. S4
of SupMat (showing the integrated density of states)
and indeed the blue curve in (the right panel of) Fig. 3
coincides very well with the numerical data points for
the gap energy.

For n = 0.3, the situation is different and here the
green curve in (the left panel of) Fig. 3 is for modest
interaction values (|U | � 2.5) very close to the numer-
ical data points, while the blue curve is significantly
higher. The reason is that in this case, the density of
states is initially, for smaller energies (lower 20%), quite
constant (integrated density of states close to a linear
function; see red data points and green curve in the
left panel of Fig. S4 of SupMat) and thus Cooper’s
original expression works very well. However, for larger
interaction values in the region |U | ≈ 8 (not shown in
Fig. 3), the blue curve is actually closer to the numerical
data points and the reason is that here all energies, also
outside the initial region of linear integrated density of
states, contribute. Figure S4 of SupMat shows indeed
that also for n = 0.3, the fit ansatz is more accurate for
larger energies (above 20%).

From Fig. 1, it follows that the angle-resolved local
density ρϕ(ϕ,E) on the energy Fermi surface should
significantly depend on the phase angle ϕ of the vec-
tor Δ�p = (kx, ky) ∝ (cos ϕ, sin ϕ). This angle-resolved
density is proportional to the area between two Fermi
curves in Fig. 1 taken at two close filling factors n and
n + δn and between two close angles ϕ and ϕ + δϕ.
(See Appendix A.2 for the precise definition, compu-
tation and limiting behavior close to the separatrix of
ρϕ(ϕ,E).)

For n = 0.3, the Fermi curve is close to a circle and
the density ρϕ(ϕ,E) is rather constant. However, for
n = 0.74, the Fermi surface is drastically different from
a circle and we expect that ρϕ(ϕ,E) is minimal for the
symmetric case kx = ky or ϕ ≈ π/4 (known as node
in ARPES experiments with HTC superconductors [3,
4,16,17]) and it is maximal for the asymmetric case
kx ≈ 0 or ky ≈ 0, i.e., ϕ ≈ π/2 or ϕ ≈ 0 (known as
antinode in ARPES).

In the ARPES experiment [16,17], the d-wave form
is typically presented via the parameter gk = (cos kx −
cos ky)/2, which can also be used to characterize a cer-
tain point on a given Fermi surface instead of ϕ; in par-
ticular, we have gk ≈ 1 (0, −1) for ϕ ≈ π/2 (π/4, 0) for
Fermi curves close to the separatrix curve. Therefore,
we prefer to use the gk-local density of states on the

Fermi surface given by ρg(gk, E) = ρϕ(ϕ,E)/(dgk/dϕ).
(See Appendix A.2 for the details of the precise defini-
tion, computation and an analytical approximation of
ρg(gk, E) for E being close to the separatrix.)

Figure S5 of SupMat shows this density for the NN
and HTC model and at different fillings. For the separa-
trix case, we have a power law ρg(gk, E) ≈ C1/(1−|gk|)
with a constant C1 that can be computed analytically
(as a function of the band-structure parameters) and
with values C1 ≈ 0.025 (C1 ≈ 0.052) for the NN (HTC)
model. For Fermi curves close, but different from the
separatrix curve, the density is close to this power law,
but there is a cutoff at some maximal value gmax < 1
(with a square root singularity close to the cutoff; see
Appendix A.2 for more details). The value of gmax cor-
responds to the case where either kx = 0 and |ky| max-
imal but typically smaller than π (except for the sepa-
ratrix case) or ky = 0 and |kx| maximal.

We have also computed the quantum probability den-
sity ρgq(gk) for certain ground states (states similar as
in Figs. S2, S3 of SupMat) for the cases of the Hubbard
and d-wave interaction, at certain interaction strengths,
filling n = 0.74, N = 1024 and p+ = 0. This quan-
tum distribution can be obtained from the interacting
ground state ψ(k), with k = Δp being the momen-
tum in the relative coordinate, from a gk-histogram
by summing all probabilities |ψ(k)|2 for those k-values
such that gk falls in the same histogram bin with bin-
width Δgk = 0.01. To ensure proper normalization with
respect to integration in the range 0 ≤ gk ≤ 1, an addi-
tional factor 1/Δgk has been applied to the histogram
values to obtain a proper integration normalized dis-
tribution ρgq(gk). Note that this quantity represents a
pure gk-distribution, a priori for all possible energies,
while the classical local density ρg(gk, E) is specific to
a certain classical energy E. Both quantities are shown
and compared for the two cases of the attractive Hub-
bard and d-wave interaction in Fig. 4 (with a properly
corrected normalization of ρg(gk, E) as explained in the
figure caption of Fig. 4).

For small |U | = 0.1, the quantum density is strongly
inhomogeneous, essentially with one single peak at gk =
0.995 with about 99.5% of probability (only visible in
the lower panels with logarithmic representation). The
reason is that in this case, the ground state is a small
perturbation from the pure momentum state with k
closest to the Fermi surface. The fact that for this k
value we have gk ≈ 1 is a coincidence (but still with a
strongly enhanced probability due to the nearly singu-
lar classical density at gk ≈ 1). For other parameters
(fillings n, etc.), other k- and gk-values for these peaks
are in principle possible (a similar situation was dis-
cussed for eigenstates of rough billiards [18]).

For moderate U = −1;−1.5, the quantum distri-
bution ρgq(gk) is close to the (renormalized) classical
distribution 2ρg(gk, E)/ρ(E) in the case of Hubbard
interaction, but for the d-wave interaction there are
still significant differences. To explain this, we remind
the expression (11) of Appendix A.1, showing that the
eigenstate amplitudes are given by the analytical for-
mula : ψ(k) ∼ ak/(2Δ + εk), where εk represents a
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Fig. 4 Comparison of the quantum distribution ρgq(gk)
(see text), obtained for three interaction values U (green,
blue and pink data points), with the renormalized classi-
cal density 2ρg(gk)/ρ(E) (red line) for the HTC model.
Left (right) panels correspond to the attractive Hubbard
(d-wave) interaction for N = 1024, sector with �p+ = 0 (for
the quantum densities) and filling factor n = 0.74 (for both
quantum and classical densities). The relative factor 2/ρ(E)
applied to the classical density ensures the proper normal-
ization with respect to integration in the range 0 ≤ gk ≤ 1,
since

∫ 1

−1
ρgg(gk, E) dgk = ρ(E), where ρ(E) = 0.712 is the

classical density of states at n = 0.74 (factor 2 due to ±gk

symmetry). Top panels show a normal representation with a
limited maximal value for the y-axis and lower panels show
a double logarithmic representation using 1 − gk for the x-
axis and the full range of density values. The black dashed
line in the lower panels shows the power law (1 − gk)−1 for
comparison (see also Appendix A.2 and Fig. S5 of SupMat)

diagonal energy matrix element of the effective sector
Hamiltonian. The factor ak is either ak = 1 for the
Hubbard interaction or ak = gk for the d-wave interac-
tion.

At very small interactions (e.g., |U | = 0.1) in the
perturbative regime, we also have according to (13) a
very small gap Δ ∼ |U |/N2 such that only one single
k-value satisfies the condition εk < 2Δ providing an
isolated peak of the ground state in Δp-representation.
At modest interaction U = −1, the gap is significantly
larger, but still small in comparison to classical energy
scales. Therefore, the eigenstate (for the Hubbard case
with ak = 1) is concentrated at k- (or Δp-) values close
to the Fermi surface with an effective energy width ≈
2Δ, which is perfectly confirmed by Fig. S2 of SupMat.
However, the width of this region around the Fermi
surface in k-space is not uniform, it is enhanced for k
values with |gk| ≈ 1 and reduced for |gk| ≈ 0. Actually,
a closer study of Fig. S2 of SupMat shows that in the
region |gk| ≈ 0 (i.e., kx ≈ ky), there is still a peak
structure which is due to the finite grid for N = 256 or
N = 1024.

The reason of this is simply that the distance between
the two Fermi curves at EF and EF+2Δ is quite large at
the region close to the separatrix point (with maximal
|gk|) and quite small at kx ≈ ky (with |gk| ≈ 0) in accor-

dance with the nearly singular behavior of the classical
density ρg(gk, E) for |gk| ≈ 1. When computing the
quantum distribution ρgq(gk), we consider a priori all k-
values, but the analytical expression of the amplitudes
ψ(k) ∼ 1/(2Δ + εk) selects automatically the energies
closest to the Fermi surface. This explains that the (for
the Hubbard) interaction of the blue data points for
U = −1 coincides quite well with the red curve for the
classical (properly renormalized) density in the left pan-
els of Fig. 4. However, the blue data points still show
some fluctuations (at gk < 0.8), which are due to the
finite grid structure of the possible εk values.

For the stronger interaction U = −3, the green data
points deviate significantly from the classical curve, also
for the Hubbard case. The reason is that here the gap is
significantly larger than for U = −1 (see Fig. 3) and the
quantum distribution corresponds actually to an energy
average of the classical distribution over a quite large
energy width of size 2Δ, which changes the shape of the
distribution (reduction of the singular part at |gk| ≈ 1,
increase of the density at modest values |gk| < 0.9).

Concerning the d-wave interaction (right panels of
Fig. 4), we have the additional factor gk applied to the
eigenstate amplitude ψ(k), which provides an additional
reduction of the density at |gk| ≈ 0 (and additional
enhancement of the density at |gk| ≈ 1) which is clearly
visible both in Fig. S3 of SupMat and the right panels
of Fig. 4.

In conclusion, Fig. 4 and also Figs. S2, S3 of SupMat
show that there are two “d-wave” effects: (i) enhance-
ment of the gk-density and wave function amplitudes
at |gk| ≈ 1 simply due the HTC band structure, pro-
viding an increased number/area of momentum or k
values between two close Fermi curves if |gk| ≈ 1, and
(ii) an additional enhancement if the d-wave factor gk

is artificially injected in the interaction (case of d-wave
interaction).

The issue of quantum ergodicity on the Fermi sur-
face, eventually with a peak structure due to a finite
grid at modest values of N in the region kx ≈ ky, is
actually quite similar to the problem of rough billiards
in the regime of quantum chaos [18]. Even for the cases
where the quantum density ρgq(gk) differs from the
classical density ρg(gk, E), the general tendency from
classical ergodicity remains valid: ρgq(gk) is small for
small gk values (near node) and large for large values
of gk (antinode). It is interesting to note that the global
dependence of ρgq(gk) at moderate interactions is simi-
lar to the experimentally found gap dependence Δ(gk),
see for example Fig. 3 in [16] for LSCO, where Δ is
small for small gk and larger for gk > 0.5. It is impor-
tant to stress that a somewhat similar dependence of
ρgq(gk) is already visible for the Hubbard interaction
which corresponds actually to an s-wave interaction.
Thus on this basis, we argue that the d-wave features
of HTC superconductors can appear already for s-wave
interactions due to the absence of s-wave symmetry for
the Fermi surface and the particular band structure of
HTC superconductors (point (i) above). We think that
this is an important message of this work.
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Fig. 5 Energy landscape for mobile Cooper pairs. Left
panels show color plots of Ec(�p+/2−Δ�p, �p+/2+Δ�p)− 2EF

for the HTC model in the Δpx − Δpy plane for −π ≤
Δpx,y < π. The Fermi energy EF corresponds to the fill-
ing factor n = 0.74 (in all panels). Top (center, bottom)
panel corresponds to the sector �p+ = 2π(103, 103)/256
of node case (�p+ = 2π(46, 172)/256 intermediate case,
�p+ = 2π(0, 248)/256 antinode case). The three values of �p+

are chosen such that the center of mass momentum �p+/2
is very close to the Fermi surface of virtual filling factor
nv = 0.74 with three cases of p+x = p+y, p+x ≈ p+y/4 and
p+x (p+y) minimal (maximal). The choice of discrete val-
ues is motivated by subsequent quantum computations at
N = 256 with these exact identical parameters. The colors
red (green) correspond to positive maximum (intermediate),
blue to zero value and yellow (cyan) to strongest (interme-
diate) negative values (color bar as in Fig. 2). Right panels
are as in the left panels, but the forbidden zones of Δ�p (for
particle excitations) such that each one-particle energy is
below the Fermi energy, i.e., E1p(�p+/2 − Δ�p) < EF and
E1p(�p+/2 + Δ�p) < EF are replaced by white color. Note
that here the white zones include not only the negative value
zones (yellow/cyan) in the left panels, but also additional
zones of positive values due to �p+ �= 0 and the more com-
plicated selection rule using individual one-particle energies

4 Properties of mobile Cooper pairs

In the previous section, we discussed the ground state
properties for static Cooper pairs of electrons with zero
total momentum �p+ = 0. However, it is interesting to
consider also the case of mobile pairs with �p+ �= 0.
Indeed, such mobile pairs can be related to the forma-

Fig. 6 Ground state density plots for the Hubbard interac-
tion, system size N = 256, particle excitations, filling factor
n = 0.74 and three sectors �p+ �= 0 (same values as in Fig. 5).
Top (center, bottom) panels correspond to U = −4.5,
�p+ = 2π(103, 103)/256 (U = −7, �p+ = 2π(46, 172)/256;
U = −3, �p+ = 2π(0, 248)/256). Left panels show the
ground state in Δ�r-representation in a zoomed region with
−10 ≤ Δx, Δy ≤ 10 (color values outside the zoomed
regions are blue) and right panels show the state in Δ�p-
representation (with −π ≤ Δpx,y < π). The two-particle
ground state energies Emin in units of the basic hopping
matrix element t are −0.1360 (−0.1427, −0.3823) for the
top (center, bottom) panels

tion of stripes observed in HTC superconductors (see,
e.g., [19,20] and Refs. therein). For particles with a
quadratic dependence of kinetic energy on momentum,
considered by Cooper [13], the kinetic energy of a pair is
the sum of its internal motion energy and the center of
mass motion energy. Thus the kinetic energy of center
of mass simply adds a constant and plays, therefore, no
role in the pair formation in a continuous media. The
situation is drastically different for LSCO with a rather
complex dispersion law for each particle (3). In this
case, at p+ �= 0, the conditions E1p(�p+/2 ± Δ�p) > EF

for allowed transitions above the frozen Fermi sea pro-
vide a nontrivial structure for the space of available Δp
values.

Figure 5 shows examples of the energy landscape of
pair energy in the Δp-plane within a fixed �p+ sec-
tor without Fermi restrictions (left column) and with
restrictions imposed by the frozen Fermi sea (right col-
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umn) at the filling factor n = 0.74. The restrictions
induced by the frozen Fermi sea create a very complex
structure of the accessible Δp-space, with “tongues”
and multiple complicated borders, and it depends in
a nontrivial manner on the particular choice of �p+. In
Fig. 5, we have chosen three examples of p+ such that
the center of mass momentum p+/2 is very close to the
Fermi surface of virtual filling factor nv = 0.74 with
p+x = p+y, p+x ≈ p+y/4 and p+x (p+y) minimal (max-
imal).

In spite of the complexity of the energy landscape,
the implicit method for the computation of ground state
properties (see Appendix A.1) still works perfectly that
allows us to obtain results for lattices with a large num-
ber of sites. The ground states for the mobile Cooper
pairs with Hubbard attraction are shown in Fig. 6 for
parameters of Fig. 5 and interactions values between
U = −3 and U = −7. We see that the ground states
correspond to compact pairs in Δr-representation (left
column) and their densities in Δp-representation (right
column) are concentrated at certain borders of the
frozen Fermi sea (“blue” Fermi sea borders with small
excitations energies; see right column of Fig. 5). How-
ever, to find such nice pairs, it is necessary to consid-
erably increase the value of |U | as compared to static
Cooper pairs (at p+ = 0). For smaller values of |U |
(not shown in Fig. 6), the ground states are pertur-
bative with isolated points in Δp-representation and
quite extended in Δr-representation. The reason for the
required larger values of |U | is that the sector density of
states close to the Fermi surface (number of available
states at the blue Fermi sea border regions) is quite
reduced as compared to the static case.

Results similar to those of Figs. 5, 6 are presented
for another filling factor n = 0.84 (and virtual filling
nv = 0.84 for the choice of p+/2) in Figs. S6, S7 of
SupMat.

We discuss more features of mobile Cooper pair in
the next sections.

5 Gap dependence on hole doping in LSCO
for static pairs

Up to now, we discussed the properties of Cooper pairs
of electrons at fixed electron doping n. However, for
LSCO the superconducting phase is formed by dop-
ing of holes. This feature can be easily incorporated in
the framework of the Cooper approach considering hole
excitation of the frozen Fermi sea at fixed hole doping
nh = 1 − n. Mathematically, one applies two fermionic
hole creation operators (being two electron annihilation
operators) to the frozen Fermi sea and as usual in the
context of particle–hole transformation the one-body
matrix elements between such hole-pair states acquire
an additional negative sign while two-body matrix ele-
ments due to interactions are not changed.

In particular, now the set of accessible Δp values
must satisfy the condition of both electrons, associated

Fig. 7 Energy landscape Ec and ground states of static
hole pairs in the HTC model. Top panels show color plots
of Ec(�p+/2 − Δ�p, �p+/2 + Δ�p) − 2EF on Δpx-Δpy with
−π ≤ Δpx,y < π in the sector �p+ = 0. The forbidden
zones for holes of Δ�p such that each one-particle energy
is above the Fermi energy, i.e., E1p(�p+/2 − Δ�p) > EF and
E1p(�p+/2 + Δ�p) > EF, are replaced by white color. The
Fermi energy EF corresponds to the filling n = 0.74 (left
panels) or n = 0.84 (right panels). The center and bot-
tom panels show ground state density plots for hole exci-
tations, Hubbard interaction with U = −1.5, system size
N = 256 and sector �p+ = 0. Center panels show the
ground state in Δ�r-representation in a zoomed region with
−10 ≤ Δx, Δy ≤ 10 (color values outside the zoomed
regions are blue) and bottom panels show the state in Δ�p-
representation (with −π ≤ Δpx,y < π). The two-particle
ground state energies Emin (of the effective sector Hamil-
tonian) in units of the basic hopping matrix element are
−0.03734 (−0.04222) for n = 0.74, (n = 0.84). The colors
red (green) correspond to positive maximum (intermediate),
blue to zero value and yellow (cyan) to strongest (interme-
diate) negative values

to holes, being below the Fermi energy (i.e., being in the
Fermi sea) with : E1p(�p+/2±Δ�p) < EF and the diago-
nal matrix elements in the effective sector Hamiltonian
are −[Ec(p1,p2)−2EF] > 0 (with p2,1 = �p+/2±Δ�p and
Ec given by (5)), since it costs energy to excite holes and
the interaction coupling matrix elements Up(Δp′,Δp)
are unchanged. For convenience, we do not apply the
sign change in the following energy landscape figures for
holes (figures of style of Figs. 2, 5) such that the forbid-
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den white zones for holes correspond to positive values
of Ec(p1,p2) − 2EF > 0 (for the simple case �p+ = 0).

In this section, we first consider the case of static hole
pairs with �p+ = 0. Examples of the energy landscape
with the frozen Fermi sea for hole dopings nh = 1−n at
n = 0.74, 0.84 are shown in the top panels of Fig. 7. The
ground states for these nh values (and U = −1.5) with
attractive Hubbard interaction of holes are also shown
in this figure. The results show that the pairs are very
compact in the coordinate space and in the momen-
tum space they are located at the (inside) vicinity of
the Fermi surface with an effective width in momen-
tum space being larger (smaller) if Δpx ≈ ±π, Δpy ≈ 0
or Δpx ≈ 0, Δpy ≈ ±π (Δpx ≈ Δpy respectively) in
a similar way for electron pair states visible Fig. S2 of
SupMat (located at the outside vicinity of the Fermi
surface). The same approach also works for the case
of attractive d-wave interaction giving similar results
for the ground state energies and eigenstates, but with
an additional suppression of momentum wave function
amplitudes in regions Δpx ≈ Δpy (not shown in figures
here, but similar to Fig. S3 of SupMat).

We also computed the gap dependence on hole dop-
ing in LSCO for the attractive Hubbard and d-wave
interactions at different interaction values U and lat-
tice size N = 1024 (more than a million lattice sites).
The results are shown in Fig. 8 and the convergence of
gap values with increasing lattice size from N = 128 to
N = 1024 is shown in Fig. S8 of SupMat for an interme-
diate interaction value for both interaction cases. The
curves exhibit still strong fluctuations at N = 128, but
the two curves at N = 512 and N = 1024 are nearly
identical showing that N = 1024 is sufficient to have
gap values in the limit of infinite lattice size.

The gap values allow to obtain the critical temper-
ature Tc of superconductivity using the standard rela-
tion Δ = 1.764kBTc (here, kB is the Boltzmann con-
stant and temperature Tc is measured in Kelvin) [21].
In Fig. 8, we also present the dependence of Tc on hole
doping nh in LSCO. For the Hubbard case at U = −1.2,
we obtain the maximal Tc ≈ 36K (at the hopping
t = 0.43 eV [10]) being rather similar to the maxi-
mal Tc0 = 38K obtained experimentally (see Fig. 11 in
[10] and experimental Refs. therein). The LSCO experi-
mental results are satisfactorily described by the doping
dependence Tc = Tc0[1 − (n0−nh

n1
)2] with the optimal

doping n0 = 0.16 and n1 = 0.11 [10]. The Hubbard
results at U = −1.2 (at t = 0.43 eV this corresponds
to U = 0.516 eV) give the closest similarity of the Tc

dependence on hole doping nh. Still the numerical data
at U = −1.2 give a somewhat different shape of the
curve Tc(nh) as compared to experimental data. Thus,
the optimal doping is at nh = 0.24 for U = −1.2 (it
slightly changes with U). It is slightly below the dop-
ing value nhs = 1 − ns ≈ 0.26 corresponding to the
separatrix (see Fig. 1). Indeed, the density of states is
maximal at the van Hove singularity, which significantly
contributes to the gap increase if the Fermi surface
of holes is located slightly below the separatrix value
nhs ≈ 0.26. In this case, we have EF > Es (Es being

Fig. 8 Gap dependence on hole doping nh in the HTC
model of LSCO. Shown is the gap energy Δ = −Emin/2 for
hole excitations as a function of doping value nh = 1 − n
for N = 1024 and the sector �p+ = 0. The left vertical
scale gives the energy values in units of the basic hopping
matrix element t and the right vertical scale gives the corre-
sponding value of the critical temperature Tc obtained from
Δ = 1.764 kB Tc and using t = 0.43 eV. Top (bottom) panel
corresponds to the Hubbard (d-wave) interaction with U =
−0.6, −0.8, −1, −1.2, −1.4 (U = −1.6, −1.8, −2, −2.2, −2.4)
for the bottom to top curves. The parabolic gray dashed
curve corresponds to the formula Tc = Tc0[1 − (n0−nh

n1
)2]

with Tc0 = 38 K, n0 = 0.16, n1 = 0.11 obtained from exper-
imental data [10]

the separatrix energy) and the accessible hole states
include the region of Es that contributes to increase
of the (sector) density of states. Our numerical data
provide a dependence Tc(nh) on nh, which seems to
be rather close to the experimental data. We attribute
certain differences (shift of the maximum position) to
the fact that for LSCO, three-dimensional effects signif-
icantly affect the hopping parameters and the separa-
trix position as discussed in [12]. In particular, Fig. 15
of [12] indicates a separatrix position closer to n = 0.84
(nh = 0.16) due to 3D and multiple band effects where
the kz quantum number also plays a role. Further-
more, our computations are based on the simple Hub-
bard interaction, which may be different from the real
effective interaction between holes. Thus, we find that
our numerical results demonstrate a qualitatively good
agreement with available experimental data. Of course,
one cannot expect to have a perfect agreement since
there are many features which are not present in the
Cooper approach: many-body interactions at finite den-
sity of holes, spin effects, the physical origin of attrac-
tion between holes which may lead to long range inter-
actions, and 3D effects. However, we think that a rather
simple phenomenological Cooper approach gives a rea-
sonably good agreement with the experimental results.
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Fig. 9 Ground state quantum average 〈g2
k〉 for hole pairs

as a function of doping nh = 1 − n for N = 1024 and
the sector �p+ = 0, with gk = (cos(kx) − cos(ky))/2 and
�k = Δ�p = (kx, ky) being the quantum momentum space

of the ground state at the given doping nh (�p+ = �k+ at
� = 1) . Left (right) panel corresponds to the Hubbard
(d-wave) interaction with U = −0.6, −0.8, −1, −1.2, −1.4
(U = −0.6, −1, −1.4, −1.8, −2.2) for the red, green, blue,
pink, and cyan curves, respectively. The gray dashed line at
the value 〈g2

k〉 = 0.25 corresponds to the uniform average

over all values �k = (kx, ky) with probability homogeneously
distributed in the plane −π < kx,y < π

We also show the dependence Tc(nh) for the attrac-
tive d-wave interaction, in the bottom panel of Fig. 8,
with curves being rather similar to the Hubbard case.
However, a somewhat stronger attractive interaction
strength U = −2 (U = −0.86 eV for t = 0.43 eV)
is required to have a maximal Tc value close the exper-
imental value Tc = 38K, while the shape of the curves
Tc(nh) remains rather similar to the Hubbard case.
Thus, the comparison of Tc(nh) curves for Hubbard
and d-wave interactions indicates that the shapes of
the Fermi surface curves are mainly at the origin of gap
dependence on doping in the HTC model.

We note that the d-wave structure of the gap with a
sign change was experimentally detected with the help
of the Josephson tunneling effect (see, e.g., [22]). In the
Cooper approach, we obtain only single gap value, but
the sign change remains visible in the structure of the
ground state eigenfunction which has no sign change
for Hubbard attraction and has sign change for d-wave
interaction (see Eq. (11) in Appendix A.1).

In Fig. S9 of SupMat, we also show for completeness
the dependence of Tc(n) on nh = 1−n for Cooper pairs
of electrons which have a rather similar structure as the
hole case, but in both cases there is certain a asymmetry
around the maximum which is different between holes
and electrons. Thus at doping nh = 0.2 and U = −1.2,
the gap for electron pairs is about 50% smaller than for
hole pairs.

To characterize the d-wave structure of the ground
state, we compute the value of the quantum average
〈g2k〉 over the ground state in momentum representa-
tion (with k being Δp and gk = (cos(kx)− cos(ky))/2).
The dependence of 〈g2k〉 on hole doping nh is shown
in Fig. 9 for different values of U for Hubbard and d-
wave interactions. At small |U |, the interactions and
gap are too weak and the discreteness of momentum
values at finite lattice size leads to strong fluctuations
of 〈g2k〉 with nh. This happens because at small |U |,
only few specific k values, closest to the Fermi surface,

contribute to the ground state (a similar effect is dis-
cussed in detail for rough billiards in [18]). However,
for moderate interactions (|U | ≥ 1 for Hubbard and
|U | ≥ 1.4 for d-wave cases), corresponding to Tc values
close to experimental ones (see Fig. 8), the system size
N = 1024 is sufficiently close to the infinite N limit with
a smooth dependence of 〈g2k〉 on nh. As for Δ(nh) shown
in Fig. 8, the average 〈g2k〉 has also a maximum close to
the optimal doping nh ≈ 0.26 corresponding to the sep-
aratrix (van Hove singularity). However, in contrast to
Δ(nh) the maximum is not very smooth and the lowest
values of 〈g2k〉 (in the interval 0 ≤ nh ≤ 0.4) are quite
large, about ∼ 65 % of the maximal value. The maximal
values themselves 〈g2k〉 ≈ 0.75 (Hubbard case) and 0.87
(d-wave case) are rather high and close to unity, which
corresponds to a strong concentration of the wavefunc-
tion in the vicinity of the antinode kx ≈ 0, ky ≈ ±π (or
inverse).

Such a concentration is indeed visible for the ground
state in momentum space shown in Fig. 7. We note that
for the whole considered range of dopings 0 ≤ nh ≤ 0.4,
the obtained values of 〈g2k〉 are significantly larger than
the value 0.25 corresponding to a homogeneous distri-
bution of probability over all kx, ky values in the inter-
val [−π, π]. Using the classical local density ρg(gk) ∼
1/(1 − |gk|) with a cutoff |gk| ≤ gmax, where gmax < 1
is the maximal possible value of |gk| (for Fermi curves
close to the separatrix curve; see Appendix A.2), one
can expect for the Hubbard case the analytical esti-
mate : 〈g2k〉cl. ≈ 1 − 3/(2| ln(1 − gmax)|), which pro-
vides theoretically unity for the exact separatrix curve,
but with a rather strong logarithmic correction even if
1 − gmax � 1, which explains the rather larger values
in Fig. 9 (significantly above 0.25) but still somewhat
smaller than unity.

For the d-wave interaction, we remind that the
momentum wave function amplitudes are essentially
multiplied with gk (in comparison to the Hubbard wave
function amplitudes at same gap value) and we expect
that 〈g2k〉q,d−wave ≈ 〈g4k〉cl./〈g2k〉cl. ≈ 1 − 7/(12| ln(1 −
gmax)|), with a reduced logarithmic correction explain-
ing the somewhat larger values (closer to unity) in the
right panel of Fig. 9.

We note that similar results are obtained for the
dependence of 〈g2k〉 on nh for electron pairs (see Fig. S10
of SupMat).

The fact that for both interactions, the average 〈g2k〉
is significantly above the uniform average 0.25 confirms
the findings of Sect. 3 that the HTC band structure
alone induces a kind of d-wave preference in classi-
cal phase space (larger distance between two neighbor
Fermi curves if |gk| ≈ 1) or for quantum states (with
more occupied grid points in the regions close to the
Fermi surface if |gk| ≈ 1). Therefore, to observe a d-
wave dependence, it is not necessary to inject a d-wave
dependence in the interaction as such, as can be seen in
the results of Figs. 8 and 9 for the (s-wave) Hubbard
interaction. For the d-wave interaction, the “d-wave”
effect is somewhat enhanced, but this enhancement is
not the dominant part. Furthermore, the HTC band
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Fig. 10 Energy landscape for mobile hole pairs. Left pan-
els show color plots of Ec(�p+/2 − Δ�p, �p+/2 + Δ�p) − 2EF

for the HTC model in the Δpx − Δpy plane for −π ≤
Δpx,y < π. The Fermi energy EF corresponds to the fill-
ing factor n = 0.74 (in all panels). The top (center, bot-
tom) panel corresponds to the sector �p+ = 2π(103, 103)/256
(�p+ = 2π(46, 172)/256, �p+ = 2π(0, 248)/256). The three
values of �p+ are chosen such that the center of mass momen-
tum �p+/2 is very close to the Fermi surface of virtual filling
factor nv = 0.74 with three cases of p+x = p+y, p+x ≈ p+y/4
and p+x (p+y) minimal (maximal). The choice of discrete
values is motivated by subsequent quantum computations
at N = 256 with these exact identical parameters. The col-
ors red (green) correspond to positive maximum (interme-
diate), blue to zero value and yellow (cyan) to the strongest
(intermediate) negative values. Right panels are as in the left
panels, but the forbidden zones of Δ�p (for hole excitations)
such that each one-particle energy is above the Fermi energy,
i.e., E1p(�p+/2 − Δ�p) > EF and E1p(�p+/2 + Δ�p) > EF,
are replaced by white color. Note that here the white zones
include not only the positive value zones (red/green) in the
left panels, but also additional zones of negative values due
to �p+ �= 0 and the more complicated selection rule using
individual one-particle energies

structure also breaks the central symmetry in the vicin-
ity of optimal doping values.

Fig. 11 Ground state density plots for the Hubbard inter-
action, system size N = 256, hole pairs, filling factor
n = 0.74, nh = 1 − n and three sectors �p+ �= 0 (same
values as in Fig. 5). The top (center, bottom) panels cor-
respond to U = −8, �p+ = 2π(103, 103)/256 (U = −6,
�p+ = 2π(46, 172)/256; U = −4, �p+ = 2π(0, 248)/256).
Left panels show the ground state in Δ�r-representation in
a zoomed region with −10 ≤ Δx, Δy ≤ 10 (color values
outside the zoomed regions are blue) and right panels show
the state in Δ�p-representation (with −π ≤ Δpx,y < π). The
two-hole ground state energies Emin (of the sector Hamilto-
nian and in units of the basic hopping matrix element) are
−0.03424 (−0.07144, −0.1884) for the top (center, bottom)
panels

6 Gap for mobile Cooper pairs of holes

In this section, we discuss the case of mobile pairs of
holes with p+ �= 0. Similarly to that in Sect. 4, we use
a virtual filling nv = 0.74 (and nv = 0.84 for SupMat
figures) corresponding to certain center of mass values
p+/2 being (very close) to the Fermi surface with filling
nv.

An example of the energy landscape for mobile pairs
is shown in Fig. 10 for the filling factor n = 0.74, nh =
1 − n and the virtual filling factor being very close to
this value nv = 0.74 (up to discreteness lattice effects).
We see that the energy landscape changes significantly
depending on the value of p+/2 on the virtual Fermi
surface at nv. The landscape is shown for three cases
of p+x = p+y, p+x ≈ p+y/4 and p+x (p+y) minimal
(maximal). Even more striking are the changes of the
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Fig. 12 Gap energy Δ = −Emin/2 for hole pairs as a
function of g�p+/2 = [cos(p+x/2) − cos(p+y/2)]/2 for n =
0.74, nh = 1 − n and 21 sector values of �p+ such that the
values of the center of mass �p+/2 lie uniformly on the line
of virtual filling factor nv = 0.74 between the positions of
p+x = p+y, with g�p+/2 = 0, and p+x ≈ 0, p+y ≈ 2π, with
g�p+/2 ≈ 1. The three curves correspond to the three inter-
action values used in Fig. 11 and the data points with black
squares correspond to the three states shown in Fig. 11 with
g�p+/2 = 0 (≈ 0.7, ≈ 1) for the top (center, bottom) row
therein. Data are obtained at N = 256

zones of accessible Δp values shown in the right column
of Fig. 10 due to the condition E1p(�p+/2 ± Δ�p) < EF

(see also discussion at the beginning of Sect. 5). For
p+x = p+y, these zones are composed of a quite small
island with a dumbbell form. For p+x ≈ p+y/4, this
island is strongly reduced but two extra pieces around
Δp = (0,±π) have been added. Finally, for p+x = 0
and p+y maximal, the island has (nearly) disappeared
and the extra pieces have increased in size with curved
boundaries.

Examples of ground states of hole pairs for param-
eters of Fig. 10 are shown in Fig. 11. Similarly, as in
Fig. 6, the ground states correspond to compact pairs in
Δr-representation (left column) with a size decreasing
with the increase of the gap Δ. Their densities in Δp-
representation (right column) are again concentrated at
certain borders of the frozen Fermi sea (“blue” Fermi
sea borders with energies close to the Fermi surface; see
right column of Fig. 10). In particular, the (momentum)
ground state for p+x = p+y is concentrated on the out-
side borders of the dumbbell island.

The important feature of these ground states is that
the gap values Δ = −Emin/2 are rather modest even
if the Hubbard interaction strength is by a factor 4 or
even more higher as compared to the case of static pairs
of Fig. 8. Similarly to that with mobile electron pairs
(see Sect. 4), it is necessary to consider rather large
interaction amplitudes |U | between −4 and −8 to find
good pair states.

It is convenient to express the gap dependence on
p+x, p+y via the quantity g�p+/2 = [cos(p+x/2) −
cos(p+y/2)]/2, which characterizes the position of the
center of mass p+/2 on the (virtual) Fermi surface (we
note that this quantity is different from gk used in the
previous Sections since now k corresponds from the cen-
ter of mass p+/2, while previously it was given by the
relative momentum Δp). The dependence of the gap Δ

on this quantity is shown in Fig. 12 for three interac-
tion values U = −4,−6,−8 and for 21 uniformly dis-
tributed data points on the virtual Fermi surface. The
main observations from Fig. 12 can be listed as follows:
the gap is very small at g�p+/2 ≈ 0 (symmetry point
p+x = p+y) and is highest at g�p+/2 ≈ 1 (asymmetry
point p+x = 0, p+y maximal, or inverse). This can be
understood from the fact that the number of accessi-
ble states is significantly larger for g�p+/2 ≈ 1 than for
g�p+/2 ≈ 0 (small dumbbell island) or for other inter-
mediate states (with intermediate g�p+/2), as it is well
seen in the right column panels of Figs. 10 and 11. The
gap appears at rather large values |U | for the Hubbard
interaction as compared to the case of static pairs (with
p+ = 0; see Sect. 5). Similar results for another case,
n = nv = 0.84, are shown in Figs. S11, S12, S13 of
SupMat.

We also considered the case of small values of |p+| →
0 (nearly static pairs) at modest interaction strength
|U | = 1 (case of presence of a modest gap Δ ≈ 0.06 for
holes and Δ ≈ 0.1 for electrons at n = 0.74 and p+ = 0
and zero gap at nv = 0.74 with non-zero p+ values of
Figs. 10 and 11). It turns out that for N = 512, the
gap rapidly disappears with increasing value of |p+| at
|p+| � (2πl)/512, with l ≈ 7–10 for particles and l ≈
3–5 for holes. These borders correspond to very small
virtual filling values nv ∼ 10−4 − 10−3.

Globally, the results of this section show that it is
possible to have coupled mobile pairs with an energy
gap, but the required (attractive) interaction amplitude
should be four to eight times larger as compared to the
case of static pairs.

7 Pairs with Coulomb repulsion

In this section, we present the results of pair eigenstates
for the repulsive Coulomb interaction (see case (i) in the
discussion of Sect. 2) combined with a frozen Fermi sea.
In previous works [14,15], the time evolution of electron
pairs in NN and HTC lattices was studied for free pairs
(in the absence of a frozen Fermi sea) showing that the
Coulomb repulsion can lead to Coulomb pair formation
due to the appearance of an effective narrow or flat band
when the total pair momentum is p+ ≈ (±π,±π). Such
a mechanism is rather interesting, but it is important
to understand if such states can have a gap (Emin < 0)
or not and if such Coulomb pairs can exist in presence
of a frozen Fermi surface and at which energies.

Due to a more complicated structure of coupling
matrix elements, the effective method of Appendix A.1
is not suitable and we determine the eigenstates and
energies of the sector Hamiltonian (see Sect. 2 for
details of its definition) by numerical full diagonaliza-
tion. For this, we consider two particular cases:

(i) Hole excitations at n = 0.74 with one single value of
p+ such that p+x = p+y = 2π(207/512) correspond-
ing to nv = 0.74 and sector dimension N ′

2 = 3040 at

123



  187 Page 14 of 20 Eur. Phys. J. B          (2022) 95:187 

Fig. 13 The pair weight wN/6 defined as the quantum
probability for |Δx| ≤ N/6 and |Δy| ≤ N/6 is shown as
a function of the pair excitation energy E (eigenvalue of the
sector Hamiltonian and with E = 0 corresponding to the
Fermi level; see Sect. 2 for details) for the case of repulsive
Coulomb interaction with U = 2, HTC model and filling fac-
tor n = 0.74. The top (bottom) panel corresponds to hole
excitations with �p+ = 2π(207, 207)/512, sector dimension
N ′

2 = 3040 and N = 512 with center of mass �p+/2 being on
the Fermi surface for virtual filling factor nv = 0.74 (parti-
cle excitations with �p+ = 2π(113, 113)/256, sector dimen-
sion N ′

2 = 8737, N = 256 and nv = 1). The blue line shows
N2(E)/N ′

2 with N2(E) being the number of levels below
E. The energy values with strong energy derivative of this
quantity, corresponding to strong peaks of sector density of
states, coincide with the main peaks of wN/6 for well-defined
close pair states. The dashed black line indicates the value
wN/6 = 1/9 for uniform ergodic states on the whole lat-
tice. The energy landscape for these parameters is shown in
Fig. 14. The data points with black squares correspond to
the states shown in Figs. 15, 16 (and in related Figs. S14, S15
of SupMat). Additional data, especially raw png figures for
pair states with wN/6 > 0.4, for these two cases and also
for N = 512 for the parameters of the bottom panel are
available at [23]

N = 512. Note that the sector dimension is strongly
reduced with respect to N2 = N2 = 5122 due to the
small fraction of available states (case of dumbbell
island visible in top right panel of Fig. 10), allowing
to choose the rather large system size N = 512.

(ii) Electron excitations at n = 0.74, also with one sin-
gle value of p+ such that p+x = p+y = 2π(113/256)
corresponding to nv = 1 and sector dimension
N ′

2 = 8737 at N = 256. We have also computed the
eigenstates and energies for the larger case N = 512
with p+x = p+y = 2π(225/512), N ′

2 = 35030, and
verified that all physical conclusions remain valid.

Fig. 14 Colored allowed (forbidden white) zones in Δ�p-
plane (see captions of Figs. 5, 10 for details). Top (bot-
tom) panels correspond to the parameters of top (bottom)
panel of Fig. 13 with filling factor n = 0.74, hole (elec-
tron) excitations, �p+ = 2π(207, 207)/512 and N = 512
(�p+ = 2π(113, 113)/256 and N = 256). Right (left) pan-
els show the full momentum cell: −π ≤ Δpx,y < π (zoomed
center square: −π/2 ≤ Δpx,y < π/2) in Δ�p-plane. Note that
the top left panel here corresponds nearly exactly to the top
right panel of Fig. 10 (with a slight difference in �p+ due to
different choices of N)

However, for practical reasons, we present here fig-
ures and the discussion only for the case N = 256
(reduced number of data points and better visi-
ble eigenfunction figures at N = 256, especially in
momentum space). The choice of p+ corresponding
to nv = 1 �= n = 0.74 is motivated by its proximity
to the “optimal” value (π, π) found in [14,15] and
the fact that the zone of allowed Δp values covers
the vicinity of Δp = 0 which is actually a point of
“negative mass” as we will see below (at nv = 0.74
and p+x = p+y, the region Δp = 0 would be in the
forbidden zone; see the top right panel of Fig. 5).

Additional data, especially raw png figures for pair
states, for these cases (i), (ii) and (ii) for N = 512
are available at [23].

We also studied many other parameters (other
choices of n, nv, p+ with p+/2 being on different points
of the virtual Fermi surface etc.) and in all cases the
ground state energy Emin (of the sector Hamiltonian)
was found to be positive such that there was no gap (in
the framework of this approach) for repulsive Coulomb
interaction. However, we discovered different mecha-
nisms of pair formation at different excitation ener-
gies (sometimes close to the Fermi energy, sometimes at
quite high excitation energies). The two specific exam-
ples above provide eigenstates for all interesting cases
which we will discuss below.
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Fig. 15 Three strong pair eigenstates for the parameters
of the top panel of Fig. 13 (holes, n = nv = 0.74, N =
512) for energies close to 0.3 and marked by black squares
therein. Left (right) columns correspond to the Δ�r- (Δ�p-)
representation showing the two times zoomed center square
for both cases: −N/4 ≤ Δx, Δy < N/4 (−π/2 ≤ Δpx,y <
π/2). The panels in Δ�p-representation correspond to the
top right panel of Fig. 14 concerning the identification of
the allowed and forbidden zones. The top (center, bottom)
row corresponds to the eigenstates with level number 2974
(3011, 3037), energy 0.3342 (0.3485, 0.4371) and pair weight
wN/6 = 0.8164 (0.9900, 0.9853). Note that N ′

2 = 3040 is the
maximal possible level number for the largest energy (in the
corresponding �p+-sector)

To identify interesting Coulomb pairs at excited
energies, we compute for each eigenstate the quan-
tity wN/6(E) defined as the quantum probability of
|Δx| ≤ N/6 and |Δy| ≤ N/6 (obtained by summing
|ψ(Δr)|2 over Δr satisfying this condition with ψ(Δr)
being an eigenstate in Δr-representation; see also Eq.
(9) and text below of [15] for the definition of the simi-
lar quantity w10). In this work, we replace the width 10
with N/6, since many good pair states are still quite
extended. Values of wN/6(E) significantly above the
ergodic value 1/9 (i.e., close to 1) indicate pair states (at
certain energies), which are quite well localized around
Δr ≈ 0.We have also computed other quantities such as
the quantum averages 〈|Δr|〉, e〈ln |Δr|〉, 〈Ū(Δr)〉 or the
inverse participation ratio in Δr-representation, provid-
ing the same typical energies at which good pair states
appear.

Fig. 16 Two strong pair eigenstates for the parameters of
the bottom panel of Fig. 13 (particles, n = 0.74, nv = 1,
N = 256) of the third strong peak of large wN/6-values
for energies close to 3.5-4 and marked by black squares
therein. Left (right) columns correspond to the Δ�r- (Δ�p-)
representation showing the two times zoomed center square:
−N/4 ≤ Δx, Δy < N/4 (full momentum cell: −π ≤
Δpx,y < π). The panels in Δ�p-representation correspond
to the bottom left panel of Fig. 14 concerning the identifi-
cation of the allowed and forbidden zones. The top (bottom)
row corresponds to the eigenstates with level number 8732
(8737), energy 3.571 (4.048) and pair weight wN/6 = 0.9970
(0.9976). Here, N ′

2 = 8737 is the maximal possible level
number for the largest energy (in the corresponding �p+-
sector)

Figure 13 shows wN/6(E) (red data points) as a
function of the excitation energy E (eigenvalues of
the sector Hamiltonian with diagonal matrix elements
±(Ec(p1,p2)−2EF; see discussion of Sect. 2 for details)
for the both above examples (i) in the top panel and (ii)
in the bottom panel. In addition, also the normalized
integrated (sector) density of states N2(E)/N ′

2, (frac-
tion of states with energies below E; blue curves) are
shown.

For the case (i), there is one peak of strong pair
states, with wN/6(E) close to 1, at the top of the energy
spectrum, mostly at E ≈ 0.3 and with a few states
going up E = 0.4−0.7 (energy measured in units of the
basic hopping matrix element t). For the case (ii), there
are three main peaks at energies E ≈ 0.9, 2.1− 2.2 and
3−3.5 (top of the spectrum for the third peak). In addi-
tion, there also two secondary peaks behind the first
two peaks at E ≈ 1.2, 2.6. We observe at all main peak
positions for both cases an enhanced slope of N2(E)/N ′

2
just before the energy corresponding to the peak, indi-
cating a strongly enhanced density of states at these
energy values. For the case (ii) at E ≈ 0.9, this effect
is a bit less strong, but still visible, as compared to the
other peaks.
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To understand these observations and the physical
nature of the pair states at these energies, we show
in Fig. 14 the energy landscape of allowed Δp values,
together with the forbidden zones and in Figs. 15, 16
and Figs. S14, S15 of SupMat examples of pair states at
the peak energies marked by black squares in Fig. 13.
The top panels of Fig. 14 show again the dumbbell
island for the case (i) (see also top right panel of Fig. 10)
with a 50% zoom in the right panel and bottom panels
corresponding to the case (ii) which is somewhat simi-
lar to the right panel of Fig. 5, but with an additional
cigar-shape island in the region around Δp = 0, which
appears due to the modified virtual filling nv = 1 with
respect to nv = 0.74 in Fig. 5 (both with p+x = p+y).

The panels of Fig. 14 have to be viewed together with
the eigenstate figures in Δp-representation (right pan-
els of Figs. 15, 16 and Figs. S14, S15 of SupMat). For
example, for the case (i), we see that the eigenstate den-
sities in Δp-space of the three pairs shown in Fig. 15 are
concentrated a the outer border of the dumbbell island.
The densities in Δr-space are localized around Δr = 0
with a width of about 33% (state of top panels), 25%
(state of center panels) and 5% (state of top panels) of
the available lattice, showing that the width decreases
when the energies approach the top of the spectrum.
These pair states are created by a combined mecha-
nism of top spectrum, narrow band and island struc-
ture, because at the top of the spectrum the repulsive
Coulomb interaction behaves like an attractive inter-
action (at the bottom of the spectrum) confining the
particles to a well-defined pair.

The eigenstates shown in Fig. 16 correspond to the
case (ii) at the top of spectrum (third main peak at E ≈
3.5–4.5) with Δp-densities concentrated at the regions
Δp ≈ (±π,±π) corresponding to red maximum regions
in the bottom panels of Fig. 14. Here, the pair cre-
ation mechanism is essentially due to the top spectrum
(also negative mass; see below) and there is no strong
island effect. Also the effective band is not very narrow
(one may argue that the red zone region in the bottom
panels of Fig. 14 constitutes an effective narrow band).
The width in Δr space (around Δr = 0) decreases very
strongly when approaching the top of the spectrum.

The states shown in Fig. S14 of SupMat for the first
main energy peak (E ≈ 0.9) of the case (ii) are very
interesting. Their Δp-densities are localized around
Δp = 0 which constitutes a local energy maximum
(center green zone of the cigar shape island in bot-
tom panels of Fig. 14). This point is actually character-
ized by two negative eigenvalues of the Hessian matrix
obtained by expanding Ec given in (5) up to second
order in Δp. As can be seen in (bottom right panel)
of Fig. S16 of SupMat, the symmetric value of p+/2
(i.e., with p+x = p+y) falls for nv = 1 clearly in one of
the droplet regions where both eigenvalues are negative
providing a point of negative mass with a clear local
maximum in Δp space. Therefore, the pairs at E ≈ 0.9
are created by the mechanism of negative mass, which
is similar to the mechanism of top spectrum where the
repulsive Coulomb interaction confines particles. In Δr-

space, the densities are again localized around Δr with
width values between 15 and 25% of the lattice.

Example states of the second main energy peak (E ≈
2.2–2.6) of the case (ii) are shown in Fig. S15 of SupMat.
These states correspond to the regions of olive color (in
the bottom panels of Fig. 14) either at Δp ≈ (0,±π),
Δp ≈ (±π, 0) (for top and center panels with E ≈ 2.2)
or Δp ≈ ±0.9(−π, π) (bottom panels with E ≈ 2.6).
Here, the points Δp ≈ (0,±π), Δp ≈ (±π, 0) corre-
spond to regions with a local maximum in one direction
and finite width in Δp-space in the orthogonal direc-
tion due to the forbidden zone thus leading to a quasi-
negative mass situation (note that Fig. S16 of SupMat
does not apply to this case since Δp �= 0). The case of
the bottom panels is special, since there is no local max-
imum in Δp-space at Δp ≈ ±0.9(−π, π), and despite
the optical appearance of a very close pair in Δr-space
the actual value of wN/6(E) ≈ 0.3 (see the black square
data point at E ≈ 2.6 in bottom panel of Fig. 13) is
quite small such that about 70% of the quantum prob-
ability is still uniformly distributed over the full lattice.
However, the other 30% of probability produce a very
strong peaked density around Δr = 0 with large max-
imum values such that the uniform background is not
visible in the color plot.

In all cases, we see that the region of allowed Δp
values has a quasi 1D-structure in Δp-space (cigar or
dumbbell shape island or finite width around the red or
olive regions). Since these regions correspond (except
for the special case of the bottom panels of Fig. S15 of
SupMat) to a global or local maximum of Ec in Δp-
space, this explains that, at the energies slightly below
the maximum value, the density of states is strongly
enhanced (see blue curves in Fig. 13). In 1D, the free
momentum density of states is singular at a spectral
border and in quasi-1D with a finite width there should
be still a strong enhancement.

We mention that we have also studied a further case
similar to (ii), but with nv = 1.25 (instead of nv = 1)
such that the symmetric value p+ = (π, π) is exactly
at the optimal point found in [15]. In this case, the
three main peaks visible in the bottom panel of Fig. 13
merge into one single peak at the (modified) top of the
spectrum at E ≈ 2.2 − 2.7 and both green/olive zones
(for n = 1) at Δp = 0 or Δp ≈ (0,±π), Δp+ ≈
(±π, 0) become red (for n = 1.25) and all three maxima
have now the same value. In particular, the negative
mass point at Δp = 0 corresponds now to a global
maximum being degenerate with the other maxima at
Δp ≈ (0,±π), Δp+ ≈ (±π, 0) and Δp ≈ (±π,±π)
and the Δp-densities of pair states are concentrated at
these points.

These observations provide an additional explanation
of the results of [15] with optimal pair formation (in
the absence of a frozen Fermi sea) at p+ = (±π,±π).
In Fig. S17, we show again the data of Fig. 4 of [15]
in a color plot superimposed with the Fermi surface
for certain fillings n = nv by identifying p = p+/2.
The value of p+/2 ≈ 0.4 − 0.45(π, π) (i.e., nv = 0.74 or
nv = 1) of the above two cases (i) and (ii) correspond to
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green zones of an enhanced pair formation probability.
The optimal point p+/2 = 0.5(π, π) corresponds to a
red data point data (however, not very well visible in
the figure).

Thus, the three main mechanisms of pair formation
by Coulomb repulsion are: narrow or flat band local
spectrum structure as discussed in [14,15]; negative
effective mass for the pair energy so that a repulsion
works as an effective attraction; restricted area (e.g.,
cigar shape or dumbbell islands) of states accessible for
interaction induced transitions above the frozen Fermi
sea. At the same time, a quasi-1D structure of allowed
Δp zones leads also to an enhanced density of states for
a small energy intervall slightly below typical pair ener-
gies (peak positions of wN/6). We also point out that,
in the framework of this approach, Coulomb repulsion
does not lead to a gap with a ground state energy below
the Fermi surface.

8 Discussion

In this work, we apply the Cooper approach [13] to
study the formation of coupled pairs of two inter-
acting particles, holes or electrons, in a tight-binding
model of La-based cuprate superconductors. The one-
particle band structure of such systems is obtained from
advanced numerical analysis [10–12] based on modern
methods of quantum chemistry. We consider three types
of interactions being: attractive Hubbard and d-wave
type interactions and the standard repulsive Coulomb
interaction. Following the Cooper approach [13], the
interaction-induced transitions are taking place only
over the pair states where each particle (hole) is outside
(inside) a frozen Fermi sea in a sector with a conserved
fixed total momentum p+ of a pair at relative momen-
tum Δ�p. Here, we do not discuss possible origins of the
appearance of an attractive interaction and we simply
assume that such interactions are given (for the cases
of Hubbard and d-wave interactions).

We establish that the energy landscape of the relative
particle motion in a pair strongly depends on the par-
ticular value of its center of mass p+/2 corresponding
either to a static (p+ = 0) or a mobile regime (p+ �= 0).
For the attractive Hubbard and d-wave interactions, we
obtain a formation of static Cooper pairs (p+ = 0) with
a gap Δ depending on the interaction amplitude U and
hole (or electron) doping nh (n = 1−nh). The gap and
related Tc dependence on doping are compared with
LSCO experimental results (see Fig. 8) showing a sat-
isfactory agreement.

We find the best agreement with the LSCO experi-
mental data for the case of hole excitations at |U | ≈
1.2t ≈ 0.5 eV (Hubbard interaction) or at |U | ≈ 2t ≈
0.8 eV (d-wave interaction). The position of the opti-
mal hole doping is approximately located at nh ≈ 0.24
being influenced by the close van Hove singularity (sep-
aratrix Fermi curve) of one-particle density of states.
This value is higher as compared to the experimental
optimal doping nh ≈ 0.16. We attribute such a differ-

ence to missing 3D corrections to the 2D band structure
model we used here for LSCO.

Another important finding is that the ground state
has pronounced d-wave features for both Hubbard and
d-wave interactions, which can be understood by the
effective width of the Fermi surface in momentum
space clearly breaking central symmetry (see Fig. 7).
Thus, this width is smaller (larger) if the momentum is
close to a node (anti-node). Therefore, we can conclude
that the experimental observation of d-wave features
does not necessarily imply that the interaction as such
should have d-wave symmetries. In our studies, the d-
wave interaction model provided somewhat stronger d-
wave effects but the latter were also clearly present, due
to band-structure Fermi surface effects, for the Hubbard
interaction, which has only an s-wave symmetry.

For mobile pairs (p+ �= 0, with p+/2 being on a typ-
ical Fermi surface with nv = 0.74), the required attrac-
tive interaction strength |U | to form a pair with a sim-
ilar gap to that at p+ = 0 is enhanced by a factor 3–4
at the same filling n. The gap value is minimal at the
node region (p+x ≈ p+y) and maximal at the antinode
region (p+x close to zero and p+y close to maximum, or
inverse). We point out that for mobile pairs, the region
of accessible Δp values due to the frozen Fermi sea has
a very complex structure (see, e.g., Figs. 5, 10). We
expect that such mobile pairs can play a role for stripe
formation in LSCO.

For the case of Coulomb repulsion, we do not find gap
and coupled pairs at the ground state. However, we find
the formation of mobile Coulomb pairs at excited ener-
gies provided by three different mechanisms being: nar-
row or flat band as discussed in [14,15], local effective
negative mass of relative motion, restrictions of motion
due to island structures related to the restriction of
interaction-induced transitions imposed by the frozen
Fermi sea. We note that the quite complicated zones of
accessible states (in Δp-space) due to the frozen Fermi
sea (see, e.g., Figs. 5, 10) could in principle favor paring
by the Kohn–Luttinger type of mechanism (see [24–26])
with emergence of an effective attraction in d-wave or
higher-wave sectors due to the complexity of the acces-
sible energy landscape. However, we do not find signa-
tures of such an effective attraction nor pair formation
at the ground state by Coulomb repulsion in our stud-
ies.

We hope that the results obtained in the frame-
work of the Cooper approach [13] will lead to a better
understanding of unconventional superconductivity in
Cooper oxides.
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A Appendix

A.1 Numerical Cooper pair method

Let us consider the mathematical eigenvalue problem of a
Hamiltonian matrix of the form:

Hk,k′ = δk,k′εk − |U |
N2

gk gk′ , (8)

with diagonal unperturbed energies εk ≥ 0 and an “interac-
tion” or “coupling” matrix of rank one. For the considera-
tions in this appendix, both εk(≥ 0) and gk may be rather
arbitrary, but for the physical applications in this work εk

represents the excitation energy of two particles (holes) of
the form:

εk = ±
[

E1p

(
�p+

2
− Δ�p

)

+ E1p

(
�p+

2
+ Δ�p

)

− 2EF

]

(9)

with k corresponding to Δ�p, “+” (“−”) for particle (hole)
excitations, �p+ being the conserved total momentum of the
particle (hole) pair and only the values of k (or Δ�p) are
allowed such that E1p(�p+/2±Δ�p)−EF > 0 for both particles
(or < 0 for both holes). The number N2 corresponds to the
dimension of the full unrestricted sector of �p+ with all values
of Δ�p. For later use, we note the dimension of the restricted
sector (with allowed values of Δ�p) as N ′

2 (being a given
fraction of N2).

The case gk = 1 corresponds to an attractive Hubbard
interaction of interaction strength U and gk = gΔ�p =
[cos(Δpx) − cos(Δpy)]/2 corresponds to an effective d-wave
pairing attractive interaction used in typical mean field
approaches (see for example [11]). For gk = 1, �p+ = 0 and
a simpler energy band this model was already considered
by Cooper in 1956 [13]. His technical trick to compute the
ground state energy (or gap) can be generalized to the more
general model here and also be exploited for an efficient
numerical method.

Let ψk be the k-component of an eigenvector of (8) of
energy E. It satisfies obviously the equation :

(E − εk)ψk = −|U |
N2

gk S , S =
∑

k′
gk′ψk′ . (10)

There are two possibilities: either S = 0 or S �= 0. The case
S = 0 is possible if certain εk values are degenerate, e.g., due
to symmetries (there are always 1 to 3 symmetries in our
applications for the HTC model, depending on the value of
�p+; see [15] for details) and corresponds to anti-symmetric
wave functions with respect to those symmetries. Also if
gk = 0 for certain k-values, we may have S = 0. For S = 0,
we have obviously E = εk for some k (with degenerate εk

or gk=0) and ψk′ �= 0 (or = 0) if εk′ = εk (εk′ �= εk, respec-
tively) and such states are not affected by the interaction.
For S �= 0 (corresponding to totally symmetric states with
respect to symmetries), we can insert

ψk = −|U |
N2

gk S

E − εk
(11)

into the sum of S and thus obtain an implicit equation for
the energy E:

1 = −|U |
N2

∑

k

g2
k

E − εk
. (12)

Due to the attractive interaction, there is always exactly one
(ground state) solution E = Emin with Emin < εmin, where
εmin is the minimal value of εk (with gk �= 0 !).

The implicit equation (12) allows for an efficient numeri-
cal method to compute the first energy Emin (and poten-
tially also other eigenvalues) by standard algorithms to
numerically determine function zeros. Once the energy is
known, the eigenstate itself is obtained from (11) with S
being determined from the normalization. We have imple-
mented this method and verified that it produces identical
results to exact full numerical diagonalization (up to numer-
ical precision).

From (12), one can also obtain the limits of Emin for very
small interaction (retaining in the sum only the εmin-terms)
and very large interaction (replacing in the sum all εk →
εmin) :

Emin ≈ εmin − dmin|U |
N2

if
|U |
N2

	 δε ∼ εmax

N ′
2

, (13)

Emin ≈ εmin − N ′
2|U |
N2

if
|U |
N2

� εmax . (14)

In (13), δε represents the typical spacing of εk-levels (close
to εmin) and dmin is the degeneracy of the level εmin for the
Hubbard case or the sum of g2

k over the εmin levels for the
d-wave interaction case. Furthermore, N ′

2 is the number of
εk-levels (dimension of the �p+-sector of pair excitations).

Following Cooper [13], and for the simple Hubbard inter-
action case with gk = 1, one can also try a continuous limit
if N ′

2 � 1:

1 = −|U |
N2

∫ εmax

0

ρ2(ε)
1

Emin − ε
dε, (15)

where ρ2(ε) is the two-particle (two-hole) excitation density
of states in the given �p+-sector and normalized by N ′

2 =∫ εmax
0

ρ2(ε) dε. For simplicity, we have also replaced εmin →
0 by applying a uniform shift to all values of εk → εk − εmin

(actually in the limit N ′
2 → ∞ we have anyway εmin → 0).

We also assume that the ratio N ′
2/N2 remains finite in the

limit N ′
2 → ∞ (constant fraction of allowed states in the

given �p+-sector; see non-white zones in Figs. 2, 5 and 10).
For the case of a constant density of the states ρ2(ε) =

N ′
2/εmax, one obtains from (15) the expression

Emin = −εmax

[

exp

(
εmaxN2

|U |N ′
2

)

− 1

]−1

, (16)

which is very similar to the well-known result of Cooper [13]
(only with different notations/parameters). One can note
that in the limit of very strong interaction this expression
reproduces (14) plus a constant correction being “+εmax/2”
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(reduction of |Emin|), which has to be added to (14). On
the other hand, for finite N ′

2, (16) is not valid in the regime
where the very small interaction limit (13) applies.

However, for the HTC lattice, at filling factors close to
the separatrix point, e.g., n = 0.74, and for �p+ = 0, the
density of states is strongly enhanced for small energies due
to the effect of the close van Hove singularity (separatrix)
as can be seen in the right panel of Fig. S1 of SupMat. To
model this behavior, we try the fit-ansatz :

ρ2(ε) =
N ′

2

εmax log(1 + α)

α

1 + α(ε/εmax)
, (17)

where α is a fit parameter reproducing the constant DOS if
α = 0 or providing a strongly enhanced DOS close to small
energies if α � 1 and a power law decay ρ2(ε) ∼ 1/ε for
larger energies. (Also negative values of α are potentially
possible.) This form does not correspond exactly to the van
Hove singularity but it is convenient for the subsequent ana-
lytical evaluation of (15), and in any case, we want to model
the case close but still different from the van Hove singular-
ity where the DOS at ε = 0 is still finite. The right panel of
Fig. S4 of SupMat shows that this ansatz produces an inte-
grated DOS, which fits very well the exact integrated DOS
at n = 0.74, particles for the sector �p+ = 0. For n = 0.3 the
fit is of less quality but still provides an improvement.

Using (15) and (17), we obtain:

Emin = −εmaxf
−1

(
εmaxN2

|U |N ′
2

)

(18)

where f−1(. . .) is the inverse function of:

f(x) =
α

1 − xα

(
log(x−1 + 1)

log(1 + α)
− 1

)

. (19)

(Here x represents the ratio −Emin/εmax). In the limit α →
0 we recover from (18) the original Cooper type result (16).

The result (18) is shown as blue curves in Fig. 3 and
for n = 0.74, with the fit value α = 6.589, the blue curve
coincides very well with the numerical data points except
for a very small shift, while the green curve based on the
assumption of a constant DOS (i.e., α = 0) provides much
smaller gap values. For n = 0.3, the situation is different.
Here for modest values |U |, the green curve fits better the
numerical data points. This is because in this case, the uni-
form DOS (or linear integrated DOS) fits better the initial
(integrated) DOS at small energies as can be seen in the left
panel of Fig. S4 of SupMat where the green line is closer to
the red data points for ε < 0.15 εmax than the blue curve
corresponding to the ansatz (17). However, for larger values
of |U | ≈ 8 (not visible in Fig. 3), the blue curve is closer
to the numerical data points since here the full range of
energies ε ∈ [0, εmax] is important.

It is also possible to simplify (18) in the limit of very
strong interaction, corresponding to x � 1 in (19), which
gives:

Emin = −
[ |U |N ′

2

N2
− Aαεmax

]

, Aα =
1

log(1 + α)
− 1

α
,

(20)
which is in agreement with the limit behavior of (16), since
limα→0 Aα = 1/2. For larger values of α, the coefficient Aα

decreases with respect to this value, e.g., Aα = 0.3416 for
α = 6.589. Even though, mathematically, the constant term

with Aα provides “only a small” correction to the first term
∼ |U |, the fact that this coefficient decreases from 0.5 (at
α = 0) to 0.3416 (at α = 6.589) has a considerable impact on
the quite significant difference between the blue and green
curves in Fig. 3 also for intermediate interaction values. For
very large values of |U | these curves are actually parallel
with a constant shift due to different values of this coeffi-
cient. Furthermore, the third term in the large |U |-expansion
of Emin would only provide an additional correction of the
form ∼ |U |−1 in (20).

A.2 Local gk -density of states

The density of states ρ(E) for both lattices has a loga-
rithmic van Hove singularity visible in Fig. S1 of SupMat,

which is due to the vanishing value of �∇E1p(�ks) = 0 at

the separatrix points �ks = (0, ±π) or �ks = (±π, 0). Clas-
sically, ρ(E) dE can be obtained from the (relative) area

in �k-space between the two Fermi curves at energies E
and E + dE. As can be seen in Fig. 1, this area is signifi-
cantly enhanced in the region close to a separatrix point. To
see this point more clearly, it is interesting to consider the
angle-resolved area between Fermi curves at energies E and
E + dE and also angles ϕ and ϕ + dϕ, where ϕ is the phase

angle of the momentum vector �k = kE(ϕ)�e(ϕ) in which
�e(ϕ) = (cos ϕ, sin ϕ) and kE(ϕ) is determined such that at
given energy E and angle ϕ, we have E = E1p[kE �e(ϕ)].
This area (divided over (2π)2dE dϕ) defines the local angle
density of states ρϕ(ϕ, E), which can be formally computed
from the integral :

ρϕ(ϕ, E) =
1

π2

∫ π

0

dkx

∫ π

0

dkxδ[E − E1p(�k)]

×δ[ϕ − arctan(ky/kx)], (21)

=
kE(ϕ)

π2|�e(ϕ) · �∇E1p[kE(ϕ)�e(ϕ)]| (22)

In (21), we limit ourselves to the first quadrant with 0 ≤
ϕ ≤ π/2 such that the normalization prefactor is 1/π2. The
expression (22) is obtained by computing the integral in

polar coordinates for �k and it is valid for angles ϕ such
that the equation E = E1p[kE �e(ϕ)] has a solution for kE .
If this equation does not have a solution, we simply have
ρϕ(ϕ, E) = 0. For example, for energies above the separatrix
energy Es = E1p(0, π), the local angle–density of states is
limited to values ϕ ≤ ϕmax < π/2. Close to ϕmax and for
energies close to Es this density is not singular, but has a
strong peak value ∼ 1/(π/2−ϕmax)

2 (the exponent 2 is due
to a combination of small gradient and small scalar product
in the denominator, since the gradient and �e(ϕ) are nearly
orthogonal). For energies below Es, there is a minimal angle
ϕmin > 0 with ϕ ≥ ϕmin and a density peak ∼ 1/ϕ2

min.
In this work, we prefer however to use the quantity gk =

(cos kx − cos ky)/2 instead of ϕ with values gk ≈ 1 (or −1)
if ϕ ≈ π/2 (ϕ ≈ 0) and gk = 0 if ϕ = π/4. This quantity
allows also to characterize a position on a Fermi surface at
given energy (in the first quadrant). Its local gk-density of
states is obtained by a similar expression as (21):

ρg(g, E) =
1

π2

∫ π

0

dkx

∫ π

0

dkxδ[E −E1p(�k)] δ(g − gk) (23)
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and satisfies the relation:

ρg(gk, E) = ρϕ(ϕ, E)

(
dgk

dϕ

)−1

. (24)

We have used this relation together with (22) (and a numer-
ical evaluation of dgk/dϕ by finite differences for a suffi-
ciently dense set of data points) to compute numerically
the gk-density with results shown in Fig. S5 of SupMat and
also in Fig. 4.

For energies E close to Es and values 1 − gk 	 1, we can

apply to E1p(�k) and gk a quadratic expansion for �k close to

the separatrix point �ks = (0, π) resulting in :

E1p(�k) = E1p(�ks) +
1

2

[
ax k2

x − ay(π − ky)2
]

(25)

with ax = ay = 2 (ax = 2.084, ay = 0.452) for the NN
lattice (HTC lattice) and

gk = 1 − 1

4

[
k2

x + (π − ky)2
]
. (26)

Inserting (25) and (26) in (23), one obtains the following
analytical result:

ρg(gk, E) =
C1√

(gmax − gk)(gmax − gk + C2(1 − gmax))
(27)

with constants C1 = 1/(2π2√axay) and C2 = 1 + ax/ay

(C2 = 1 + ay/ax) if ΔE = E − Es ≥ 0 (ΔE = E − Es ≤ 0),
i.e., if the Fermi curve is above (below) the separatrix curve.
Furthermore, gmax is the maximal possible value of g given
by : gmax = 1 − ΔE/(2ax) [gmax = 1 + ΔE/(2ay) =
1 − |ΔE|(2ay)] if ΔE ≥ 0 (ΔE ≤ 0). We also note that
(27) is valid for gk > 0, because we have chosen the expan-

sion around the separatrix point �ks = (0, π). Using that
ρg(gk, E) = ρg(−gk, E) due to the x − y exchange symme-
try, it is sufficient to replace in (27) gk → |gk| to obtain a
more general expression for other separatrix points where
gk is close to −1.

For the separatrix case ΔE = 0 with gmax = 1, the
expression (27) simplifies to the simple power law

ρg(gk, E) =
C1

1 − gk
(28)

This power law is also valid for the general case close to
but outside the separatrix curve in the range of gk val-
ues sufficiently far away from the singularity at gmax, i.e.,
1 − gmax 	 gmax − gk 	 1. For values very close to the sin-
gularity gmax − gk 	 1 − gmax, the expression (27) becomes
a power law with exponent −1/2. All these points are very
nicely confirmed in Fig. S5 of SupMat.

Actually, the analytical expression (27) based on the sep-
aratrix approximation is highly accurate (provided one uses
for gmax the precise values for a given energy and not the
approximate linear expressions in |ΔE| given above) even
for filling factors not very close to the separatrix values and
even in the interval 0 ≤ gk ≤ 0.8 − −0.9, it is still rather
close to the precise distribution obtained numerically.

Furthermore, from (23), we immediately see that

∫ gmax

−gmax

ρg(gk, E) dE = 2

∫ gmax

0

ρg(gk, E) dE = ρ(E),

(29)

where ρ(E) is the total density of states given by an expres-
sion similar to (23), but without the delta-function factor
δ(g−gk). For 1−gmax 	 1, we find that this integral behaves
as log(1−gmax) ∼ log |ΔE| = log |E−Es| (simply using (28)
with a cutoff at |g| < gmax), thus confirming the logarithmic
nature of the van Hove singularity in the density of states.
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Fig. S1. One-particle energy density of states ρ(E1) for
both model types shown as a function of the one-particle
energy E1 (left panel) and filling factor n (right panel).
The van Hove singularities (or separatrix values) corre-
spond to E1 = −0.748 (E1 = 0) and n = 0.743465958
(n = 1) for the HTC model (NN model). Note that the
right panel shows the identical quantity ρ(E1) as the left
panel but as a function of n and without application of
any Jacobian factor. In particular, this does not represent
the density in the variable n (obtained by taking into ac-
count the Jacobian factor) which has actually the simple
uniform value 0.5 for 0 ≤ n ≤ 2.

Fig. S2. Ground state density plots for the Hubbard
interaction, system size N = 256 (top and center panels)
and N = 1024 (bottom panels), sector p+ = 0, and filling
factor n = 0.3, U = −2.5 (top) and n = 0.74, U = −1
(center, bottom). Left panels show the ground state in∆r-
representation in a zoomed region with −10 ≤ ∆x,∆y ≤
10 (color values outside the zoomed regions are blue) and
right panels show the state in ∆p-representation (with
−π ≤ ∆px,y < π for N = 256 or zoomed top-right square
0 ≤ ∆px,y < π for N = 1024). The two particle ground
state energies Emin (of the sector Hamiltonian) in units of
the basic hopping matrix element are−0.02656 (−0.01940,
−0.01948) for n = 0.3, N = 256, (n = 0.74, N = 256 or
n = 0.74, N = 1024). The state for N = 1024 in bottom
panels is also used for the gk-distribution shown in left
panels of Fig. 4 (for U = −1).
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Fig. S3. Ground state density plots for the d-wave in-
teraction, system size N = 256 (top and center panels)
and N = 1024 (bottom panels), sector p+ = 0, and filling
factor n = 0.3, U = −5 (top) and n = 0.74, U = −1.5
(center, bottom). Left panels show the ground state in∆r-
representation in a zoomed region with −10 ≤ ∆x,∆y ≤
10 (color values outside the zoomed regions are blue) and
right panels show the state in ∆p-representation (with
−π ≤ ∆px,y < π for N = 256 or zoomed top-right square
0 ≤ ∆px,y < π for N = 1024). The two particle ground
state energies Emin in units of the basic hopping matrix
element are −0.03140 (−0.01682, −0.01681) for n = 0.3,
N = 256, (n = 0.74, N = 256 or n = 0.74, N = 1024).
The state for N = 1024 in bottom panels is also used
for the gk-distribution shown in right panels of Fig. 4 (for
U = −1.5).
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Fig. S4. Left (right) panel shows the rescaled integrated
two-particle sector-density of states N2(ε)/N

′
2 (red data

points) for the sector p+ = 0, for N = 256, n = 0.3
(n = 0.74) versus ε/εmax. Here N ′2 represents the num-
ber of accessible levels in the given sector. The green
line shows the linear behavior assuming a constant den-
sity of states and the blue line shows the fit N2(ε)/N

′
2 =

log[1 + α(ε/εmax)]/ log(1 + α) with α = 3.193 ± 0.077
(α = 6.589± 0.017). These fits are used in Fig. 3.
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Fig. S5. Local gk-density of states ρg(gk, E) for the
quantity gk = (cos(kx) − cos(ky))/2 for different values
of energies E/filling factors n (see text for the defini-
tion). The dashed black line shows the analytical result
ρg(gk, E) = C1(1 − gk)

−1 which is obtained for the ex-
act separatrix case and if 1 − gk � 1. Here the constant
is given by C1 = 1/(2π2√axay) where ax = ay = 2 for
the NN model (ax = 2.084, ay = 0.452 for the HTC
model) such that C1 = 0.0253303 (C1 = 0.052198). The
values of ax and ay are obtained from the expansion
E1(k) = E1(0, π) +

1
2 [axk

2
x − ay(π − ky)2] for (kx, ky) be-

ing close to the separatrix point (0, π) (see text for more
details). The constant C1 for the HTC model is roughly
twice as large than the constant C1 for the NN model
showing that for the HTC model gk values close to unity
are more likely. For the NN model (left panel) the green
curve for the separatrix value n = 1 extends numerically
up to (1− gk) ≈ 10−10. For the HTC model (right panel)
the blue curve for n = 0.7435 extends numerically to
(1 − gk) ≈ 3 × 10−6; the curve for the precise separatrix
value n = 0.743465958 (not shown in the figure) extends
numerically to very small values of (1 − gk) ≈ 10−12 (if
computed properly). The strong peak values at minimal
values of 1− gk = 1− gmax correspond to singularities of
the type const./

√
gmax − gk and in this region the density

coincides numerically very well with the analytical approx-
imation (27) showing a crossover from a power law with
exponent −1/2 (for gmax − gk � 1 − gmax) to a different
power law with exponent −1 corresponding to the black
dashed line (for 1 − gmax � gmax − gk � 1). Note that
due to the exchange symmetry between kx and ky the local
gk-density of states is symmetric : ρg(gk, E) = ρg(−gk, E)
and therefore this function is only shown for positive val-
ues of gk ≥ 0.

Fig. S6. Same as Fig. 5 with particle excitations but
for the filling factor n = 0.84 and the sectors p+ =
2π(106, 106)/256 (top panels), p+ = 2π(52, 174)/256
(center panels) and p+ = 2π(27, 256)/256 (bottom pan-
els) such that the center of mass momentum p+/2 is very
close to the Fermi surface of virtual filling factor nv = 0.84
with three cases of p+x = p+y, p+x ≈ p+y/4 and p+x (p+y)
minimal (maximal).
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Fig. S7. Ground state density plots for the Hubbard
interaction, system size N = 256, particle excitations,
filling factor n = 0.84 and three sectors p+ 6= 0 (same
values as in Fig. S6). Top (center, bottom) panels cor-
respond to U = −7, p+ = 2π(106, 106)/256 (U = −8,
p+ = 2π(52, 174)/256; U = −6, p+ = 2π(27, 256)/256).
Left panels show the ground state in ∆r-representation in
a zoomed region with −10 ≤ ∆x,∆y ≤ 10 (color values
outside the zoomed regions are blue) and right panels show
the state in ∆p-representation (with −π ≤ ∆px,y < π).
The two particle ground state energies Emin in units of
the basic hopping matrix element are −0.1337 (−0.1095,
−0.2868) for top (center, bottom) panels.
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Fig. S8. Convergence of gap energy ∆ = −Emin/2 with
increasing values of N = 128, 256, 512, 1024 and for the
sector p+ = 0 as a function of doping value nh = 1 − n.
The energy values are given in units of the basic hopping
matrix element t. Top (bottom) panels correspond to the
Hubbard (d-wave) interaction with U = −1 (U = −1.6).
Left (right) panels correspond to electron (hole) excita-
tions.
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Fig. S9. As Fig. 8 but for electron excitations.
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Fig. S10. As Fig. 9 but for electron excitations.

Fig. S11. Same as Fig. 10 with hole excitations but
for the filling factor n = 0.84 and the sectors p+ =
2π(106, 106)/256 (top panels), p+ = 2π(52, 174)/256
(center panels) and p+ = 2π(27, 256)/256) (bottom pan-
els) such that the center of mass momentum p+/2 is very
close to the Fermi surface of virtual filling factor nv = 0.84
with three cases of p+x = p+y, p+x ≈ p+y/4 and p+x (p+y)
minimal (maximal).

Fig. S12. Ground state density plots for the Hubbard
interaction, system size N = 256, hole excitations, fill-
ing factor n = 0.84 and three sectors p+ 6= 0 (same
values as in Fig. S11). Top (center, bottom) panels cor-
respond to U = −7, p+ = 2π(106, 106)/256 (U = −8,
p+ = 2π(52, 174)/256; U = −6, p+ = 2π(27, 256)/256).
Left panels show the ground state in ∆r-representation in
a zoomed region with −10 ≤ ∆x,∆y ≤ 10 (color values
outside the zoomed regions are blue) and right panels show
the state in ∆p-representation (with −π ≤ ∆px,y < π).
The two particle ground state energies Emin) in units
of the basic hopping matrix element t are −0.04761
(−0.05367, −0.3767) for top (center, bottom) panels.
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Fig. S13. As Fig. 12 but for n = nv = 0.84 with three
interaction values and the black square data points/states
corresponding to Fig. S12.

Fig. S14. Three strong pair eigenstates for the param-
eters of bottom panel of Fig. 13 (electrons, n = 0.74,
nv = 1, N = 256) of the first peak of large wN/6-
values for energies close to 0.9 and marked by black
squares therein. Left (right) columns correspond to the
∆r- (∆p-) representation showing the two times zoomed
center square for both cases: −N/4 ≤ ∆x,∆y < N/4
(−π/2 ≤ ∆px,y < π/2). The panels in ∆p-representation
correspond to the bottom right panel of Fig. 14 concern-
ing the identification of allowed and forbidden zones. Top
(center, bottom) row corresponds to the eigenstates with
level number 2573 (2638, 2679), energy 0.9131 (0.9390,
0.9550) and pair weight wN/6 = 0.9173 (0.9069, 0.9761).
Here N ′2 = 8737 is the maximal possible level number for
the largest energy (in the corresponding p+-sector).
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Fig. S15. Three strong pair eigenstates for the param-
eters of bottom panel of Fig.13 (electrons, n = 0.74,
nv = 1, N = 256) of the second peak (and the small
peak behind it) of large wN/6-values for energies close
to 2.2-2.6 and marked by black squares therein. Left
(right) columns correspond to the ∆r- (∆p-) represen-
tation. Top and center rows show the two times zoomed
center square: −N/4 ≤ ∆x,∆y < N/4 (full momentum
cell: −π ≤ ∆px,y < π). The bottom row shows the four
times zoomed center square: −N/8 ≤ ∆x,∆y < N/8 (left
panel) or the four times zoomed top left momentum cor-
ner: −π ≤ ∆px,y < −π/2 (right panel) with other non-
blue values in the (non-shown) bottom right momentum
corner being the mirror image of the top left momentum
corner (with ∆px,y → π − ∆px,y). The top and center
panels in ∆p-representation correspond to the bottom left
panel of Fig.14 concerning the identification of allowed and
forbidden zones (for bottom ∆p-panel the top left corner
has to be used). Top (center, bottom) row corresponds to
the eigenstates with level number 6606 (6718, 7062), en-
ergy 2.165 (2.271, 2.614) and pair weight wN/6 = 0.9800
(0.9658, 0.2862). Here N ′2 = 8737 is the maximal possible
level number for the largest energy (in the corresponding
p+-sector).
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Fig. S16. Fermi surface for different filling factors as
in Fig. 1 superimposed with color plots showing the re-
gions of negative mass eigenvalues in classical phase space.
Top (bottom) panels correspond to the NN model (HTC
model). Left (right) panels correspond the smaller eigen-
value λ2 (larger eigenvalue λ1). Shown are the regions
of negative values for these eigenvalues with colors yel-
low (cyan, blue) for strong (intermediate, close to 0)
negative values. The regions of white color correspond
to positive λ1,2. The eigenvalues λ1, λ2 as a function
of the center of mass p+/2 = p are computed as the
eigenvalues of the Hessian matrix obtained by expanding
E1p(p+/2−∆p)+E1p(p+/2+∆p) in ∆p up to second or-
der. Since λ1 > λ2 the right panels show the regions where
both eigenvalues are negative. The shown filling values n in
this figure actually correspond to the virtual filling nv = n
as far as the superimposed color plot for the negative mass
eigenvalues are concerned (since p+/2 = p).
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Fig. S17. Fermi surface for different filling factors as
in Fig. 1 superimposed with color plots for the pair for-
mation probabilities w10 and w2 of the HTC model com-
puted in Ref.[15] for N = 192 from the long time evolution
of an initially localized electron pair in relative coordi-
nate propagating with the repulsive Coulomb interaction
U = 0.5. The color plots in the center of mass momentum
p = p+/2 are obtained by symmetric extension of the
data of Fig. 4 in Ref.[15]. Note that the data of [15] corre-
spond to a free electron pair moving in an empty system
without any other electrons (absence of frozen Fermi sea).
The regions of strong pair formation probability close to
p ≈ (±π/2,±π/2) correspond also to regions of double
negative mass eigenvalues shown in Fig. S16. (Note that
at p = (±π/2,±π/2) there are exact red data points for
maximum values in the color plot. However, due the global
figure scale these data points are not well visible.) As in
Fig. S16, the filling values correspond to the virtual filling
nv = n.
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