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Abstract. We study numerically, in the framework of the Cooper approach from 1956, mechanisms of
pair formation in a model of La-based cuprate superconductors with longer-ranged hopping parameters
reported in the literature at different values of center of mass momentum. An efficient numerical method
allows to study lattices with more than a million sites. We consider the cases of attractive Hubbard and
d-wave type interactions and a repulsive Coulomb interaction. The approach based on a frozen Fermi sea
leads to a complex structure of accessible relative momentum states which is very sensitive to the total
pair momentum of static or mobile pairs. It is found that interactions with attraction of approximately
half of an electronvolt give a satisfactory agreement with experimentally reported results for the critical
superconducting temperature and its dependence on hole doping. Ground states exhibit d-wave symmetries
for both attractive Hubbard and d-wave interactions which is essentially due to the particular Fermi surface
structure and not entirely to an eventual d-wave symmetry of the interaction. We also find pair states
created by Coulomb repulsion at excited energies above the Fermi energy and determine the different
mechanisms of their formation. In particular, we identify such pairs in a region of negative mass at rather
modest excitation energies which is due to a particular band structure.

PACS. XX.XX.XX No PACS code given

1 Introduction

The properties and features of high temperature super-
conductivity (HTC), discovered in [1], are still lacking a
complete physical understanding as admitted by various
experts of the field (see e.g. [2,3,4]). The complexity of the
phase diagram and strong interactions between electrons
(or holes) creates significant difficulties for the theoretical
and numerical analysis. As a simplified, but still a generic
model, it was proposed to use a one-body Hamiltonian
with nearest-neighbor hopping on a two-dimensional (2D)
square lattice formed by Cu ions [5]. In this framework
the interactions between charges are considered as the 2D
Hubbard interaction resulting from a screened Coulomb
interaction [5]. Starting from [6,7,8,9] other models were
developed and extended on the basis of extensive compu-
tations with various numerical methods of quantum chem-
istry (see e.g. [10,11,12] and Refs. therein). They showed
the importance of next-nearest one particle hoppings and
allowed to determine longer-ranged tight-binding param-
eters.

In this work, we extend the Cooper approach [13] con-
sidering two interacting particles (holes or electrons) in
a vicinity of a frozen Fermi surface using the 2D longer-
ranged tight-binding parameters reported in [12] for the
one particle model of La-based cuprate superconductors.
In contrast to the Cooper case [13] with a spherical (3D)

or circle (2D) Fermi surface, we show that for the above
model with the parameters taken from [12] (called HTC
model) the frozen Fermi surface has a significantly more
complex structure due to the band structure of the lat-
tice. The complexity of the Fermi surface becomes really
amazing for the case of mobile pairs with nonzero total
momentum (or twice the center of mass momentum) of a
pair (usually the total pair momentum is considered to be
zero in the Cooper approach [13]). For comparison, we also
present some data for the case of only nearest-neighbor
hoppings (called NN model).

We consider three types of interactions between par-
ticles: attractive Hubbard interaction, a specific type of
attractive d-wave interaction discussed in [11] and a repul-
sive Coulomb interaction on the lattice studied recently in
[14,15]. The physical origins and reasons of such model in-
teractions are not discussed in this work. We note that in
[14,15] it was shown that pair formation can take place
even for a Coulomb repulsion due to the appearance of an
effective narrow or flat band for mobile pairs with certain
values of nonzero total momentum of a pair. However, it
is important to analyze the proximity of such Coulomb
pair states with respect to the Fermi surface that was not
done in [14,15] and is performed here in the framework of
the Cooper approach for a pair in the vicinity of a frozen
Fermi sea.
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For the cases of attractive Hubbard and d-wave in-
teractions, we find the appearance of a gaped coupled
pair state below the Fermi surface and investigate the gap
dependence on interaction strength U and hole doping.
The obtained results are compatible with the experimen-
tal findings for La2−xSrxCuO4 (LSCO) (see [10]) at the
attraction strength U ≈ −0.5 eV. We also determine the
gap dependence on total momentum of mobile pairs. An
efficient numerical method allows to study lattices with
about million sites providing results in the limit of infinite
lattice size.

For the case of Coulomb repulsion the formation of
pairs takes place only for pair energies above the Fermi
surface. We establish three different mechanisms of such
Coulomb pair formation and discuss their possible rela-
tions with the pseudogap phenomenon.

Section 2 describes the basic features of the tight-
binding model for typical HTC materials with a model
of 5 different hopping matrix elements and other details
concerning the Cooper pair approach with a frozen Fermi
sea at given filling n. In particular, the effective sector
Hamiltonian in relative momentum space for two inter-
acting particles (holes) above (below) the Fermi energy
for a given conserved value of the total momentum p+ is
defined for three different types of interactions being the
attractive Hubbard interaction, a similar attractive inter-
action with d-wave symmetry and a repulsive Coulomb
interaction. In Sections 3 (for p+ = 0; static pairs) and 4
(for p+ 6= 0; mobile pairs) results for various ground state
properties of electron pairs for the attractive Hubbard and
d-wave interaction are presented. Sections 5 (for p+ = 0)
and 6 (for p+ 6= 0) concentrate on pairs of hole excita-
tions, and in particular in Section 5, we present numerical
results for the gap as a function of hole-doping which can
be compared to experimental data. In Section 7, we dis-
cuss excited pair states for two particular examples in the
presence of repulsive Coulomb interaction and we identify
three mechanisms of pair formation. The final discussion
is presented in Section 8.

Additional Figures S1-S17 are given in Supporting Ma-
terial (SupMat).

2 Generalized tight-binding model on a 2D
lattice and sector Hamiltonian

In the NN and HTC models, each electron moves on a
square lattice of size N ×N with periodic boundary con-
ditions. The one-particle tight-binding Hamiltonian reads:

H1p = −
∑
r

∑
a∈A

ta
(
|r〉〈r + a|+ |r + a〉〈r|

)
. (1)

Here the first sum is over all discrete lattice points r (mea-
sured in units of the lattice constant) and a belongs to a
certain set of neighbor vectors A such that for each lat-
tice state |r〉 there are non-vanishing hopping matrix el-
ements ta with |r + a〉 and |r − a〉 for a ∈ A. The same
model was used in [15] and we repeat here its description
for convenience, keeping the same notations. The hopping

parameters of the HTC model are taken from [12]. The
set A contains all neighbor vectors a = (ax, ay) in one
half plane with either ax > 0 or ay > 0 if ax = 0 such
that A′ = A∪ (−A) is the full set of all neighbor vectors.
For each vector a of the full set A′ any other vector ã that
can be obtained from a by a reflection at either the x-axis,
y-axis or the x-y diagonal also belongs to the full set A′
and has the same hopping amplitude ta = tã.

For the usual nearest neighbor tight-binding model
(NN model), considered in [14], we have the set ANN =
{(1, 0), (0, 1)} with t(1,0) = t(0,1) = t = 1. A part of the
numerical results is presented for the NN model (for illus-
tration and comparison) but the main studies are done for
a longer-ranged tight-binding lattice [12] denoted as the
HTC model. For this case the set of neighbor vectors is
AHTC = {(1, 0), (0, 1), (2, 0), (0, 2), (1,±2), (2,±1), (1,±1),
(2,±2)} and the hopping amplitudes are: t = t(1,0) = 1,
t′ = t(1,1) = −0.136, t′′ = t(2,0) = 0.068, t′′′ = t(2,1) =

0.061 and t(4) = t(2,2) = −0.017 corresponding to the val-
ues given in Table 2 of [12] (all energies are measured in
units of the hopping amplitude t = t(1,0) = t(0,1) which
is set to unity here; see also Fig. 6a of [12] for the neigh-
bor vectors of the different hopping amplitudes). The hop-
ping amplitudes for other vectors such as (0, 1), (1,−1),
(2, 1), (1,−2) etc. are obtained from the above ampli-
tudes by the appropriate symmetry transformations, e.g.
t(1,−1) = t(1,1) = t′ = −0.136 etc. For comparison with
experimental results in LSCO we use the physical value
of hopping t = 0.43eV from [10]. We also put the Planck
constant to unity, ~ = 1, thus using particle momentum
px, py and related wave vectors kx, ky to be the same.

The one-particle eigenstates ofH1p (1) are simple plane
waves: |p〉 =

∑
r e

ip·r |r〉/N with energy eigenvalues:

E1p(p) = −2
∑
a∈A

ta cos(p · a) (2)

and momenta p = (px, py) such that px and py are integer
multiples of 2π/N (i.e. pα = 2πlα/N , lα = 0, . . . , N − 1,
α = x, y). For the HTC model the energy dispersion reads:

E1p(px, py) = −2 [cos(px) + cos(py)]

− 4t′ cos(px) cos(py)− 2t′′ [cos(2px) + cos(2py)]

− 4t′′′ [cos(2px) cos(py) + cos(2py) cos(px)]

− 4t(4) cos(2px) cos(2py)

(3)

which corresponds to Eq. (30) of [12] (assuming t = 1 and
t(5) = t(6) = t(7) = 0).

The energy Fermi surface of one particle is determined
by the dispersion relation (3) and depends on the elec-
tron filing factor n and related Fermi energy E1 = EF .
Examples of the Fermi surface at various fillings n are
shown in Fig. 1. We note that the separatrix case corre-
sponds to the filling n = 0.74346... for the HTC model and
n = 1 for the NN model. The separatrix separate bounded
and unbounded curves of fixed energy on an infinite plane
(px, py) (rotation from libration as for a pendulum). The
filling n corresponds to the electron filling while the hole
filling is nh = 1 − n. The dependencies of one-particle
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Fig. 1. Fermi surface for different filling factors n for the NN
model (left panel) and the HTC model (right panel). The value
n = 0.7435 is close to the separatrix value n = 0.743465958 for
the HTC model and n = 1 is the separatrix value for the NN
model.

density ρ(E1) of states on energy E1 and filling factor n
are given in Fig. S1 of SupMat. The density is strongly
peaked at n = 1 (NN model) and n = 0.74346... (HTC
model) corresponding to the separatrix (and related Van
Hove singularity). Indeed, on a separatrix the frequency of
motion ωs becomes zero and thus ρ(E1) ∝ 1/ωs becomes
singular.

The quantum Hamiltonian of the model with two in-
teracting particles (TIP) has the form:

H = H
(1)
1p ⊗1(2)+1(1)⊗H(2)

1p +
∑
r1,r2

Ū(r2−r1)|r1, r2〉〈r1, r2|

(4)
where H(j)

1p is the one-particle Hamiltonian (1) of particle
j = 1, 2 with positional coordinate rj = (xj , yj) and 1(j)

is the unit operator of particle j. The last term in (4)
represents, for the moment, a generic interaction to be
specified below.

In absence of interaction (Ū(r2 − r1) = 0) the energy
eigenvalues of the two electron Hamiltonian (4) with given
momenta p1 and p2 are:

Ec(p1,p2) = E1p(p1) + E1p(p2)

= −4
∑
a∈A

ta cos(p+ · a/2) cos(∆p · a) (5)

where p+ = p1 + p2 is the total momentum (or p+/2 =
(p1 + p2)/2 is the center of mass momentum) and ∆p =
(p2 − p1)/2 is the momentum associated to the relative
coordinate ∆r = r2 − r1. Note that the possible values
of the components ∆pα (α = x, y) are either integer or
half-integer multiples of 2π/N depending on the center of
mass momentum component p+,α/2 being an integer or
half-integer multiple of 2π/N . For the NN model Eq. (5)
becomes Ec(p1,p2) = −4

∑
α=x,y cos(p+α/2) cos(∆pα).

Due to the translational invariance of the interaction,
it couples only pair momentum states |p1,p2〉 and |p′1,p′2〉

with identical conserved total momentum p+ = p′+, i. e.:

〈p′1,p′2|Ū |p1,p2〉 = δp′
+,p+

Up(∆p′ −∆p) , (6)

Up(∆p′ −∆p) =
1

N2

∑
∆r

e−i(∆p′−∆p)·∆rŪ(∆r) (7)

with N2 = N2 being the size of the square N ×N lattice
and Up(∆p′ − ∆p) being (proportional to) the discrete
Fourier transform of Û(r). Therefore, the two-particle Ha-
miltonian (4) can be diagonalized separately for each sec-
tor corresponding to a particular value of total momentum
p+.

In [15], the quantum time evolution inside such sec-
tors was computed (for the repulsive Coulomb interaction;
see below) using sector eigenstates in ∆r-representation
with periodic (or anti-periodic) boundary conditions for
the case of integer (half-integer) values of Np+,α/(4π)
(α = x, y). In this work, we compute the eigenstates in
∆p-representation, using the diagonal energies (5) (mi-
nus two times the Fermi energy; see below) in absence of
interaction plus the interaction coupling matrix elements
(6). We have verified that the resulting eigenstates co-
incide (in absence of a frozen Fermi sea; see below) up
to numerical precision with those of [15] once the proper
transformation between ∆p- and ∆r-representations are
applied (the half-integer case corresponds now to periodic
boundary conditions in ∆p-representation but the possi-
ble values of ∆px,y are half-integer multiples of 2π/N).
Furthermore, as explained in [15], we consider symmetric
wavefunctions with respect to particle exchange, i.e. with
respect to the parity symmetry in the relative momentum
∆p → −∆p. This case corresponds to an antisymmetric
spin-singlet state.

Concerning the choice of the interaction, we consider
three cases here :

(i) As in [15], we use a (regularized) repulsive Coulomb
type long-range interaction (see Section 7) Ū(r2 − r1) =
U/[1 + r(r2− r1)] with amplitude U > 0 and the effective
distance r(r2 − r1) =

√
∆x̄2 +∆ȳ2 between the two elec-

trons on the lattice with periodic boundary conditions.
(Here ∆x̄ = min(∆x,N −∆x); ∆ȳ = min(∆y,N −∆y);
∆x = x2− x1; ∆y = y2− y1 and the latter differences are
taken modulo N , i.e. ∆x = N + x2 − x1 if x2 − x1 < 0
and similarly for ∆y). For the purpose of numerical diago-
nalization in ∆p-representation, we compute the discrete
Fourier transform of this interaction numerically by (7)
and we do not use any analytical approximation in this
context. We mention that the numerical Fourier transform
gives the approximate behavior Up(k) ∼ 1/|k|3/2 for large
|k| (with k = ∆p′ − ∆p) while the analytic 2D-Fourier
transform of the (non-regularized) Coulomb interaction
(in infinite continuous space) behaves as Up(k) ∼ 1/|k|.

(ii) We also consider the case of an attractive Hubbard
interaction Ū(r2 − r1) = Uδr1,r2 (U < 0) with Up(∆p′ −
∆p) = U/N2 = −|U |/N2 being constant as it was the case
for the Cooper problem [13].

(iii) We also analyze the case of an attractive inter-
action with d-wave symmetry and interaction coupling
matrix elements being Up(∆p′, ∆p) = (U/N2)g∆p′ g∆p
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(U < 0) with g∆p = (cos∆px − cos∆py)/2. This inter-
action cannot simply be obtained from some interaction
potential Ū(r) since the matrix elements do not depend on
the difference ∆p′−∆p. It corresponds to an effective in-
teraction in the context of the Bardeen-Cooper-Schrieffer
(BCS) formalism assuming that the superconducting gap
obeys the d-wave symmetry∆k ∼ gk (see for example Sec-
tion 4.2 of [11]). In particular, using this kind of interac-
tion (in the sector p+ = 0, i.e. p2 = −p1 = ∆p), it is easy
to verify that the classical BCS variational ansatz indeed
produces the gap dependence∆k = gk∆̄ where the univer-
sal parameter ∆̄ is determined by some implicit equation.
As with the classical BCS approach, one can argue that
this interaction represents certain relevant contributions
of the global interaction which is more complicated. We
do not claim here that this “d-wave” interaction is “really”
present as such in typical HTC-superconductors and our
aim is more to compare its influence on pair eigenstates
and ground state energies with the attractive Hubbard in-
teraction where no d-wave symmetry is “injected” in the
interaction itself.

In the following, we consider a model of two interact-
ing electrons (or holes) with momenta p1 = p+/2 −∆p,
p2 = p+/2 + ∆p which are excitations of a frozen Fermi
sea where momentum states below the Fermi energy EF ,
corresponding to a certain filling value n, are occupied. In
this case, only values of ∆p are accessible such that both
E1p(p+/2 ± ∆p) > EF (or < EF for the hole case). As
we will see later, depending on the value of p+, the struc-
ture of available states in the∆p-plane is potentially quite
complicated and very interesting. The choice of p+ itself
is actually quite arbitrary, as long as the set of accessible
∆p values is not empty. We may choose p+ = 0 for static
pairs or p+ 6= 0 for mobile pairs. Occasionally, we will use
the notion of a “virtual filling” nv if the center of mass
p+/2 of a pair lies on the Fermi surface at filling nv which
may be different from the actually filling n which is used
to determine the frozen Fermi sea.

The effective Hamiltonian (for accessible values of∆p),
for each sector p+, also called sector Hamiltonian, has
diagonal matrix elements given by ±[Ec(p1,p2) − 2EF ]
(with “+” for electrons and “−” for holes) which are cou-
pled by the interaction matrix elements Up(∆p′, ∆p) ac-
cording to the different types of interactions we consider.
Depending on the interaction, we either use full numerical
diagonalization of the effective Hamiltonian (for the case
of the Coulomb interaction; see Section 7) or we compute
by an efficient method, described in Appendix A.1, the
ground state and its energy (for the cases of attractive
Hubbard or d-wave interaction; see Sections 3-6) based on
the ideas of Cooper [13] and exploiting the rank-1 struc-
ture of the interaction matrix elements. As a consequence
the energy eigenvalues can be obtained from the numerical
solution of an implicit equation of the form of a sum over
all two-particle momentum states with each particle being
above the frozen Fermi sea (Cooper considered the case of
an infinite system where the sum is reduced to an inte-
gral [13]) and the corresponding eigenstates are obtained
from an explicit formula once the energy eigenvalues are

known (see Appendix A.1 for details). This method allows
to significantly reduce the numerical effort and to find the
ground state of a Cooper pair for lattices with more than
a million sites.

In the remainder of this work, when we speak of eigen-
state energies etc. we refer to the eigenvalues of the sector
Hamiltonian introduced above, i.e. taking into account a
shift with “−2EF ” and an additional minus sign for the
hole case concerning the diagonal matrix elements of this
Hamiltonian. Therefore, the ground state energy Emin of
such a sector Hamiltonian is typically close to zero (corre-
sponding to the Fermi energy) except for the cases where
we have a strong gap ∆ = −Emin/2 with possible negative
values of Emin and other eigenvalues are positive.

3 Properties of static Cooper pairs

We first consider static Cooper pairs of electrons created
by the Hubbard attraction when the total pair momentum
is p+ = 0. The dependence of the quantity Ec−2EF with
Ec given by (5) on the relative momentum in the∆p-plane
is shown in Fig. 2 (left column) for two filling factors n =
0.3; 0.74. The region of the frozen Fermi sea is also shown
by white color in Fig. 2 (right column). (In the following,
we will refer to this type of figures as “energy landscape”
figures.) Thus in the quantum case all transitions induced
by interaction between TIP states take place only outside
the white zone corresponding to the Cooper approach [13].

We compute numerically, by the method of Appendix
A.1, the ground state and its energy for the attractive
Hubbard interaction at different values of the interaction
strength. The numerically obtained dependence of the gap
∆ = −Emin/2 on the Hubbard attraction U between elec-
trons (excitation energy above the frozen Fermi sea of elec-
trons) is shown in Fig. 3 for fillings n = 0.3 and n = 0.74
where Emin is the ground state energy of the effective sec-
tor Hamiltonian at p+ = 0 (with diagonal matrix ele-
ments being Ec(p1,p2) − 2EF , p2,1 = p+/2 ±∆p as ex-
plained above and interaction coupling matrix elements
Up(∆p′, ∆p) for ∆p, ∆p′ outside the forbidden zone due
to the frozen Fermi sea). As for the Cooper case [13] the
gap sharply drops for small interactions |U | < 1 and grows
strongly for large |U | > 1.

Examples of related ground states at specific U val-
ues are shown in Fig. S2 of SupMat for U = −2.5 (n =
0.3) and U = −1 (n = 0.74). In the coordinate space
the ground state represents a compact pair state with a
size |∆r| ∼ 2 and in the momentum space (∆p-plane)
the probability of the ground state is concentrated near
the Fermi surface shown in Fig. 2. (We also show similar
ground states for the case of d-wave interaction at same
fillings in Fig. S3 of SupMat).

Fig. 3 also shows the analytical result (18) of Ap-
pendix A.1 (blue curve) based on the fit ansatz (17) for
the density of states (of diagonal energies of the sector
Hamiltonian) assuming a power law decay with exponent
−1 for large energies. The green curve corresponds to the
analytical expression (16) assuming a constant density of
states and which is essentially Cooper’s well known result
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Fig. 2. Landscape of kinetic pair energy of particles in the∆p-
plane. Left panels show color plots of Ec(p+/2 −∆p,p+/2 +
∆p) − 2EF for the HTC model in the ∆px-∆py plane for
−π ≤ ∆px,y < π in the sector p+ = 0. The Fermi energy
EF corresponds to the filling factor n = 0.3 (n = 0.74) for top
(bottom) panels. The colors red (green) correspond to posi-
tive maximum (intermediate), blue to zero value and yellow
(cyan) to strongest (intermediate) negative values (the shown
color bar applies to this and all subsequent color density plot
figures of the same style, eventually with nonlinear rescaling
to increase the visibility of small value regions). Right pan-
els are as left panels but the forbidden zones of ∆p such that
each one-particle energy is below the Fermi energy EF , i.e.
E1p(p+/2 − ∆p) < EF and E1p(p+/2 + ∆p) < EF , are re-
placed by white color. For p+ = 0 the white zones simply cor-
respond to the colors yellow (cyan) for negative values in the
left panel. However, for different sectors with p+ 6= 0 shown in
later figures this simple correspondence is no longer true and
the structure of white zones is more complicated.

[13] (with different notations/parameters). Further details
and analytical expressions of Emin for small and strong in-
teractions values are given in Appendix A.1.

For the Cooper case [13] the gap ∆ was determined by
the attraction strength and the density of states near the
Fermi surface since only a small interval corresponding
to the Debye energy contributes to the pair formation.
In our case all energies above the Fermi sea contribute
to the formation of pairs. Thus the approximation of a
constant density of states does not work well, especially
for n = 0.74 which is close to the separatrix and the van
Hove singularity. For this case the fit ansatz (17) works
very well as can be seen in Fig. S4 of SupMat (showing
the integrated density of states) and indeed the blue curve
in (the right panel of) Fig. 3 coincides very well with the
numerical data points for the gap energy.

For n = 0.3, the situation is different and here the
green curve in (the left panel of) Fig. 3 is for modest in-
teraction values (|U | . 2.5) very close to the numerical
data points while the blue curve is significantly higher.
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Fig. 3. Left (right) panel shows the ground state energy gap
∆ = −Emin/2 versus absolute Hubbard interaction strength
|U | (case of attractive interaction with U < 0) for p+ = 0,
for N = 256, n = 0.3 (n = 0.74). (Here Emin is the Hubbard
ground state energy of the sector Hamiltonian at p+ = 0.) The
red data points have been obtained by a numerical solution of
the implicit eigenvalue equation and coincide up to numeri-
cal precision with a full numerical diagonalization. Examples
of ground states at specific U values are shown in Fig. S2 of
SupMat. The full curves correspond to the analytical approxi-
mation assuming a two-particle sector-density of states of the
form ρ2(ε) = ρ2(0)/[1 + α(ε/εmax)] where εmax is the energy
bandwidth in the sector and the parameter α is either zero
(green curve; case of constant DOS case) or obtained by a nu-
merical fit (blue curve) from the integrated density of states
(see Fig. S4 of SupMat).

The reason is that in this case, the density of states is
initially, for smaller energies (lower 20%), quite constant
(integrated density of states close to a linear function; see
red data points and green curve in the left panel of Fig. S4
of SupMat) thus that Cooper’s original expression works
very well. However, for larger interaction values in the
region |U | ≈ 8 (not shown in Fig. 3) the blue curve is ac-
tually closer to the numerical data points and the reason
is that here all energies, also outside the initial region of
linear integrated density of states, contribute. Fig. S4 of
SupMat shows indeed that also for n = 0.3 the fit ansatz
is more accurate for larger energies (above 20%).

From Fig. 1 it follows that the angle resolved local
density ρϕ(ϕ,E) on the energy Fermi surface should sig-
nificantly depend on the phase angle ϕ of the vector ∆p =
(kx, ky) ∝ (cosϕ, sinϕ). This angle resolved density is pro-
portional to the area between two Fermi curves in Fig. 1
taken at two close filling factors n and n+δn and between
two close angles ϕ and ϕ+ δϕ. (See Appendix A.2 for the
precise definition, computation and limiting behavior close
to the separatrix of ρϕ(ϕ,E).)

For n = 0.3 the Fermi curve is close to a circle and
the density ρϕ(ϕ,E) is rather constant. However, for n =
0.74 the Fermi surface is drastically different from a circle
and we expect that ρϕ(ϕ,E) is minimal for the symmetric
case kx = ky or ϕ ≈ π/4 (known as node in ARPES
experiments with HTC superconductors [3,4,16,17]) and
it is maximal for the asymmetric case kx ≈ 0 or ky ≈ 0,
i.e. ϕ ≈ π/2 or ϕ ≈ 0 (known as antinode in ARPES).

In the ARPES experiment [16,17] the d-wave form
is typically presented via the parameter gk = (cos kx −
cos ky)/2, which can also be used to characterize a certain
point on a given Fermi surface instead of ϕ, in particular
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Fig. 4. Comparison of the quantum distribution ρgq(gk) (see
text), obtained for three interaction values U (green, blue
and pink data points), with the renormalized classical density
2ρg(gk)/ρ(E) (red line) for the HTC model. Left (right) panels
correspond to the attractive Hubbard (d-wave) interaction for
N = 1024, sector with p+ = 0 (for the quantum densities) and
filling factor n = 0.74 (for both quantum and classical densi-
ties). The relative factor 2/ρ(E) applied to the classical density
ensures the proper normalization with respect to integration
in the range 0 ≤ gk ≤ 1 since

∫ 1

−1
ρg(gk, E) dgk = ρ(E) where

ρ(E) = 0.712 is the classical density of states at n = 0.74 (fac-
tor 2 due to ±gk symmetry). Top panels show a normal repre-
sentation with a limited maximal value for the y-axis and lower
panels show a double logarithmic representation using 1 − gk
for the x-axis and the full range of density values. The black
dashed line in lower panels shows the power law (1− gk)−1 for
comparison (see also Appendix A.2 and Fig. S5 of SupMat).

we have gk ≈ 1 (0, −1) for ϕ ≈ π/2 (π/4, 0) for Fermi
curves close to the separatrix curve. Therefore, we prefer
to use the gk-local density of states on the Fermi surface
given by ρg(gk, E) = ρϕ(ϕ,E)/(dgk/dϕ). (See Appendix
A.2 for the details of the precise definition, computation
and an analytical approximation of ρg(gk, E) for E being
close to the separatrix.)

Fig. S5 of SupMat shows this density for the NN- and
HTC-model and at different fillings. For the separatrix
case, we have a power law ρg(gk, E) ≈ C1/(1− |gk|) with
a constant C1 that can be computed analytically (as a
function of the band-structure parameters) and with val-
ues C1 ≈ 0.025 (C1 ≈ 0.052) for the NN- (HTC-) model.
For Fermi curves close but different from the separatrix
curve the density is close to this power law but there is
a cutoff at some maximal value gmax < 1 (with a square
root singularity close to the cutoff; see Appendix A.2 for
more details). The value of gmax corresponds to the case
where either kx = 0 and |ky|maximal but typically smaller
than π (except for the separatrix case) or ky = 0 and |kx|
maximal.

We have also computed the quantum probability den-
sity ρgq(gk) for certain ground states (states similar as in
Figs. S2, S3 of SupMat) for the cases of the Hubbard and
d-wave interaction, at certain interaction strengths, filling
n = 0.74, N = 1024 and p+ = 0. This quantum distri-

bution can be obtained from the interacting ground state
ψ(k), with k = ∆p being the momentum in the relative
coordinate, from a gk-histogram by summing all proba-
bilities |ψ(k)|2 for those k-values such that gk falls in the
same histogram bin with bin-width ∆gk = 0.01. To en-
sure proper normalization with respect to integration in
the range 0 ≤ gk ≤ 1 an additional factor 1/∆gk has been
applied to the histogram values to obtain a properly in-
tegration normalized distribution ρgq(gk). Note that this
quantity represents a pure gk-distribution, a priori for all
possible energies, while the classical local density ρg(gk, E)
is specific to a certain classical energy E. Both quantities
are shown and compared for the two cases of the attractive
Hubbard and d-wave interaction in Fig. 4 (with a prop-
erly corrected normalization of ρg(gk, E) as explained in
the figure caption of Fig. 4).

For small |U | = 0.1 the quantum density is strongly
inhomogeneous, essentially with one single peak at gk =
0.995 with about 99.5% of probability (only visible in the
lower panels with logarithmic representation). The reason
is that in this case the ground state is a small perturbation
from the pure momentum state with k closest to the Fermi
surface. The fact that for this k value we have gk ≈ 1 is a
coincidence (but still with a strongly enhanced probability
due to the nearly singular classical density at gk ≈ 1). For
other parameters (fillings n, etc.) other k- and gk-values
for these peaks are in principle possible (a similar situation
was discussed for eigenstates of rough billiards [18]).

For moderate U = −1;−1.5 the quantum distribution
ρgq(gk) is close to the (renormalized) classical distribu-
tion 2ρg(gk, E)/ρ(E) in the case of Hubbard interaction
but for the d-wave interaction there are still significant dif-
ferences. To explain this, we remind the expression (11)
of Appendix A.1, showing that the eigenstate amplitudes
are given by the analytical formula : ψ(k) ∼ ak/(2∆+ εk)
where εk represents a diagonal energy matrix element of
the effective sector Hamiltonian. The factor ak is either
ak = 1 for the Hubbard interaction or ak = gk for the
d-wave interaction.

At very small interactions (e.g. |U | = 0.1) in the per-
turbative regime, we also have according to (13) a very
small gap ∆ ∼ |U |/N2 such that only one single k-value
satisfies the condition εk < 2∆ providing an isolated peak
of the ground state in ∆p-representation. At modest in-
teraction U = −1, the gap is significantly larger but still
small in comparison to classical energy scales. Therefore,
the eigenstate (for the Hubbard case with ak = 1) is con-
centrated at k- (or ∆p-) values close to the Fermi surface
with an effective energy width ≈ 2∆ which is perfectly
confirmed by Fig. S2 of SupMat. However, the width of
this region around the Fermi surface in k-space is not uni-
form, it is enhanced for k values with |gk| ≈ 1 and reduced
for |gk| ≈ 0. Actually, a closer study of Fig. S2 of SupMat
shows that in the region |gk| ≈ 0 (i.e. kx ≈ ky) there is
still a peak-structure which is due to the finite grid for
N = 256 or N = 1024.

The reason of this is simply that the distance between
the two Fermi curves at EF and EF + 2∆ is quite large
at the region close to the separatrix point (with maxi-
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mal |gk|) and quite small at kx ≈ ky (with |gk| ≈ 0)
in accordance with the nearly singular behavior of the
classical density ρg(gk, E) for |gk| ≈ 1. When computing
the quantum distribution ρgq(gk), we consider a priori all
k-values but the analytical expression of the amplitudes
ψ(k) ∼ 1/(2∆+εk) selects automatically the energies clos-
est to the Fermi surface. This explains that (for the Hub-
bard) interaction the blue data points for U = −1 coincide
quite well with the red curve for the classical (properly
renormalized) density in the left panels of Fig. 4. How-
ever, the blue data points still show some fluctuations (at
gk < 0.8) which are due to the finite grid structure of the
possible εk values.

For the stronger interaction U = −3 the green data
points deviate significantly from the classical curve, also
for the Hubbard case. The reason is that here the gap
is significantly larger than for U = −1 (see Fig. 3) and
the quantum distribution corresponds actually to an en-
ergy average of the classical distribution over a quite large
energy width of size 2∆ which changes the shape of the
distribution (reduction of the singular part at |gk| ≈ 1,
increase of the density at modest values |gk| < 0.9).

Concerning the d-wave interaction (right panels of Fig.
4), we have the additional factor gk applied to the eigen-
state amplitude ψ(k) which provides an additional reduc-
tion of the density at |gk| ≈ 0 (and additional enhance-
ment of the density at |gk| ≈ 1) which is clearly visible
both in Fig. S3 of SupMat and the right panels of Fig. 4.

In conclusion, Fig. 4 and also Figs. S2, S3 of SupMat
show, that there are two “d-wave” effects: (i) enhance-
ment of the gk-density and wave function amplitudes at
|gk| ≈ 1 simply due the HTC band structure, providing
an increased number/area of momentum or k values be-
tween two close Fermi curves if |gk| ≈ 1, (ii) an additional
enhancement if the d-wave factor gk is artificially injected
in the interaction (case of d-wave interaction).

The issue of quantum ergodicity on the Fermi sur-
face, eventually with a peak structure due to a finite grid
at modest values of N in the region kx ≈ ky, is actu-
ally quite similar to the problem of rough billiards in the
regime of quantum chaos [18]. Even for the cases where the
quantum density ρgq(gk) differs from the classical density
ρg(gk, E), the general tendency from classical ergodicity
remains valid: ρgq(gk) is small for small gk values (near
node) and large for large values of gk (antinode). It is in-
teresting to note that the global dependence of ρgq(gk)
at moderate interactions is similar to the experimentally
found gap dependence ∆(gk), see for example Fig. 3 in
[16] for LSCO where ∆ is small for small gk and larger for
gk > 0.5. It is important to stress that a somewhat similar
dependence of ρgq(gk) is already visible for the Hubbard
interaction which corresponds actually to an s-wave in-
teraction. Thus on this basis, we argue that the d-wave
features of HTC superconductors can appear already for
s-wave interactions due to the absence of s-wave symme-
try for the Fermi surface and the particular band structure
of HTC superconductors (point (i) above). We think that
this is an important message of this work.

Fig. 5. Energy landscape for mobile Cooper pairs. Left panels
show color plots of Ec(p+/2−∆p,p+/2 +∆p)− 2EF for the
HTC model in the ∆px-∆py plane for −π ≤ ∆px,y < π. The
Fermi energy EF corresponds to the filling factor n = 0.74 (in
all panels). Top (center, bottom) panel corresponds to the sec-
tor p+ = 2π(103, 103)/256 of node case (p+ = 2π(46, 172)/256
intermediate case, p+ = 2π(0, 248)/256 antinode case). The
three values of p+ are chosen such that the center of mass
momentum p+/2 is very close to the Fermi surface of vir-
tual filling factor nv = 0.74 with three cases of p+x = p+y,
p+x ≈ p+y/4 and p+x (p+y) minimal (maximal). The choice
of discrete values is motivated by subsequent quantum com-
putations at N = 256 with these exact identical parameters.
The colors red (green) correspond to positive maximum (in-
termediate), blue to zero value and yellow (cyan) to strongest
(intermediate) negative values (color bar as in Fig. 2). Right
panels are as the left panels but the forbidden zones of ∆p
(for particle excitations) such that each one-particle energy
is below the Fermi energy, i.e. E1p(p+/2 − ∆p) < EF and
E1p(p+/2+∆p) < EF , are replaced by white color. Note that
here the white zones include not only the negative value zones
(yellow/cyan) in left panels but also additional zones of posi-
tive values due to p+ 6= 0 and the more complicated selection
rule using individual one particle energies.
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Fig. 6. Ground state density plots for the Hubbard inter-
action, system size N = 256, particle excitations, filling fac-
tor n = 0.74 and three sectors p+ 6= 0 (same values as in
Fig. 5). Top (center, bottom) panels correspond to U = −4.5,
p+ = 2π(103, 103)/256 (U = −7, p+ = 2π(46, 172)/256;
U = −3, p+ = 2π(0, 248)/256). Left panels show the ground
state in ∆r-representation in a zoomed region with −10 ≤
∆x,∆y ≤ 10 (color values outside the zoomed regions are
blue) and right panels show the state in ∆p-representation
(with −π ≤ ∆px,y < π). The two particle ground state ener-
gies Emin in units of the basic hopping matrix element t are
−0.1360 (−0.1427, −0.3823) for top (center, bottom) panels.

4 Properties of mobile Cooper pairs

In the previous Section, we discussed the ground state
properties for static Cooper pairs of electrons with zero
total momentum p+ = 0. However, it is interesting to
consider also the case of mobile pairs with p+ 6= 0. In-
deed, such mobile pairs can be related to the formation
of stripes observed in HTC superconductors (see e.g. [19,
20] and Refs. therein). For particles with a quadratic de-
pendence of kinetic energy on momentum, considered by
Cooper [13], the kinetic energy of a pair is the sum of
its internal motion energy and the center of mass motion
energy. Thus the kinetic energy of center of mass simply
adds a constant and plays therefore no role in the pair for-

mation in a continuous media. The situation is drastically
different for LSCO with a rather complex dispersion law
for each particle (3). In this case, at p+ 6= 0, the condi-
tions E1p(p+/2±∆p) > EF for allowed transitions above
the frozen Fermi sea provide a nontrivial structure for the
space of available ∆p values.

Fig. 5 shows examples of the energy landscape of pair
energy in the ∆p-plane within a fixed p+ sector without
Fermi restrictions (left column) and with restrictions im-
posed by the frozen Fermi sea (right column) at the filling
factor n = 0.74. The restrictions induced by the frozen
Fermi sea create a very complex structure of the acces-
sible ∆p-space, with “tongues” and multiple complicated
borders, and it depends in a nontrivial manner on the
particular choice of p+. In Fig. 5, we have chosen three
examples of p+ such that the center of mass momentum
p+/2 is very close to the Fermi surface of virtual filling
factor nv = 0.74 with p+x = p+y, p+x ≈ p+y/4 and p+x
(p+y) minimal (maximal).

In spite of the complexity of the energy landscape the
implicit method for the computation of ground state prop-
erties (see Appendix A.1) still works perfectly that allows
us to obtain results for lattices with a large number of
sites. The ground states for the mobile Cooper pairs with
Hubbard attraction are shown in Fig. 6 for parameters
of Fig. 5 and interactions values between U = −3 and
U = −7. We see that the ground states correspond to com-
pact pairs in ∆r-representation (left column) and their
densities in ∆p-representation (right column) are concen-
trated at certain borders of the frozen Fermi sea (“blue”
Fermi sea borders with small excitations energies; see right
column of Fig. 5). However, to find such nice pairs, it is
necessary to considerably increase the value of |U | as com-
pared to static Cooper pairs (at p+ = 0). For smaller
values of |U | (not shown in Fig. 6), the ground states
are perturbative with isolated points in∆p-representation
and quite extended in ∆r-representation. The reason for
the required larger values of |U | is that the sector density
of states close to the Fermi surface (number of available
states at the blue Fermi sea border regions) is quite re-
duced as compared to the static case.

Results similar to those of Figs. 5, 6 are presented for
another filling factor n = 0.84 (and virtual filling nv =
0.84 for the choice of p+/2) in Figs. S6, S7 of SupMat.

We discuss more features of mobile Cooper pair in the
next Sections.

5 Gap dependence on hole doping in LSCO
for static pairs

Up to now, we discussed the properties of Cooper pairs of
electrons at fixed electron doping n. However, for LSCO
the superconducting phase is formed by doping of holes.
This feature can be easily incorporated in the framework
of the Cooper approach considering hole excitation of the
frozen Fermi sea at fixed hole doping nh = 1 − n. Math-
ematically, one applies two fermionic hole creation oper-
ators (being two electron annihilation operators) to the
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Fig. 7. Energy landscape Ec and ground states of static
hole pairs in the HTC model. Top panels show color plots of
Ec(p+/2 − ∆p,p+/2 + ∆p) − 2EF on ∆px-∆py with −π ≤
∆px,y < π in the sector p+ = 0. The forbidden zones for holes
of ∆p such that each one-particle energy is above the Fermi
energy, i.e. E1p(p+/2−∆p) > EF and E1p(p+/2+∆p) > EF ,
are replaced by white color. The Fermi energy EF corresponds
to the filling n = 0.74 (left panels) or n = 0.84 (right panels).
Center and bottom panels show ground state density plots for
hole excitations, Hubbard interaction with U = −1.5, system
size N = 256 and sector p+ = 0. Center panels show the
ground state in ∆r-representation in a zoomed region with
−10 ≤ ∆x,∆y ≤ 10 (color values outside the zoomed re-
gions are blue) and bottom panels show the state in ∆p-
representation (with −π ≤ ∆px,y < π). The two particle
ground state energies Emin (of the effective sector Hamilto-
nian) in units of the basic hopping matrix element are−0.03734
(−0.04222) for n = 0.74, (n = 0.84). The colors red (green)
correspond to positive maximum (intermediate), blue to zero
value and yellow (cyan) to strongest (intermediate) negative
values.

frozen Fermi sea and as usual in the context of particle-
hole transformation the one-body matrix elements between
such hole-pair states acquire an additional negative sign
while two-body matrix elements due to interactions are
not changed.

In particular, now the set of accessible ∆p values must
satisfy the condition of both electrons, associated to holes,
being below the Fermi energy (i.e. being in the Fermi sea)
with : E1p(p+/2±∆p) < EF and the diagonal matrix ele-
ments in the effective sector Hamiltonian are−[Ec(p1,p2)−
2EF ] > 0 (with p2,1 = p+/2 ±∆p and Ec given by (5))
since it costs energy to excite holes and the interaction
coupling matrix elements Up(∆p′, ∆p) are unchanged. For
convenience, we do not apply the sign change in the fol-
lowing energy landscape figures for holes (figures of style
of Figs. 2, 5) such that the forbidden white zones for holes
correspond to positive values of Ec(p1,p2)−2EF > 0 (for
the simple case p+ = 0).

In this Section, we first consider the case of static hole
pairs with p+ = 0. Examples of the energy landscape
with the frozen Fermi sea for hole dopings nh = 1 − n
at n = 0.74, 0.84 are shown in top panels of Fig. 7. The
ground states for these nh values (and U = −1.5) with at-
tractive Hubbard interaction of holes are also shown in this
figure. The results show that the pairs are very compact
in the coordinate space and in the momentum space they
are located at the (inside) vicinity of the Fermi surface
with an effective width in momentum space being larger
(smaller) if ∆px ≈ ±π, ∆py ≈ 0 or ∆px ≈ 0, ∆py ≈ ±π
(∆px ≈ ∆py respectively) in a similar way for electron
pair states visible Fig. S2 of SupMat (located at the out-
side vicinity of the Fermi surface). The same approach
also works for the case of attractive d-wave interaction
giving similar results for the ground state energies and
eigenstates but with an additional suppression of momen-
tum wave function amplitudes in regions ∆px ≈ ∆py (not
shown in figures here but similar to Fig. S3 of SupMat).

We also computed the gap dependence on hole doping
in LSCO for the attractive Hubbard and d-wave inter-
actions at different interaction values U and lattice size
N = 1024 (more than a million lattice sites). The results
are shown in Fig. 8 and the convergence of gap values
with increasing lattice size from N = 128 to N = 1024 is
shown in Fig. S8 of SupMat for an intermediate interac-
tion value for both interaction cases. The curves exhibit
still strong fluctuations at N = 128 but the two curves at
N = 512 and N = 1024 are nearly identical showing that
N = 1024 is sufficient to have gap values in the limit of
infinite lattice size.

The gap values allow to obtain the critical tempera-
ture Tc of superconductivity using the standard relation
∆ = 1.764kBTc (here kB is the Boltzmann constant and
temperature Tc is measured in Kelvin) [21]. In Fig. 8,
we also present the dependence of Tc on hole doping nh
in LSCO. For the Hubbard case at U = −1.2 we ob-
tain the maximal Tc ≈ 36K (at the hopping t = 0.43 eV
[10]) being rather similar to the maximal Tc0 = 38K
obtained experimentally (see Fig.11 in [10] and experi-
mental Refs. therein). The LSCO experimental results are
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Fig. 8. Gap dependence on hole doping nh in the HTC model
of LSCO. Shown is the gap energy ∆ = −Emin/2 for hole exci-
tations as a function of doping value nh = 1− n for N = 1024
and the sector p+ = 0. The left vertical scale gives the en-
ergy values in units of the basic hopping matrix element t and
the right vertical scale gives the corresponding value of the
critical temperature Tc obtained from ∆ = 1.764 kB Tc and us-
ing t = 0.43 eV. Top (bottom) panel corresponds to the Hub-
bard (d-wave) interaction with U = −0.6,−0.8,−1,−1.2,−1.4
(U = −1.6,−1.8,−2,−2.2,−2.4) for bottom to top curves.
The parabolic grey dashed curve corresponds to the formula
Tc = Tc0[1− (n0−nh

n1
)2] with Tc0 = 38K, n0 = 0.16, n1 = 0.11

obtained from experimental data [10].
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Fig. 9. Ground state quantum average 〈g2k〉 for hole pairs as
a function of doping nh = 1 − n for N = 1024 and the sector
p+ = 0, with gk = (cos(kx)−cos(ky))/2 and k = ∆p = (kx, ky)
being the quantum momentum space of the ground state at
given doping nh (p+ = k+ at ~ = 1) . Left (right) panel
corresponds to the Hubbard (d-wave) interaction with U =
−0.6,−0.8,−1,−1.2,−1.4 (U = −0.6,−1,−1.4,−1.8,−2.2)
for red, green, blue, pink, cyan curves respectively. The grey
dashed line at the value 〈g2k〉 = 0.25 corresponds to the uniform
average over all values k = (kx, ky) with probability homoge-
neously distributed in the plane −π < kx,y < π.

satisfactorily described by the doping dependence Tc =
Tc0[1− (n0−nh

n1
)2] with the optimal doping n0 = 0.16 and

n1 = 0.11 [10]. The Hubbard results at U = −1.2 (at
t = 0.43 eV this corresponds to U = 0.516 eV) give the
closest similarity of the Tc dependence on hole doping nh.
Still the numerical data at U = −1.2 give a somewhat
different shape of the curve Tc(nh) as compared to exper-
imental data. Thus, the optimal doping is at nh = 0.24
for U = −1.2 (it slightly changes with U). It is slightly
below the doping value nhs = 1 − ns ≈ 0.26 correspond-
ing to the separatrix (see Fig. 1). Indeed, the density of
states is maximal at the van Hove singularity which sig-
nificantly contributes to the gap increase if the Fermi sur-
face of holes is located slightly below the separatrix value
nhs ≈ 0.26. In this case we have EF > Es (Es being the
separatrix energy) and the accessible hole states include
the region of Es that contributes to increase of the (sector)
density of states. Our numerical data provides a depen-
dence Tc(nh) on nh which seems to be rather close to the
experimental data. We attribute certain differences (shift
of the maximum position) to the fact that for LSCO three-
dimensional effects significantly affect the hopping param-
eters and the separatrix position as discussed in [12]. In
particular, Fig. 15 of [12] indicates a separatrix position
closer to n = 0.84 (nh = 0.16) due to 3D and multiple
band effects where the kz quantum number also plays a
role. Furthermore, our computations are based on the sim-
ple Hubbard interaction which may be different from the
real effective interaction between holes.

We also show the dependence Tc(nh) for the attractive
d-wave interaction, in the bottom panel of Fig. 8, with
curves being rather similar to the Hubbard case. How-
ever, a somewhat stronger attractive interaction strength
U = −2 (U = −0.86 eV for t = 0.43 eV) is required to have
a maximal Tc value close the experimental value Tc = 38K
while the shape of the curves Tc(nh) remains rather sim-
ilar to the Hubbard case. Thus the comparison of Tc(nh)
curves for Hubbard and d-wave interactions indicates that
the shapes of the Fermi surface curves is mainly at the ori-
gin of gap dependence on doping in the HTC model.

In Fig. S9 of SupMat, we also show for completeness
the dependence of Tc(n) on nh = 1 − n for Cooper pairs
of electrons which have a rather similar structure as the
hole case but in both cases there is certain a asymmetry
around the maximum which is different between holes and
electrons. Thus at doping nh = 0.2 and U = −1.2 the gap
for electron pairs is about 50% smaller than for hole pairs.

To characterize the d-wave structure of the ground
state we compute the value of the quantum average 〈g2k〉
over the ground state in momentum representation (with
k being ∆p and gk = (cos(kx) − cos(ky))/2). The de-
pendence of 〈g2k〉 on hole doping nh is shown in Fig. 9 for
different values of U for Hubbard and d-wave interactions.
At small |U | the interactions and gap are too weak and
the discreteness of momentum values at finite lattice size
leads to strong fluctuations of 〈g2k〉 with nh. This happens
because at small |U | only few specific k values, closest to
the Fermi surface, contribute to the ground state (a simi-
lar effect is discussed in detail for rough billiards in [18]).



K.M. Frahm and D.L. Shepelyansky: Cooper approach to pair formation in a model of cuprate superconductors 11

Fig. 10. Energy landscape for mobile hole pairs. Left panels
show color plots of Ec(p+/2−∆p,p+/2 +∆p)− 2EF for the
HTC model in the ∆px-∆py plane for −π ≤ ∆px,y < π. The
Fermi energy EF corresponds to the filling factor n = 0.74
(in all panels). Top (center, bottom) panel corresponds to
the sector p+ = 2π(103, 103)/256 (p+ = 2π(46, 172)/256,
p+ = 2π(0, 248)/256). The three values of p+ are chosen such
that the center of mass momentum p+/2 is very close to the
Fermi surface of virtual filling factor nv = 0.74 with three cases
of p+x = p+y, p+x ≈ p+y/4 and p+x (p+y) minimal (maxi-
mal). The choice of discrete values is motivated by subsequent
quantum computations at N = 256 with these exact identi-
cal parameters. The colors red (green) correspond to positive
maximum (intermediate), blue to zero value and yellow (cyan)
to strongest (intermediate) negative values. Right panels are
as the left panels but the forbidden zones of ∆p (for hole exci-
tations) such that each one-particle energy is above the Fermi
energy, i.e. E1p(p+/2−∆p) > EF and E1p(p+/2+∆p) > EF ,
are replaced by white color. Note that here the white zones in-
clude not only the positive value zones (red/green) in left pan-
els but also additional zones of negative values due to p+ 6= 0
and the more complicated selection rule using individual one
particle energies.

However, for moderate interactions (|U | ≥ 1 for Hubbard
and |U | ≥ 1.4 for d-wave cases), corresponding to Tc val-
ues close to experimental ones (see Fig. 8), the system size
N = 1024 is sufficiently close to the infinite N limit with
a smooth dependence of 〈g2k〉 on nh. As for ∆(nh) shown
in Fig. 8 the average 〈g2k〉 has also a maximum close to the
optimal doping nh ≈ 0.26 corresponding to the separatrix
(van Hove singularity). However, in contrast to ∆(nh) the
maximum is not very smooth and the lowest values of
〈g2k〉 (in the interval 0 ≤ nh ≤ 0.4) are quite large, about
∼ 65 % of the maximal value. The maximal values them-
selves 〈g2k〉 ≈ 0.75 (Hubbard case) and 0.87 (d-wave case)
are rather high and close to unity which corresponds to
a strong concentration of the wavefunction in the vicinity
of the antinode kx ≈ 0, ky ≈ ±π (or inverse).

Such a concentration is indeed visible for the ground
state in momentum space shown in Fig. 7. We note that
for the whole considered range of dopings 0 ≤ nh ≤ 0.4
the obtained values of 〈g2k〉 are significantly larger than the
value 0.25 corresponding to a homogeneous distribution of
probability over all kx, ky values in the interval [−π, π]. Us-
ing the classical local density ρg(gk) ∼ 1/(1− |gk|) with a
cutoff |gk| ≤ gmax, where gmax < 1 is the maximal possible
value of |gk| (for Fermi curves close to the separatrix curve;
see Appendix A.2), one can expect for the Hubbard case
the analytical estimate : 〈g2k〉cl. ≈ 1− 3/(2| ln(1− gmax)|)
which provides theoretically unity for the exact separatrix
curve but with a rather strong logarithmic correction even
if 1− gmax � 1 which explains the rather larger values in
Fig. 9 (significantly above 0.25) but still somewhat smaller
than unity.

For the d-wave interaction, we remind that the mo-
mentum wave function amplitudes are essentially multi-
plied with gk (in comparison to the Hubbard wave func-
tion amplitudes at same gap value) and we expect that
〈g2k〉q,d−wave ≈ 〈g4k〉cl./〈g2k〉cl. ≈ 1 − 7/(12| ln(1 − gmax)|),
with a reduced logarithmic correction explaining the some-
what larger values (closer to unity) in the right panel of
Fig. 9.

We note that similar results are obtained for the de-
pendence of 〈g2k〉 on nh for electron pairs (see Fig. S10 of
SupMat).

The fact, that for both interactions the average 〈g2k〉,
is significantly above the uniform average 0.25, confirms
the findings of Section 3 that the HTC-band structure
alone induces a kind of d-wave preference in classical phase
space (larger distance between two neighbor Fermi curves
if |gk| ≈ 1) or for quantum states (with more occupied grid
points in the regions close to the Fermi surface if |gk| ≈ 1).
Therefore, to observe a d-wave dependence it is not nec-
essary to inject a d-wave dependence in the interaction as
such, as can be seen in the results of Fig. 8 and Fig. 9 for
the (s-wave) Hubbard interaction. For the d-wave inter-
action, the “d-wave” effect is somewhat enhanced but this
enhancement is not the dominant part. Furthermore, the
HTC-band structure also breaks the central symmetry in
the vicinity of optimal doping values.
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Fig. 11. Ground state density plots for the Hubbard in-
teraction, system size N = 256, hole pairs, filling factor
n = 0.74, nh = 1−n and three sectors p+ 6= 0 (same values as
in Fig. 5). Top (center, bottom) panels correspond to U = −8,
p+ = 2π(103, 103)/256 (U = −6, p+ = 2π(46, 172)/256;
U = −4, p+ = 2π(0, 248)/256). Left panels show the ground
state in ∆r-representation in a zoomed region with −10 ≤
∆x,∆y ≤ 10 (color values outside the zoomed regions are
blue) and right panels show the state in ∆p-representation
(with −π ≤ ∆px,y < π). The two hole ground state energies
Emin (of the sector Hamiltonian and in units of the basic hop-
ping matrix element) are −0.03424 (−0.07144, −0.1884) for
top (center, bottom) panels.

6 Gap for mobile Cooper pairs of holes

In this Section, we discuss the case of mobile pairs of holes
with p+ 6= 0. Similarly as in Section 4, we use a virtual
filling nv = 0.74 (and nv = 0.84 for SupMat figures) cor-
responding to certain center of mass values p+/2 being
(very close) to the Fermi surface with filling nv.

An example of the energy landscape for mobile pairs is
shown in Fig. 10 for the filling factor n = 0.74, nh = 1−n
and the virtual filling factor being very close to this value
nv = 0.74 (up to discreteness lattice effects). We see that
the energy landscape changes significantly depending on
the value of p+/2 on the virtual Fermi surface at nv.
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Fig. 12. Gap energy ∆ = −Emin/2 for hole pairs as a function
of gp+/2 = [cos(p+x/2)−cos(p+y/2)]/2 for n = 0.74, nh = 1−n
and 21 sector values of p+ such that the values of the center
of mass p+/2 lie uniformly on the line of virtual filling factor
nv = 0.74 between the positions of p+x = p+y, with gp+/2 = 0,
and p+x ≈ 0, p+y ≈ 2π, with gp+/2 ≈ 1. The three curves
correspond to the three interaction values used in Fig. 11 and
the data points with black squares correspond to the three
states shown in Fig. 11 with gp+/2 = 0 (≈ 0.7, ≈ 1) for top
(center, bottom) row therein. Data are obtained at N = 256.

The landscape is shown for three cases of p+x = p+y,
p+x ≈ p+y/4 and p+x (p+y) minimal (maximal). Even
more striking are the changes of the zones of accessible
∆p values shown in the right column of Fig. 10 due to the
condition E1p(p+/2 ± ∆p) < EF (see also discussion at
the beginning of Section 5). For p+x = p+y these zones are
composed of a quite small island with a dumbbell form.
For p+x ≈ p+y/4 this island is strongly reduced but two
extra pieces around ∆p = (0,±π) have been added. Fi-
nally, for p+x = 0 and p+y maximal the island has (nearly)
disappeared and the extra pieces have increased in size
with curved boundaries.

Examples of ground states of hole pairs for param-
eters of Fig. 10 are shown in Fig. 11. Similarly, as in
Fig. 6, the ground states correspond to compact pairs
in ∆r-representation (left column) with a size decreasing
with the increase of the gap ∆. Their densities in ∆p-
representation (right column) are again concentrated at
certain borders of the frozen Fermi sea (“blue” Fermi sea
borders with energies close to the Fermi surface; see right
column of Fig. 10). In particular, the (momentum) ground
state for p+x = p+y, is concentrated on the outside bor-
ders of the dumbbell island.

The important feature of these ground states is that
the gap values ∆ = −Emin/2 are rather modest even if the
Hubbard interaction strength is by a factor 4 or even more
higher as compared to the case of static pairs of Fig. 8.
Similarly as with mobile electron pairs (see Section 4) it is
necessary to consider rather large interaction amplitudes
|U | between -4 and -8 to find nice pair states.

It is convenient to express the gap dependence on p+x,
p+y via the quantity gp+/2 = [cos(p+x/2)− cos(p+y/2)]/2
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which characterizes the position of the center of mass
p+/2 on the (virtual) Fermi surface (we note that this
quantity is different from gk used in the previous Sections
since now k corresponds to the center of mass p+/2 while
previously it was given by the relative momentum ∆p).
The dependence of the gap ∆ on this quantity is shown
in Fig. 12 for three interactions values U = −4,−6,−8
and for 21 uniformly distributed data points on the vir-
tual Fermi surface. The main observations from Fig. 12
can be listed as follows: the gap is very small at gp+/2 ≈ 0
(symmetry point p+x = p+y) and is highest at gp+/2 ≈ 1
(asymmetry point p+x = 0, p+y maximal, or inverse). This
can be understood from the fact that the number of ac-
cessible states is significantly larger for gp+/2 ≈ 1 than for
gp+/2 ≈ 0 (small dumbbell island) or for other intermedi-
ate states (with intermediate gp+/2) as it is well seen in the
right column panels of Figs. 10 and 11. The gap appears
at rather large values |U | for the Hubbard interaction as
compared to the case of static pairs (with p+ = 0; see Sec-
tion 5). Similar results for another case, n = nv = 0.84,
are shown in Figs. S11, S12, S13 of SupMat.

We also considered the case of small values of |p+| → 0
(nearly static pairs) at modest interaction strength |U | =
1 (case of presence of a modest gap ∆ ≈ 0.06 for holes and
∆ ≈ 0.1 for electrons at n = 0.74 and p+ = 0 and zero
gap at nv = 0.74 with non-zero p+ values of Figs. 10 and
11). It turns that for N = 512 the gap rapidly disappears
with increasing value of |p+| at |p+| & (2πl)/512 with
l ≈ 7 − 10 for particles and l ≈ 3 − 5 for holes. These
borders correspond to very small virtual filling values nv ∼
10−4 − 10−3.

In global, the results of this Section show that it is
possible to have coupled mobile pairs with an energy gap
but the required (attractive) interaction amplitude should
be 4−8 times larger as compared to the case of static pairs.

7 Pairs with Coulomb repulsion

In this Section, we present results of pair eigenstates for
the repulsive Coulomb interaction (see case (i) in the dis-
cussion of Section 2) combined with a frozen Fermi sea.
In previous works [14,15], the time evolution of electron
pairs in NN and HTC lattices was studied for free pairs (in
absence of a frozen Fermi sea) showing that the Coulomb
repulsion can lead to Coulomb pair formation due to the
appearance of an effective narrow or flat band when the to-
tal pair momentum is p+ ≈ (±π,±π). Such a mechanism
is rather interesting but it is important to understand if
such states can have a gap (Emin < 0) or not and if such
Coulomb pairs can exist in presence of a frozen Fermi sur-
face and at which energies.

Due to a more complicated structure of coupling ma-
trix elements the effective method of Appendix A.1 is not
suitable and we determine the eigenstates and energies
of the sector Hamiltonian (see Section 2 for details of its
definition) by numerical full diagonalization. For this, we
consider two particular cases:

(i) Hole excitations at n = 0.74 with one single value
of p+ such that p+x = p+y = 2π(207/512) corresponding
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Fig. 13. The pair weight wN/6 defined as the quantum
probability for |∆x| ≤ N/6 and |∆y| ≤ N/6 is shown as a
function of the pair excitation energy E (eigenvalue of the
sector Hamiltonian and with E = 0 corresponding to the
Fermi level; see Section 2 for details) for the case of repulsive
Coulomb interaction with U = 2, HTC model and filling factor
n = 0.74. Top (bottom) panel corresponds to hole excitations
with p+ = 2π(207, 207)/512, sector dimension N ′2 = 3040 and
N = 512 with center of mass p+/2 being on the Fermi sur-
face for virtual filling factor nv = 0.74 (particle excitations
with p+ = 2π(113, 113)/256, sector dimension N ′2 = 8737,
N = 256 and nv = 1). The blue line shows N2(E)/N ′2 with
N2(E) being the number of levels below E. The energy values
with strong energy derivative of this quantity, corresponding to
strong peaks of sector density of states, coincide with the main
peaks of wN/6 for well defined close pair states. The dashed
black line indicates the value wN/6 = 1/9 for uniform ergodic
states on the whole lattice. The energy landscape for these
parameters is shown in Fig. 14. The data points with black
squares correspond to the states shown in Figs. 15, 16 (and in
related Figs. S14, S15 of SupMat). Additional data, especially
raw png figures for pair states with wN/6 > 0.4, for these two
cases and also for N = 512 for the parameters of the bottom
panel are available at [22].
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Fig. 14. Colored allowed (forbidden white) zones in ∆p-plane
(see captions of Figs. 5, 10 for details). Top (bottom) panels
correspond to the parameters of top (bottom) panel of Fig. 13
with filling factor n = 0.74, hole (electron) excitations, p+ =
2π(207, 207)/512 and N = 512 (p+ = 2π(113, 113)/256 and
N = 256). Right (left) panels show the full momentum cell:
−π ≤ ∆px,y < π (zoomed center square: −π/2 ≤ ∆px,y <
π/2) in ∆p-plane. Note that top left panel here corresponds
nearly exactly to the top right panel of Fig. 10 (with a slight
difference in p+ due to different choices of N).

to nv = 0.74 and sector dimension N ′2 = 3040 at N = 512.
Note that the sector dimension is strongly reduced with
respect to N2 = N2 = 5122 due to the small fraction
of available states (case of dumbbell island visible in top
right panel of Fig. 10) allowing to choose the rather large
system size N = 512.

(ii) Electron excitations at n = 0.74, also with one
single value of p+ such that p+x = p+y = 2π(113/256)
corresponding to nv = 1 and sector dimension N ′2 = 8737
at N = 256. We have also computed the eigenstates and
energies for the larger case N = 512 with p+x = p+y =
2π(225/512), N ′2 = 35030, and verified that all physical
conclusions remain valid. However, for practical reasons,
we present here figures and the discussion only for the
case N = 256 (reduced number of data points and bet-
ter visible eigenfunction figures at N = 256, especially
in momentum space). The choice of p+ corresponding to
nv = 1 6= n = 0.74 is motivated by its proximity to
the “optimal” value (π, π) found in [14,15] and the fact
that the zone of allowed ∆p values covers the vicinity of
∆p = 0 which is actually a point of “negative mass” as
we will see below (at nv = 0.74 and p+x = p+y the re-
gion ∆p = 0 would be in the forbidden zone; see top right
panel of Fig. 5).

Additional data, especially raw png figures for pair
states, for these cases (i), (ii) and (ii) for N = 512 are
available at [22].

We also studied many other parameters (other choices
of n, nv, p+ with p+/2 being on different points of the vir-
tual Fermi surface etc.) and in all cases the ground state
energy Emin (of the sector Hamiltonian) was found to be
positive such that there is no gap (in the framework of this
approach) for repulsive Coulomb interaction. However, we
discovered different mechanisms of pair formation at dif-
ferent excitation energies (sometimes close to the Fermi
energy, sometimes at quite high excitation energies). The
two specific examples above provide eigenstates for all in-
teresting cases which we will discuss below.

To identify interesting Coulomb pairs at excited ener-
gies we compute for each eigenstate the quantity wN/6(E)
defined as the quantum probability of |∆x| ≤ N/6 and
|∆y| ≤ N/6 (obtained by summing |ψ(∆r)|2 over∆r satis-
fying this condition with ψ(∆r) being an eigenstate in ∆r-
representation; see also Eq. (9) and text below of [15] for
the definition of the similar quantity w10). In this work, we
replace the width 10 with N/6 since many nice pair states
are still quite extended. Values of wN/6(E) significantly
above the ergodic value 1/9 (i.e. close to 1) indicate pair
states (at certain energies) which are quite well localized
around ∆r ≈ 0. We have also computed other quantities
such as the quantum averages 〈|∆r|〉, e〈ln |∆r|〉, 〈Ū(∆r)〉 or
the inverse participation ratio in ∆r-representation, pro-
viding the same typical energies at which nice pair states
appear.

Fig. 13 shows wN/6(E) (red data points) as a func-
tion of the excitation energy E (eigenvalues of the sector
Hamiltonian with diagonal matrix elements±(Ec(p1,p2)−
2EF ; see discussion of Section 2 for details) for both above
examples (i) in top panel and (ii) in bottom panel. In ad-
dition, also the normalized integrated (sector) density of
states N2(E)/N ′2, (fraction of states with energies below
E; blue curves) are shown.

For the case (i), there is one peak of strong pair states,
with wN/6(E) close to 1, at the top of the energy spec-
trum, mostly at E ≈ 0.3 and with a few states going
up E = 0.4 − 0.7 (energy measured in units of the ba-
sic hopping matrix element t). For the case (ii), there are
three main peaks at energies E ≈ 0.9, 2.1−2.2 and 3−3.5
(top of the spectrum for the third peak). In addition there
also two secondary peaks behind the first two peaks at
E ≈ 1.2, 2.6. We observe at all main peak positions for
both cases an enhanced slope of N2(E)/N ′2 just before the
energy corresponding to the peak indicating a strongly en-
hanced density of states at these energy values. For the
case (ii) at E ≈ 0.9 this effect is bit less strong, but still
visible, as compared to the other peaks.

To understand these observations and the physical na-
ture of the pair states at these energies, we show in Fig. 14
the energy landscape of allowed ∆p values together with
the forbidden zones and in Figs. 15, 16 and Figs. S14, S15
of SupMat examples of pair states at the peak energies
marked by black squares in Fig. 13. Top panels of Fig. 14
shows again the dumbbell island for the case (i) (see also



K.M. Frahm and D.L. Shepelyansky: Cooper approach to pair formation in a model of cuprate superconductors 15

Fig. 15. Three strong pair eigenstates for the parameters of
top panel of Fig. 13 (holes, n = nv = 0.74, N = 512) for
energies close to 0.3 and marked by black squares therein. Left
(right) columns correspond to the ∆r- (∆p-) representation
showing the two times zoomed center square for both cases:
−N/4 ≤ ∆x,∆y < N/4 (−π/2 ≤ ∆px,y < π/2). The panels in
∆p-representation correspond to the top right panel of Fig. 14
concerning the identification of allowed and forbidden zones.
Top (center, bottom) row corresponds to the eigenstates with
level number 2974 (3011, 3037), energy 0.3342 (0.3485, 0.4371)
and pair weight wN/6 = 0.8164 (0.9900, 0.9853). Note that
N ′2 = 3040 is the maximal possible level number for the largest
energy (in the corresponding p+-sector).

top right panel of Fig. 10) with a 50% zoom in the right
panel and bottom panels correspond to the case (ii) which
is somewhat similar to the right panel of Fig. 5 but with an
additional cigar-shape island in the region around ∆p = 0
which appears due to the modified virtual filling nv = 1
with respect to nv = 0.74 in Fig. 5 (both with p+x = p+y).

The panels of Fig. 14, have to be viewed together with
the eigenstate figures in ∆p-representation (right panels
of Figs. 15, 16 and Figs. S14, S15 of SupMat). For exam-
ple, for the case (i) we see that the eigenstate densities
in ∆p-space of the three pairs shown in Fig. 15 are con-
centrated a the outer border of the dumbbell island. The

Fig. 16. Two strong pair eigenstates for the parameters of
bottom panel of Fig. 13 (particles, n = 0.74, nv = 1, N = 256)
of the third strong peak of large wN/6-values for energies close
to 3.5-4 and marked by black squares therein. Left (right)
columns correspond to the ∆r- (∆p-) representation showing
the two times zoomed center square: −N/4 ≤ ∆x,∆y < N/4
(full momentum cell: −π ≤ ∆px,y < π). The panels in ∆p-
representation correspond to the bottom left panel of Fig. 14
concerning the identification of allowed and forbidden zones.
Top (bottom) row corresponds to the eigenstates with level
number 8732 (8737), energy 3.571 (4.048) and pair weight
wN/6 = 0.9970 (0.9976). Here N ′2 = 8737 is the maximal pos-
sible level number for the largest energy (in the corresponding
p+-sector).

densities in ∆r-space are localized around ∆r = 0 with a
width of about 33% (state of top panels), 25% (state of
center panels) and 5% (state of top panels) of the available
lattice showing that the width decreases when the energies
approaches the top of the spectrum. These pair states are
created by a combined mechanism of top spectrum, nar-
row band and island structure because at the top of the
spectrum the repulsive Coulomb interaction behaves like
an attractive interaction (at the bottom of the spectrum)
confining the particles to a well defined pair.

The eigenstates shown in Fig. 16 correspond to the
case (ii) at the top of spectrum (third main peak at E ≈
3.5 − 4.5) with ∆p-densities concentrated at the regions
∆p ≈ (±π,±π) corresponding to red maximum regions in
bottom panels of Fig. 14. Here the pair creation mecha-
nism is essentially due to the top spectrum (also negative
mass; see below) and there is no strong island effect. Also
the effective band is not very narrow (one may argue that
the red zone region in bottom panels of Fig. 14 constitutes
an effective narrow band). The width in ∆r space (around
∆r = 0) decreases very strongly when approaching the top
of the spectrum.
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The states shown in Fig. S14 of SupMat for the first
main energy peak (E ≈ 0.9) of the case (ii) are very inter-
esting. Their ∆p-densities are localized around ∆p = 0
which constitutes a local energy maximum (center green
zone of cigar shape island in bottom panels of Fig. 14).
This point is actually characterized by two negative eigen-
values of the Hessian matrix obtained by expanding Ec
given in (5) up to second order in ∆p. As can be seen in
(bottom right panel) of Fig. S16 of SupMat, the symmet-
ric value of p+/2 (i.e. with p+x = p+y) falls for nv = 1
clearly in one of the droplet regions where both eigenval-
ues are negative providing a point of negative mass with a
clear local maximum in ∆p space. Therefore, the pairs at
E ≈ 0.9 are created by the mechanism of negative mass
which is similar to the mechanism of top spectrum where
the repulsive Coulomb interaction confines particles. In
∆r-space the densities are again localized around ∆r with
width values between 15-25% of the lattice.

Example states of the second main energy peak (E ≈
2.2 − 2.6) of the case (ii) are shown in Fig. S15 of Sup-
Mat. These states correspond to the regions of olive color
(in bottom panels of Fig. 14) either at ∆p ≈ (0,±π),
∆p ≈ (±π, 0) (for top and center panels with E ≈ 2.2) or
∆p ≈ ±0.9(−π, π) (bottom panels with E ≈ 2.6). Here
the points ∆p ≈ (0,±π), ∆p ≈ (±π, 0) correspond to
regions with a local maximum in one direction and fi-
nite width in ∆p-space in the orthogonal direction due to
the forbidden zone thus leading to a quasi-negative mass
situation (note that Fig. S16 of SupMat does not apply
to this case since ∆p 6= 0). The case of bottom panels
is special, since there is no local maximum in ∆p-space
at ∆p ≈ ±0.9(−π, π), and despite the optical appear-
ance of a very close pair in ∆r-space the actual value
of wN/6(E) ≈ 0.3 (see the black square data point at
E ≈ 2.6 in bottom panel of Fig. 13) is quite small such that
about 70% of the quantum probability is still uniformly
distributed over the full lattice. However, the other 30% of
probability produce a very strong peaked density around
∆r = 0 with large maximum values such that the uniform
background is not visible in the color plot.

In all cases, we see that the region of allowed ∆p val-
ues has a quasi 1D-structure in ∆p-space (cigar or dumb-
bell shape island or finite width around the red or olive
regions). Since these regions correspond (except for the
special case of bottom panels of Fig. S15 of SupMat) to a
global or local maximum of Ec in ∆p-space this explains
that, at the energies slightly below the maximum value,
the density of states is strongly enhanced (see blue curves
in Fig. 13). In 1D the free momentum density of states is
singular at a spectral border and in quasi-1D with a finite
width there should be still a strong enhancement.

We mention that we have also studied a further case
similar to (ii) but with nv = 1.25 (instead of nv = 1) such
that the symmetric value p+ = (π, π) is exactly at the
optimal point found in [15]. In this case, the three main
peaks visible in the bottom panel of Fig. 13 merge into
one single peak at the (modified) top of the spectrum at
E ≈ 2.2 − 2.7 and both green/olive zones (for n = 1) at
∆p = 0 or ∆p ≈ (0,±π), ∆p+ ≈ (±π, 0) become red

(for n = 1.25) and all three maxima have now the same
value. In particular, the negative mass point at ∆p = 0
corresponds now to a global maximum being degenerate
with the other maxima at ∆p ≈ (0,±π), ∆p+ ≈ (±π, 0)
and ∆p ≈ (±π,±π) and the ∆p-densities of pair states
are concentrated at these points.

These observations provide an additional explanation
of the results of [15] with optimal pair formation (in ab-
sence of a frozen Fermi sea) at p+ = (±π,±π). In Fig.
S17, we show again the data of Fig. 4 of [15] in a color
plot superimposed with the Fermi surface for certain fill-
ings n = nv by identifying p = p+/2. The value of p+/2 ≈
0.4 − 0.45(π, π) (i.e. nv = 0.74 or nv = 1) of the above
two cases (i) and (ii) correspond to green zones of an
enhanced pair formation probability. The optimal point
p+/2 = 0.5(π, π) corresponds to a red data point data
(however, not very well visible in the figure).

Thus the three main mechanisms of pair formation by
Coulomb repulsion are: narrow or flat band local spectrum
structure as discussed in [14,15]; negative effective mass
for the pair energy so that a repulsion works as an effec-
tive attraction; restricted area (e.g. cigar shape or dumb-
bell islands) of states accessible for interaction induced
transitions above the frozen Fermi sea. At the same time
a quasi-1D structure of allowed ∆p zones leads also to
an enhanced density of states for a small energy inter-
vall slightly below typical pair energies (peak positions of
wN/6). We also point out that, in the framework of this
approach, Coulomb repulsion does not lead to a gap with
a ground state energy below the Fermi surface.

8 Discussion

In this work, we apply the Cooper approach [13] to study
the formation of coupled pairs of two interacting particles,
holes or electrons, in a tight-binding model of La-based
cuprate superconductors. The one-particle band structure
of such systems is obtained from advanced numerical anal-
ysis [10,11,12] based on modern methods of quantum chem-
istry. We consider three types of interactions being: attrac-
tive Hubbard and d-wave type interactions and the stan-
dard repulsive Coulomb interaction. Following the Cooper
approach [13], the interaction induced transitions are tak-
ing place only over the pair states where each particle
(hole) is outside (inside) a frozen Fermi sea in a sector
with a conserved fixed total momentum p+ of a pair at
relative momentum ∆p. Here, we do not discuss possible
origins of the appearance of an attractive interaction and
we simply assume that such interactions are given (for the
cases of Hubbard and d-wave interactions).

We establish that the energy landscape of the relative
particle motion in a pair strongly depends on the partic-
ular value of its center of mass p+/2 corresponding either
to a static (p+ = 0) or a mobile regime (p+ 6= 0). For
the attractive Hubbard and d-wave interactions, we ob-
tain a formation of static Cooper pairs (p+ = 0) with
a gap ∆ depending on the interaction amplitude U and
hole (or electron) doping nh (n = 1 − nh). The gap and
related Tc dependence on doping is compared with LSCO
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experimental results (see Fig. 8) showing a satisfactory
agreement.

We find the best agreement with the LSCO experimen-
tal data for the case of hole excitations at |U | ≈ 1.2t ≈
0.5 eV (Hubbard interaction) or at |U | ≈ 2t ≈ 0.8 eV (d-
wave interaction). The position of the optimal hole doping
is approximately located at nh ≈ 0.24 being influenced by
the close van Hove singularity (separatrix Fermi curve) of
one-particle density of states. This value is higher as com-
pared to the experimental optimal doping nh ≈ 0.16. We
attribute such a difference to missing 3D corrections to
the 2D band structure model we used here for LSCO.

Another important finding is that the ground state
has pronounced d-wave features for both Hubbard and d-
wave interactions which can be understood by the effec-
tive width of the Fermi surface in momentum space clearly
breaking central symmetry (see Fig. 7). Thus this width
is smaller (larger) if the momentum is close to a node
(anti-node). Therefore, we can conclude that the experi-
mental observation of d-wave features does not necessar-
ily imply that the interaction as such should have d-wave
symmetries. In our studies, the d-wave interaction model
provided somewhat stronger d-wave effects but the latter
were also clearly present, due to band-structure Fermi sur-
face effects, for the Hubbard interaction, which has only
an s-wave symmetry.

For mobile pairs (p+ 6= 0, with p+/2 being on a typi-
cal Fermi surface with nv = 0.74) the required attractive
interaction strength |U | to form a pair with a similar gap
as at p+ = 0 is enhanced by a factor 3−4 at same filling n.
The gap value is minimal at the node region (p+x ≈ p+y)
and maximal at the antinode region (p+x close to zero and
p+y close to maximum, or inverse). We point out that for
mobile pairs the region of accessible ∆p values due to the
frozen Fermi sea has a very complex structure (see e.g.
Figs. 5, 10). We expect that such mobile pairs can play a
role for stripe formation in LSCO.

For the case of Coulomb repulsion we do not find gap
and coupled pairs at the ground state. However, we find
the formation of mobile Coulomb pairs at excited ener-
gies provided by three different mechanisms being: nar-
row or flat band as discussed in [14,15], local effective
negative mass of relative motion, restrictions of motion
due to island structures related to the restriction of inter-
action induced transitions imposed by the frozen Fermi
sea. We note that the quite complicated zones of acces-
sible states (in ∆p-space) due to the frozen Fermi sea
(see e.g. Figs. 5, 10) could in principle favor paring by
the Kohn-Luttinger type mechanism (see [23,24,25]) with
emergence of an effective attraction in d-wave or higher-
wave sectors due to the complexity of the accessible energy
landscape. However, we do not find signatures of such an
effective attraction nor pair formation at the ground state
by Coulomb repulsion in our studies.

We hope that the results obtained in the framework of
the Cooper approach [13] will lead to a better understand-
ing of unconventional superconductivity in cooper oxides.
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A Appendix

A.1 Numerical Cooper pair method

Let us consider the mathematical eigenvalue problem of a
Hamiltonian matrix of the form :

Hk,k′ = δk,k′εk −
|U |
N2

gk gk′ (8)

with diagonal unperturbed energies εk ≥ 0 and an “in-
teraction” or “coupling” matrix of rank one. For the con-
siderations in this appendix both εk(≥ 0) and gk may be
rather arbitrary but for the physical applications in this
work εk represents the excitation energy of two particles
(holes) of the form:

εk = ±
[
E1p

(p+

2
−∆p

)
+ E1p

(p+

2
+∆p

)
− 2EF

]
(9)

with k corresponding to ∆p, “+” (“−”) for particle (hole)
excitations, p+ being the conserved total momentum of
the particle (hole) pair and only the values of k (or ∆p)
are allowed that such E1p(p+/2±∆p)−EF > 0 for both
particles (or < 0 for both holes). The number N2 corre-
sponds to the dimension of the full unrestricted sector of
p+ with all values of ∆p. For later use we note the dimen-
sion of the restricted sector (with allowed values of ∆p)
as N ′2 (being a given fraction of N2).

The case gk = 1 corresponds to an attractive Hubbard
interaction of interaction strength U and gk = g∆p =
[cos(∆px)−cos(∆py)]/2 corresponds to an effective d-wave
pairing attractive interaction used in typical mean field
approaches (see for example [11]). For gk = 1, p+ = 0 and
a simpler energy band this model was already considered
by Cooper in 1956 [13]. His technical trick to compute
the ground state energy (or gap) can be generalized to
the more general model here and also be exploited for an
efficient numerical method.

Let ψk be the k-component of an eigenvector of (8) of
energy E. It satisfies obviously the equation :

(E − εk)ψk = −|U |
N2

gk S , S =
∑
k′

gk′ψk′ . (10)

There are two possibilities: either S = 0 or S 6= 0. The
case S = 0 is possible if certain εk values are degenerate,
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e.g. due to symmetries (there are always 1 to 3 symme-
tries in our applications for the HTC model, depending on
the value of p+, see [15] for details), and corresponds to
anti-symmetric wave functions with respect to those sym-
metries. Also if gk = 0 for certain k-values, we may have
S = 0. For S = 0, we have obviously E = εk for some
k (with degenerate εk or gk=0) and ψk′ 6= 0 (or = 0) if
εk′ = εk (εk′ 6= εk respectively) and such states are not
affected by the interaction. For S 6= 0 (corresponding to
totally symmetric states with respect to symmetries), we
can insert

ψk = −|U |
N2

gk S

E − εk
(11)

into the sum of S and thus obtain an implicit equation for
the energy E:

1 = −|U |
N2

∑
k

g2k
E − εk

. (12)

Due to the attractive interaction there is always exactly
one (ground state) solution E = Emin with Emin < εmin

where εmin is the minimal value of εk (with gk 6= 0 !).
The implicit equation (12) allows for an efficient nu-

merical method to compute the first energy Emin (and po-
tentially also other eigenvalues) by standard algorithms to
numerically determine function zeros. Once the energy is
known, the eigenstate itself is obtained from (11) with S
being determined from the normalization. We have imple-
mented this method and verified that it produces identical
results to exact full numerical diagonalization (up to nu-
merical precision).

From (12) one can also obtain the limits of Emin for
very small interaction (retaining in the sum only the εmin-
terms) and very large interaction (replacing in the sum all
εk → εmin) :

Emin ≈ εmin −
dmin|U |
N2

if
|U |
N2
� δε ∼

εmax

N ′2
, (13)

Emin ≈ εmin −
N ′2|U |
N2

if
|U |
N2
� εmax . (14)

In (13) δε represents the typical spacing of εk-levels (close
to εmin) and dmin is the degeneracy of the level εmin for the
Hubbard case or the sum of g2k over the εmin levels for the
d-wave interaction case. Furthermore, N ′2 is the number of
εk-levels (dimension of the p+-sector of pair excitations).

Following Cooper [13], and for the simple Hubbard in-
teraction case with gk = 1, one can also try a continuous
limit if N ′2 � 1:

1 = −|U |
N2

∫ εmax

0

ρ2(ε)
1

Emin − ε
dε (15)

where ρ2(ε) is the two-particle (two-hole) excitation den-
sity of states in the given p+-sector and normalized by
N ′2 =

∫ εmax

0
ρ2(ε) dε. For simplicity, we have also replaced

εmin → 0 by applying a uniform shift to all values of
εk → εk − εmin (actually in the limit N ′2 → ∞ we have
anyway εmin → 0). We also assume that the ratio N ′2/N2

remains finite in the limit N ′2 → ∞ (constant fraction of
allowed states in the given p+-sector; see non-white zones
in Figs. 2, 5 and 10).

For the case of a constant density of the states ρ2(ε) =
N ′2/εmax one obtains from (15) the expression

Emin = −εmax

[
exp

(
εmaxN2

|U |N ′2

)
− 1

]−1
. (16)

which is very similar to the well known result of Cooper
[13] (only with different notations/parameters). One can
note that in the limit of very strong interaction this ex-
pression reproduces (14) plus a constant correction being
“+εmax/2” (reduction of |Emin|) which has to be added to
(14). On the other hand, for finite N ′2, (16) is not valid
in the regime where the very small interaction limit (13)
applies.

However, for the HTC-lattice, at filling factors close to
the separatrix point, e.g. n = 0.74, and for p+ = 0 the
density of states is strongly enhanced for small energies
due to the effect of the close van Hove singularity (sep-
aratrix) as can be seen in the right panel of Fig. S1 of
SupMat. To model this behavior we try the fit-ansatz :

ρ2(ε) =
N ′2

εmax log(1 + α)

α

1 + α(ε/εmax)
(17)

where α is a fit-parameter reproducing the constant DOS
if α = 0 or providing a strongly enhanced DOS close to
small energies if α� 1 and a power law decay ρ2(ε) ∼ 1/ε
for larger energies. (Also negative values of α are poten-
tially possible.) This form does not correspond exactly to
the van Hove singularity but it is convenient for the sub-
sequent analytical evaluation of (15) and in any case, we
want to model the case close but still different from the
van Hove singularity where the DOS at ε = 0 is still fi-
nite. The right panel of Fig. S4 of SupMat shows that this
ansatz produces an integrated DOS which fits very well
the exact integrated DOS at n = 0.74, particles for the
sector p+ = 0. For n = 0.3 the fit is of less quality but
still provides an improvement.

Using (15) and (17), we obtain:

Emin = −εmaxf
−1
(
εmaxN2

|U |N ′2

)
(18)

where f−1(. . .) is the inverse function of:

f(x) =
α

1− xα

(
log(x−1 + 1)

log(1 + α)
− 1

)
. (19)

(Here x represents the ratio −Emin/εmax). In the limit
α → 0 we recover from (18) the original Cooper type
result (16).

The result (18) is shown as blue curves in Fig. 3 and
for n = 0.74, with the fit value α = 6.589, the blue curve
coincides very well with the numerical data points except
for a very small shift while the green curve based on the
assumption of a constant DOS (i.e. α = 0) provides much
smaller gap values. For n = 0.3 the situation is different.
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Here for modest values |U | the green curve fits better the
numerical data points. This is because in this case the
uniform DOS (or linear integrated DOS) fits better the
initial (integrated) DOS at small energies as can be seen
in the left panel of Fig. S4 of SupMat where the green line
is closer to the red data points for ε < 0.15 εmax than the
blue curve corresponding to the ansatz (17). However, for
larger values of |U | ≈ 8 (not visible in Fig. 3) the blue
curve is closer to the numerical data points since here the
full range of energies ε ∈ [0, εmax] is important.

It is also possible to simplify (18) in the limit of very
strong interaction, corresponding to x� 1 in (19), which
gives:

Emin = −
[
|U |N ′2
N2

−Aαεmax

]
, Aα =

1

log(1 + α)
− 1

α
(20)

which is in agreement with the limit behavior of (16) since
limα→0Aα = 1/2. For larger values of α the coefficient Aα
decreases with respect to this value, e.g Aα = 0.3416 for
α = 6.589. Even though, mathematically, the constant
term with Aα provides “only a small” correction to the
first term ∼ |U |, the fact that this coefficient decreases
from 0.5 (at α = 0) to 0.3416 (at α = 6.589) has a consid-
erable impact on the quite significant difference between
the blue and green curves in Fig. 3 also for intermediate
interaction values. For very large values of |U | these curves
are actually parallel with a constant shift due to different
values of this coefficient. Furthermore, the third term in
the large |U |-expansion of Emin would only provide an
additional correction of the form ∼ |U |−1 in (20).

A.2 Local gk-density of states

The density of states ρ(E) for both lattices has a log-
arithmic van Hove singularity visible in Fig. S1 of Sup-
Mat which is due to the vanishing value of ∇E1p(ks) = 0
at the separatrix points ks = (0,±π) or ks = (±π, 0).
Classically ρ(E) dE can be obtained from the (relative)
area in k-space between the two Fermi curves at ener-
gies E and E + dE. As can be seen in Fig. 1 this area
is significantly enhanced in the region close to a sepa-
ratrix point. To see this point more clearly, it is inter-
esting to consider the angle resolved area between Fermi
curves at energies E and E + dE and also angles ϕ and
ϕ + dϕ where ϕ is the phase angle of the momentum
vector k = kE(ϕ)e(ϕ) where e(ϕ) = (cosϕ, sinϕ) and
kE(ϕ) is determined such that at given energy E and
angle ϕ we have E = E1p[kE e(ϕ)]. This area (divided
over (2π)2dE dϕ) defines the local angle-density of states
ρϕ(ϕ,E) which can be formally computed from the inte-
gral :

ρϕ(ϕ,E) =
1

π2

∫ π

0

dkx

∫ π

0

dkxδ[E − E1p(k)] (21)

×δ[ϕ− arctan(ky/kx)]

=
kE(ϕ)

π2|e(ϕ) · ∇E1p[kE(ϕ)e(ϕ)]|
(22)

In (21) we limit ourselves to the first quadrant with 0 ≤
ϕ ≤ π/2 such that the normalization prefactor is 1/π2.
The expression (22) is obtained by computing the integral
in polar coordinates for k and it is valid for angles ϕ such
that the equation E = E1p[kE e(ϕ)] has a solution for
kE . If this equation does not have a solution, we simply
have ρϕ(ϕ,E) = 0. For example, for energies above the
separatrix energy Es = E1p(0, π) the local angle-density of
states is limited to values ϕ ≤ ϕmax < π/2. Close to ϕmax

and for energies close to Es this density is not singular but
has a strong peak value ∼ 1/(π/2−ϕmax)2 (the exponent 2
is due to a combination of small gradient and small scalar
product in the denominator since the gradient and e(ϕ)
are nearly orthogonal). For energies below Es there is a
minimal angle ϕmin > 0 with ϕ ≥ ϕmin and a density peak
∼ 1/ϕ2

min.
In this work, we prefer however to use the quantity

gk = (cos kx − cos ky)/2 instead of ϕ with values gk ≈ 1
(or −1) if ϕ ≈ π/2 (ϕ ≈ 0) and gk = 0 if ϕ = π/4. This
quantity allows also to characterize a position on a Fermi
surface at given energy (in the first quadrant). Its local
gk-density of states is obtained by a similar expression as
(21):

ρg(g,E) =
1

π2

∫ π

0

dkx

∫ π

0

dkxδ[E − E1p(k)] δ(g − gk)

(23)
and it satisfies the relation:

ρg(gk, E) = ρϕ(ϕ,E)

(
dgk
dϕ

)−1
. (24)

We have used this relation together with (22) (and a nu-
merical evaluation of dgk/dϕ by finite differences for a suf-
ficiently dense set of data points) to compute numerically
the gk-density with results shown in Fig. S5 of SupMat
and also in Fig. 4.

For energies E close to Es and values 1 − gk � 1, we
can apply to E1p(k) and gk a quadratic expansion for k
close to the separatrix point ks = (0, π) resulting in :

E1p(k) = E1p(ks) +
1

2

[
ax k

2
x − ay(π − ky)2

]
(25)

with ax = ay = 2 (ax = 2.084, ay = 0.452) for the NN-
lattice (HTC-lattice) and

gk = 1− 1

4

[
k2x + (π − ky)2

]
. (26)

Inserting (25) and (26) in (23) one obtains the following
analytical result:

ρg(gk, E) =
C1√

(gmax − gk)(gmax − gk + C2(1− gmax))
(27)

with constants C1 = 1/(2π2√axay) and C2 = 1 + ax/ay
(C2 = 1+ay/ax) if ∆E = E−Es ≥ 0 (∆E = E−Es ≤ 0),
i.e. if the Fermi curve is above (below) the separatrix
curve. Furthermore, gmax is the maximal possible value of
g given by : gmax = 1−∆E/(2ax) [gmax = 1+∆E/(2ay) =
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1 − |∆E|(2ay)] if ∆E ≥ 0 (∆E ≤ 0). We also note that
(27) is valid for gk > 0 because we have chosen the expan-
sion around the separatrix point ks = (0, π). Using that
ρg(gk, E) = ρg(−gk, E) due to the x−y exchange symme-
try it is sufficient to replace in (27) gk → |gk| to obtain a
more general expression for other separatrix points where
gk is close to −1.

For the separatrix case ∆E = 0 with gmax = 1 the
expression (27) simplifies to the simple power law

ρg(gk, E) =
C1

1− gk
. (28)

This power law is also valid for the general case close to
but outside the separatrix curve in the range of gk val-
ues sufficiently far away from the singularity at gmax, i.e.:
1 − gmax � gmax − gk � 1. For values very close to the
singularity gmax − gk � 1 − gmax the expression (27) be-
comes a power law with exponent −1/2. All these points
are very nicely confirmed in Fig. S5 of SupMat.

Actually, the analytical expression (27) based on the
separatrix approximation is highly accurate (provided one
uses for gmax the precise values for a given energy and not
the approximate linear expressions in |∆E| given above)
even for filling factors not very close to the separatrix val-
ues and even in the interval 0 ≤ gk ≤ 0.8 − 0.9 it is still
rather close to the precise distribution obtained numeri-
cally.

Furthermore, from (23) we immediately see that∫ gmax

−gmax

ρg(gk, E) dE = 2

∫ gmax

0

ρg(gk, E) dE = ρ(E)

(29)
where ρ(E) is the total density of states given by an ex-
pression similar to (23) but without the delta-function fac-
tor δ(g− gk). For 1− gmax � 1, we find that this integral
behaves as log(1−gmax) ∼ log |∆E| = log |E−Es| (simply
using (28) with a cut-off at |g| < gmax) thus confirming
the logarithmic nature of the van Hove singularity in the
density of states.
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Fig. S1. One-particle energy density of states ρ(E1) for both
model types shown as a function of the one-particle energy E1

(left panel) and filling factor n (right panel). The van Hove
singularities (or separatrix values) correspond to E1 = −0.748
(E1 = 0) and n = 0.743465958 (n = 1) for the HTC model (NN
model). Note that the right panel shows the identical quantity
ρ(E1) as the left panel but as a function of n and without
application of any Jacobian factor. In particular, this does not
represent the density in the variable n (obtained by taking into
account the Jacobian factor) which has actually the simple
uniform value 0.5 for 0 ≤ n ≤ 2.

Fig. S2. Ground state density plots for the Hubbard in-
teraction, system size N = 256 (top and center panels) and
N = 1024 (bottom panels), sector p+ = 0, and filling factor
n = 0.3, U = −2.5 (top) and n = 0.74, U = −1 (center, bot-
tom). Left panels show the ground state in ∆r-representation
in a zoomed region with −10 ≤ ∆x,∆y ≤ 10 (color values out-
side the zoomed regions are blue) and right panels show the
state in ∆p-representation (with −π ≤ ∆px,y < π for N = 256
or zoomed top-right square 0 ≤ ∆px,y < π for N = 1024).
The two particle ground state energies Emin (of the sector
Hamiltonian) in units of the basic hopping matrix element
are −0.02656 (−0.01940, −0.01948) for n = 0.3, N = 256,
(n = 0.74, N = 256 or n = 0.74, N = 1024). The state for
N = 1024 in bottom panels is also used for the gk-distribution
shown in left panels of Fig. 4 (for U = −1).
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Fig. S3. Ground state density plots for the d-wave interaction,
system size N = 256 (top and center panels) and N = 1024
(bottom panels), sector p+ = 0, and filling factor n = 0.3,
U = −5 (top) and n = 0.74, U = −1.5 (center, bottom).
Left panels show the ground state in ∆r-representation in a
zoomed region with −10 ≤ ∆x,∆y ≤ 10 (color values outside
the zoomed regions are blue) and right panels show the state
in ∆p-representation (with −π ≤ ∆px,y < π for N = 256 or
zoomed top-right square 0 ≤ ∆px,y < π for N = 1024). The
two particle ground state energies Emin in units of the basic
hopping matrix element are −0.03140 (−0.01682, −0.01681)
for n = 0.3, N = 256, (n = 0.74, N = 256 or n = 0.74,
N = 1024). The state for N = 1024 in bottom panels is also
used for the gk-distribution shown in right panels of Fig. 4 (for
U = −1.5).
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Fig. S4. Left (right) panel shows the rescaled integrated two-
particle sector-density of states N2(ε)/N

′
2 (red data points) for

the sector p+ = 0, for N = 256, n = 0.3 (n = 0.74) ver-
sus ε/εmax. Here N ′2 represents the number of accessible levels
in the given sector. The green line shows the linear behav-
ior assuming a constant density of states and the blue line
shows the fit N2(ε)/N

′
2 = log[1 + α(ε/εmax)]/ log(1 + α) with

α = 3.193 ± 0.077 (α = 6.589 ± 0.017). These fits are used in
Fig. 3.
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Fig. S5. Local gk-density of states ρg(gk, E) for the quan-
tity gk = (cos(kx) − cos(ky))/2 for different values of energies
E/filling factors n (see text for the definition). The dashed
black line shows the analytical result ρg(gk, E) = C1(1−gk)−1

which is obtained for the exact separatrix case and if 1−gk � 1.
Here the constant is given by C1 = 1/(2π2√axay) where
ax = ay = 2 for the NN model (ax = 2.084, ay = 0.452 for
the HTC model) such that C1 = 0.0253303 (C1 = 0.052198).
The values of ax and ay are obtained from the expansion
E1(k) = E1(0, π) +

1
2
[axk

2
x − ay(π − ky)

2] for (kx, ky) being
close to the separatrix point (0, π) (see text for more details).
The constant C1 for the HTC model is roughly twice as large
than the constant C1 for the NN model showing that for the
HTC model gk values close to unity are more likely. For the
NN model (left panel) the green curve for the separatrix value
n = 1 extends numerically up to (1−gk) ≈ 10−10. For the HTC
model (right panel) the blue curve for n = 0.7435 extends nu-
merically to (1 − gk) ≈ 3 × 10−6; the curve for the precise
separatrix value n = 0.743465958 (not shown in the figure)
extends numerically to very small values of (1 − gk) ≈ 10−12

(if computed properly). The strong peak values at minimal
values of 1 − gk = 1 − gmax correspond to singularities of
the type const./

√
gmax − gk and in this region the density co-

incides numerically very well with the analytical approxima-
tion (27) showing a crossover from a power law with exponent
−1/2 (for gmax − gk � 1 − gmax) to a different power law
with exponent −1 corresponding to the black dashed line (for
1 − gmax � gmax − gk � 1). Note that due to the exchange
symmetry between kx and ky the local gk-density of states is
symmetric : ρg(gk, E) = ρg(−gk, E) and therefore this function
is only shown for positive values of gk ≥ 0.
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Fig. S6. Same as Fig. 5 with particle excitations but for the
filling factor n = 0.84 and the sectors p+ = 2π(106, 106)/256
(top panels), p+ = 2π(52, 174)/256 (center panels) and p+ =
2π(27, 256)/256 (bottom panels) such that the center of mass
momentum p+/2 is very close to the Fermi surface of virtual
filling factor nv = 0.84 with three cases of p+x = p+y, p+x ≈
p+y/4 and p+x (p+y) minimal (maximal).

Fig. S7. Ground state density plots for the Hubbard inter-
action, system size N = 256, particle excitations, filling fac-
tor n = 0.84 and three sectors p+ 6= 0 (same values as in
Fig. S6). Top (center, bottom) panels correspond to U = −7,
p+ = 2π(106, 106)/256 (U = −8, p+ = 2π(52, 174)/256;
U = −6, p+ = 2π(27, 256)/256). Left panels show the ground
state in ∆r-representation in a zoomed region with −10 ≤
∆x,∆y ≤ 10 (color values outside the zoomed regions are
blue) and right panels show the state in ∆p-representation
(with −π ≤ ∆px,y < π). The two particle ground state en-
ergies Emin in units of the basic hopping matrix element are
−0.1337 (−0.1095, −0.2868) for top (center, bottom) panels.



4 K.M. Frahm and D.L. Shepelyansky: Cooper approach to pair formation in a model of cuprate superconductors

-0.005

0

0.005

0.01

0.015

0 0.1 0.2 0.3 0.4

∆
=

-E
m

in
/2

nh

N=128,U=-1

N=256,U=-1

N=512,U=-1

N=1024,U=-1

-0.005

0

0.005

0.01

0 0.1 0.2 0.3 0.4

∆
=

-E
m

in
/2

nh

N=128,U=-1

N=256,U=-1

N=512,U=-1

N=1024,U=-1

-0.005

0

0.005

0.01

0.015

0 0.1 0.2 0.3 0.4

∆
=

-E
m

in
/2

nh

N=128,U=-1.6

N=256,U=-1.6

N=512,U=-1.6

N=1024,U=-1.6

-0.005

0

0.005

0.01

0 0.1 0.2 0.3 0.4

∆
=

-E
m

in
/2

nh

N=128,U=-1.6

N=256,U=-1.6

N=512,U=-1.6

N=1024,U=-1.6

Fig. S8. Convergence of gap energy ∆ = −Emin/2 with in-
creasing values of N = 128, 256, 512, 1024 and for the sector
p+ = 0 as a function of doping value nh = 1 − n. The energy
values are given in units of the basic hopping matrix element
t. Top (bottom) panels correspond to the Hubbard (d-wave)
interaction with U = −1 (U = −1.6). Left (right) panels cor-
respond to electron (hole) excitations.
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Fig. S9. As Fig. 8 but for electron excitations.
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Fig. S10. As Fig. 9 but for electron excitations.

Fig. S11. Same as Fig. 10 with hole excitations but for the
filling factor n = 0.84 and the sectors p+ = 2π(106, 106)/256
(top panels), p+ = 2π(52, 174)/256 (center panels) and p+ =
2π(27, 256)/256) (bottom panels) such that the center of mass
momentum p+/2 is very close to the Fermi surface of virtual
filling factor nv = 0.84 with three cases of p+x = p+y, p+x ≈
p+y/4 and p+x (p+y) minimal (maximal).
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Fig. S12. Ground state density plots for the Hubbard in-
teraction, system size N = 256, hole excitations, filling fac-
tor n = 0.84 and three sectors p+ 6= 0 (same values as in
Fig. S11). Top (center, bottom) panels correspond to U = −7,
p+ = 2π(106, 106)/256 (U = −8, p+ = 2π(52, 174)/256;
U = −6, p+ = 2π(27, 256)/256). Left panels show the ground
state in ∆r-representation in a zoomed region with −10 ≤
∆x,∆y ≤ 10 (color values outside the zoomed regions are
blue) and right panels show the state in ∆p-representation
(with −π ≤ ∆px,y < π). The two particle ground state ener-
gies Emin) in units of the basic hopping matrix element t are
−0.04761 (−0.05367, −0.3767) for top (center, bottom) panels.
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Fig. S13. As Fig. 12 but for n = nv = 0.84 with three
interaction values and the black square data points/states cor-
responding to Fig. S12.
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Fig. S14. Three strong pair eigenstates for the parameters of
bottom panel of Fig. 13 (electrons, n = 0.74, nv = 1, N = 256)
of the first peak of large wN/6-values for energies close to 0.9
and marked by black squares therein. Left (right) columns cor-
respond to the∆r- (∆p-) representation showing the two times
zoomed center square for both cases: −N/4 ≤ ∆x,∆y < N/4
(−π/2 ≤ ∆px,y < π/2). The panels in ∆p-representation cor-
respond to the bottom right panel of Fig. 14 concerning the
identification of allowed and forbidden zones. Top (center, bot-
tom) row corresponds to the eigenstates with level number 2573
(2638, 2679), energy 0.9131 (0.9390, 0.9550) and pair weight
wN/6 = 0.9173 (0.9069, 0.9761). Here N ′2 = 8737 is the maxi-
mal possible level number for the largest energy (in the corre-
sponding p+-sector).

Fig. S15. Three strong pair eigenstates for the parameters of
bottom panel of Fig.13 (electrons, n = 0.74, nv = 1, N = 256)
of the second peak (and the small peak behind it) of large
wN/6-values for energies close to 2.2-2.6 and marked by black
squares therein. Left (right) columns correspond to the ∆r-
(∆p-) representation. Top and center rows show the two times
zoomed center square: −N/4 ≤ ∆x,∆y < N/4 (full momen-
tum cell: −π ≤ ∆px,y < π). The bottom row shows the four
times zoomed center square: −N/8 ≤ ∆x,∆y < N/8 (left
panel) or the four times zoomed top left momentum corner:
−π ≤ ∆px,y < −π/2 (right panel) with other non-blue val-
ues in the (non-shown) bottom right momentum corner be-
ing the mirror image of the top left momentum corner (with
∆px,y → π − ∆px,y). The top and center panels in ∆p-
representation correspond to the bottom left panel of Fig.14
concerning the identification of allowed and forbidden zones
(for bottom ∆p-panel the top left corner has to be used). Top
(center, bottom) row corresponds to the eigenstates with level
number 6606 (6718, 7062), energy 2.165 (2.271, 2.614) and pair
weight wN/6 = 0.9800 (0.9658, 0.2862). Here N ′2 = 8737 is the
maximal possible level number for the largest energy (in the
corresponding p+-sector).
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Fig. S16. Fermi surface for different filling factors as in
Fig. 1 superimposed with color plots showing the regions of
negative mass eigenvalues in classical phase space. Top (bot-
tom) panels correspond to the NN model (HTC model). Left
(right) panels correspond the smaller eigenvalue λ2 (larger
eigenvalue λ1). Shown are the regions of negative values for
these eigenvalues with colors yellow (cyan, blue) for strong (in-
termediate, close to 0) negative values. The regions of white
color correspond to positive λ1,2. The eigenvalues λ1, λ2 as
a function of the center of mass p+/2 = p are computed as
the eigenvalues of the Hessian matrix obtained by expanding
E1p(p+/2−∆p)+E1p(p+/2+∆p) in ∆p up to second order.
Since λ1 > λ2 the right panels show the regions where both
eigenvalues are negative. The shown filling values n in this fig-
ure actually correspond to the virtual filling nv = n as far as
the superimposed color plot for the negative mass eigenvalues
are concerned (since p+/2 = p).
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Fig. S17. Fermi surface for different filling factors as in Fig. 1
superimposed with color plots for the pair formation probabil-
ities w10 and w2 of the HTC model computed in Ref.[15] for
N = 192 from the long time evolution of an initially localized
electron pair in relative coordinate propagating with the re-
pulsive Coulomb interaction U = 0.5. The color plots in the
center of mass momentum p = p+/2 are obtained by symmet-
ric extension of the data of Fig. 4 in Ref.[15]. Note that the
data of [15] correspond to a free electron pair moving in an
empty system without any other electrons (absence of frozen
Fermi sea). The regions of strong pair formation probability
close to p ≈ (±π/2,±π/2) correspond also to regions of dou-
ble negative mass eigenvalues shown in Fig. S16. (Note that at
p = (±π/2,±π/2) there are exact red data points for maxi-
mum values in the color plot. However, due the global figure
scale these data points are not well visible.) As in Fig. S16, the
filling values correspond to the virtual filling nv = n.
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