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We consider a system of linear oscillators, or quantum states, described by random matrix theory and
analyze how its time evolution is affected by a nonlinear perturbation. Our numerical results show that
above a certain chaos border a weak or moderate nonlinearity leads to a dynamical thermalization of a finite
number of degrees of freedom with energy equipartition over linear eigenmodes as expected from the laws
of classical statistical mechanics. The system temperature is shown to change in a broad range from positive
to negative values, and the dependence of system characteristics on the initial injected energy is determined.
Below the chaos border the dynamics is described by the Kolmogorov-Arnold-Moser integrability. Owing
to universal features of random matrix theory we argue that the obtained results describe the generic
properties of its nonlinear perturbation.
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In far 1872, 150 years ago, Boltzmann developed
the theory of statistical mechanics and thermalization origi-
nated from the dynamical laws of classical motion of many-
body systems [1]. This result led to the famous Boltzmann-
Loschmidt dispute on a possibility of thermalization and time
irreversibility emerging from the reversible dynamical equa-
tions of particle motion [2,3] (see also Ref. [4]). The modern
resolution of this dispute is based on the theory of dynamical
chaos for generic nonlinear systems characterized by a
positive maximal Lyapunov exponent and Kolmogorov-
Sinai entropy leading to an exponential instability of motion
(see, e.g., Refs. [5–8]). This instability leads to an exponential
growth of errors which breaks time reversibility (see, e.g., an
example in Ref. [9]).
The first numerical studies of how ergodicity, dynamical

thermalization, and energy equipartition appear in a homo-
geneous 1D oscillator chain perturbed by a moderate non-
linearity were reported by Fermi, Pasta, Ulam in 1955 [10]
(see systemHamiltonian in the SupplementalMaterial [11]).
The conclusion was that “The results show very little, if any,
tendency toward equipartition of energy between the
degrees of freedom” [10]. It was argued in Ref. [18] that
in the continuum limit the Fermi-Pasta-Ulam (FPU) prob-
lem is close to the Korteweg-de Vries equation with stable
soliton solutions shown to be completely integrable [19], as
well as the nonlinear Schrödinger equation [20]. In addition,
at weak nonlinearity the FPU α model is close to the
completely integrable Toda lattice [21,22]. Another explan-
ation of equipartition absence in the FPU problemwas given
in Refs. [23–25] showing that below a certain strength of
nonlinear interactions between oscillator modes the system
is located in the regime of Kolmogorov-Arnold-Moser
(KAM) integrability, and only above this border an over-
lap of nonlinear resonances takes place with the emergence

of chaos and thermalization. Numerical simulations
demonstrated a dynamical thermalization with energy equi-
partition reported in Refs. [24,25]. Thus, even 50 years after
[10], various regimes of nonlinear dynamics of the FPU
problem are actively discussed by the community of
dynamical systems [26] (see, e.g., recent Ref. [27]). The
variety of studies clearly demonstrates that this model
played an important role in the investigations of nonlinear
dynamics but also that it has multiple specific features
indicating that it does not belong to a class of generic
oscillator systems with nonlinear interactions.
To construct a generic model of many-body oscillator

systems with nonlinear interactions between oscillators we
take insight from quantum mechanics of many-body
systems whose spectral properties are described by random
matrix theory (RMT) invented by Wigner for a description
of the spectra of complex nuclei, atoms, and molecules
[28]. At present RMT finds applications in multiple areas
of physics [29,30] including systems of quantum chaos
whose dynamics is chaotic in the classical limit [31,32].
The properties of RMT eigenvalues and eigenstates were
established in various studies and are well known. The
RMT eigenstates are ergodic, i.e., uniformly distributed on
the N-dimensional unit sphere, and the level spacing
statistics is described by the universal RMT distribution
[28–32]. Owing to the linearity of the Schrödinger equation
the time evolution of a wave function ψ described by a
RMT Hamiltonian also describes a time evolution of a
system ofN linear oscillators with random linear couplings.
On its own, because of the universal properties of RMT,
it is interesting to understand how a nonlinear perturbation
affects RMT evolution.
With the aim of understanding the effects of non-

linear perturbation of RMT, we consider a simple model
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described by the Schrödinger equation with a Hamiltonian
given by a random matrix with an additional nonlinear
interaction between linear modes:

iℏ
∂ψnðtÞ
∂t

¼
XN

n0¼1

Hn;n0ψn0 ðtÞ þ βjψnðtÞj2ψnðtÞ: ð1Þ

Here Hn;n0 are elements of an RMT matrix Ĥ of size N
taken from the Gaussian orthogonal ensemble (GOE) [29];
they have zero mean and variance hH2

n;n0 i ¼ ð1þ δn;n0 Þ=
½4ðN þ 1Þ�. The averaged density of states is given by the
semicircle law dm=dE ¼ ð2N=πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2

p
with typical

eigenvalues in the interval Em ∈ ½−1; 1� (we use dimen-
sionless units with ℏ ¼ 1), and β is a dimensionless
constant characterizing the nonlinear interaction strength
in the original basis n.
The eigenmodes of Ĥ at energies Em are ϕðmÞ

n which are
ergodic with a uniform distribution on the N-dimensional
unit sphere. The time evolution of the wave function can

be expressed in the basis of eigenmodes as ψnðtÞ ¼P
N
m¼1 CmðtÞϕðmÞ

n with coefficients CmðtÞ giving the occu-
pation probability ρm ¼ hjCmðtÞj2i (with some long time or
ensemble average; see below). The time evolution [Eq. (1)]
has two integrals of motion being the probability normP

njψnðtÞj2¼1 and total energy E¼P
n½hψnðtÞjĤjψnðtÞiþ

ðβ=2ÞjψnðtÞj4�. At β ¼ 0 the model [Eq. (1)] can be viewed
as a quantum system or as a classical system of coupled
linear oscillators whose Hamiltonian in the basis of
oscillator eigenmodes is H ¼ P

EmC�
mðtÞCmðtÞ where

Cm;C�
m is a pair of conjugated variables and Em plays

the role of oscillator frequencies. Since RMT captures the
universal features of quantum and linear oscillator systems
we expect that the model [Eq. (1)] describes the universal
properties of oscillator systems with chaotic dynamics
induced by weak or moderate nonlinear couplings between
oscillators. We call the model [Eq. (1)] the nonlinear
random matrix model (NLIRM).
Above a certain chaos border with β > βc a moderate

nonlinearity destroys KAM integrability leading to chaotic
dynamics with a positive maximal Lyapunov exponent λ.
The nonlinear frequency shift is δω ∼ βjψnj2 ∼ β=N and, as
it was argued in Refs. [33–36], a developed chaos takes
place when this shift δω becomes comparable to a typical
energy spacing between energies (or frequencies) of the
linear system Δω ∼ 1=N. Thus δω > Δω implies chaos
with the chaos border βc ¼ const ∼ 1 being independent of
system size N.
The issue of dynamical thermalization in finite size non-

linear lattices with disorder was studied in Refs. [36,37].
The time evolution in these systems is described by the dis-
crete Anderson nonlinear Schrödinger equation (DANSE)
with hopping between nearby sites (see DANSE in the
Supplemental Material [11]). In the linear case the disorder

leads to Anderson localization of modes [38] which is well
visible when the localization length l is smaller than the
system size N. In this respect our RMT model [Eq. (1)] is
rather different since the linear modes are delocalized and
ergodic in a vector space of dimension N. We expect that
our model [Eq. (1)] is generic and captures also certain
features of the models of the Bose-Einstein condensate
evolution in the chaotic Bunimovich stadium [39] or the
Sinai oscillator [40] described by the nonlinear Gross-
Pitaevskii equation (GPE) [41] (see GPE in the
Supplemental Material [11]). Indeed, the linear eigenmodes
of these systems have properties of quantum chaos similar
to RMT [31,32]. There are however also certain differences
discussed below.
For the GPE models [39,40] it is natural to assume that

the dynamical thermalization induced by moderate non-
linearity leads to the Bose-Einstein (BE) distribution of
probabilities ρm over quantum levels of the linear system.
In the limit of high temperature T this distribution is
reduced to a classical energy equipartition (EQ) distribution
[4,42]. For the DANSE type models [36,37] the quantum
Gibbs (QG) distribution was proposed to explain numeri-
cally obtained results. In fact QG and BE distributions give
very close thermalization properties, and we mainly discuss
the BE case here. Thus there are two options for the
thermalized distributions of probabilities ρm:

ρm ¼ 1

exp½ðEm − μÞ=T� − 1
ðBEÞ; ρm ¼ T

Em − μ
ðEQÞ:

ð2Þ

Here T is the system temperature and μðTÞ is the chemical
potential dependent on temperature. The parameters T and
μ are determined by the norm and energy conservationP

m ρm ¼ 1 and
P

m Emρm ¼ E (for E we assume the case
of weak or moderate nonlinearity which gives only a weak
contribution to the total energy). The entropy S of the
system is determined by the usual relation [4,42]: S ¼
−
P

m ρm ln ρm with the implicit theoretical dependencies
on temperature EðTÞ, SðTÞ, μðTÞ. The derivation of Eq. (2)
is given in the Supplemental Material [11].
Based on classical statistical mechanics [4,42] the

dynamical thermalization should lead to the EQ distribution
[Eq. (2)] since theDANSE,GPE [36,37,39,40], andNLIRM
[Eq. (1)] models describe classical nonlinear fields without
second quantization. In contrast, in Refs. [36,37,39,40] it
was argued that a moderate nonlinearity plays the role of an
effective nonlinear thermostate that leads to quantum BE or
QG distributions [Eq. (2)].
Of course, both BE and EQ approaches [Eq. (2)] give

different thermal characteristics leading to a contradiction
discussed in detail in Refs. [37,39,40]. The main argument
in favor of the BE (or the QG) ansatz was based on a
reasonably good agreement of numerical data for entropy
vs energy with the theoretical thermal dependence SðEÞ
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given by the BE (or QG) ansatz. The quantities S and E are
extensive (self-averaging), and it was argued that their
analysis is more preferable as compared to the direct study
of the strongly fluctuating probabilities ρm [36,37,39,40].
Here we show that the ergodicity of RMT eigenstates of Ĥ
allows one to reduce significantly the fluctuations and to
obtain stable results for ρm that are clearly described by the
EQ ansatz [Eq. (2)].
The numerical integration of [Eq. (1)] is done with the

symplectic scheme of order 4 [43–45] using a step size
Δt ¼ 0.1 up to maximal times t ¼ 4 × 106 − 1.3 × 108

with exact norm conservation, energy conservation with
accuracy ∼10−8, and for the GOE matrix size N ¼ 64 (see
the Supplemental Material [11] for more details and results
for other values N ¼ 32, 128, 256, 512). As initial

condition, we choose an eigenmode ϕðmÞ
n of Ĥ at some

index m (sometimes also noted m0) such that the energy
remains close to the initial energy E ≈ Em. Examples of the
time dependence SðtÞ are shown in the Supplemental
Material [11], Fig. S1, demonstrating a steady-state regime
reached at times t > 104 for β ¼ 1. The obtained depend-
ence SðEÞ is shown in Fig. 1 at different β values for a
specific RMT realization and two timescales and also for 10
RMT realizations at β ¼ 1. At small values β ¼ 0.02, 0.1
the system is close to an integrable KAM regime [7,8]
while at β ¼ 1 essentially all modes are thermalized (see
Fig. 1, Fig. S2 in the Supplemental Material [11], and
additional material in Ref. [46]). These results show that the
critical border for thermalization is located at βc ∼ 0.1

independent of N. However, the exact determination of βc
is a rather complicated task due to the presence of many-
body nonlinear effects like, e.g., the Arnold diffusion [7,8].
Also at the spectral borders E ≈�1 the spacing between
energies Em increases according to the semicircle law [29],
and therefore it is more difficult to reach thermaliza-
tion there.
An important feature of Fig. 1 is that the theory curves

SðEÞ obtained with the BE and the EQ ansatz [Eq. (2)] are
rather close to each other. Thus due to fluctuations of
numerical data for SðEÞ it is difficult to determine which
theory BE or EQ better describes the numerical data.
However, the data points are significantly closer to the
BE curve, especially for moderate energies jEj ≈ 0.5–0.8
where both curves are somewhat different [the difference
between the QG and BE SðEÞ curves, not visible on
graphical precision, is ∼0.003 at the spectral borders and
much smaller at other E values, so that we discuss mainly
the BE case].
For the EQ ansatz the dependencies TðEÞ, μðEÞ,

obtained by the solution of the equations for energy and
norm for a given RMT spectrum, are shown in Fig. 2 (the
Supplemental Material [11], Fig. S3, for the BE ansatz) for
the thermalized regime at β ¼ 1. The numerical points
obtained from E and norm values are by definition exactly
located on the theory curves. If instead of E we use the
numerical data of S then the points slightly deviate from the
theory (Fig. 2 and Fig. S3 in the Supplemental Material
[11]), but the T and μ values themselves are drastically
different between BE and EQ cases.
The most direct way to distinguish between BE and EQ

cases is to compare the probability dependence ρmðEÞ with
the theory [Eq. (2)]. Such a comparison is shown in Fig. 3
for four initial states at m ¼ m0, β ¼ 1, and N ¼ 64 (more
data are in the Supplemental Material [11], Fig. S4, and
Ref. [46]). The dynamical thermalization clearly follows
the EQ ansatz and not at all the BE one, except for an initial
state at Em0

≈ 0 where both approaches are equivalent. This
observation is in agreement with the classical statistical
mechanics [4,42]. The probabilities ρm for all initial
energies Em0

are shown in Fig. 4 with a good agreement
between the numerical data and the EQ ansatz (see
Ref. [46] for figures such as Fig. 3 for all m0 values).

(b)(a)

(d)(c)

FIG. 1. Entropy S versus energy Em of the initial state m at
t ¼ 0 for one RMT realization at N ¼ 64 and β ¼ 0.02 (a), β ¼
0.1 (b), and β ¼ 1 (c) or 10 RMT realizations at β ¼ 1 (d). The
entropy S is computed from ρm averaged over the time range
223 ≤ t ≤ 224 (blue-black ∘) and 216 ≤ t ≤ 217 [red-gray þ in (a),
(b)] or 211 ≤ t ≤ 212 [red-gray þ in (c)]. The theory curves SðEÞ
for BE (red-gray) and EQ [blue-black in (a),(b),(c) or green in (d)]
are from ρm values of [Eq. (2)] with Em values of the used RMT
realization (a), (b),(c) or a fictitious spectrum according to the
semicircle law in (d) [where Em is the solution of m − 1=2 ¼
MðEmÞ, m ¼ 1;…; N with MðEÞ being the integrated density of
states].

FIG. 2. Dependence of T and μ on energy E for EQ ansatz
[Eq. (2)] (curves); data points are for β ¼ 1, N ¼ 64, and time
range 223 ≤ t ≤ 224, with T and μ determined from norm and
numerical entropy values [same RMT realization as in Fig. 1(c)].
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The statistical distribution pðxÞ of fluctuations of the
rescaled quantity x ¼ ðEm0

− μÞjCmðtÞj2=T (with μ, T from
the EQ ansatz for the energy Em0

) also follows the
Boltzmann law pðxÞ ¼ expð−xÞ (see the Supplemental
Material [11], Fig. S5).
In Fig. 5 we show the energy dependence of the maxi-

mal positive Lyapunov exponent λm on energy Em of ini-
tial state m for different β values (more data are in the
Supplemental Material [11], Figs. S6–S10, and Ref. [46]).
In the thermalized phase β ¼ 1 we have a smooth variation
of λ with Em while below or close to the thermalization
border at β ¼ 0.1 high λm values appear only at specific Em
values. We attribute this to the existence of triplets of
energies with very close Em values. Indeed, in a hypothetic
case of three equal Em values the KAM theory is not valid
and developed chaos exists at arbitrary small β values as is
shown in Refs. [33,47]. Nonetheless, in RMT there is level
repulsion, and double or triple degeneracies are forbidden

leaving place only to quasidegeneracy of levels so that
KAM becomes valid at β → 0. Thus for β ¼ 0.02 we have
typically λm approaching to zero with increasing time.
Our preliminary results show that in the thermal phase at
larger jTj (if Em ≈ 0) we have an approximate dependence
λ ∼ βη=Nν with η ≈ 1.52, ν ≈ 1.89 (see the Supplemental
Material [11], Figs. S6–S10). However, the Lyapunov
exponent dependence on β and N requires further detailed
studies.
Finally, we discuss the reasons why the nature of thermal

equipartition, BE or EQ, was so difficult to establish in
previous studies [36,37,39,40]. One of them is the prox-
imity of SðEÞ curves for both approaches. At the same time
the direct determination of the ρmðEÞ dependence is rather
difficult due to significant fluctuations, as it was pointed out
previously. These fluctuations are especially large for the
DANSE case at a large disorder (W ¼ 4 in Ref. [36]) when
the localization length l is significantly smaller than
system size N (l=N ≈ 0.1 at N ¼ 64). We illustrate this
in the Supplemental Material [11], Figs. S11–S12, showing
that at smaller disorder W ¼ 2 with larger localization
length l the fluctuations of ρm are reduced and at long
times we have an agreement of ρmðEÞ with the EQ ansatz
and strong deviations from the BE ansatz. For the NLIRM
model [Eq. (1)] the linear eigenmodes are ergodic, i.e., no
localization, and the fluctuations of ρmðEÞ are significantly
reduced, which allows one to distinguish clearly between
EQ and BE cases.
The cases of GPE in the Bunimivich stadium [39] and

the Sinai-oscillator trap [40] are somewhat different.
Indeed, in these models the spectrum of the linear system
is unbounded so that, even if linear eigenstates are in the
quantum chaos regime, the probability spreading to high
energies is rather slow due to small coupling transitions
induced by nonlinearity between states with significantly
different energies. Thus in these systems there is a

FIG. 3. Dependence of ρmðEmÞ on Em for four initial states at
m0 ¼ 3, 11, 30, and 57 with negative temperature T < 0;
here β ¼ 1, N ¼ 64, and time average range 223 ≤ t ≤ 224.
The blue curve shows the theory of EQ ansatz with
ρEQðEÞ ¼ T=ðE − μÞ. The red line shows BE ansatz theory
ρBEðEÞ¼1=ðexp½ðE−μÞ=T�−1Þ; T, μ theory [Eq. (2)] values
are given in the Supplemental Material [11], Fig. S4, for BE
and EQ cases.

0

0.001
0.01

0.1

0.3

1
(a) (b)

FIG. 4. Density plot of ρm for parameters of Fig. 3 with initial
state index 1 ≤ m0 ≤ 64 in the x axis and 1 ≤ m ≤ 64 in the
y axis. The colorbar shows ρm values in a nonlinear scale to
increase the visibility of small ρm values. (a) Numerical data for
β ¼ 1, N ¼ 64. (b) The EQ ansatz ρEQðEmÞ (see also Fig. 3).

FIG. 5. Lyapunov exponent λm dependence on Em withm being
the index of the initial state forN ¼ 64; λm is determined from the
fit ln kΔψðtÞk ¼ aþ b lnðtÞ þ λmt for β ¼ 2 (gray triangle, top);
1 (black circle); 0.5 (pink square); 0.1 (green cross) at t ≤ 222;
β ¼ 0.02 for t ≤ 227 (red ▽, bottom).
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formation of a relatively compact probability packet at low
energies which spreads to high energies very slowly in
time. Such an energy packet of ρm gives SðEÞ values
compatible with the curve of the BE ansatz; however the
fluctuations of ρmðEÞ are very strong with a significant
difference from the BE distribution at high energies (see,
e.g., Fig. 5 in Ref. [39] and Figs. 8 and 11 in Ref. [40]). To
analyze these features in more detail, we add to the
diagonal RMT matrix element Hn;n an additional diagonal
energy fn with a constant f > 0. Then the variation of
linear energies fN becomes rather large and exceeds
significantly those of the RMT case. The results for this
model at β ¼ 1, f ¼ 0.25 show that at times t ¼ 215 for
N ¼ 32 (or t ¼ 220 for N ¼ 64) the probabilities ρmðEÞ
form a compact packet of approximate BE shape and the
EQ thermal distribution is reached (with fluctuations) only
at very large times t ¼ 227 (see the Supplemental Material
[11], Figs. S13 and S14). Such large timescales were out of
reach in Refs. [39,40] due to the complexity of the
numerical integration of GPE.
In conclusion, we showed that a nonlinear perturbation

of RMT leads to dynamical thermalization with energy
equipartition corresponding to the laws of classical stat-
istical mechanics [4,42]. Such a thermalization appears due
to dynamical chaos in finite systems with a moderate or
large number of degrees of freedom at weak or moderate
perturbation of a linear RMT system. At very weak
perturbations the system dynamics is characterized by a
quasi-integrable KAM regime. We argue that the proposed
NLIRM model captures the generic features of dynamical
thermalization in systems weakly perturbed by classical
nonlinear fields and does not depend on the specific form of
the nonlinear term (see detailed discussion in the
Supplemental Material [11] and Figs. S15 and S16 there).
Of course, for finite many-body quantum systems with
second quantization the interactions lead to quantum dyna-
mical thermalization and distributions of Bose-Einstein for
bosons or Fermi-Dirac for fermions, as has been demon-
strated in numerical studies [48] and Refs. [49–51]
respectively.

This work has been partially supported through the Grant
NANOX No ANR-17-EURE-0009 in the framework of the
Programme Investissements d’Avenir (project MTDINA).
This work was granted access to the HPC resources of
CALMIP (Toulouse) under the allocation 2022-P0110.

Note added.—After submission of this work a dynamical
thermalization at negative temperature in EQ [Eq. (2)] has
been observed in optical fibers [52]. See also the discussion
in the Supplemental Material [11].
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I. HAMILTONIANS AND EQUATIONS FOR
FPU, GPE, DANSE MODELS

For convenience we give here the Hamiltonian of
the Fermi-Pasta-Ulam (FPU) model and the time evo-
lution equations for the Discrete Anderson Nonlinear
Schrödinger Equation (DANSE) and the nonlinear Gross-
Pitaevskii equation (GPE).

The Hamiltonian of the FPU model is:

H =
1

2

N∑
n=0

[p2
n + (xn+1 − xn)2]

+
α

3

N∑
n=0

(xn+1 − xn)3 +
β

4

N∑
n=0

(xn+1 − xn)4

where the first term gives the Hamiltonian H0 of the
linear oscillator waves and the second and third terms
represent the interaction Hint. Here pn, xn are conju-
gated variables of momenta and coordinates. For β = 0
we have the α-FPU model and for α = 0 we have the
β-FPU model. The FPU model is described in detail in
Refs.[10,16-20].

The time evolution of the DANSE model is described
by the equation:

i~
∂ψn
∂t

= εnψn + β| ψn |2ψn + V (ψn+1 + ψn−1) ,

where β determines the strength of the nonlinearity, V is
the hopping matrix element, on-site energies εn are ran-
domly distributed in the range −W/2 < εn < W/2, and

the total probability is normalized to unity
∑
n | ψn |

2
=

1. Here we use units with ~ = V = 1. For β = 0 and
weak disorder all eigenstates are exponentially localized

with the localization length l ≈ 96(V/W )2 at the cen-
ter of the energy band. The DANSE model belongs to
the same class of models described by Eq. (1) but with
Hn,n′ = εnδn,n′ + V (δn,n′+1 + δn+1,n′) and the theoret-
ical considerations of the next section also apply to the
DANSE model assuming that the hypothesis of thermal-
ization is verified. Detailed descriptions of the DANSE
model are given in Refs. [34-37].

The GPE time evolution is described by

i~
∂

∂t
ψ =

(
− ~2

2m

∂2

∂x2
+ β|ψ|2

)
ψ .

We do not study this equation in this work. More detailes
about its properties can be found in Ref. [41].

II. STATISTICAL CLASSICAL THEORY

The nonlinear Schrödinger equation (1) has two inte-
grals of motion. By neglecting the energy of the weak
nonlinear term ∼ β/N and assuming global chaos and
ergodicity, we expect that the system becomes ergodic
or thermalizes on the manifold fixed by the two con-
straints : ∑

m

Em|Cm|2 = E ,
∑
m

|Cm|2 = 1

where Cm are the coefficients of the state in the expan-
sion of the eigenbasis of the matrix Ĥ. This situation
corresponds in principle to a micro canonical ensemble
with an additional constraint which is technically quite

complicated. One can use |C1|2 = 1 −∑N
m=2 |Cm|2 to

remove the first coordinate C1 from the phase space to
obtain a pure micro canonical ensemble for C2, . . . , CN
with:

E − E1 =

N∑
m=2

(Em − E1)|Cm|2

but there is still the condition
∑N
m=2 |Cm|2 = 1−|C1|2 ≤

1 which creates technical complications. For small tem-
perature or energy (with E being close to E1, assuming
an ordered eigenvalue spectrum E1 < E2 < . . . < EN )
one can neglect this condition and in this case it is not
difficult to show by standard text book techniques of sta-
tistical physics that in the limit N � 1 the marginal dis-
tribution of a field Cm (integrating out the other fields of
the micro-canonical ensemble) is a (complex) Gaussian

p(Cm) ∼ exp

(
− (Em − E1)|Cm|2

Tmc

)
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with the micro-canonical temperature Tmc = (E−E1)/N
and providing the equipartition average : ρm,mc =
〈|Cm|2〉 = Tmc/(Em − E1).

However, for larger energies the additional inequality
for the coefficients Cm cannot be neglected. Therefore,
we treat the system as a grand-canonical ensemble, which
is equivalent for N � 1. In this approach the fields Cm
can freely fluctuate and the constraints are only verified
in average. The classical grand canonical partition func-
tion is given by

Z =

∫ ∏
m

d 2Cm exp

(
− 1

T

∑
m

(Em − µ)|Cm|2
)

∼ TN
∏
m

1

Em − µ
⇒

ln(Z) = N ln(T )−
∑
m

ln(Em − µ) + const.

with two parameters being the (grand canonical) tem-
perature T and the chemical potential µ which are deter-
mined by the implicit equations

1 =
∑
m

ρm , E =
∑
m

Emρm (S.1)

with ρm being the statistical average :

ρm = 〈|Cm|2〉 =
T

Em − µ
≡ ρEQ(Em) .

Here we have either T > 0 and µ < E1 or T < 0 and
µ > EN in order to have well defined Gaussian integrals
in the partition function and only solutions for T and µ
satisfying this condition are valid. From

E − µ =

〈∑
m

(Em − µ)|Cm|2
〉

= T 2 ∂ ln(Z)

∂T

= T 2N

T
⇒ T =

E − µ
N

(S.2)

we find that µ is a solution of the implicit equation:

1 = T
∑
m

1

Em − µ
=

1

N

∑
m

E − µ
Em − µ

. (S.3)

For a given value of E and a given spectrum Em this
equation can be solved numerically by standard tech-
niques and using (S.2) we also obtain T once µ is known.
Depending on the sign of E −∑mEm < 0 (or > 0) we
have either µ < E1 and T > 0 (or µ > EN and T < 0)
as unique and physically valid solution (mathematically

there are typically many other but invalid solutions of
(S.3) in the interval E1 < µ < EN ). Once µ(E) and
T (E) are known one can use ρm to compute the entropy

SEQ(E) = −
∑
m

ρEQ(Em) ln(ρEQ(Em)) .

This expression was used to compute the theoretical
S(E) curves in the equi-partition approach based on the
grand-canonical classical theory shown in Figs. 1, S2,
S11, S13 for various examples.

We mention that the grand canonical temperature
(S.2) is similar to the micro-canonical temperature if we
replace E1 → µ and it is not difficult to verify that in
the limit E ↘ E1 we have µ ↗ E1 with T ↘ 0 (or
if E ↗ EN ⇒ µ ↘ EN with T ↗ 0; see also
Figs. 2,S3). Also the micro-canonical expression for ρm
provides numerically correct S(E) curves (identical to
the grand canonical curve) for the lower 20%-30% of the
energy spectrum where µ ≈ E1 with a rather good accu-
racy.

The Bose-Einstein ansatz with

ρm = ρBE(E) ≡ 1

e(Em−µ)/T − 1
(S.4)

cannot be directly justified by the classical field approach.
From a purely formal point of view it can be obtained
by replacing in the partition function |Cm|2 → cm with
integer cm and replacing the Gaussian integrations by
sums over cm = 0, 1, 2, . . . thus resulting in (S.4). In
the framework of this approach T and µ are computed
by solving numerically the implicit equations (S.1) with
ρm = ρBE(Em) which is technically a bit more compli-
cated as for the EQ case. In the limit of large |T | we can
expand in (S.4) the exponential and both approaches be-
come equivalent.

The difference between both approaches in the S(E)
curves is not very strong but the numerical data of long
time averages of ρm = 〈|Cm(t)|2〉 clearly show the va-
lidity of the EQ model provided the state is sufficiently
thermalized as can be seen in Figs. 3, S4.

Furthermore, according to both the micro-canonical
and grand-canonical approaches the statistical distribu-
tion of Cm is a complex Gaussian which corresponds to
an exponential distribution of |Cm|2, i.e. the distribution
of the rescaled variable x = (Em−µ)|Cm|2/T is theoret-
ically p(x) = exp(−x) which is clearly confirmed by the
numerical data for quite large values of x as can be seen
in Fig. S5 providing an additional confirmation of the
classical model.

Both approaches require the use of a given fixed energy
spectrum Em which is typically obtained by diagonaliz-
ing a certain realisation of an RMT matrix (or another
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matrix for the variants as DANSE or the model with ad-
ditional diagonal elements). However, in Fig. 1(d), we
show the data for 10 different RMT realisations which
would provide individually slightly different S(E) curves.
For this figure we used, for both theoretical S(E) curves,
a fictitious spectrum with Em being the solution of
m− 1/2 = M(Em) for m = 1, . . . , N where

M(E) =
2N

π

∫ E

0

√
1− E′2 dE′

=
N

2
+
N

π

(
arcsin(E) + E

√
1− E2

)
is the integrated density of states of the RMT semi-circle
law such that M(−1) = 0 and M(1) = N . This fictitious
spectrum corresponds to a constant uniform level spacing
in the unfolded spectrum.

The link between the radius (here being unity) of the
semi-circle law of a GOE matrix and the variance of its
matrix elements 〈H2

n,n′〉 = (1+δn,n′)/(4(N+1)) is rather

standard [29]. However, it can be easily verified by com-
puting the average〈

Tr(Ĥ2)
〉

=
1

4(N + 1)

(
2N +N(N − 1)

)
=
N

4

which should coincide with∑
m

〈
E2
m

〉
=

2N

π

∫ 1

−1

dE E2
√

1− E2 =
N

4
.

The above derivations of the thermal distributions ρBE
and ρEQ are done for finite size systems with a finite
number of degrees of freedom. However, they mainly
follow the textbook approach of statistical physics for
systems in the thermodynamical limit with an infinite
number of degrees of freedom.

III. SYMPLECTIC INTEGRATOR

Here we remind some basic facts about symplectic inte-
grators and the particular implementation for our case.
For further details, its derivation, we refer for example
to [43,44,45], especially for the 4th order variant [43].
These kind of methods are also known as splitting meth-
ods [44,45].

A. General method

Let A and B be two non-commuting operators of a
general Lie algebra for which it is possible to compute ex-
actly and efficiently (by some exact numerical/analytical

method) exp(tA) and exp(tB) individually and for arbi-
trary values of t (or more precisely these operators ap-
plied to some given vector or function) while the numer-
ical problem to compute exp[t(A + B)] is very difficult
(very inefficient) or even impossible (as far as an exact
method is concerned).

To solve this problem it is sufficient to compute
exp[∆t(A+B)] for small ∆t (with some given precision)
and then to apply: exp[t(A + B)] = exp[∆t(A + B)]n

with n = t/∆t (assuming that t is an integer multiple of
∆t). To compute exp[∆t(A+B)] approximately one can
write:

exp[∆t(A+B)] ≈
p∏
j=1

[
exp(dj∆tA) exp(cj∆tB)

]
where the product is ordered with increasing j-values
from right to left. The coefficients cj , dj , j = 1, . . . , p are
determined such that the error (for one step) is∼ (∆t)p+1

for a given order p and implying a global error ∼ (∆t)p

(for many steps and fixed t). The simplest case is p = 1
with c1 = d1 = 1 corresponding to the usual Trotter
formula. For p = 2, we have the symmetrized Trotter
formula with c1 = 0, c2 = 1, d1 = d2 = 1

2 . For p = 3
there is a non-symmetric solution which can also be found
in [43] (see references therein for the proper credit) but
which is not really simpler (with all 6 coefficients being
different from zero) than the fourth order solution. For
p = 4 there is a symmetric solution which according to
[43] is:

c1 = 0, c2 = c4 = 2x+ 1, c3 = −4x− 1,

d1 = d4 = x+ 0.5, d2 = d3 = −x

where x = (21/3 + 2−1/3 − 1)/6 is the real solution of
48x3 + 24x2 − 1 = 0. Note that these coefficients verify
the sum rule

∑
j cj =

∑
j dj = 1 due to the first order

terms in both exponential expressions. The fourth order
formula requires as the third order formula the multipli-
cation of 6 exponential factors for one step if one uses an
optimization to merge the d4-factor with the d1-factor of
the next step (a similar optimization is possible for the
symmetrized Trotter formula).

In typical applications one applies this method to solve
numerically the time evolution of a classical Hamiltonian
or a quantum system where the Hamiltonian is a sum
of two terms H1 +H2 for which the individual exponen-
tials (of either the Liouville operator associated to Hj or
−iHj , j = 1, 2) can be computed analytically or by an
efficient exact numerical method. The splitting method
can also be applied to a certain type of partial differ-
ential equations [44,45] with potential complications due
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to time steps of different signs (i.e. coefficients cj or dj
having different signs). However, in our situation where
we have a system of ordinary differential equations for a
finite number of degrees of freedom, with an additional
imaginary factor i applied to the time variable, there is
no numerical nor stability problem with respect to time
steps of different signs.

The advantage of the method is that it respects the
symplectic/unitary symmetry of the problem. Further-
more, even if one chooses a low order variant with a not
so small time step ∆t, one can argue that the approxi-
mate time evolution (with respect to “A+B”) represents
in reality the exact time evolution of a slightly different
operator S ≈ A + B such that exp(∆tS) coincides ex-
actly with the above product of exponential terms and
that many physical features of the modified time evolu-
tion are still very relevant since they apply to the same
“class” of systems.

B. Numerical implementation

In our case, we chose A = −iĤ (in the quantum point

of view or the Liouville operator associated to Ĥ in the
classical point of view) and B = −iV̂ (ψ) where V̂ (ψ) is
an effective potential depending on ψ and with matrix

elements Vn,n′(ψ) = β|ψn|2 δn,n′ . In this case e−itV̂ (ψ)

provides the exact time evolution of the pure nonlinear
equation (assuming Ĥ = 0):

∂ψn(t)

∂t
= −iβ|ψn(t)|2 ψn(t) ⇒

ψn(t) = e−itβ|ψn(0)|2 ψn(0)

which can be easily verified by writing ψn = rn e
−iθn

such that ṙn = 0 ⇒ rn(t) = rn(0) = const. and

θ̇ = βr2
n ⇒ θ(t) = θ(0) + tβr2

n(0). The conservation
of |ψn(t)| = const. (for the pure nonlinear equation) is a
feature of the particular form of the nonlinear term and
due to this V (ψ) does not depend on ψ nor on t (dur-
ing the purely nonlinear time evolution) and the time

evolution due to the quantum exponential of −itV̂ (ψ)
coincides exactly with the time evolution of the expo-
nential of the classical Liouville operator associated to
the nonlinear term.

In the numerical implementation, we choose a certain
initial condition of the state in the representation of the
eigenbasis of Ĥ, e.g. Cm(0) = δm,m0

with m0 being the
index of the initial state. Then, we apply the first ex-
ponential factor with coefficient d1 (and given value of
∆t) which corresponds to e−iEmd1∆t Cm → Cm. Then,

using the unitary matrix that diagonalizes Ĥ, we trans-
form Cm → ψn and we apply the exponential factor
with c2 (since c1 = 0 if p = 2 or p = 4) which corre-

sponds to e−ic2∆tβ|ψn|2 ψn → ψn which represents exactly
the purely nonlinear time evolution. Then we transform
ψn → Cm and apply the next exponential factor with
coefficient d2 etc. (If one uses a non-symmetric variant,
with c1 6= 0, for p = 1 or p = 3 one has first to transform
the initial condition to ψn, apply the first c1-factor and
transform back to Cm.)

We have implemented and tested all four variants of
the method. In particular, we have verified that the clas-
sical energy is conserved, i.e. its residual numerical fluc-
tuations (∼ 10−8 for the fourth order variant at ∆t = 0.1)
scale with (∆t)p and also that the errors of other quan-
tities scale with (∆t)p. For the case of a RMT with an
extra diagonal where the values Em become larger, we
have also tested the precision by comparing some data
with ∆t = 0.0125 (for reduced iteration times) which
does not change the values of S etc. (apart from statis-
tical fluctuations).
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IV. ADDITIONAL FIGURES

In this section, we present additional SupMat Figures
for the main part of this article. The figure captions and
figure notes contain physical discussions or additional in-
formation for figures in the main part; in particular the
values of T and µ for both approaches and the four states
shown in Fig. 3 are given in the caption of Fig. S4 below.

FIGURE NOTES

Notes Fig. S1: The initial states are linear eigenstates

φ
(m0)
n of Ĥ (i.e.

∑
n′ Hn,n′φ

(m0)
n′ = Em0

φ
(m0)
n ) with spe-

cific values of m0 given in the figure. The entropy is
computed from S(t) = −∑m ρm ln(ρm) where ρm is ob-
tained as the time average ρm = 〈|Cm(t)|2〉 for successive
time intervals with increasing lengths by a factor of two
corresponding to the plateau intervals of constant S(t)
visible in the figure. The thick horizontal lines represent
the theoretical entropy SEQ for EQ (blue) and SBE for
BE (red) for the energy of the state at β = 1 and m0 = 3
(pink open squares). At intermediate times t ≈ 2 × 104

the entropy of this state is close to SBE while at longer
times t ≥ 106 it decreases to SEQ showing that the EQ
ansatz describes the correct long time thermalization but
also that at intermediate times the entropy is larger and
closer to the BE ansatz. The other states m0 = 11, 30, 57
at β = 1 thermalize rather quickly at t ≥ 104-105 to
their final value SEQ (with SBE ≈ SEQ for m0 = 30).
For β = 0.1 the state m0 = 30 (cyan full squares) ther-
malizes to the same entropy value as with β = 1 (green
crosses) but only for very long time scales t ≥ 106.
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β = 1, m0 = 57
β = 1, m0 = 30
β = 1, m0 = 11
β = 1, m0 = 3
β = 0.1, m0 = 30
β = 0.02, m0 = 30
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FIG. S1: Time dependence of the entropy S(t) for the four
states shown in Fig. 3 and two other states at β = 0.02, 0.1
with initial index m0 = 30 (for β = 0.02, 0.1 the other three
index values m0 = 3, 11, 57 correspond to very small entropy
S(t) values clearly below the case m0 = 30). See details in
FIGURE NOTES of Fig. S1.

Notes Fig. S2: For β = 1, N = 256 the time average
corresponds to 221 ≤ t ≤ 222 (red +, all 256 initial con-
ditions) and 225 ≤ t ≤ 226 (blue ◦, 35 initial conditions
with 1 ≤ m ≤ 35). The curves represent the theoretical
S(E)-curves from the EQ (blue) and BE (red) approaches
using the exact spectrum of the used RMT realisation.
The data point with S > 1 for N = 32, β = 0.02 is not
saturated and still increasing at the given maximal time
t = 227. The data for β = 1, N = 128 and β = 1, 2,
N = 256 coincide very well with the EQ ansatz. Also
for N = 32 the EQ ansatz is more appropriate. Here the
small differences to the theoretical EQ-curve are due to
the fact that on the x-axis the initial energy Em is used
and not the averaged linear energy 〈E〉 =

∑
m′ Em′ρm′

using the long time average ρm′ and which is slightly dif-
ferent from Em due to the nonlinear term. Using 〈E〉
the data points (for the cases with good thermalization)
fall nearly exactly on the theoretical curve. For β = 1,
N = 256 the data points withm ≥ 10 thermalize well and
rather early to the EQ curve already for the time average
interval 221 ≤ t ≤ 222. The data points for 1 ≤ m ≤ 5
and m = 7 do not thermalize at all even for 225 ≤ t ≤ 226

with entropy values clearly below the EQ and BE curves
and being rather constant between 222 ≤ t ≤ 226. The
two data points for m = 6 and m = 9 thermalize late to
the EQ curve for 225 ≤ t ≤ 226 while for 221 ≤ t ≤ 222

their entropy values are clearly below the EQ and BE
curves. The data point at m = 8 also approaches late
the EQ curve (225 ≤ t ≤ 226) but from above, i.e. with
early entropy values (221 ≤ t ≤ 222) slightly above the
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EQ curve but still clearly below the BE curve. Addi-
tional and more detailed figures (higher resolution and
more data points at different times) for theses points are
available at [46].

We note that for N = 128, 256 detains states close to
the spectral border E = ±1 are not thermalized even
at very large times. We attribute this to the fact that
at such energies the energy level spacing is significantly
increased as compared to the band center and thus a
stronger nonlinearity β is required for thermalization. In-
deed, for the larger nonlinearity parameter β = 2 more
states of those border states are thermalized as compared
to β = 1. More data for N = 256 are available in [46].
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β = 0.02

N = 32
S
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β = 1

N = 32
S
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β = 0.02

N = 128
S

0
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4

-1 0 1Em

β = 1

N = 128
S

0

2

4

-1 0 1Em

β = 1

N = 256

S

0

2

4

-1 0 1Em

β = 2

N = 256

S

FIG. S2: Dependence of entropy on energy S(E). As in Fig. 1
data are for one RMT realisation, β = 0.02, 1 for N = 32, 128
and β = 1, 2 for N = 256, ρm obtained by the time average
for 221 ≤ t ≤ 222 for N = 128, 256 and 226 ≤ t ≤ 227 for
N = 32 (blue ◦, all panels except β = 1, N = 256). See
details in FIGURE NOTES of Fig. S2.

Notes Fig. S3: The data points in Figs. 2 and S3
were obtained by computing µ and T from the implicit
set of the two equations : Snum. = −∑m ρm ln ρm and
1 =

∑
m ρm using the expressions Eq. (2) for both ap-

proaches and the numerical values of Snum. (data points
in Figs. 1 and S2). Therefore, if Snum. and S(E) are
not identical (due to statistical fluctuations or lack of
thermalization), these data points do not need to fall ex-
actly on the theory curves which were obtained by solv-
ing another set of two equations : E =

∑
mEmρm and

1 =
∑
m ρm (using Eq. (2)). The deviations of the data

points with respect to the theory curves are significantly
weaker for the EQ case than for the BE case but the
latter are still quite weak, even though better visible in
Fig. S3 as compared to Fig. 2 (with no visible difference
on graphical precision). This observation confirms some-
how that the EQ ansatz fits better the numerical data
but the analysis shown in Figs. 2 and S3 does not allow
to distinguish very clearly between the validity of either
the EQ or the BE ansatz.

For this the direct comparison the numerical values of
ρm with the expressions (2) (see Figs. 3 and S4), provide
a much stronger argument in support of the EQ ansatz.

-2

0

2

-1 0 1E

T

-4

0

4

-1 0 1E

µ

FIG. S3: As Fig. 2 but for the BE case. Here the data
points for T and µ, computed from the numerical data of
S, show some small deviations from the theoretical curves
which are visible in the figure and significantly larger than
in Fig. 2 where no deviations for the EQ case (on graphical
precision) are visible. Furthermore, in comparison to the EQ
case of Fig. 2 the typical values of T and µ for the BE case
are considerably larger. See details in FIGURE NOTES of
Fig. S3.

Notes Fig. S4: Here, the blue curve shows the theoret-
ical values based on EQ with ρEQ(E) = T/(E − µ) and
T = 0.002007, 0.004986 (T = 0.0006853, 0.001414), µ =
−0.9995,−1.041 (µ = −1.006,−1.009) for m0 = 11, 31
and N = 128 (N = 256). T and µ were determined
from the solution of the equations 1 =

∑
m ρEQ(Em)

and 〈E〉 =
∑
mEmρEQ(Em) with 〈E〉 =

∑
mEmρm ≈

Em0
. The red line shows the theoretical values based

on BE with ρBE(E) = 1/(exp[(E − µ)/T ] − 1), T =
0.1983, 0.5562 (T = 0.1301, 0.2686), µ = −1.434,−2.914
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(µ = −1.300,−1.875) for m0 = 11, 31 and N = 128
(N = 256). Here T , µ were determined from the so-
lution of the equations 1 =

∑
m ρBE(Em) and 〈E〉 =∑

mEmρBE(Em). Furthermore, the energy values for
m0 = 11, 31 and N = 128 (N = 256) are Em0 ≈ 〈E〉 =
−0.7426,−0.4031 (Em0

≈ 〈E〉 = −0.8307,−0.6469).
The thermalization of all four states according to the
EQ theory is very good (essentially perfect) despite the
shorter averaging time for the case N = 128 as compared
to Fig. 3. For N = 256 the averaging time is rather long
but here the selected states are closer to the band edge at
Emin = −1 and with lower temperature values (than for
N = 128) such that thermalization is more difficult. Ad-
ditional similar figures for other values of m0 at different
values of N are available at [46].

These results clearly show that the dynamical thermal-
ization of ρm is very well described by the EQ ansatz (2).
High quality figures of ρm for all initial states values m0

at N = 256 are available in [46], including all thermalized
states with negative temperatures T < 0 which appear
at energies Em0

> 0.
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N = 128
m0 = 31

-4

-3

-2

-1

0

-1 0 1Em

log10(ρm)

N = 256
m0 = 11

-4

-3

-2

-1

0

-1 0 1Em

log10(ρm)

N = 256
m0 = 31

FIG. S4: Dependence of ρm on Em for two states with
initial state m0 = 11, 31 for β = 1, N = 128 (N = 256)
obtained by an time average in the interval 221 ≤ t ≤
222 (225 ≤ t ≤ 226). Complementary information for
Fig. 3: The T and µ values for the EQ ansatz and the
four states m0 = 3, 11, 30, 56 with N = 64 and β = 1
of Fig. 3 are T = 0.001372, 0.005984, 0.07585,−0.004538,
µ = −0.8964,−0.9178,−4.892, 0.9293 and the correspond-
ing values for the same states and the BE ansatz are T =
0.112, 0.3581, 4.913,−0.2649, µ = −1.062, −1.794, −20.52,
1.496. See details in FIGURE NOTES of Fig. S4.

Notes Fig. S5: This figure clearly shows that the sta-
tistical distribution of Cm(t) (or of the quantity u ≡
|Cm(t)|2) is very well described by the thermal Boltz-
mann Gaussian distribution exp(−(Em − µ)|Cm(t)|2/T )
(or exponential distribution exp(−(Em − µ)u/T ) in u)
for values up to u ≈ (8-10)× 〈u〉.

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 2 4 6 8 10 12 14

x =
Em − µ

T (Em0
)
|Cm(t)|2

p(
x
)

x

m = 9
m = 17
m = 25
m = 33

e−x

FIG. S5: Statistical distribution of the rescaled variable x =
(Em − µ)|Cm(t)|2/T (Em0) for β = 1, N = 64, m0 = 9, m =
9, 17, 25, 33 using the time values in the interval 223 ≤ t ≤ 224

and a histogram of bin width 0.05. The thin black line shows
the theoretical distribution p(x) = e−x according to the EQ
approach. The numerical distributions follow the theoretical
distribution for values up to x ≈ 8-10 providing an additional
confirmation for the validity of the EQ ansatz. See details in
FIGURE NOTES of Fig. S5.

Notes Fig. S6: This figure is similar to Fig. 5 but with
additional β values : Lyapunov exponent λm dependence
on Em with m being the index of the initial state φ(m) for
N = 64. Here λm is determined from the fit ln ‖∆ψ(t)‖ =
a + b ln(t) + λm t for t ≤ 222 and β = 2 (grey N; top),
β = 1.5 (orange M), β = 1 (black •), β = 0.75 (cyan �),
β = 0.5 (pink �), β = 0.25 (blue ∗), β = 0.1 (green ×),
β = 0.02 (red +), β = 0.02 for t ≤ 227 (red O; bottom).
The numerical data suggests that most λm for β = 0.02
decay as λm ∼ 1/

√
t for t ≥ 107 (see Fig. S10 below).

However, three λm values for β = 0.02 do not decay with
time (data points with same red + and O; e.g. m =
45 and Em ≈ 0.35) and have significantly larger values
λm > 10−5 indicating a trajectory in a chaotic region
while other initial conditions correspond to trajectories
in bounded KAM regions. These cases are also visible in
Fig. 1 (a) with entropy values slightly above 0.
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log10(λm)

FIG. S6: Dependence of Lyapunov exponent λm on the en-
ergy Em of the initial state φ(m), same as in Fig. 5. See details
in FIGURE NOTES of Fig. S6.

Notes Fig. S7: In the bottom panel the fits are done
using all data points such that the values for β ≤ 0.05
have a smaller weight due to the reduced number of dif-
ferent initial conditions. Very long time computations for
35 random initial conditions at β = 0.02 for t ≤ 3× 109

(t ≤ 109) for N = 32 (N = 64) indicate a chaotic be-
havior with no further global decrease of λ with time for
t > 227 ≈ 1.3×108. There are however considerable fluc-
tuations between different initial conditions and in the
time dependence (but with very long correlation times)
of the order of 10-15%. Additional figures for this point
are available at [46].

We point out that for a localized initial condition with
only one mode m the Lyapunov exponent at β = 0.02
(top panel) decreases with time as λ ∼ t−1/2 (see Fig.
S10) indicating a non-chaotic behavior in the limit of very
large times. In contrast for states ψ(t) =

∑
m Cm(t)φ(m),

with uniform random initial Cm amplitudes at t = 0 (bot-
tom panel), the Lyapunov exponents are well stabilized
at large times t < 1.3×108 even for β = 0.02 (see Figs. in
[46]). These state have automatically an average energy
E ≈ 0 close to the band-center. It is important to stress
that all states with initial random configurations have ap-
proximately the same values of λ > 0. This means that
even at small value β = 0.02 the measure of the chaotic
component (at E ≈ 0) is close to unity. This result is
very different from many-body nonlinear systems stud-
ied in [47] where the measure of the chaotic component
is ∼ β.
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FIG. S7: Top: Dependence of Lyapunov exponent λ32 on β
in the energy band center for the localized initial condition
at m = 32, N = 64 and computation time t = 222. The
straight green line shows the power law fit λ32 = aβη with
a = 0.00143 ± 0.00005 and η = 1.52 ± 0.03. For this fit
the smallest data point at β = 0.02 was not used since for
this value the Lyapunov exponent continues to decrease with
increasing computation time t and it is most likely below the
chaos border. Bottom: Dependence of Lyapunov exponent
λ on β for many different random uniform Cm configurations
(most energy values 〈E〉 ≈ 0 and some cases with 〈E〉 ≈ ±0.1)
for N = 32, 64 and computation time t = 222 (t = 227) for
β ≥ 0.1 (β ≤ 0.05). The number of initial conditions is 64
for β ≤ 0.05, and (at least) 10N = 320, 640 for β ≥ 0.1;
symbols at fixed β mark λ for different initial configurations.
The straight green line shows the power law fit λ = aβη with
a = 0.00474 ± 0.000009 and η = 1.524 ± 0.0015 for the case
N = 32. The straight pink line shows the power law fit λ =
aβη with a = 0.001426± 0.000002 and η = 1.491± 0.0013 for
the case N = 64. See details in FIGURE NOTES of Fig. S7.

Notes Fig. S8: In the bottom panel symbols at fixed N
show λm values for different initial condition (one mode
φ(m) with energy close to the band center); all obtained
λm values are rather close to each other. This indicates
that at β = 1 the measure of the chaotic component is
close to unity for N ≤ 512 (see also NOTES of Fig. S7).
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λ
m

N

λm
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FIG. S8: Dependence of Lyapunov exponent λN/2 on N at
β = 1. Top: data for the band center and computation time
t = 222 (t = 224) for N ≤ 384 (N = 512). The straight
green line shows the power law fit λN/2 = aN−ν with a =
3.19 ± 0.19 and ν = 1.88 ± 0.01 using the data for N ≥ 32.
Bottom: Same as top but showing all λm values corresponding
to |Em| ≤ 0.1 (for N ≤ 128) or 35 values in the band center
with |m −N/2| ≤ 17 (for N ≥ 192). The straight green line
shows the power law fit λN/2 = aN−ν with a = 3.30±0.04 and
ν = 1.886±0.002 using the data for N ≥ 32. The data of both
panels correspond to the case of localized initial conditions at
some value m (with Em being close to the band center). See
details in FIGURE NOTES of Fig. S8.

Notes Fig. S9: At β = 1 the scaling λ ∝ 1/Nν with
ν = 1.89 works well in the energy band center. Certain



10

deviations from this scaling are seen in the vicinity of the
energy edges E ≈ ±1. We attribute this to a significant
increase of level spacing at band edges that may modify
chaos properties at different N at band edges.
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100
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λ
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N
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N = 32
N = 48
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N = 96
N = 128
N = 192
N = 256
N = 384
N = 512

FIG. S9: Dependence of rescaled Lyapunov exponent λmN
ν

on the initial energy Em using the exponent ν ≈ 1.89 found in
the fit of (the bottom panel of) Fig. S8 for different values of
N with 32 ≤ N ≤ 512 and β = 1. For N ≥ 192 only 35 values
of λm (per N value) in the band center with |m−N/2| ≤ 17
are available and shown. See also FIGURE NOTES of Fig. S9.

Notes Fig. S10: Here λm(t) has been obtained by the
fit ln ‖∆ψ(τ)‖ = a + b ln(τ) + λm τ for 0 ≤ τ ≤ t and

for values t ≤ 227 where ∆ψ(τ) = ψ̃(τ)− ψ(τ) is the dif-
ference vector between two close initial conditions with
ψ(0) = φ(m), ψ̃(0) = ψ(0) + ∆ψ(0) and ∆ψ(0) being a
random vector with initial norm ‖∆ψ(0)‖ = 10−12. Dur-
ing the computation the difference vector ∆ψ(τ) is reg-
ularly renormalized to the norm 10−12 when its norm
has become larger than 10−10 such that both trajec-
tories stay close and the logarithm of the renormaliza-
tion factor is added to a special variable measuring the
quantity ln ‖∆ψ(τ)‖ which is used for the computation
of the Lyapunov exponent. The rescaled logarithmic
growth (ln ‖∆ψ(t)‖)/t shows roughly the same behavior
as λm(t), with a final slope somewhat closer to the expo-
nent −1/2 than for λm(t) (in logarithmic representation
and for t ≥ 107).

The two cases at m = 31, r = 0, 1 indicate a vanishing
Lyapunov exponent in the limit t→∞ and a trajectory
in a bounded KAM region. The Lyapunov exponent for
the other two cases at m = 45 (with E45(r = 0) ≈ 0.351
and E45(r = 1) ≈ 0.310) saturate to the values λ45(r =
0) ≈ 1.47 × 10−5 and λ45(r = 1) ≈ 8.89 × 10−6 in the
limit t → ∞ indicating a trajectory in a chaotic region
probably due to the effect of a near triple quasi-resonance
for the given RMT realisation. For the first realisation
r = 0 there are three cases like this as can be seen in
Figs. 5 and S6 (see also caption therein). The observation
that for both realisations there are saturated Lyapunov
values at the same index m = 45 is a coincidence and
for example for m = 32 (not shown in the figure) there
is a stabilized Lyapunov exponent for r = 1 but not for
r = 0.



11

10−9

10−8

10−7

10−6

10−5

10−4

104 105 106 107 108

λ
m
(t
)

t

r = 0, m = 31
r = 0, m = 45
r = 1, m = 31
r = 1, m = 45

∼ 1/
√
t

FIG. S10: Dependence of Lyapunov exponent λm(t) on time
t for β = 0.02, N = 64 and two initial states in the band
center, m = 31, 45. Data are for two RMT realisations r = 0
(same realisation as for most main and SupMat figures con-
cerning the RMT case) and r = 1. The cyan full line shows

10−2/
√
t to indicate an empirical t−1/2 power law λ ∝ t−1/2

at large times. See details in FIGURE NOTES of Fig. S10.

Notes Fig. S11 and Fig. S12: These two figure corre-
spond to the case of the DANSE model studied in [36]. In
the limit N →∞ and β = 0 the model is reduced to the
Anderson model in one-dimensions with exponentially lo-
calized eigenstates and the localization length ` ≈ 96/W 2

in the band center. Here W is the strength of the diag-
onal disorder. For N = 32, 64 and W = 2, 4 the value of
` is comparable to the system size and chaos induced by
the nonlinearity β leads to dynamical thermalization EQ
(2) as it is shown in Fig. S11 and Fig. S12. More thermal-
ization figures for all initial eigenmodes, including those
leading to negative temperature T < 0 are available at
[46].
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FIG. S11: As Fig. 1 but for one realisation of the DANSE
model of [36] at disorder strength W = 2 and W = 4 for β = 2
and N = 64. The data points correspond to the averaging
time 223 ≤ t ≤ 224 (blue ◦) and 220 ≤ t ≤ 221 (red +; similar
t values as in [36]). See also FIGURE NOTES of Fig. S11 and
Fig. S12.
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FIG. S12: As Figs. 3 and S4 but for one realisation of the
DANSE model of [30] at disorder strengths W = 2 and W = 4
for β = 2, N = 64 and two initial states with m0 = 10, 20.
The data points correspond to ρm obtained by the averaging
time 223 ≤ t ≤ 224 (blue ◦) and 220 ≤ t ≤ 221 (red +;
similar t values as in [30]). The values of T and µ for the
EQ approach are T = 0.0124, 0.02626, 0.01997, 0.04636 and
µ = −2.484,−2.784,−3.157,−3.952 for W = 2 with m0 =
10, 20 and W = 4 with m0 = 10, 20. The values of T and
µ for the BE approach are T = 0.8794, 1.815, 1.26, 3.011 and
µ = −4.709,−8.171,−6.346,−13.07 for the same states. For
W = 2 both states are well thermalized according to the EQ
case. For W = 4 the thermalization also corresponds to the
EQ case but there are still stronger fluctuations, especially
for the data with shorter averaging time (and corresponding
to the data of [30]). See also FIGURE NOTES of Fig. S11
and Fig. S12.

Notes Fig. S13 and Fig. S14: These figures corre-
spond to the case with an additional linearly growing
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term fn added to the diagonal matrix elements Hn,n.
At β = 1, N = 32 and f = 0.25 the dynamical thermal-
ization is reached at large times but it is not completely
the case for f = 0.5 (see Fig. S13). As shows Fig. S14 at
initial times we have an approximate exponential drop of
probabilities ρm with Em (red crosses) which is similar to
a BE or quantum Gibbs distribution. However, at larger
times the distribution ρm approaches the theoretical EQ
curve (2). We assume that there is a relatively rapid pro-
cess of chaotic mixing of modes being close to the initial
m = m0 value and those with lower energies at m < m0.
Somehow it is easy to go to low energies while the prop-
agation of excitations to higher energies, with m being
significantly higher than m0, goes as a slow diffusion re-
quiring significantly longer times. Indeed, at f = 0.5,
N = 64 the whole energy range is close to EN −E1 ≈ 32
being much larger than the range EN −E1 ≈ 2 at f = 0.
We argue that such a slow diffusion in energy is at the
origin of the approximate BE distribution found in nu-
merical simulations with the Bunimovich stadium [33]
and the Sinai oscillator [34] which have a very broad en-
ergy range and the time of numerical simulations was
not very high due to the complexity of the integration of
GPE.
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FIG. S13: As Fig. 1 for the case of an RMT plus extra
diagonal matrix elements fn with parameter f = 0.25 or f =
0.5 for β = 1 and N = 32. The data points correspond to
the averaging time 226 ≤ t ≤ 227 (blue ◦ for f = 0.25, 0.5),
219 ≤ t ≤ 220 (red + for f = 0.5) and 214 ≤ t ≤ 215 (red
+ for f = 0.25). See also FIGURE NOTES of Fig. S13 and
Fig. S14.
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FIG. S14: As Fig. 3 for the case of an RMT plus extra
diagonal matrix elements fn with parameter f = 0.25 for
β = 1, m0 = 1, 3, 4, 6 (N = 32) or m0 = 7, 10 (N = 64). The
data points correspond to ρm obtained by the averaging time
226 ≤ t ≤ 227 (blue ◦), 219 ≤ t ≤ 220 (red +; for N = 64) and
214 ≤ t ≤ 215 (red +; for N = 32). At longer times t = 227 the
states are (quite) well thermalized according to the EQ case
(with somewhat stronger fluctuations for N = 64). However,
at the intermediate time scale the values of ρm are closer to
the BE line thus explaining that the corresponding entropy
values are also closer to the BE curve. See also FIGURE
NOTES of Fig. S13 and Fig. S14.

Scaling of Lyapunov exponent and chaos border
The numerical results presented in Figs. 5, S6-S10 are

reasonably well described by the scaling relation:

λ ∼ βη/Nν , η = 3/2, ν = 2. (S.5)

Indeed, the fits of data give values η = 1.52 and ν =
1.89 being close to (S.5) and we assume that in the limit
of large N and small β we will have the exponents of
(S.5).

We find that most states with localized initial condi-
tions (Cm(t = 0) = δm,m0) have zero Lyapunov expo-
nents at our smallest value β = 0.02 (with a few excep-
tions due to strong quasi degenerate levels as discussed
above). But at the same time the Lyapunov exponent
is positive for random initial configurations with random
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and uniform initial values of Cm (which gives automati-
cally an initial energy close to the energy band center).
All such states have approximately the same values of
λ indicating that the measure of the chaotic component
is close to unity. At present, we cannot say what is the
precise chaos border βc for such states. For the moment,
we do not have theoretical arguments for the found de-
pendence (S.5).

We only note that equation (1) for the time evolution
can be rewritten in the basis of linear eigenmodes (see
eqs. Eq.(3) in [28] or Eq.(2) in [29]). In this representa-
tion the transitions between modes are induced only by
β-terms with 4-mode interaction (or 4-wave interaction)
Cm1

Cm2
C∗m3

C∗m exp[−i(Em1 +Em2−Em3−Em)t]. In the
RMT case the amplitudes of this interaction have a typ-
ical value Q ∼ 1/N3/2 (see also [28,29]). Thus the lowest
energy difference between these 4 energies is of the order
of δE ∼ 1/N2 that can be at the origin of ν ≈ 2 and
rather low chaos border with βc < 0.02. We note that
the same estimate for δE remains valid even in presence
of the diagonal term fn that stress the importance of
4-mode interactions.

However, the above estimates remain insufficient and
the understanding of the relation (S.5) requires further
studies.

V. DYNAMICAL THERMALIZATION IN
MULTIMODE OPTICAL FIBERS

Very recent remarkable experiments (published at 8
February 2023; after the submission date 22 Decem-
ber 2022 of our work) with multimode optical fibers
(MMF) [46] demonstrated dynamical thermalization in
MMF with negative temperature. It is stressed there
that this is a dynamical thermalization resulting from
pure Hamiltonian dynamics without an external thermal
bath [46]. The equilibrium state is a thermal state with
energy equipartition over fiber modes described by the
EQ ansatz (2) also known in optics as Rayleigh-Jeans
distribution. As we pointed out in Eq,(2) the EQ ansatz
is a limiting case of the BE ansatz when the temperature
is large compared to Em − µ in the BE exponent. This
can be considered as the case when the field has many
photons of linear modes.

There is a significant literature with discussions, nu-
merical simulations and experiments on dynamical ther-
malization in MMF (see e.g. Refs. S1,S2,S3,S4,[46]). The
emergence of Rayleigh-Jeans distribution is explained in
the frame work of the weak turbulence approach (see
Refs. S5,S6,S1,S2). However, it should be pointed out
that the weak turbulence theory (see Refs. S5,S6) as-

sumes an existence of a certain weak randomizing force
that disappears in the final equilibrium state. This is
in direct contradiction with the dynamical Hamiltonian
equations leading to the equilibrium thermal state. In
fact it is clear that the origin of dynamical thermalization
in MMF is dynamical chaos and its exponential instabil-
ity of motion is related to a positive maximal Lyapunov
exponent. However, strangely enough no notion of dy-
namical chaos and Lyapunov exponent appeared in the-
oretical arguments of Refs. S1,S2.S3.S4. Also from the
theory of chaos it is clear that no thermalization appears
if the nonlinear perturbation is sufficiently weak and be-
low the chaos border (KAM integrability, see Refs.[5-8]).
In fact, we should note that in contrast to our RMT case
the spectrum of MMF discussed in Refs. S1-S4,[46] has a
form E ∝ (mx +my + const) thus with exact degenerate
energy levels for the lowest 45 modes considered practi-
cally in all MMF cases (and also in [46]). As was shown
in [27,41] for such a case with degeneracy of modes the
KAM theory is not valid and dynamical chaos appears
at an arbitrarily small nonlinear perturbation. However,
such chaos is localized only on degenerate modes and does
not lead to dynamical thermalization over all modes.

Another interesting note about dynamical thermaliza-
tion in MMF experiments is about the validity of BE or
EQ ansatz (2). It is possible to assume that the light
waves are classical and then one should observe the EQ
or Rayleigh-Jeans distribution over modes. However, the
real life is of course described by quantum mechanics
with second quantization of photons and their interac-
tions that should lead to the Bose-Einstein distribution
(BE ansatz (2)). It is possible that in MMF experiments
the number of photons was very large, dynamical temper-
ature was high and the BE distribution was transferred to
its classical limit with the EQ ansatz (or Rayleigh-Jeans).
However, it is interesting to know if MMF can operate in
a quantum regime with the BE thermal distribution.

We also point out that all discussed MMF systems have
very simple integrable spectrum with E ∝ (mx + my +
const) being rather far from the RMT spectrum which
corresponds to a generic case. Of course, it is difficult
to realize such an RMT case with MMF. However, it is
possible to have cases when a fiber cross-section have a
form of a chaotic billiard. It may be the Bunimovich sta-
dium (two semi-circles connected by two parallel straight
lines), or a circle with a line cut. In such systems the clas-
sical dynamics is chaotic and the level spacing statistics
is the same as for RMT [25,26]. So we assume that such
sections can be realized technologically thus allowing to
study nonlinear effects for MMF in a regime of quantum
chaos.
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VI. GENERIC FEATURES OF DYNAMICAL
THERMALIZATION IN THE NLIRM MODEL

The emergence of dynamical thermalization and its
properties appeared as far as 150 years ago in 1872 in the
work of Boltzmann who established the foundations of
statistical mechanics and thermalization from dynamical
equations [1] (see also the related Boltzmann-Loschmidt
dispute [2,3,4]). The first attempt to obtain dynamical
thermalization in a nonlinear oscillator system, known as
the FPU problem [10], was not successful due to certain
specific features of the FPU model.

In this work, we considered the NLIRM model (1),
which describes the classical dynamics of nonlinear os-
cillators, coupled by a Gaussian random matrix, and in
which a moderate nonlinearity leads to the emergence
of dynamical chaos followed by the classical dynamical
thermal distribution Eq. (2) corresponding to the en-
ergy equipartition between oscillator modes of the un-
perturbed linear system.

We argue that, in contrast to the FPU problem [10],
our NLIRM model captures the generic features of linear
oscillator systems with moderate nonlinear interactions
between linear eigenmodes.

First, the statistical classical theory given above in sec-
tion I, is very generic and applies to generic linear cou-
plings and generic interactions as long as we have the
two integral of motions and as long as the system is suf-
ficiently chaotic to ensure thermalization.

Furthermore, without the nonlinearity the oscillators
are described by Random Matrix Theory (RMT) which
captures the generic features of such diverse quantum
systems as complex atoms, molecules and nuclei, meso-
scopic electronic systems and systems of quantum chaos
[22,23,24,25,26].

In this work, we mostly used a nonlinear onsite interac-
tion which is broadly used in condensed matter systems
and is known as the Hubbard interaction (see e.g. Ref.
S7). We showed that this interaction leads indeed to the
EQ dynamical thermal distribution (2), perfectly con-
firming the theory of section I, not only for the linear os-
cillator system described by the RMT model but also by
the DANSE model studied previously in [28,29,30] pro-
vided the iteration time is sufficiently long (see Figs. S11,
S12). This confirms the generic properties of the NLIRM
model concerning the linear oscillator couplings.

However, one can question if this model is also generic
concerning the specific form of the onsite interaction and
if the latter captures the generic features of dynamical
thermalization in the NLIRM model. To study this ques-
tion, we have also considered two modified interaction

models which are not restricted to onsite interactions
only and which correspond (i) to nearest neighbors in-
teractions (NNI) and (ii) to long range “Coulomb type”
interactions (COULI). In these models the wavefunction
evolution is described by the equation

i~
∂ψn(t)

∂t
=

N∑
n′=1

Hn,n′ψn′(t) (S.6)

+ β

∑
j

Vj |ψn+j(t)|2
ψn(t) .

with interaction couplings Vj = 1 for j = −2,−1, 0, 1, 2
and Vj = 0 for other |j| > 2 in the NNI case and Vj =
1/(1+|j|) for −N/2+1 < j < N/2+1 in the COULI case;
the linear term with Hn,n′ (taken as a Gaussian random
matrix) remains unchanged. In (S.6), if n + j < 0 or
n + j ≥ N we apply periodic boundary conditions, i.e.
n+ j → n+ j +N if n+ j < 0 and n+ j → n+ j −N if
n+ j ≥ N . One can easily verify that for these types of
interactions, we also have two integrals for motion being
the conserved norm 1 =

∑
n |ψn(t)|2 and the conserved

classical energy which now reads :

E =
∑
n

(
< ψn(t)|Ĥ|ψn(t) > (S.7)

+
β

2
|ψn(t)|2

∑
j

Vj |ψn+j(t)|2
)
.

Therefore, the statistical classical theory given above in
section I, equally applies to these kind of interactions.

Furthermore, the considerations of section IIB can be
generalized for these interactions. In particular in ab-
sence of the linear coupling (if Hnn′ = 0) the pure
nonlinear dynamics conserves the individual values of
rn = |ψn(t)| = const. and only the phases θn(t) evolve
such that (for the pure nonlinear dynamics) we have:

ψn(t) = e−itβ
∑

j |ψn+j(0)|2 ψn(0) .

This point is important to justify the use of the sym-
plectic integrator which requires to compute the exact
exponential exp(tB) of the operator B corresponding to
the nonlinear term (see section IIB). We have verified
that (i) the 4th order symplectic integrator, applied to
both modified interaction models, still produces results
such that the (global) error of the method scales with
(∆t)4 and (ii) that the classical energy (S.7) is indeed
conserved with small numerical variations ∼ 10−9-10−8

for ∆t = 0.1.
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FIG. S15: Dependence of entropy on energy S(E) for both
modified interaction models NNI, COULI, parameters β =
1, N = 64 and localized initial conditions (as in Fig. 1). The
entropy S is computed from ρm obtained by the time average
223 ≤ t ≤ 224 (blue ◦) or 211 ≤ t ≤ 212 (red +). Both panels
have to be compared with Fig. 1(c) which corresponds to
the same values of β,N and average interval for t but for the
onsite interaction.
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FIG. S16: Dependence of ρm on Em for both modified interac-
tion models NNI and COULI and two states for each case with
initial state m0 = 3, 57 for NNI and m0 = 11, 57 for COULI
obtained by an time average in the interval 223 ≤ t ≤ 224

(similar states and same parameters, β = 1, N = 64, as in
Fig. 3 except for the modified interaction model). As in
Fig. 3 the blue curve shows theory of the EQ ansatz with
with ρEQ(E) = T/(E − µ) and the red line shows the BE
ansatz ρBE(E) = 1/(exp[(E−µ)/T ]− 1) with µ and T deter-
mined from the norm and energy conservation as explained
in the main text below Eq. (2).

The entropy dependence on energy S(E) shown in
Fig. S15 clearly confirms for both modified interaction
models a thermalization to the classical EQ ansatz. The
data points have to be compared with Fig. 1(c) which
corresponds to the same values of β,N and same time
average intervals for t but for the onsite interaction. The

secondary set of data points for the reduced time interval,
211 ≤ t ≤ 212, is actually closer to the theoretical EQ-
curve as compared to Fig. 1(c) showing that the ther-
malization time scale is even reduced, in particular for
the NNI case. For the longer time scale, 223 ≤ t ≤ 224,
the data points lie nearly perfectly on the theoretical EQ-
curve. Actually, our numerical data show that, for β = 1,
the thermalization is already very good for t ≥ 215.

Fig. S16 shows two examples for each modified interac-
tion model NNI and COULI of the dependence of ρm on
Em for similar initial values m0 as in Fig. 3. Also here the
data matches perfectly the theoretical EQ-curves. More
detailed figures for the full set of initial conditions, both
modified interaction models, and β = 0.5, 1, N = 64 are
available at [40].

Therefore, the results presented in both figures clearly
show that for both modified interaction models governed
by Eq. (S.6), the steady-state of the system is still very
well described by the dynamical thermal distribution cor-
responding of Eq. (2) for the EQ case (with T and µ
determined by two implicit equations as explained below
Eq. (2)).

The physical reasons why a modification of the inter-
action range does not affect the steady-state thermal dis-
tribution are (i) the theory of section I does not depend
on the particular choice of the interaction, as long as
it mixes the linear modes and (ii) the generic features
of the linear RMT term corresponding to “ergodic lin-
ear oscillator eigenmodes” (i.e. “ergodic” in one particle
quantum/oscillator space) such that all types of mod-
erate interactions lead to a nonlinear coupling of these
modes with randomly fluctuating amplitudes (the same
holds for the DANSE model if the “linear quantum” lo-
calization length is comparable to the system size N , see
also [28,30]).

We also point out that the dynamical thermal distri-
bution EQ (2) has been observed in experiments with
multimode optical fibers (see [45], Ref. S3, Ref. S4).
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