
Nonlinear perturbation of Random Matrix Theory

Klaus M. Frahm1 and Dima L. Shepelyansky1
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We consider a system of linear oscillators, or quantum states, described by Random Matrix The-
ory and analyze how its time evolution is affected by a nonlinear perturbation. Our numerical
results show that above a certain chaos border a weak or moderate nonlinearity leads to a dynam-
ical thermalization of a finite number of degrees of freedom with energy equipartition over linear
eigenmodes as expected from the laws of classical statistical mechanics. The system temperature is
shown to change in a broad range from positive to negative values and the dependence of system
characteristics on the initial injected energy is determined. Below the chaos border the dynamics
is described by the Kolmogorov-Arnold-Moser integrability. Due to universal features of Random
Matrix Theory we argue that the obtained results describe the generic properties of its nonlinear
perturbation.

PACS numbers:

In far 1872, 150 years ago, Boltzmann developed the
theory of statistical mechanics and thermalization orig-
inated from the dynamical laws of classical motion of
many-body systems [1]. This result led to the famous
Boltzmann-Loschmidt dispute on a possibility of ther-
malization and time irreversibility emerging from the re-
versible dynamical equations of particle motion [2, 3] (see
also [4]). The modern resolution of this dispute is based
on the theory of dynamical chaos for generic nonlinear
systems characterized by a positive maximal Lyapunov
exponent and Kolmogorov-Sinai entropy leading to an
exponential instability of motion (see e.g. [5–8]). This
instability leads to an exponential growth of errors which
breaks time reversibility (see e.g. an example in [9]).

The first numerical studies of how ergodicity, dynam-
ical thermalization and energy equipartition appear in
an oscillator system with moderate nonlinearity were re-
ported by Fermi, Pasta, Ulam in 1955 [10]. The conclu-
sion was that “The results show very little, if any, ten-
dency toward equipartition of energy between the degrees
of freedom.” [10]. It was argued in [11] that in the contin-
uum limit the Fermi-Pasta-Ulam (FPU) problem is close
to the Korteweg-de Vries equation with stable soliton so-
lutions shown to be completely integrable [12], as well as
the nonlinear Schrödinger equation [13]. In addition, at
weak nonlinearity the FPU α-model is close to the com-
pletely integrable Toda lattice [14, 15]. Another expla-
nation of equipartition absence in the FPU problem was
given in [16–18] showing that below a certain strength of
nonlinear interactions between oscillator modes the sys-
tem is located in the regime of Kolmogorov-Arnold-Moser
(KAM) integrability and only above this border an over-
lap of nonlinear resonances takes place with emergence of
chaos and thermalization. Numerical simulations demon-
strated a dynamical thermalization with energy equipar-
tition reported in [17, 18]. Thus, even 50 years after
[10], various regimes of nonlinear dynamics of the FPU
problem are actively discussed by the community of dy-
namical systems [19] (see e.g. recent [20]). The variety
of studies clearly demonstrates that this model played an

important role in the investigations of nonlinear dynam-
ics but also that it has multiple specific features indicat-
ing that it does not belong to a class of generic oscillator
systems with nonlinear interactions.

To construct a generic model of many-body oscilla-
tor systems with nonlinear interactions between oscilla-
tors we take insight from quantum mechanics of many-
body systems whose spectral properties are described by
Random Matrix Theory (RMT) invented by Wigner for
a description of spectra of complex nuclei, atoms and
molecules [21]. At present RMT finds applications in
multiple areas of physics [22, 23] including systems of
quantum chaos whose dynamics is chaotic in the clas-
sical limit [24, 25]. The properties of RMT eigenvalues
and eigenstates were established in various studies and
are well known. The RMT eigenstates are ergodic, i.e.
uniformly distributed on the N -dimensional unit sphere,
and the level spacing statistics is described by the univer-
sal RMT distribution [21–25]. Due to the linearity of the
Schrödinger equation the time evolution of a wave func-
tion ψ described by a RMT Hamiltonian also describes
a time evolution of a system of N linear oscillators with
random linear couplings. By its own, due to the universal
properties of RMT, it is interesting to understand how a
nonlinear perturbation affects RMT evolution.

With the aim to understand the effects of nonlinear
perturbation of RMT we consider a simple model de-
scribed by the Schrödinger equation with a Hamiltonian
given by a random matrix with an additional nonlinear
interaction between linear modes:

i~
∂ψn(t)

∂t
= Ĥ0ψn(t) + β|ψn(t)|2ψn(t) . (1)

Here Ĥ0 is an RMT matrix of size N taken from the
Gaussian Orthogonal Ensemble (GOE) [22] whose matrix
elements Hn,n′ have zero mean and variance 〈H2

n,n′〉 =

(1 + δn,n′)/(4(N + 1)) such that the averaged density
of states is given by the the semi-circle law dm/dE =
2N
π

√
1− E2 with typical eigenvalues in the interval Em ∈

[−1, 1] (we use dimensionless units with ~ = 1), β is a
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dimensionless constant characterizing the nonlinear in-
teraction strength in the original basis n.

The eigenmodes of Ĥ0 at energies Em are φm(n)
which are ergodic with a uniform distribution on the
N -dimensional unit sphere. The time evolution of the
wave function can be expressed in the basis of eigen-

modes as ψn(t) =
∑N
m=1 Cm(t)φm(n) with coefficients

Cm(t) giving the occupation probability ρm = 〈|Cm(t)|2〉
(with some long time or ensemble average; see below).
The time evolution (1) has two integrals of motion be-
ing the probability norm

∑
n |ψn(t)|2 = 1 and total en-

ergy E =
∑
n[< ψn(t)|Ĥ0|ψn(t) > +(β/2)|ψn(t)|4]. At

β = 0 the model (1) can be viewed as a quantum sys-
tem or as a classical system of coupled linear oscillators
whose Hamiltonian in the basis of oscillator eigenmodes
is H =

∑
EmC

∗
m(t)Cm(t) where Cm, C

∗
m is a pair of con-

jugated variables and Em plays the role of oscillator fre-
quencies. Since RMT captures the universal features of
quantum and linear oscillator systems we expect that the
model (1) describes the universal properties of oscillator
systems with chaotic dynamics induced by weak or mod-
erate nonlinear couplings between oscillators. We call the
model (1) Nonlinear Random Matrix model (NLIRM).

Above a certain chaos border with β > βc a moder-
ate nonlinearity destroys KAM integrability leading to
chaotic dynamics with a positive maximal Lyapunov ex-
ponent λ. The nonlinear frequency shift is δω ∼ β|ψn|2 ∼
β/N and, as it was argued in [26–29], a developed chaos
takes place when this shift δω becomes comparable to a
typical energy spacing between energies (or frequencies)
of the linear system ∆ω ∼ 1/N . Thus δω > ∆ω im-
plies chaos with the chaos border βc = const. ∼ 1 being
independent of system size N .

The issue of dynamical thermalization in finite size
nonlinear lattices with disorder was studied in [29, 30].
The time evolution in these systems is described by
the Discrete Anderson Nonlinear Schrödinger Equation
(DANSE) with hopping between nearby sites. In the
linear case the disorder leads to Anderson localization
of modes [31] which is well visible when the localization
length ` is smaller than the system size N . In this respect
our RMT model (1) is rather different since the linear
modes are delocalized and ergodic in a vector space of
dimension N . We expect that our model (1) is generic
and captures also certain features of the models of Bose-
Einstein condensate (BEC) evolution in the chaotic Buni-
movich stadium [32] or the Sinai oscillator [33] described
by the nonlinear Gross-Pitaevskii equation (GPE) [34].
Indeed, the linear eigenmodes of these systems have prop-
erties of quantum chaos similar to RMT [24, 25]. There
are however also certain differences discussed below.

For the GPE models [32, 33] it is natural to assume
that the dynamical thermalization induced by moderate
nonlinearity leads to the Bose-Einstein (BE) distribution
of probabilities ρm over quantum levels of the linear sys-
tem. In the limit of high temperature T this distribution
is reduced to a classical energy equipartition (EQ) dis-
tribution [4, 35]. For the DANSE type models [29, 30]
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FIG. 1: Entropy S versus energy Em of the initial state m
at t = 0 for one RMT realisation at N = 64 and β = 0.02
(a), β = 0.1 (b) and β = 1 (c) or 10 RMT realisations at
β = 1 (d). The entropy S is computed from ρm averaged over
the time range 223 ≤ t ≤ 224 (blue/black ◦) and 216 ≤ t ≤
217 (red/grey + in (a), (b)) or 211 ≤ t ≤ 212 (red/grey +
in (c)). The theory curves S(E) for BE (red/grey) and EQ
(blue/black in (a),(b),(c) or green in (d)) are from ρm values
of (2) with Em values of the used RMT realisation (a), (b), (c)
or a fictitious spectrum according to the semi-circle law in (d)
(where Em is the solution of m−1/2 = M(Em), m = 1, . . . , N
with M(E) being the integrated density of states).

the quantum Gibbs (QG) distribution was proposed to
explain numerically obtained results. In fact QG and
BE distributions give very close thermalization proper-
ties and we mainly discuss the BE case here. Thus there
are two options for the thermalized distributions of prob-
abilities ρm:

ρm =
1

exp[(Em − µ)/T ]− 1
(BE), ρm =

T

Em − µ
(EQ).

(2)
Here T is the system temperature and µ(T ) is the chem-
ical potential dependent on temperature. The parame-
ters T and µ are determined by the norm and energy
conservation

∑
m ρm = 1 and

∑
mEmρm = E (for E we

assume the case of weak or moderate nonlinearity which
gives only a weak contribution to the total energy). The
entropy S of the system is determined by the usual rela-
tion [4, 35]: S = −∑m ρm ln ρm with the implicit theo-
retical dependencies on temperature E(T ), S(T ), µ(T ).
The derivation of (2) is given in Supplementary Material
(SupMat).

Based on classical statistical mechanics [4, 35] the dy-
namical thermalization should lead to the EQ distribu-
tion (2) since DANSE, GPE [29, 30, 32, 33] and NLIRM
(1) models describe classical nonlinear fields without sec-
ond quantization. In contrast, in [29, 30, 32, 33] it was
argued that a moderate nonlinearity plays a role of an ef-
fective nonlinear thermostate that leads to quantum BE
or QG distributions (2).

Of course, both BE and EQ approaches (2) give dif-
ferent thermal characteristics leading to a contradiction
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FIG. 2: Dependence of T and µ on energy E for EQ ansatz
(2) (curves); data points are for β = 1, N = 64 and time
range 223 ≤ t ≤ 224, with T and µ determined from norm and
numerical entropy values (same RMT realisation as in Fig. 1
(c)).

discussed in detail in [30, 32, 33]. The main argument in
favor of the BE (or the QG) ansatz was based on a rea-
sonably good agreement of numerical data for entropy
vs energy with the theoretical thermal dependence S(E)
given by the BE (or QG) ansatz. The quantities S and
E are extensive (self averaging) and it was argued that
their analysis is more preferable as compared to the di-
rect study of the strongly fluctuating probabilities ρm
[29, 30, 32, 33]. Here we show that the ergodicity of

RMT eigenstates of Ĥ0 allows to reduce significantly the
fluctuations and to obtain stable results for ρm that are
clearly described by the EQ ansatz (2).

The numerical integration of (1) is done with the sym-
plectic scheme of order 4 [36] using a step size ∆t = 0.1
up to maximal times t = 4 × 106 − 1.3 × 108 with exact
norm conservation and energy conservation with accu-
racy ∼ 10−8 (see SupMat for more details). As initial

condition, we choose an eigenmode φm(n) of Ĥ0 at some
index m (some times also noted m0) such that the en-
ergy remains close to the initial energy E ≈ Em. Exam-
ples of the time dependence S(t) are shown in SupMat
Fig. S1 demonstrating a steady-state regime reached at
times t > 104 for β = 1. The obtained dependence S(E)
is shown in Fig. 1 at different β values for a specific RMT
realisation and two time scales and also for 10 RMT re-
alisations at β = 1. At small values β = 0.02, 0.1 the
system is close to an integrable KAM regime [7, 8] while
at β = 1 essentially all modes are thermalized (see Fig. 1,
SupMat Fig. S2 and additional material in [37]). These
results show that the critical border for thermalization is
located at βc ∼ 0.1 independent of N . However, the ex-
act determination of βc is a rather complicated task due
to the presence of many-body nonlinear effects like e.g.
the Arnold diffusion [7, 8]. Also at the spectral borders
E ≈ ±1 the spacing between energies Em increases ac-
cording to the semicircle law [22] and therfore it is more
difficult to reach thermalization there.

An important feature of Fig. 1 is that the theory curves
S(E) obtained with BE and EQ ansatz (2) are rather
close to each other. Thus due to fluctuations of numerical
data for S(E) it is difficult to determine which theory BE
or EQ describes better the numerical data. However, the
data points are significantly closer to the BE-curve, es-

10−4
10−3
10−2
10−1
100

-1 0 1Em

ρm m0 = 3

10−3

10−2

10−1

100

-1 0 1Em

ρm m0 = 11

10−2

10−1

-1 0 1Em

ρm m0 = 30

10−3

10−2

10−1

100

-1 0 1Em

ρm m0 = 57

FIG. 3: Dependence of ρm(Em) on Em for 4 initial states
at m0 = 3, 11, 30, 56 for β = 1, N = 64 and time average
range 223 ≤ t ≤ 224. The blue/black curve shows theory of
EQ ansatz with with ρEQ(E) = T/(E−µ). The red/grey line
shows BE ansatz theory ρBE(E) = 1/(exp[(E − µ)/T ] − 1).
The related T, µ theory (2) values are given in SupMat Fig. S4
for BE and EQ cases.

pecially for moderate energies |E| ≈ 0.5−0.8 where both
curves are somewhat different (the difference between the
QG and BE S(E) curves, not visible on graphical preci-
sion, is ∼ 0.003 at the spectral borders and much smaller
at other E values, so that we discuss mainly the BE case).

For the QE ansatz the dependencies T (E), µ(E), ob-
tained by the solution of the equations for energy and
norm for a given RMT spectrum, are shown in Fig. 2
(SupMat Fig. S3 for the BE ansatz) for the thermalized
regime at β = 1. The numerical points obtained from
E and norm values are by definition exactly located on
the theory curves. If instead of E we use the numeri-
cal data of S then the points slightly deviate from the
theory (Fig. 2 and SupMat Fig. S3) but T and µ values
themselves are drastically different between BE and EQ
cases.

The most direct way to distinguish between BE and
EQ cases is to compare the probability dependence
ρm(E) with the theory (2). Such a comparison is shown
in Fig. 3 for 4 initial states at m=m0, β = 1 and N = 64
(more data are in SupMat Fig. S4 and [37]). The dy-
namical thermalization clearly follows the EQ ansatz and
not at all the BE one, except for an initial state at
Em0 ≈ 0 where both approaches are equivalent. This
observation is in agreement with the classical statistical
mechanics [4, 35]. The probabilities ρm for all initial
energies Em0 are shown in Fig. 4 with a good agree-
ment between numerical data and the EQ ansatz (see
[37] for figures as Fig. 3 for all m0 values). The statisti-
cal distribution p(x) of fluctuations of the rescaled quan-
tity x = (Em0

− µ)|Cm(t)|2/T (with µ, T from the EQ
ansatz for the energy Em0

) also follows the Boltzmann
law p(x) = exp(−x) (see SupMat Fig. S5).

In Fig. 5 we show the energy dependence of the max-
imal positive Lyapunov exponent λm on energy Em of
initial state m for different β values (more data are in
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FIG. 4: Density plot of ρm for parameters of Fig. 3 with
initial state index 1 ≤ m0 ≤ 64 in the x-axis and 1 ≤ m ≤ 64
in the y-axis. The colorbar shows ρm values in a nonlinear
scale to increase the visibility of small ρm values. Panel (a)
shows numerical data for β = 1, N = 64; panel (b) shows the
EQ ansatz ρEQ(Em) (see also Fig. 3).
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FIG. 5: Lyapunov exponent λm dependence on Em with
m being the index of the initial state for N = 64; λm is
determined from the fit ln ‖∆ψ(t)‖ = a + b ln(t) + λm t for
β = 2 (grey N; top), 1 (black •), 0.5 (pink �), 0.1 (green ×)
at t ≤ 222; β = 0.02 for t ≤ 227 (red O; bottom).

SupMat Figs. S6-S10 and [37]). In the thermalized phase
β = 1 we have a smooth variation of λ with Em while
below or close to the thermalization border at β = 0.1
high λm values appear only at specific Em values. We
attribute this to the existence of triplets of energies with
very close Em values. Indeed, in a hypothetic case of 3
equal Em values the KAM theory is not valid and devel-
oped chaos exists at arbitrary small β values as it shown
in [26, 38]. Nonetheless, in RMT there is level repulsion
and double or triple degeneracies are forbidden leaving
place only to quasi-degeneracy of levels so that KAM
becomes valid at β → 0. Thus for β = 0.02 we have
typically λm approaching to zero with increasing time.
Our preliminary results show that in the thermal phase
at larger |T | (if Em ≈ 0) we have an approximate depen-
dence λ ∼ βη/Nν with η ≈ 1.52, ν ≈ 1.72 (see SupMat
Figs. S6-S10). However, the Lyapunov exponent depen-
dence on β and N requires further more detailed studies.

Finally, we discuss the reasons why the nature of ther-
mal equipartition, BE or EQ, was so difficult to establish
in previous studies [29, 30, 32, 33]. One of them is the
proximity of S(E) curves for both approaches. At the

same time the direct determination of the ρm(E) depen-
dence is rather difficult due to significant fluctuations,
as it was pointed out previously. These fluctuations are
especially large for the DANSE case at a large disorder
(W = 4 in [29]) when the localization length ` is signifi-
cantly smaller than system sizeN (`/N ≈ 0.1 atN = 64).
We illustrate this in SupMat Figs. S11-S12 showing that
at smaller disorder W = 2 with larger localization length
` the fluctuations of ρm are reduced and at long times
we have an agreement of ρm(E) with the EQ ansatz and
strong deviations from the BE ansatz. For NLIRM model
(1) the linear eigenmodes are ergodic, i.e. no localization,
and the fluctuations of ρm(E) are significantly reduced
that allows to distinguish clearly between EQ and BE
cases.

The cases of GPE in the Bunimivich stadium [32] and
the Sinai-oscillator trap [33] are somewhat different. In-
deed, in these models the spectrum of the linear system
is unbounded so that, even if linear eigenstates are in the
quantum chaos regime, the probability spreading to high
energies is rather slow due to small coupling transitions
induced by nonlinearity between states with significantly
different energies. Thus in these systems there is a for-
mation of a relatively compact probability packet at low
energies which spreads to high energies very slowly in
time. Such an energy packet of ρm gives S(E) values
compatible with the curve of the BE ansatz however the
fluctuations of ρm(E) are very strong with a significant
difference from the BE distribution at high energies (see
e.g. Fig.5 in [32] and Figs. 8,11 in [33]). To analyze these
features in more detail, we add to the diagonal RMT ma-
trix element Hn,n an additional diagonal energy fn with
a constant f > 0. Then the variation of linear ener-
gies fN becomes rather large and exceeds significantly
those of the RMT case. The results for this model at
β = 1, f = 0.25 show that at times t = 215 for N = 32
(or t = 220 for N = 64) the probabilities ρm(E) form
a compact packet of approximate BE shape and the EQ
thermal distribution is reached (with fluctuations) only
at very large times t = 227 (see SupMat Figs. S13, S14).
Such large time scales were out of reach in [32, 33] due
to the complexity of the numerical integration of GPE.

In conclusion, we showed that a nonlinear perturbation
of RMT leads to dynamical thermalization with energy
equipartition corresponding to the laws of classical sta-
tistical mechanics [4, 35]. Such a thermalization appears
due to dynamical chaos in finite systems with moderate
or large number of degrees of freedom at weak or moder-
ate perturbation of a linear RMT system. At very weak
perturbations the system dynamics is characterized by a
quasi-integrable KAM regime. We argue that the pro-
posed NLIRM model captures the generic features of dy-
namical thermalization in systems weakly perturbed by
classical nonlinear fields. Of course, for finite many-body
quantum systems with second quantization the interac-
tions lead to quantum dynamical thermalization and dis-
tributions of Bose-Einstein for bosons or Fermi-Dirac for
fermions, as it has been demonstrated in numerical stud-
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[3] L. Boltzmann, Über die Beziehung eines allgemeine
mechanischen Satzes zum zweiten Haupsatze der
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Laboratoire de Physique Théorique, Université de
Toulouse, CNRS, UPS, 31062 Toulouse, France

I. STATISTICAL CLASSICAL THEORY

Since the “nonlinear Schrödinger equation” (1) has two
integrals of motion, neglecting the energy ∼ β/N due to
the nonlinear term and assuming global chaos for suffi-
ciently large β, we expect that the system becomes er-
godic or thermalizes on the manifold fixed by the two
constraints :∑

m

Em|Cm|2 = E ,
∑
m

|Cm|2 = 1

where Cm are the coefficients of the state in the expan-
sion of the eigenbasis of the matrix Ĥ0. This situation
corresponds in principle to a micro canonical ensemble
with an additional constraint which is technically quite

complicated. One can use |C1|2 = 1 −∑N
m=2 |Cm|2 to

remove the first coordinate C1 from the phase space to
obtain a pure micro canonical ensemble for C2, . . . , CN
with:

E − E1 =

N∑
m=2

(Em − E1)|Cm|2

but there is still the condition
∑N
m=2 |Cm|2 = 1−|C1|2 ≤

1 which creates technical complications. For small tem-
perature or energy (with E being close to E1, assuming
an ordered eigenvalue spectrum E1 < E2 < . . . < EN )
one can neglect this condition and in this case it is not
difficult to show by standard text book techniques of sta-
tistical physics that in the limit N � 1 the marginal dis-
tribution of a field Cm (integrating out the other fields of
the micro-canonical ensemble) is a (complex) Gaussian

p(Cm) ∼ exp

(
− (Em − E1)|Cm|2

Tmc

)
with the micro-canonical temperature Tmc = (E−E1)/N
and providing the equipartition average : ρm,mc =
〈|Cm|2〉 = Tmc/(Em − E1).

However, for larger energies the additional inequality
for the coefficients Cm cannot be neglected. Therefore,
we treat the system as a grand-canonical ensemble, which
is equivalent for N � 1. In this approach the fields Cm
can freely fluctuate and the constraints are only verified
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in average. The classical grand canonical partition func-
tion is given by

Z =

∫ ∏
m

d 2Cm exp

(
− 1

T

∑
m

(Em − µ)|Cm|2
)

∼ TN
∏
m

1

Em − µ
⇒

ln(Z) = N ln(T )−
∑
m

ln(Em − µ) + const.

with two parameters being the (grand canonical) tem-
perature T and the chemical potential µ which are deter-
mined by the implicit equations

1 =
∑
m

ρm , E =
∑
m

Emρm (S.1)

with ρm being the statistical average :

ρm = 〈|Cm|2〉 =
T

Em − µ
≡ ρEQ(Em) .

Here we have either T > 0 and µ < E1 or T < 0 and
µ > EN in order to have well defined Gaussian integrals
in the partition function and only solutions for T and µ
satisfying this condition are valid. From

E − µ =

〈∑
m

(Em − µ)|Cm|2
〉

= T 2 ∂ ln(Z)

∂T

= T 2N

T
⇒ T =

E − µ
N

(S.2)

we find that µ is a solution of the implicit equation:

1 = T
∑
m

1

Em − µ
=

1

N

∑
m

E − µ
Em − µ

. (S.3)

For a given value of E and a given spectrum Em this
equation can be solved numerically by standard tech-
niques and using (S.2) we also obtain T once µ is known.
Depending on the sign of E −∑mEm < 0 (or > 0) we
have either µ < E1 and T > 0 (or µ > EN and T < 0)
as unique and physically valid solution (mathematically
there are typically many other but invalid solutions of
(S.3) in the interval E1 < µ < EN ). Once µ(E) and
T (E) are known one can use ρm to compute the entropy

SEQ(E) = −
∑
m

ρEQ(Em) ln(ρEQ(Em)) .

This expression was used to compute the theoretical
S(E) curves in the equi-partition approach based on the

grand-canonical classical theory shown in Figs. 1, S2,
S11, S13 for various examples.

We mention that the grand canonical temperature
(S.2) is similar to the micro-canonical temperature if we
replace E1 → µ and it is not difficult to verify that in
the limit E ↘ E1 we have µ ↗ E1 with T ↘ 0 (or if
E ↗ EN ⇒ µ ↘ EN with T ↗ 0; see also Figs. 2
and S3). Also the micro-canonical expression for ρm pro-
vides numerically correct S(E) curves (identical to the
grand canonical curve) for the lower 20%-30% of the en-
ergy spectrum where µ ≈ E1 with a rather good accuracy.

The Bose-Einstein ansatz with

ρm = ρBE(E) ≡ 1

e(Em−µ)/T − 1
(S.4)

cannot be directly justified by the classical field approach.
From a purely formal point of view it can be obtained
by replacing in the partition function |Cm|2 → cm with
integer cm and replacing the Gaussian integrations by
sums over cm = 0, 1, 2, . . . thus resulting in (S.4). In
the framework of this approach T and µ are computed
by solving numerically the implicit equations (S.1) with
ρm = ρBE(Em) which is technically a bit more compli-
cated as for the EQ case. In the limit of large |T | we can
expand in (S.4) the exponential and both approaches be-
come equivalent.

The difference between both approaches in the S(E)
curves is not very strong but the numerical data of long
time averages of ρm = 〈|Cm(t)|2〉 clearly show the va-
lidity of the EQ model provided the state is sufficiently
thermalized as can be seen in Figs. 3, and S4.

Furthermore, according to both the micro-canonical
and grand-canonical approaches the statistical distribu-
tion of Cm is a complex Gaussian which corresponds to
an exponential distribution of |Cm|2, i.e. the distribution
of the rescaled variable x = (Em−µ)|Cm|2/T is theoret-
ically p(x) = exp(−x) which is clearly confirmed by the
numerical data for quite large values of x as can be seen
in Fig. S5 providing an additional confirmation of the
classical model.

Both approaches require the use of a given fixed en-
ergy spectrum Em which is typically obtained by diago-
nalizing a certain realisation of an RMT matrix (or an-
other matrix for the variants as DANSE or the model
with additional diagonal elements). However, in Fig. 1
(d), we show the data for 10 different RMT realisations
which would provide individually slightly different S(E)
curves. For this figure we used, for both theoretical S(E)
curves, a fictitious spectrum with Em being the solution
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of m− 1/2 = M(Em) for m = 1, . . . N where

M(E) =
2N

π

∫ E

0

√
1− E′2 dE′

=
N

2
+
N

π

(
arcsin(E) + E

√
1− E2

)
is the integrated density of states of the RMT semi-circle
law such that M(−1) = 0 and M(1) = N . This fictitious
spectrum corresponds to a constant uniform level spacing
in the unfolded spectrum.

The link between the radius (here being unity) of the
semi-circle law of a GOE matrix and the variance of its
matrix elements 〈H2

n,n′〉 = (1+δn,n′)/(4(N+1)) is rather

standard [22]. However, it can be easily verified by com-
puting the average〈

Tr(Ĥ2
0 )
〉

=
1

4(N + 1)

(
2N +N(N − 1)

)
=
N

4

which should coincide with∑
m

〈
E2
m

〉
=

2N

π

∫ 1

−1

dE E2
√

1− E2 =
N

4
.

II. SYMPLECTIC INTEGRATOR

Here we remind some basic facts about symplectic in-
tegrators and the particular implementation for our case.
For further details, its derivation, we refer for example to
[36], especially for the 4th order variant.

A. General method

Let A and B two non-commuting operators of a general
Lie algebra for which it is possible to compute exactly and
efficiently (by some exact numerical/analytical method)
exp(tA) and exp(tB) individually and for arbitrary val-
ues of t (or more precisely these operators applied to some
given vector of function) while the numerical problem to
compute exp[t(A+B)] is very difficult (very inefficient) or
even impossible (as far as an exact method is concerned).

To solve this problem it is sufficient to compute
exp[∆t(A+B)] for small ∆t (with some given precision)
and then to apply: exp[t(A + B)] = exp[∆t(A + B)]n

with n = t/∆t (assuming that t is an integer multiple of
∆t). To compute exp[∆t(A+B)] approximately one can
write:

exp[∆t(A+B)] ≈
p∏
j=1

[
exp(dj∆tA) exp(cj∆tB)

]

where the product is ordered with increasing j-values
from right to left. The coefficients cj , dj , j = 1, . . . , p are
determined such that the error (for one step) is∼ (∆t)p+1

for a given order p and implying a global error ∼ (∆t)p

(for many steps and fixed t). The simplest case is p = 1
with c1 = d1 = 1 corresponding to the usual Trotter
formula. For p = 2, we have the symmetrized Trotter
formula with c1 = 0, c2 = 1, d1 = d2 = 1

2 . For p = 3
there is a non-symmetric solution which can also be found
in [36] (see references therein for the proper credit) but
which is not really simpler (with all 6 coefficients being
different from zero) than the fourth order solution. For
p = 4 there is a symmetric solution which according to
[36] is:

c1 = 0, c2 = c4 = 2x+ 1, c3 = −4x− 1,

d1 = d4 = x+ 0.5, d2 = d3 = −x

where x = (21/3 + 2−1/3 − 1)/6 is the real solution of
48x3 + 24x2 − 1 = 0. Note that these coefficients verify
the sum rule

∑
j cj =

∑
j dj = 1 due to the first order

terms in both exponential expressions. The fourth order
formula requires as the third order formula the multipli-
cation of 6 exponential factors for one step if one uses an
optimization to merge the d4-factor with the d1-factor of
the next step (a similar optimization is possible for the
symmetrized Trotter formula).

In typical applications one applies this method to solve
numerically the time evolution a classical Hamiltonian or
quantum system where the Hamiltonian is a sum of two
terms H1 +H2 for which the individual exponentials (of
either the Liouville operator associated to Hj or −iHj ,
j = 1, 2) can be computed analytically or by an efficient
exact numerical method.

The advantage of the method is that it respects the
symplectic/unitary symmetry of the problem. Further-
more, even if one chooses a low order variant with a not
so small time step ∆t, one can argue that the approxi-
mate time evolution (with respect to “A+B”) represents
in reality the exact time evolution of a slightly different
operator S ≈ A + B such that exp(∆tS) coincides ex-
actly with the above product of exponential terms and
that many physical features of the modified time evolu-
tion are still very relevant since they apply to the same
“class” of systems.

B. Numerical implementation

In our case, we chose A = −iĤ0 (in the quantum point

of view or the Liouville operator associated to Ĥ0 in the
classical point of view) and B = −iV̂ (ψ) where V̂ (ψ) is
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an effective potential depending on ψ and with matrix

elements Vn,n′(ψ) = β|ψn|2 δn,n′ . In this case e−itV̂ (ψ)

provides the exact time evolution of the pure nonlinear
equation (assuming Ĥ0 = 0):

∂ψn(t)

∂t
= −iβ|ψn(t)|2 ψn(t) ⇒

ψ(t) = e−itβ|ψ(0)|2 ψn(0)

which can be easily verified by writing ψn = rn e
−iθn

such that ṙn = 0 ⇒ rn(t) = rn(0) = const. and

θ̇ = βr2
n ⇒ θ(t) = θ(0) + tβr2

n(0). The conservation
of |ψn(t)| = const. (for the pure nonlinear equation) is a
feature of the particular form of the nonlinear term and
due to this V (ψ) does not depend on ψ nor on t (dur-
ing the purely nonlinear time evolution) and the time

evolution due to the quantum exponential of −itV̂ (ψ)
coincides exactly with the time evolution of the expo-
nential of the classical Liouville operator associated to
the nonlinear term.

In the numerical implementation, we choose a cer-
tain initial condition of the state in representation of the
eigenbasis of Ĥ0, e.g. Cm(0) = δm,m0

with m0 being the
index of the initial state. Then, we apply the first ex-
ponential factor with coefficient d1 (and given value of
∆t) which corresponds to e−iEmd1∆t Cm → Cm. Then,

using the unitary matrix that diagonalizes Ĥ0, we trans-
form Cm → ψn and we apply the exponential factor
with c2 (since c1 = 0 if p = 2 or p = 4) which corre-

sponds to e−ic2∆tβ|ψn|2 ψn → ψn which represents exactly
the purely nonlinear time evolution. Then we transform
ψn → Cm and apply the next exponential factor with
coefficient d2 etc. (If one uses a non-symmetric variant,
with c1 6= 0, for p = 1 or p = 3 one has first to transform
the initial condition to ψn, apply the first c1-factor and
transform back to Cm.)

We have implemented and tested all four variants of
the method. In particular, we have verified that the clas-
sical energy is conserved, i.e. its residual numerical fluc-
tuations (∼ 10−8 for the fourth order variant at ∆t = 0.1)
scale with (∆t)p and also that the errors of other quan-
tities scale with (∆t)p. For the case of a RMT with an
extra diagonal where the values Em become larger, we
have also tested the precision by comparing some data
with ∆t = 0.0125 (for reduced iteration times) which
does not change the values of S etc. (apart from statis-
tical fluctuations).

III. ADDITIONAL FIGURES

In this section, we present additional Figures for the main
part of this article. Some of the following captions also
contain physical discussions or additional information for
figures in the main part; in particular the values of T and
µ for both approaches and the four states shown in Fig. 3
are given in the caption of Fig. S4 below.
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FIG. S1: Time dependence of the entropy S(t) for the four
states shown in Fig. 3 and two other states at β = 0.02, 0.1
with initial index m0 = 30 (for β = 0.02, 0.1 the other three
index values m0 = 3, 11, 57 correspond to very small entropy
S(t) values clearly below the case m0 = 30). The entropy is
computed from S(t) = −

∑
m ρm ln(ρm) where ρm is obtained

as the time average ρm = 〈|Cm(t)|2〉 for successive time inter-
vals with increasing lengths by a factor of two corresponding
to the plateau intervals of constant S(t) visible in the figure.
The thick horizontal lines represent the theoretical entropy
SEQ for EQ (blue) and SBE for BE (red) for the energy of
the state at β = 1 and m0 = 3 (pink open squares). At
intermediate times t ≈ 2 × 104 the entropy of this state is
close to SBE while at longer times t ≥ 106 it decreases to
SEQ showing that the EQ ansatz describes the correct long
time thermalization but also that at intermediate times the
entropy is larger and closer to the BE ansatz. The other states
m0 = 11, 30, 57 at β = 1 thermalize rather quickly at t ≥ 104-
105 to their final value SEQ (with SBE ≈ SEQ for m0 = 30).
For β = 0.1 the state m0 = 30 (cyan full squares) thermalizes
to the same entropy value as with β = 1 (green crosses) but
only for very long time scales t ≥ 106.
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FIG. S2: As Fig. 1 for one RMT realisation, β = 0.02, 1, N =
32, 128, ρm obtained by the time average for 221 ≤ t ≤ 222 for
N = 128 and 226 ≤ t ≤ 227 for N = 32 (blue ◦, all panels).
The curves represent the theoretical S(E)-curves from the EQ
(blue) and BE (red) approaches using the exact spectrum of
the used RMT realisation. The data point with S > 1 for
N = 32, β = 0.02 is not saturated and still increasing at the
given maximal time t = 227. The data for β = 2 and N = 128
coincide very well with the EQ ansatz. Also for N = 32 the
EQ ansatz is more appropriate. Here the small differences to
the theoretical EQ-curve are due to the fact that on the x-
axis the initial energy Em is used and not the averaged linear
energy 〈E〉 =

∑
m′ Em′ρm′ using the long time average ρm′

and which is slightly different from Em due to the nonlinear
term. Using 〈E〉 the data points (for the cases with good
thermalization) fall nearly exactly on the theoretical curve.
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FIG. S3: As Fig. 2 but for the BE case. Here the data
points for T and µ, computed from the numerical data of
S, show some small deviations from the theoretical curves
which are visible in the figure and significantly larger than
in Fig. 2 where no deviations for the EQ case (on graphical
precision) are visible. Furthermore, in comparison to the EQ
case of Fig. 2 the typical values of T and µ for the BE case
are considerably larger.
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FIG. S4: Dependence of ρm on Em for two states with initial
state m0 = 11, 31 for β = 1, N = 128 obtained by an time
average in the interval 221 ≤ t ≤ 222. The blue curve shows
the theoretical values based on EQ with ρEQ(E) = T/(E−µ)
and T = 0.002007, 0.004986, µ = −0.9995,−1.041 for m0 =
11, 31. T and µ were determined from the solution of the equa-
tions 1 =

∑
m ρEQ(Em) and 〈E〉 =

∑
mEmρEQ(Em) with

〈E〉 =
∑
mEmρm ≈ Em0 . The red line shows the theoretical

values based on BE with ρBE(E) = 1/(exp[(E − µ)/T ] − 1),
T = 0.1983, 0.5562, µ = −1.434,−2.914 for m0 = 11, 31
and T , µ determined from the solution of the equations
1 =

∑
m ρBE(Em) and 〈E〉 =

∑
mEmρBE(Em). The ther-

malization of both states according to the EQ theory is
very good despite the shorter averaging time as compared
to Fig. 3 indicating that for larger values of N the ther-
malization time scale is reduced. Complementary informa-
tion for Fig. 3: The T and µ values for the EQ ansatz and
the four states m0 = 3, 11, 30, 56 with N = 64 and β = 1
of Fig. 3 are T = 0.001372, 0.005984, 0.07585,−0.004538,
µ = −0.8964,−0.9178,−4.892, 0.9293 and the correspond-
ing values for the sames states and the BE ansatz are T =
0.112, 0.3581, 4.913,−0.2649, µ = −1.062, −1.794, −20.52,
1.496.
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FIG. S5: Statistical distribution of the rescaled variable x =
(Em − µ)|Cm(t)|2/T (Em0) for β = 1, N = 64, m0 = 9, m =
9, 17, 25, 33 using the time values in the interval 223 ≤ t ≤ 224

and a histogram of bin width 0.05. The thin black line shows
the theoretical distribution p(x) = e−x according to the EQ
approach. The numerical distributions follow the theoretical
distribution for values up to x ≈ 8-10 providing an additional
confirmation for the validity of the EQ ansatz.
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FIG. S6: As Fig. 5 but with additional β values : Lyapunov
exponent λm dependence on Em with m being the index of
the initial state for N = 64. λm has been determined from the
fit ln ‖∆ψ(t)‖ = a+ b ln(t) + λm t for t ≤ 222 and β = 2 (grey
N; top), β = 1.5 (orange M), β = 1 (black •), β = 0.75 (cyan
�), β = 0.5 (pink �), β = 0.25 (blue ∗), β = 0.1 (green ×),
β = 0.02 (red +), β = 0.02 for t ≤ 227 (red O; bottom). The
numerical data suggests that most λm for β = 0.02 decay as
λm ∼ 1/

√
t for t ≥ 107 (see Fig. S10 below). However, three

λm values for β = 0.02 do not decay with time (data points
with same red + and O; e.g. m = 45 and Em ≈ 0.35) and have
significantly larger values λm > 10−5 indicating a trajectory
in a chaotic region while other initial conditions correspond
to trajectories in bounded KAM regions. These cases are also
visible in Fig. 1 (a) with entropy values slightly above 0.
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FIG. S7: Dependence of Lyapunov exponent λ32 in the band
center on β for N = 64 and computation time t = 222. The
straight green line shows the power law fit λ32 = aβη with
a = 0.00143 ± 0.00005 and η = 1.52 ± 0.03. For this fit
the smallest data point at β = 0.02 was not used since for
this value the Lyapunov exponent continues to decrease with
increasing computation time t and it is most likely below the
chaos border.
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FIG. S8: Dependence of Lyapunov exponent λN/2 in the

band center on N for β = 1 and computation time t = 222.
The straight green line shows the power law fit λN/2 = aN−ν

with a = 1.63± 0.16 and ν = 1.72± 0.03.
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FIG. S9: Dependence of rescaled Lyapunov exponent λmN
ν

on the initial energy Em using the exponent ν ≈ 1.72 found
in the fit of Fig. S8 for different values 8 ≤ N ≤ 128.
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FIG. S10: Dependence of Lyapunov exponent λm(t) on it-
eration time t for the case β = 0.02, N = 64, two initial
states in the band center, m = 31, 45, and two RMT realisa-
tions r = 0 (same realisation as for most main and SupMat
figures concerning the RMT case) and r = 1. The cyan full

line shows 10−2/
√
t to indicate a t−1/2 power law. λm(t) has

been obtained by the fit ln ‖∆ψ(τ)‖ = a + b ln(τ) + λm τ for

0 ≤ τ ≤ t and for values t ≤ 227 where ∆ψ(τ) = ψ̃(τ)− ψ(τ)
is the difference vector between two close initial conditions
with ψn(0) = φm(n), ψ̃(0) = ψ(0) + ∆ψ(0) and ∆ψ(0) being
a random vector with initial norm ‖∆ψ(0)‖ = 10−12. Dur-
ing the computation the difference vector ∆ψ(τ) is regularly
renormalized to the norm 10−12 when its norm has become
larger than 10−10 such that both trajectories stay close and
the logarithm of the renormalization factor is added to a spe-
cial variable measuring the quantity ‖∆ψ(τ)‖ which is used
for the computation of the Lyapunov exponent. The rescaled
logarithmic growth (ln ‖∆ψ(t)‖)/t shows roughly the same
behavior as λm(t), with a final slope somewhat closer to the
exponent −1/2 than for λm(t) (in logarithmic representation
and for t ≥ 107). Discussion: The two cases at m = 31,
r = 0, 1 indicate a vanishing Lyapunov exponent in the limit
t → ∞ and a trajectory in a bounded KAM region. The
Lyapunov exponent for the other two cases at m = 45 (with
E45(r = 0) ≈ 0.351 and E45(r = 1) ≈ 0.310) saturate to the
values λ45(r = 0) ≈ 1.47×10−5 and λ45(r = 1) ≈ 8.89×10−6

in the limit t→∞ indicating a trajectory in a chaotic region
probably due to the effect of a near triple quasi-resonance for
the given RMT realisation. For the first realisation r = 0
there are three cases like this as can be seen in Figs. 5 and
S6 (see also caption therein). The observation that for both
realisations there are saturated Lyapunov values at the same
index m = 45 is a coincidence and for example for m = 32
(not shown in the figure) there is a saturated Lyapunov ex-
ponent for r = 1 but not for r = 0.
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FIG. S11: As Fig. 1 but for one realisation of the DANSE
model of [29] at disorder strength W = 2 and W = 4 for β = 2
and N = 64. The data points correspond to the averaging
time 223 ≤ t ≤ 224 (blue ◦) and 220 ≤ t ≤ 221 (red +; similar
t values as in [29]).
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FIG. S12: As Figs. 3 and S4 but for one realisation of the
DANSE model of [29] at disorder strengths W = 2 and W = 4
for β = 2, N = 64 and two initial states with m0 = 10, 20.
The data points correspond to ρm obtained by the averaging
time 223 ≤ t ≤ 224 (blue ◦) and 220 ≤ t ≤ 221 (red +;
similar t values as in [29]). The values of T and µ for the
EQ approach are T = 0.0124, 0.02626, 0.01997, 0.04636 and
µ = −2.484,−2.784,−3.157,−3.952 for W = 2 with m0 =
10, 20 and W = 4 with m0 = 10, 20. The values of T and
µ for the BE approach are T = 0.8794, 1.815, 1.26, 3.011 and
µ = −4.709,−8.171,−6.346,−13.07 for the same states. For
W = 2 both states are well thermalized according to the EQ
case. For W = 4 the thermalization also corresponds to the
EQ case but there are still stronger fluctuations, especially
for the data with shorter averaging time (and corresponding
to the data of [29]).
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FIG. S13: As Fig. 1 for the case of an RMT plus extra
diagonal matrix elements fn with parameter f = 0.25 or f =
0.5 for β = 1 and N = 32. The data points correspond to
the averaging time 226 ≤ t ≤ 227 (blue ◦ for f = 0.25, 0.5),
219 ≤ t ≤ 220 (red + for f = 0.5) and 214 ≤ t ≤ 215 (red +
for f = 0.25).
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FIG. S14: As Fig. 3 for the case of an RMT plus extra
diagonal matrix elements fn with parameter f = 0.25 for
β = 1, m0 = 3, 6 (N = 32) or m0 = 7, 10 (N = 64). The
data points correspond to ρm obtained by the averaging time
226 ≤ t ≤ 227 (blue ◦), 219 ≤ t ≤ 220 (red +; for N = 64) and
214 ≤ t ≤ 215 (red +; for N = 32). At longer times t = 227 the
states are (quite) well thermalized according to the EQ case
(with somewhat stronger flucutations for N = 64). However,
at the intermediate time scale the values of ρm are closer to
the BE line thus explaining that the corresponding entropy
values are also closer to the BE curve.
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