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We consider a model of an intelligent surfer moving on the Ulam network generated by a chaotic
dynamics in the Chirikov standard map. This directed network is obtained by the Ulam method
with a division of the phase space in cells of fixed size forming the nodes of a Markov chain. The goal
quest for this surfer is to determine the network path from an initial node A to a final node B with
minimal resistance given by the sum of inverse transition probabilities. We develop an algorithm
for the intelligent surfer that allows to perform the quest in a small number of transitions which
grows only logarithmically with the network size. The optimal path search is done on a fractal
intersection set formed by nodes with small Erdös numbers of the forward and inverted networks.
The intelligent surfer exponentially outperforms a naive surfer who tries to minimize its phase space
distance to the target B. We argue that such an algorithm provides new hints for motion control in
chaotic flows.

PACS numbers:

I. INTRODUCTION

The time evolution of probability of chaotic map dy-
namics in a continuous phase space is described by the
Perron-Frobenius operator (see e.g. [1, 2]). In 1960
Stanislaw Ulam proposed a method [3] which gives a dis-
crete finite cell approximate of the Perron-Frobenius op-
erator for a completely chaotic map. In this method,
known as the Ulam method, the transition probabilities
from one cell to others are obtained via an ensemble of
trajectories generating the probabilities of Markov tran-
sitions between cells in one map iteration. This gives a fi-
nite size Markov matrix of transitions on the correspond-
ing Ulam network. For one-dimensional (1D) completely
chaotic maps the convergence of the discrete cell descrip-
tion of this Ulam approximate of the Perron-Frobenius
operator (UPFO) to the continuous chaotic dynamics has
been rigorously proven in [4]. The properties of UPFO
were analysed in [5–7] and [8–11] respectively for 1D and
2D chaotic maps.

The finite cell size of UPFO effectively introduces a
finite noise in dynamical equations with an amplitude-
proportional to a cell size. For generic symplectic maps
with divided phase space, containing chaotic compo-
nents and integrable islands like the Chirikov standard
map [12], such a noise destroys invariant Kolmogorov-
Arnold-Moser (KAM) curves [1, 12] and the original
Ulam method does not provide a correct description of
dynamics in such cases. In [13, 14] it was shown that a
generalized Ulam method resolves the above problem and
provides a correct transition description for the chaotic
component bounded by original KAM curves. In this
generalized method the Markov transitions are obtained
with specific trajectories starting only inside one chaotic
component thus generating Markov transitions only be-
tween cells of the same chaotic component. For such a
case it was established [13, 14] that the spectrum of the
finite size UPFO matrix converges to a limiting density
as the cell size approaches zero.

In [15] it was shown that the Ulam networks generated
by the generalized Ulam method have the properties of
small-world networks similar to the six degrees of sep-
aration which appear in social networks of people [16],
actors, power grids, biological and other networks [17–
19]. Thus, as demonstrated in [15], for the Ulam net-
works of symplectic maps the number of degrees of sepa-
ration, or the Erdös number [20], grows only logarithmi-
cally with the network size for the regime of strong chaos.
This growth is related to the Kolmogorov-Sinai entropy
and the positive Lyapunov exponent of chaotic dynamics
[1, 2, 12] which leads to an exponential divergence of ini-
tially nearby trajectories. Thus even in Ulam networks
of huge size the Erdös number remains rather moderate
and any cell can be reached in about ten or several tens
of transitions by a random surfer.

The concept of random surfer is broadly used for the
construction of the Google matrix G of various directed
networks and is at the foundations of the Google search
engine [21–23]. Such a surfer jumps randomly follow-
ing cell links to other cells according to the probabilities
of Markov transitions. Due to a damping factor of the
Google matrix and in a case of dangling nodes (or cells)
a jump can go to any other cell but the related transition
probabilities are very small in comparison to the proba-
bilities of direct links. In the case of Ulam networks of
symplectic maps, e.g. the Chirikov standard map, there
are no dangling nodes neither damping factor and there
is only a relatively small number (about 10) of transitions
from one cell to other cells [13–15].

Thus for the Ulam networks of chaotic symplectic maps
it is interesting to consider not only a random surfer but
also to analyze a behavior of an intelligent surfer who
has a goal quest starting from an initial node A to reach
another node B following a path with highest probability
of jumps and a minimal number of jumps. So, in this
work we analyze the optimal strategies and algorithms
to be followed by an intelligent surfer resolving the goal
quest and moving on such Ulam networks.
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We note that the problem of shortest path detection
has been studied actively in computer science for various
types of networks (see e.g. [24–27] and Refs. therein).
However, here we have a rather specific case of the Ulam
networks obtained from a chaotic symplectic dynamics
and we think that our analysis provides a new useful view
on the properties of chaos. Also, we consider a somewhat
different problem where not the path length as such but
a different quantity, being the resistance, is minimized.

The paper is organized as follows: Sections II and III
remind and present the main properties of the Chirikov
standard map, the construction of the corresponding
Ulam network and also the definition of the resistance
of a given network trajectory. Section IV describes an
efficient algorithm for an intelligent surfer to determine
optimal trajectories with minimal resistance between two
given nodes using a specific intersection set SI of nodes
with small Erdös and inverse Erdös numbers. In Sec-
tion V, numerical results based on this algorithm are
presented, in Section VI the fractal structure of the set
SI is studied and in Section VII the dependence of the
minimal resistance on the network size is discussed. In
Sections VIII and IX, alternative models of a naive surfer
or an intelligent surfer with limited resources are intro-
duced and studied and the discussion of the results is
presented in Section X. Additional data and Figures are
presented in the Supplementary Material (SupMat).

II. CHIRIKOV STANDARD MAP

We consider the Ulam network for the Chirikov stan-
dard map [12]. This map captures the important generic
features of chaotic Hamiltonian dynamics and finds a va-
riety of applications for the description of real physical
systems (see e.g. [28]). The map has the form:

p̄ = p+
K

2π
sin(2πx) , x̄ = x+ p̄ (mod 1) . (1)

Here bars mark the variables after one map iteration, p, x
are conjugated variables of momentum and coordinate
and K is the usual chaos parameter. We consider the
dynamics to be periodic on a torus such that 0 ≤ x ≤ 1,
0 ≤ p ≤ 1. It has been argued that the last KAM curve,
with the golden rotation number, is destroyed at critical
Kc = Kg = 0.971635406... [29]. A more rigorous math-
ematical analysis [30] proved that all KAM curves are
destroyed for K ≥ 63/64 while numerical computations
showed that Kc−Kg < 2.5×10−4 [31]. Thus, the golden
KAM curve at Kc = Kg looks to be the last one to be
destroyed (see also the review [32]). For values K ≥ 2.5
considered in this work, the dynamics is clearly globally
chaotic but a certain fraction of stable non-chaotic is-
lands is possible. The construction of the Ulam network,
explained in the next section, automatically avoids such
regions.

III. CONSTRUCTION OF ULAM NETWORK

The Ulam network and related UPFO for the map (1)
are constructed as described in [13]. For pedagogical rea-
sons we give a brief summary here. First, exploiting the
symmetry x → 1 − x and p → 1 − p the phase space
is reduced to the region 0 ≤ x < 1 and 0 ≤ p < 0.5
and then it is divided into M × (M/2) cells with cer-
tain integer values M in the range 200 ≤ M ≤ 3200.
Here we study three values of the chaos parameter being
K = 2.5, 5, 7. We consider one very long trajectory of
1012 iterations with initial condition at x = p = 0.1/(2π),
which is in the chaotic component, and count the num-
ber of transitions Ni→j from a cell i to a cell j. This
allows to determine the classical transition probabilities
pi→j = Ni→j/

∑
j Ni→j . The index number i associated

to each cell is constructed at the same time, i.e. each
time the trajectory enters a new cell, not yet visited be-
fore, the value of i is increased by one and attributed to
this new cell. Depending on the value of K it is possi-
ble that there are stable islands or other non-accessible
regions where the trajectory never enters and therefore
the network size N is typically N < M2/2 but for the
considered K values with K ≥ 2.5 the fraction of stable
islands is quite modest such that N ≈ M2/2. The non
visited cells due to such islands do not contribute to the
Ulam network.

In practice, we perform trajectory iterations only for
the largest two values M = 3200, M = 2240 (the latter
not used in this work) and apply an exact renormaliza-
tion scheme to reduce successively the value of M by a
factor of 2 to smaller values of M . In this work, we limit
ourselves to the cases M = 200, 400, 800, 1600, 3200.

We remind that the original Ulam method [3] computes
the transition probabilities from one cell to other cells
with many random initial conditions per cell but for the
Chirikov standard map this procedure is less convenient
since it causes an implicit coarse graining with diffusion
into the stable islands or other classically non-accessible
regions which we want to avoid.

The matrix Gji = pi→j corresponds to an Ulam ap-
proximate of Perron-Frobenius operator (called UPFO)
satisfying Gji ≥ 0 and the column sum normalization∑

j Gji = 1. In [13, 14], the (complex and real) eigenval-

ues λj with |λj | ≤ 1 and eigenvectors of G were analyzed
and studied in detail. In absence of absorption, which is
the case in this work, the leading eigenvalue is λ1 = 1 and
its eigenvector components give the global ergodic rather
constant density of cells which are in the chaotic region
of the phase space accessible from the initial trajectory.
Due to ergodicity the choice of the initial trajectory is
not important if it starts inside the global chaotic com-
ponent.

In [15], among other things, also the distribution of
the outgoing link number Nl of a given cell i, i.e. num-
ber of non-vanishing matrix elements Gji > 0 for fixed
i, were analyzed. In particular, it was found [15] that
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the maximal possible value of Nl is N
(max)
l = 2⌈2 +K⌉

and statistically mostly even values of Nl are possible
(rare odd values are possible due to boundary effects and
mostly for small M).

For a given trajectory ij ∈ {1, . . . , N}, j = 0, . . . , l
between two cells A = i0 and B = il, we define the
resistance R as :

R =

l∑
j=1

1

pij−1→ij

(2)

representing the sum of inverse transition probabilities
over each leg of the trajectory. Of course for each transi-
tion ij−1 → ij , we require pij−1→ij > 0, i.e. the network
allows this transition with an existing link. According
to (2) a trajectory, from an initial cell A to a finite cell
B, with a minimal resistance value R follows a path with
maximal probabilities along the path and small value l of
the path length. In the following, we study the properties
of such optimal trajectories with minimal R values.

IV. ALGORITHM TO DETERMINE OPTIMAL
TRAJECTORIES

In the following, we consider the Erdös number
NE,A(C) (or number of degrees of separation) [19, 20]
representing the minimal number of links necessary to
reach indirectly the specific node C via other intermedi-
ate nodes from a particular node A, also called the hub.
In this context, only the existence of a link between two
nodes is important and the precise value of transition
chain of probabilities is not relevant, as long as it is non-
vanishing. For a given hub A one can quite efficiently
compute NE,A(C) for all other nodes C of the network
in a recursive way. For this, one considers at a certain
level n ≥ 0 the set of nodes C with NE,A(C) = n (at
initial level n = 0 this set only contains the hub A it-
self) and one determines the corresponding set at level
n + 1 as the set of all nodes (i) which can be reached
by a direct link from the level n set and (ii) which are
not member of a former set of level ≤ n (which can be
rapidly verified by keeping a list of all used nodes up this
level). Initially, the size of these sets grows exponentially
with ∼ Nn

l elements where Nl is the typical or average
number of outgoing links per node (with Nl ≤ 2⌈2 +K⌉
for Ulam networks of the Chirikov map [15]) but the ex-
ponential growth is quickly saturated once the majority
of the network is occupied and the final complexity of
this algorithm is ∼ Nl N since essentially for each node
we have to perform Nl tests if the outgoing link is going
to a new unused node or to an already occupied node.

Our aim is to determine the optimal trajectory that
goes from a node A to another node B and which mini-
mizes its resistance R defined above in (2). The node A is
chosen at position (x0, p0) = (0.1, 0.1)/(2π) which is also
the initial position of the unique and very long classical
trajectory used to compute the Ulam network [13]. The

final node B is chosen at position (x0, p0) = (0.84, 0.4)
for K = 5 and K = 7. However, for K = 2.5,
we choose a slightly different initial position for B at
(x0, p0) = (0.92, 0.4) in order to assure that B is in a
zone of modest value of NE,A(B) ≤ 12 which is quite
important to determine efficiently the optimal trajecto-
ries. A change of cell positions of A,B does not affect
the results if A,B are taken inside a component of strong
chaos (so we avoid the vicinity of integrable islands).
The minimal length lmin of a trajectory between A and

B, in number of links, is simply per definition the Erdös
number lmin = NE,A(B) and there are no trajectories
between A and B with length l < lmin. Furthermore,
for any trajectory ij , j = 0, 1, 2, . . . with i0 = A, we
know that NE,A(ij) ≤ j, i.e. the Erdös number of the
intermediate cell ij after j steps with respect to the initial
cell A cannot be larger than the number of j steps since,
simply per definition, the Erdös number is the minimal
number of steps to reach the cell ij .
For practical reasons it is necessary to limit the search

of optimal trajectories to some finite maximal length lmax

and we choose as lmax = lmin +4 = NE,A(B) + 4, i.e. we
allow potentially for 4 additional legs in the trajectory
with respect to the minimal length, assuming that the
trajectories with minimal resistance values have also a
length l being close to lmin. In most cases, except for
K = 2.5 and small values of M , this is sufficient to find
the optimal trajectory. Such trajectories are therefore
limited to nodes C with Erdös number below lmax, i.e.
NE,A(C) ≤ lmax. We call the set of such nodes SE,A.

In order to find practically the optimal trajectory one
has in principle to apply a recursive search starting from
the hub but this procedure has an exponential complex-
ity ∼ lNl

max resulting in a large number of test trajectories
that cannot reach the selected end point B. To simplify
this search we note that for each trajectory A → B in
the Ulam network we have also the inverted trajectory
B → A in the inverted Ulam network (with all links in-
verted). Therefore, we also compute the inverse Erdös
number N∗

E,B(C) for all nodes C as the Erdös number of
the inverted Ulam network with respect to the final point
B as hub and determine the set S∗

E.B of nodes C with
N∗

E,B(C) ≤ lmax. The cells ij , j = 0, . . . , l of each possi-

ble trajectory A → B (with length l ≤ lmax and i0 = A,
il = B) belong to both sets SE,A and S∗

E.B and there-
fore they are limited to cells belonging to the intersection
SE,A ∩ S∗

E.B . Actually, each cell ij of such a trajectory
even satisfies a stronger condition for its iteration number
j:

j ≤ l −N∗
E,B(ij) ≤ lmax −N∗

E,B(ij) (3)

since the iteration number j∗ = l − j of the inverted
trajectory obviously satisfies N∗

E,B(ij) ≤ j∗ in a similar

way as NE,A(ij) ≤ j. From the latter inequality and (3),
we find that ij ∈ SI where SI is defined as the set of cells
C satisfying the condition

NE,A(C) +N∗
E,B(C) ≤ lmax . (4)
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Therefore each possible trajectory A → B of length l ≤
lmax is limited to nodes of the set SI . In the following,
we also call SI intersection set because it is a (smaller)
subset of the intersection SE,A ∩ S∗

E.B since (4) implies
both conditions for the subsets SE,A and S∗

E.B . However,
we mention that the inverse is not true implying that SI

is a strictly smaller subset of SE,A ∩ S∗
E.B and not equal

to the latter.
The recursive search of optimal trajectories can be

greatly improved by limiting the recursion at each step
to possible nodes ij satisfying the (2nd) inequality (3).
In SupMat Fig. S1, the number NT of such possible tra-
jectories is shown for the parameter choices of A, B, M ,
K and lmax given above. Even though this value can
be quite large (largest value between 108 and 109) it is
typically quite modest and clearly in the range where it
is comparable to the cost of computation of both sets of
Erdös numbers (which has to be done in advance; a few
seconds on a single processor of a modern computer for
M = 3200).

V. TRAJECTORIES WITH MINIMAL
RESISTANCE

We consider that an intelligent surfer applies the above
algorithm to find the optimal short trajectory or path
with minimal resistance between nodes A and B of the
Ulam network. Thus, using the above efficient algorithm,
based on the recomputing of the Erdös numbers of in-
verted dynamics (with respect to B as a hub) and ex-
ploiting the condition (3), he/she computes the optimal
trajectories with minimal resistance (2) for networks with
200 ≤ M ≤ 3200 at K = 2.5, 5, 7 and the initial/end
points A/B given in the previous Section..

In Fig. 1, we show the obtained optimal trajectories
for the three K values and M = 400 with a background
color plot representing the set SE,A (of nodes C with
Erdös numbers NE,A(C) ≤ lmax = NE,A(B) + 4). We
see, that all trajectory points are on these sets and in
particular the initial values ij = 1, 2, 3 are in the limited
orange regions of small Erdös numbers NE,A(C) = 1, 2, 3.
Furthermore, for smaller K = 2.5 (K = 5) the set SE,A

is strongly (modestly) reduced with respect to K = 7.
This is explained by the reduced values of Nl ≤ 2⌈2+K⌉
requiring longer trajectories to cover the same fraction
of phase space. The obtained values of the minimal re-
sistance R are of the same order of magnitude between
the three K values but for smaller K there are somewhat
smaller. This is due to the reduced Nl values leading to
an increase of typical transition probabilities and a resis-
tance reduction (since R is the sum of inverse transition
probabilities).

Fig. 2 shows the same trajectories but on a different
background color plot representing the much smaller in-
teraction set SI defined by the condition (4). One sees
that according to the condition (3) all trajectory points
are indeed in set SI . Actually, depending on the iteration
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FIG. 1: The white lines show the optimal trajectory be-
tween the initial point A (red cross) and final point B (white
cross) with minimal resistance R (see text for the defini-
tion). The white numbers correspond to the iteration num-
ber j = 0, . . . , l of the trajectory points ij with l being the
length of the trajectory. The color plot shows the set SE,A of
cells C with Erdös number NE,A(C) ≤ lmax = NE,A(B) + 4
where red/green/light blue/full blue colors correspond to
maximal/intermediate/small/negative (if C ̸∈ SE,A) values
of the difference lmax−NE,A(C). The values on x- and y-axis
corresponds to integer position values Mx and Mp of Ulam
cells in classical phase space (0 ≤ x ≤ 1, 0 ≤ p ≤ 0.5) for
M = 400 and K = 7 (a), K = 5 (b) and K = 2.5 (c). The
minimal resistance R and the length of the optimal trajectory
are l = NE,A(B)+∆l withR = 54.2721, NE,A(B) = 6, ∆l = 1
(a); R = 46.8765, NE,A(B) = 8, ∆l = 0 (b); R = 43.1982,
NE,A(B) = 7, ∆l = 4 (c).

number j the trajectory points (for possible trajectories
between A and B) cannot freely choose among all points
of SI since for each value of j the condition (3) repre-
sents a subset of SI which is strictly smaller than SI if
j < lmax.

We remind that the simple naive exponential search al-
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FIG. 2: As Fig. 1 with identical trajectories and same val-
ues of K and M but with a different background color plot
showing the intersection set SI of cells C with NE,A(C) +
N∗

E,B(C) ≤ lmax and where red/green/light blue/full blue
corresponds to maximal/intermediate/small/negative (if C ̸∈
SI) values of the difference lmax −NE,A(C)−N∗

E,B(C).

gorithm ensures automatically, by construction, that all
search trajectories are in the (larger) set SE,A while the
improved algorithm, exploiting the condition (4), ensures
that only certain search trajectories in the set SI , that
can indeed go the end point B, are used. The fact that
the set SI is strongly reduced in comparison to SE,A il-
lustrates the efficiency of the improved search algorithm.
In fact, SupMat Fig. S2 shows the number of points NI

in the set SI versus network size N ≈ M2/2 and we see
that NI < 104 and even NI ∼ 103 for the largest value
of M = 3200. Thus a strong reduction of points which
belong to the intersection set SI is at the origin of the
efficiency of the intelligent surfer algorithm based on the
relations (3),(4).

SupMat Fig. S3 is similar to Figs. 1,2 but using as
background color plot the set S∗

E,B with limited inverse

Erdös numbers (with respect to B as hub). Now, the
trajectory points close to the endpoint B correspond to
orange regions with small inverse Erdös number. Note
that SI is a (strictly smaller) subset of the intersection
SE,A ∩ S∗

E,B .
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FIG. 3: As Fig. 1 with a background color plot showing
the set SE,A for K = 7 and M = 200 (a), M = 800 (b),
M = 1600 (c) and M = 3200 (d). The minimal resistance
R and the length of the optimal trajectory are respectively:
l = NE,A(B) + ∆l with R = 47.9764, NE,A(B) = 5, ∆l = 1
(a); R = 60.8154, NE,A(B) = 6, ∆l = 0 (b); R = 50.5808,
NE,A(B) = 6, ∆l = 0 (c); R = 55.1597, NE,A(B) = 6, ∆l = 0
(d).

Fig. 3 is similar to Fig. 1 (with background color plot
for the set SE,A) but for the single value K = 7 and
four values M = 200, 800, 1600, 3200. The optimal tra-
jectories for these cases are rather similar but a bit dif-
ferent from the optimal trajectory for M = 400 visible

in Fig. 1(a). The fraction of nodes in the set SE,A de-
creases considerably with increasing M and network size
N ≈ M2/2 which is also due to the comparable values of
lmax = 9 (M = 200) or lmax = 10 (M ≥ 400).
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FIG. 4: As Fig. 3 with identical trajectories and same val-
ues of K and M but with a different background color plot
showing the set SI (see caption of Fig. 2). The panels (c)
(M = 1600) and (M = 3200) show a zoomed region of the
phase space (around the point i4) and corresponding to the
white rectangle visible in panel (b) (case of M = 800).

Fig. 4 is similar to Fig. 3 but with the intersection set
SI as background color plot. Here the fraction of nodes in
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the set SI decreases very strongly with increasing M and
N ≈ M2/2. In particular for M ≥ 1600 only a zoomed
region around the 4th node i4 of the trajectory is shown
(in full size plots the set SI would be essentially invisible
for M ≥ 1600 due to the limited resolution). Around i4
the set of “available points” (for other trajectories from
A → B with l ≤ llmax) is rather well visible and of con-
siderable size even though for larger values ofM also here
a zoomed representation is necessary. The strong reduc-
tion of SI illustrates that the improved search algorithm
gains more efficiency for larger values of M .

Results similar to Figs. 3, 4 are shown in SupMat
Figs. S4, S5 (for K = 5, 2.5 and with SE,A backgound)
and Figs. S6, S7 (for K = 5, 2.5 and with SI backgound)
For K = 5 it turns out that the point i4 is rather close
to the end point B such that the latter appears in the
zoomed region for M ≥ 1600. For K = 2.5 the point
i4 of the optimal trajectory shifts considerably between
M = 800 and M = 1600 such that i4 at M = 800 is
outside the zoomed region used for M ≥ 1600. Fig. S8
of SupMat shows the 2nd, 8th and 10th best trajectory
for M = 400, K = 7 using the background color plot of
the set SI . The three trajectories of Fig. S8 and also the
best trajectory visible in Fig. 2(a) are somewhat differ-
ent but the other 6 trajectories of the group of best 10
trajectories are rather close to one of those 4 trajectories.

VI. FRACTAL DIMENSION OF THE SET SI

In this Section we analyze the properties of the set SI .
The small size of this set is at the origin of the efficiency
of the intelligent surfer algorithm discussed above. The
color plots of the set SI , shown in Figs. 2, 4 for different
cases, indicate a fractal structure of this set. We therefore
compute the fractal box-counting dimension DH (see e.g.
[1] and Refs. therein). It is determined by the behavior
NF (ε) ∼ ε−DH where NF (ε) is the number of boxes of
size ε×ε necessary to cover the set SI (here ε takes integer
values when measured in units of the Ulam-grid). Fig. 5
confirms the fractal behavior and shows, for M = 3200,
the linear fits log10(NF (ε)) = C − DH log10(ε) with
DH = 0.531±0.013 (K = 7), DH = 0.648±0.02, (K = 5)
and DH = 0.599 ± 0.033, (K = 2.5). Thus the frac-
tal dimension of the set SI is significantly smaller the
the phase-space dimension being 2 for this 2D symplec-
tic map. This facilitates the search of the optimal path
between the two points A and B for an intelligent surfer.
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0 1 2 3
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0
(N

F
(ε
))

log10(ε)

K = 7
2.9− 0.531 log10(ε))

K = 5
3.11− 0.648 log10(ε))

K = 2.5
2.52− 0.599 log10(ε))

FIG. 5: NumberNF (ε) of boxes of size ε required to cover the
set SI versus box size ε for M = 3200, K = 7 (blue ∗), K = 5
(pink ×) andK = 2.5 (red +). The values of ε are chosen such
that ε = 1, 2, 4, 5, 10, 16, . . . ,M/2 is a divisor of M/2. The
straight lines correspond to the linear fit log10(NF (ε)) = C −
DH log10(ε) with DH = 0.531± 0.013, C = 2.9± 0.0087 (K =
7), DH = 0.648± 0.02, C = 3.11± 0.014 (K = 5) and DH =
0.599±0.033, C = 2.52±0.022 (K = 2.5). HereDH represents
the box-counting fractal dimension and the fit has been done
with a weight factor wj ∼ 1/εj for the different data points
(εj , NF (εj)) such that small ε-values have a stronger weight.

VII. RESISTANCE DEPENDENCE ON
NETWORK SIZE

It is important to determine the dependence of the re-
sistance R of the optimal path between A and B on the
size N of the Ulam network. In Fig. 6 we show this resis-
tance R versus on N ≈ M2/2 for the 10 best trajectories
(with minimal resistance) and for all cases 2.5 ≤ K ≤ 7
and 200 ≤ M ≤ 3200. The dependence of R(N) is not
strictly monotone. For large K values (K = 5, 7) there is
a global tendency that R is growing approximately log-
arithmically with N (R ∼ logN). This corresponds to
a global logarithmic growth of the typical Erdös num-
ber with the Ulam network size N discussed in [15]. For
K = 2.5 there are stability islands of significant size and
also the Lyapunov exponent is significantly smaller in
comparison to K = 5, 7 [12]. Due to this we expect that
higher N values are required to see asymptotic depen-
dence R(N) in this case. Also the presence of fluctua-
tions between 10 optimal orbits hides a slow logarithmic
growth of R(N).

We note that even for N values bigger than a million
the values of R remain relatively modest with R ∼ 60.
This value can be understood from the typical number
of links per node in the Ulam network. Indeed due the
map (1) structure its maximal value is approximately
Nl ≈ 2(2 + K) ≈ 14; 18 for K = 5; 7 respectively [15].
We may estimate that a typical value is smaller by a
factor of 2 giving typically 10 links with a typical tran-
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sition probability pi→j ∼ 0.1. According to Figs. 1- 4
it takes about lopt ≈ 6 transitions for an optimal (or
quasi-optimal) path to go from A to B. Thus a typical
resistance is R ∼ lopt/pi→j ∼ 60 in agreement with the
results of Fig. 6.

20

30

40

50

60

70

80

4 5 6 7

R

log10(N)

K = 7
K = 5

K = 2.5

FIG. 6: Resistance R of 10 optimal trajectories versus Ulam
network size N ≈ M2/2 for 200 ≤ M ≤ 3200, K = 7 (blue
∗), K = 5 (pink ×) and K = 2.5 (red +). The resistance is
defined as the sum of the inverse transition probabilities over
each leg of the trajectory from A to B (see Eq. (2)).

VIII. CASE OF NAIVE SURFER

In order to compare the results of the previous Sections
for an intelligent surfer, who can apply the optimal algo-
rithm to find (i) efficiently trajectories from A → B and
(ii) those with minimal resistance, we consider in this Sec-
tion a different model of a naive surfer. This naive surfer
starts at the initial point i0 = A and then searches among
all nodes accessible from A the cell i1 which has the min-
imal Euclidean distance (

√
(pi1 − pB)2 + (xi1 − xB)2) in

phase space to the target node B. Then from this node
i1 he searches the accessible node i2 with minimal Eu-
clidean distance to B etc. If at some point some ij he
can reach the final node B with one step the algorithm
will automatically terminate with a found trajectory. A
priori, one expects that the time scale for finding the end
point B is ∼ N .

However, due to the birthday paradox (see e.g. [33]
and Refs. therein) the typical time scale when this
naive surfer comes back to an already visited node is
∼

√
N ≪ N and when this happens he enters in a pe-

riodic trajectory which will never reach the end point
B. Therefore, the naive surfer should also keep a list of
all visited nodes and as next step he only chooses nodes
with minimal distance to B among non-visited nodes yet.
Even in this case there may be an “accident” when at a
certain position all accessible nodes have already been
visited. In this case, he goes back one step and choose

another position (with minimal distance and not yet vis-
ited).
We have implemented the algorithm of this naive surfer

and it turns that the first revisited nodes indeed happens
at an iteration time scale j1st revisited ∼

√
N . Also the

2nd type of accident happens a few times but in these
cases only one simple back step is necessary to get out
of the periodic loop. The results are given in SupMat
Figs. S9, S10.
SupMat Fig. S9 shows two such trajectories for K = 5

and M = 200, 400 with colors from blue to red represent-
ing small to large iteration numbers. In both cases a finite
fraction of all available cells/nodes is used. The structure
of the sets of trajectory points is quite random with no
visible phase space structure (apart from the hole due
to a quite big stable island at (x, p) ≈ (0.6, 0.3)). Sup-
Mat Fig. S10 shows the length lnaive of these trajectories
versus network size N (for all 15 values of (K,M)).
In all studied cases lnaive is in the interval [0.1×N, N ]

thus being of the order of network size N . Obviously
this kind of strategy to find short trajectories to the end
point B, without using inverse Erdös numbers, is very
inefficient. Furthermore, the above algorithm of a naive
surfer cannot find the trajectory with minimal resistance.

IX. INTELLIGENT SURFER WITH LIMITED
RESOURCES

Ideally an intelligent surfer could reproduce the algo-
rithm presented above (in Section IV) exploiting at each
search level the condition (3) to avoid as early as pos-
sible all trajectories that do not link the two cells A
and B. For this he needs to compute the values of in-
verse Erdös numbers with respect to B as hub at least
up to the level lmax, i.e. to determine N∗

E,B(C) for all

cells C with N∗
E,B(C) ≤ lmax. In principle, he also

needs the regular Erdös number NE,B(C) (with respect
to the hub A and the non-inverted initial Ulam network)
at least of the node C = B to determine the value of
lmax = NE,A(B) + 4.
Let us now assume that the surfer disposes only of lim-

ited resources (for example in storage of Erdös numbers)
and tries to minimize his initial efforts to compute both
types of Erdös numbers. Concerning the computation of
the value NE,A(B) (the only value of regular Erdös num-
bers which is needed) he could try to choose ad hoc some
small value of lmax and apply the above algorithm which
is highly efficient especially for small values of lmax. If
lmax ≥ NE,A(B) he will find the non-empty set of all tra-
jectories between A and B and therefore also the minimal
length l of these trajectories which is just NE,A(B). If
lmax < NE,A(B) he will find no solutions and in this case
he can increase lmax by one or some small value and try
again.

However, in order to use the above algorithm he still
needs to recompute the inverse Erdös numbers for a large
set of nodes C up to level lmax. The simpler and more
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expensive algorithm (without the test of the condition
(3)) becomes most expensive in the final steps where
the better algorithm only uses small inverse Erdös num-
bers. Therefore the intelligent surfer, could decide to
compute the set of inverse Erdös numbers only up to a
limited depth lS < lmax which is much less expensive
since N lS

l ≪ N lmax

l and to apply the test of the condi-
tion (3) only in the final steps when j ≥ lmax − lS which
requires only to know N∗

E,B(C) up to level lS .

In order to measure the price/efficiency of such a sim-
plified algorithm, we perform the recursive search in this
way and we compute the sum of three quantities which
are (i) the number NT of found trajectories between A
and B, (ii) the number of times the recursion is stopped
because the condition (3) is not verified (if j ≥ lmax− lS)
and (iii) the number of times the recursion goes to the
level lmax but without finding a trajectory containing
the final point B (the case (iii) actually only happens
if lS = 0). These three cases correspond to the three
possibilities to stop the search recursion and their total
number, which we call the search effort number NS , cor-
responds very accurately to the computational effort. We
have verified for a few cases that NS is indeed propor-
tional to the exact computation time for different val-
ues of lS . In the case of the perfect algorithm (with
lS = lmax) it turns out that NS is typically (10−22)×NT

which is larger than NT but only by one order of magni-
tude showing that the perfect algorithm is very efficient
to find rather directly the NT trajectories between A and
B.

1
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5

0 1 2 3 4 5 6 7 8 9 10 11

lo
g 1

0
(N

S
/N

T
)

lS

K = 7, M = 200
K = 7, M = 400
K = 5, M = 200
K = 5, M = 400

K = 2.5, M = 200
K = 2.5, M = 400

FIG. 7: Shown is the (logarithm of the) ratio of the search
effort number NS with the number NT of possible trajectories
between A and B versus search parameter lS (see text) for
K = 2.5, 5, 7 and M = 200, 400.

We have computed NS for different values of lS , K =
2.5, 5, 7 and small values of M = 200, 400 (for larger
values of M the cases lS = 0 and lS = 1 become very ex-
pensive). The result is shown in Fig. 7 showing (the loga-
rithm) of the ratio NS/NT versus lS which starts at typ-
ical values NS/NT = 104-105 and decays very rapidly to

a saturation value NS/NT = 10-22 for lS ≥ 6-7. Here the
valueNT of possible trajectories for the above parameters
depend on K and M and is in the range 103 < NT < 107

(see SupMat Fig. S1 and here the two sets of data points
with N < 105 corresponding to M = 200 or M = 400
respectively). Actually, at lS = 3-4, we already have a
reduction of NS by a factor of 100 reducing the effort to
1% showing that the strategy of the intelligent surfer to
limit the value of lS is indeed liable.
SupMat Figure S11 shows the (logarithm of the) dif-

ference NS − NS,min where NS,min is the minimal value
at lS = lmax. This representation amplifies the small dif-
ferences when NS has nearly converged to NS,min. At
certain critical values lS = 8-12 we have NS = NS,min

and Fig. S11 does not show data points for these cases
(due to the logarithm). In contrast to Fig. 7 the con-
vergence to the limiting value seems a bit later but this
is artificial due to the different presentation. The main
interpretation of Fig. S11 is finally the same as in Fig. 7:
at lS = 3-4 there is already a strong reduction of NS and
the computational effort.

One could ask the question which is the optimal value
of lS to minimize the global computational cost of both
pre-computation of partial inverse Erdös numbers of level
below lS and the initial exponential search algorithm.
The limited pre-computation of inverse Erdös numbers
costs roughly ∼ N lS

l operations and the search algorithm

needs mostly ∼ N lmax−lS
l since it is essentially exponen-

tial for l < lmax − lS . The total cost

NC(lS) = N lS
l +N lmax−lS

l (5)

is obviously minimal at lS = lmax/2 ≈ 5-6 for our param-
eters used above and close the value lS ≈ 4 which gives
a considerable reduction of NS according to Fig. 7.

X. DISCUSSION

We have considered a surfer moving in a chaotic flow
who is facing a goal quest to determine optimal Ulam
network trajectories with minimal resistance between an
initial point A and another final point B. The Ulam net-
work is generated from the symplectic Chirikov standard
map with dynamical chaos and the Perron-Frobenius
eigenvector with maximal eigenvalue has ergodic proba-
bility equipartition over cells (nodes) that belong to one
big connected chaotic component.

We propose an algorithm for an intelligent surfer which
allows to find a requested path of minimal resistance with

a complexity N
lmax/2
l where Nl is the typical number

of links per network node and lmax the maximal length
of considered trajectories. Due to the exponential Lya-
punov instability of chaotic dynamics the number of re-
quired transitions l ≤ lmax grows only logarithmically as
l ∼ logN with the network size N .
The efficiency of the algorithm is based on the com-

putation of Erdös numbers for the directed and time
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inverted dynamical flow. In particular, we have con-
structed the intersection set SI of nodes satisfying the
condition (4) and having a fractal dimension 0.5-0.6 be-
ing significantly smaller than the phase space dimension
2.

The developed algorithm for the intelligent surfer is
exponentially more efficient compared to a case of a naive
surfer, who tries at each step to minimized the distance
to the target point B, or to a direct recursive search
algorithm without using the interaction set SI .
We mention that most of published works and algo-

rithms (see e.g. [24–27]) concern typically directed net-
works and shortest trajectories where the iteration length
l is minimized and not the resistance R (2). In our lan-
guage the computation of the minimal iteration length l
is equivalent to the computation of the Erdös number.
However, when a minimization of resistance is required,

a more complex algorithm, based on the precomputation
of inverse Erdös numbers, is needed to be used.

We hope that the algorithm of an intelligent surfer we
propose will allow to perform a control of motion in the
regime of developed chaos in a better and more efficient
way.
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FIG. S1: Number NT of possible trajectories from A to B
with length l ≤ lmax = NE,A(B) + 4 versus Ulam network
size N ≈ M2/2 for 200 ≤ M ≤ 3200, K = 7 (blue ∗), K = 5
(pink ×) and K = 2.5 (red +).
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FIG. S2: Size NI of the set SI versus the size of Ulam
network N ≈ M2/2 for 200 ≤ M ≤ 3200, K = 7 (blue
∗), K = 5 (pink ×) and K = 2.5 (red +). Note that NI

corresponds to NF (ε = 1) and the three data points at M =
3200 (lg10(N) ≈ 6.7) correspond to the three data points at
log10(ε) = 0 in Fig. 5.
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FIG. S3: As Figs. 1, 2 with identical trajectories and same
values of K and M but with a different background color
plot showing the set S∗

E,A of cells C with N∗
E,B(C) ≤ lmax

and where red/green/light blue/full blue corresponds to max-
imal/intermediate/small/negative (if C ̸∈ S∗

E,A) values of the
difference lmax −N∗

E,B(C).
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FIG. S4: As Fig. 3 with background showing the set SE,A but
for K = 5, same M values. The minimal resistance R and
the length of the optimal trajectory are l = NE,A(B) + ∆l
with R = 25.5306, NE,A(B) = 4, ∆l = 0 (a); R = 66.2289,
NE,A(B) = 10, ∆l = 2 (b); R = 52.3001, NE,A(B) = 10,
∆l = 0 (c); R = 56.5659, NE,A(B) = 10, ∆l = 0 (d).
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FIG. S5: As Fig. 3 with background showing the set SE,A

but for K = 2.5, same M values. The minimal resistance R
and the length of the optimal trajectory are l = NE,A(B)+∆l
with R = 46.9998, NE,A(B) = 7, ∆l = 0 (a); R = 46.9266,
NE,A(B) = 7, ∆l = 4 (b); R = 46.6472, NE,A(B) = 7, ∆l = 4
(c); R = 44.2272, NE,A(B) = 12, ∆l = 0 (d).
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FIG. S6: As Fig. 4 with background showing the set SI but
for K = 5, same M values, same trajectories of Fig. 4. As
in Fig. 4 the panels (c) (M = 1600) and (M = 3200) show
a zoomed region (around the point i4) of the phase space
corresponding to the white rectangle visible in panel (b) (case
of M = 800). The white number 10 refers to the iteration
number of the visible end point B = i10 (big white cross)
which also happens to be inside the zoomed rectangle.
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FIG. S7: As Fig. 4 with background showing the set SI but
for K = 2.5, same M values, same trajectories of Fig. S5. As
in Fig. 4 the panels (c) (M = 1600) and (M = 3200) show
a zoomed region (around the point i4 at given M -value) of
the phase space corresponding to the white rectangle visible
in panel (b) (case of M = 800). Note that here the point
i4 of the optimal trajectory at M = 800 (b) has a different
position (outside the white rectangle) as compared to the two
cases M = 1600 (c) and M = 3200 (d).
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FIG. S8: As Fig. 2 with background showing the set SI for
K = 7, M = 400, but for the 2nd (a), 8th (b) and 10th (c) best
trajectory with respect to minimal R. The minimal resistance
R and the length of the trajectories are l = NE,A(B) + ∆l
with R = 54.4716, NE,A(B) = 6, ∆l = 1 (a); R = 57.982,
NE,A(B) = 6, ∆l = 0 (b); R = 59.9231, NE,A(B) = 6,
∆l = 0 (c).
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FIG. S9: Trajectory of the naive surfer for K = 5, M = 200
(a) and M = 400 (b). The colors red (green, light blue)
indicate cells with iteration numbers which are maximal (in-
termediate, small) in comparison to the length lnaive of the
trajectory. Full blue indicate cells which are not visited by the
trajectory and also stable islands whose cells are not present
in the Ulam network. The white crosses show the positions of
the initial cell A (bottom left corner) and the final cell (top
right corner). The values of lnaive are 13982 (a) or 13744 (b)
representing the fraction lnaive/N = 70.96% (a), 17.46% (b).
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FIG. S10: Length lnaive of the trajectory of the naive surfer
versus Ulam network size N ≈ M2/2 for 200 ≤ M ≤ 3200,
K = 7 (blue ∗), K = 5 (pink ×) and K = 2.5 (red +). The
straight black line shows for comparison the case lnaive = N .
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FIG. S11: Shown is the (logarithm of the) difference of the
search effort number NS with its minimal value NS,min versus
search parameter lS (see text) for K = 2.5, 5, 7 and M =
200, 400. Note that in contrast of Fig. 7 the data points
where NS = NS,min, for sufficiently large lS , are not visible
since the logarithm of zero is not defined.
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