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We introduce and study a random matrix model of Kolmogorov-Zakharov turbulence in a nonlinear purely
dynamical finite-size system with many degrees of freedom. For the case of a direct cascade, the energy and
norm pumping takes place at low energy scales with absorption at high energies. For a pumping strength above
a certain chaos border, a global chaotic attractor appears with a stationary energy flow through a Hamiltonian
inertial energy interval. In this regime, the steady-state norm distribution is described by an algebraic decay
with an exponent in agreement with the Kolmogorov-Zakharov theory. Below the chaos border, the system
is located in the quasi-integrable regime similar to the Kolmogorov-Arnold-Moser theory and the turbulence
is suppressed. For the inverse cascade, the system rapidly enters a strongly nonlinear regime where the weak
turbulence description is invalid. We argue that such a dynamical turbulence is generic, showing that it is present
in other lattice models with disorder and Anderson localization. We point out that such dynamical models can
be realized in multimode optical fibers.
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I. INTRODUCTION

The Kolmogorov concept of turbulence [1,2] assumes
emergence of energy flow through an inertial interval from
large spatial scales, with an external pumping, to small
scales where energy is absorbed by dissipation. The scaling
arguments lead to the appearance of a power-law energy
distribution over wave modes for hydrodynamics turbulence
[1,2]. This concept was generalized and extended to weak
wave turbulence, based on diagrammatic techniques and the
kinetic equation, indeed showing the emergence of power-law
distributions for various types of weakly interacting nonlinear
waves [3–7]. This theory became known as Kolmogorov-
Zakharov (KZ) turbulence (or spectra) [5–7]. In spite of
various successful confirmations of this theory in experiments
and numerical simulations(see, e.g., [5–7]), it is still based
on a fundamental hypothesis directly stated in the seminal
work of Zhakharov and Filonenko [3]: “In the theory of weak
turbulence nonlinearity of waves is assumed to be small; this
enables us, using the hypothesis of the random nature of the
phase of individual waves, to obtain the kinetic equation for
the mean square of the wave amplitudes.” Nevertheless, the
dynamical equations for waves do not involve random phase
approximation (RPA) and hence the validity for the whole
concept of energy flow from large to small scales remains
open.

Indeed, a flow through an inertial interval is Hamiltonian
and it is well known that in nonlinear systems with weak
nonlinearity, the Kolmogorov-Arnold-Moser (KAM) theory
guarantees that the main part of the system phase space re-
mains integrable and nonchaotic in the limit of very weak
nonlinearity (see, e.g., [8,9]; note that KAM theory is valid
in the absence of exact resonances, as discussed below).
More physical analysis of nonlinear dynamical Hamiltonian
systems also shows the existence of a chaos border below
which the phase space contains mainly an integrable dynamics
opposite to the turbulent one [10,11].

Therefore, to better understand the fundamental aspects of
KZ turbulence (KZT), here we introduce and study a different
random matrix model (RMM) of KZT described only by
dynamical equations of motion. This model is an extension
of the nonlinear random matrix model (NLIRM) recently in-
troduced in [12] and which describes a dynamical system of
linear oscillators coupled by a random matrix combined with
a nonlinear interaction between oscillators in the form of a
quartic nonlinearity corresponding to four-wave interactions
in nonlinear media. This system is Hamiltonian with two
conserved integrals of motion.

Random matrix theory (RMT), introduced by Wigner
[13], describes generic spectral properties of complex nuclei,
atoms, and molecules [14,15], and systems of quantum chaos
[16,17]. In particular, RMT eigenstates are ergodic and uni-
formly distributed on the N-dimensional unit sphere, and the
level spacing statistics is characterized by the universal RMT
distribution.

These ergodic RMT eigenstates provide nonlinear long-
range couplings between the oscillator modes in the NLIRM
which leads, for a rather weak nonlinearity (but still
above a certain chaos border), to dynamical thermaliza-
tion according to classical statistical mechanics [18] with
a steady-state thermal distribution characterized by energy
equipartition [12].

In particular, in the NLIRM, the dynamical thermalization
appears in the absence of any thermal bath. This is possible be-
cause, due to the ergodic RMT eigenstates, the NLIRM allows
one to avoid specific features of nonlinear oscillator models
which can be close to certain completely integrable systems
which makes it difficult to achieve dynamical thermaliza-
tion. Indeed, this happened for the seminal Fermi-Pasta-Ulam
(FPU) problem [19], which appeared to be close to completely
integrable soliton systems such as the Korteweg–De Vries
equation [20], the nonlinear Schrödinger equation [21], or the
Toda lattice [22].
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For these reasons, we think that the NLIRM [12] can be
used as a basis for dynamical modeling of KZ turbulence.
For this, we extend the NLIRM by additional terms describ-
ing pumping with nonlinear saturation at low energies and
dissipation at high energies. The form of such pumping is
rather standard, being used in systems of fluid mechanics [23]
and models of random lasing (see, e.g., [24,25]). We call this
extended model the RMM of KZ turbulence.

Our studies for this. model show that the direct cascade
in this system is described by an algebraic decay of the KZ
turbulent spectrum [4] with an exponent being close to the
expected theoretical value, if the pumping strength is above
a certain chaos border, while below this border the flow to
high energies is suppressed, in analogy with KAM theory.
The properties of the inverse cascade are more complex, as
we discuss below.

The paper is organized as follows: in Sec. II, we remind
the reader of the NLIRM of [12] and generalize it to include
pumping and dissipation at certain energy modes. Section III
provides some theoretical conclusions based on the KZ theory
of [4] for our model. Section IV presents and analyzes the
numerical results for three different cases of a direct and an
inverse cascade of the RMM and also the direct cascade for
a variant with short-range oscillator couplings similar to the
Anderson one-dimensional (1D) model, and Sec. V provides
the final discussion.

II. MODEL DESCRIPTION

In the absence of pumping and dissipation, the RMM of
KZT is reduced to the NLIRM model studied in [12], with the
time evolution described by

ih̄
∂ψn(t )

∂t
=

N∑

n′=1

Hn,n′ψn′ (t ) + β|ψn(t )|2ψn(t ). (1)

Here, Hn,n′ are elements of an RMT matrix Ĥ of size N gener-
ated from the Gaussian orthogonal ensemble (GOE) [14]; they
have zero mean and variance 〈H2

n,n′ 〉 = (1 + δn,n′ )/[4(N +
1)]. The averaged density of states is described by the the
semicircle law dm/dE = 2N

π

√
1 − E2, with typical eigen-

values in the interval Em ∈ [−1, 1] (we use dimensionless
units with h̄ = 1). Here, β is a dimensionless constant char-
acterizing the nonlinear interaction strength in the original
basis n. For most energies close to the band center, we can
consider that the eigenenergies Em are changing approxi-
mately linearly with m [Em ≈ π (m − N/2)/(2N ); 1 � m �
N], however, keeping in mind that at the spectrum boundaries,
the density of states drops significantly.

We denote by φ(m)
n the eigenmodes of Ĥ at eigenen-

ergies Em. They are ergodic with a uniform distribution
on the N-dimensional unit sphere [14] for fixed m and
mutually orthogonal between different m. The time evolu-
tion of the system wave function can also be expressed in
the basis of eigenmodes φ(m)

n by ψn(t ) = ∑N
m=1 Cm(t ) φ(m)

n
(see below). Here the coefficients Cm(t ) give the occu-
pation probability ρm = 〈|Cm(t )|2〉, where brackets denote
some long-time or ensemble average (see below). The
time evolution (1) has two integrals of motion. They
are the (squared) norm

∑
n |ψn(t )|2 = 1 and total energy

E = ∑
n[< ψn(t )|Ĥ |ψn(t ) > +(β/2)|ψn(t )|4]. At β = 0, the

model (1) can be viewed as a quantum system or as a classical
system of coupled linear oscillators whose Hamiltonian in the
basis of oscillator eigenmodes is H = ∑

EmC∗
m(t )Cm(t ), with

Cm,C∗
m being a pair of conjugated variables; Em plays the role

of oscillator frequencies.
Due to the nonlinear term, the eigenmodes are getting a

nonlinear frequency shift of δω ∼ β|ψn|2 ∼ β/N . In [26–28],
it was argued that a developed chaos takes place when
this shift δω becomes comparable to a typical energy spac-
ing between energies (or frequencies) of the linear system

ω ∼ 1/N . Thus, δω > 
ω implies chaos with the chaos
border βc = const ∼ 1 being independent of system size N .
Thus, above chaos border β > βc, a moderate nonlinearity
destroys KAM integrability, leading to chaotic dynamics with
a positive maximal Lyapunov exponent λ and dynamical ther-
malization, as shown in [12].

The steady-state thermal distribution of probabilities ρm

has the standard form corresponding to the results of statistical
mechanics [18],

ρm = ρEQ(Em) ≡ T

Em − μ
, (2)

corresponding to the equipartition of energies 〈(Em −
μ)|Cm|2〉 = (Em − μ)ρm = T , where T is the system tem-
perature, and μ(T ) is the chemical potential dependent on
temperature. These two parameters are determined from the
total norm1κ ≡ ∑

m ρm = 1 and the energy E , which are con-
served integrals of motion, by the implicit equations κ =∑

m ρEQ(Em) = 1 and
∑

m EmρEQ(Em) = E (for E , we as-
sume the case of a weak or moderate nonlinearity which
provides only a weak contribution to the total energy). The
entropy S of the system is given by the usual relation [18] S =
−∑

m ρm ln ρm, with the implicit theoretical dependencies on
temperature E (T ), S(T ), and μ(T ) (see details in [12]). We
note that a random matrix model similar to those considered
in [12] and in (1) was considered in [29], but a detailed study
of dynamical thermalization was not presented there.

It is interesting to note that the dynamical thermal, or
Rayleigh-Jeans, distribution (2) has been observed in opti-
cal multimode fibers [30–34] (there a length z along the
fiber corresponds to the time variable discussed here). At
low temperatures T , the thermal distribution (2) has max-
imal probabilities at low energy modes that was called
self-cleaning in fibers. At the same time, we note that in all
fiber experiments [30–34], the dynamics of rays in the linear
system (at zero nonlinear term) is always integrable, usually
corresponding to a case of two-dimensional oscillator (2D)
potential with equal frequencies. The linear mode frequen-
cies (or quantum energy levels) of such a 2D oscillator are
degenerate and formally the KAM theory is not valid in such
a situation. In particular, it was shown that for three oscillators

1For simplicity of notation, we use the notation norm for the quan-
tity κ even though it is a certain time averaged norm |Cm(t )|2 of the
quantum state with amplitudes Cm(t ). Actually, κ is mathematically
the 1-norm of the vector with coefficients ρm. Furthermore, we de-
note as norm distribution the dependence of ρm on energies Em, in
particular for the cases where κ �= 1.
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with equal frequencies, about half of the phase space is chaotic
even at arbitrary small nonlinear coupling [26,35]. A sim-
ilar situation also appears for equidistant mode frequencies
coupled by a nonlinear interaction in the FPU problem [36].
Therefore, the situation of fiber experiments [30–34] does not
directly correspond to the case of RMT mode frequencies or
a case when a linear system belongs to the domain of quan-
tum chaos [16,17] which has spectral properties being close
to those of RMT. We discuss relations between the NLIRM
model (1) with multimode fiber experiments below in more
detail.

To model the KZ turbulence, we generalize (1) by adding
terms for pumping and dissipation (absorption) at specific
energy eigenmodes. For this, it is more convenient to rewrite
the time evolution equation (1) by replacing ψn with the am-
plitudes Cm(t ) obtained from the expansion of ψn in the basis
of the linear eigenmodes φ(m)

n . This provides the following
generalized NLIRM model with pumping and dissipation:

i
∂Cm

∂t
= EmCm + i(γm − σm|Cm|2)Cm

+β
∑

m1m2m3

Vmm1m2m3Cm1C
∗
m2

Cm3 . (3)

The Hamiltonian case (1) is a special case of (3) with γm =
σm = 0 (taking into account the linear transformation ψn →
Cm). In (3), the transitions between linear eigenmodes appear
only due to the nonlinear β term and the transition matrix
elements are Vmm1m2m3 = ∑

n φ(m)∗
n φ(m1 )

n φ(m2 )∗
n φ(m3 )

n ∼ 1/N3/2

[27] due to the sum of N random terms with typical size N−2

since, according to RMT [14], φ(m)
n ∼ N−1/2. Furthermore,

assuming “random” Cm values of comparable size, Cm ∼ C,
the β term in (3) has an overall size ∼βC3 (sum of about N3

random terms of typical size V ∼ N−3/2).
In (3), nonzero values of γm > 0, σm > 0 correspond to

pumping modes or γm < 0, σm = 0 to dissipation modes. To
obtain the energy flow of a direct cascade from low to high
energy modes m, we choose for pumping γm = γ > 0 for the
four lowest energy modes at m = 1, 2, 3, 4 with correspond-
ing saturation coefficients σm = σ > 0 and for dissipation
γm = −γ < 0, σm = 0 for the four highest energy modes
with m = N, N − 1, N = 2, N − 3. For all other m values, we
choose γm = σm = 0. Here, γ and σ are two parameters of
our model and, in most cases, we choose γ = σ = 0.01.

To model an inverse cascade, we also consider the case
when pumping is done at four m values close to a cer-
tain pumping mode m0 in mode space (with m = m0 −
2, . . . , m0 + 1) and dissipation at system boundaries (m =
1, . . . 4 and m = N − 3, . . . , 1).

In this way, we obtain a purely dynamical random matrix
model of KZ turbulence described by Eq. (3), which we call
RMM of KZT. This can be considered as a model of dynam-
ical turbulence without any couplings to an external thermal
bath or external noise.

We mention that in the absence of the nonlinear coupling,
i.e., if β = 0, the amplitudes Cm(t ) decouple and (3) allows
for the analytical solution

Cm(t ) = Cm(0) e−iEmt

√
Dm + (1 − Dm)e−2γmt

, Dm ≡ |Cm(0)|2 σm

γm
, (4)

which simplifies to Cm(t ) = Cm(0) e(−iEm+γm )t if σm = 0. For
the pumping case with γm = γ > 0 and σm = σ > 0, this
solution provides |Cm(t )| → Csat ≡ √

γ /σ for t → ∞, with
Csat being the saturation value of the amplitudes. Initial
small amplitudes |Cm(0)| � Csat grow for short timescales as
|Cm(t )| ∼ eγ t and large initial amplitudes |Cm(0)| � Csat de-
cay as |Cm(t )| ∼ Csat/

√
2γ t for (very) short timescales and, in

both cases, they saturate at Csat with ||Cm(t )| − Csat| ∼ e−2γ t

for longer timescales. For β = 0 and dissipation modes, there
is a simple exponential decay |Cm(t )| ∼ e−γ t . In all cases, the
phase Cm(t )/|Cm(t )| = e−iEmt behaves as in the quantum or
pure oscillator case.

It is interesting to note that in the limit of a strong β term,
or Em = 0, and γm = σm = 0, Eq. (3) is similar to the random
coupling model of turbulence that can be considered as a
classical Sachdev-Ye-Kitaev model [37].

III. THEORETICAL KZ SPECTRA FOR RMM

In the theory of KZ spectra, it is usually assumed that the
frequency ω spectrum of linear waves is an algebraic function
of the wave vector k with ω(k) ∝ kα; the four-wave interaction
matrix elements are also algebraic functions of k with an
exponent χ (V ∝ kχ ) and the system dimension is d . Then the
stationary solution of the direct cascade of energy flow from
low to high energies also has an algebraic solution, with the
density in k space being ([4]; see Eq. (3.1.10a) there)

ρk ∝ k−s0 , s0 = 2χ/3 + d. (5)

In our case for RMM, the wave vector k corresponds to the
eigenmode index m and we have d = 1, χ = 0 [matrix ele-
ments V in (3) are independent of m] with α ≈ 1 (assuming a
constant density of states for the center part of the semicircle
law, we have approximately Em + 1 ∝ m with an energy shift
counted from the lower energy border). Hence, the theoretical
steady-state density for RMM is

ρm ∝ 1/(Em + 1)−s0 , s0 = 1. (6)

For the inverse cascade of norm flow in RMM, we have,
from [4] [see Eq. (3.1.10b) there],

ρm ∝ (Em + 1)−x0 , x0 = 2χ/3 + d − α/3 = 2/3. (7)

We perform, for RMM of KZT, a comparison of the above
theoretical predictions with the results of the numerical simu-
lations in the next section.

IV. NUMERICAL RESULTS FOR RMM OF KZT

The numerical integration of the time evolution described
by Eq. (3) is done in the same way as described in [12]
using a fourth-order integration method with a basic time
step 
t = 0.1. In the absence of pumping and dissipation,
the method conserves the symplectic symmetry and is also
called “symplectic integrator.” In particular, in this case, the
total norm κ = ∑

m |Cm(t )|2 is conserved up to numerical
precision and the classical energy is conserved numerically
at a level of 10−8. This integration method applies alternate
small integration steps in the original lattice n basis (only
using the nonlinear β term), followed by a small integration
step of the other terms (obtained by putting β = 0) in the
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linear eigenmode m basis of the random matrix Ĥ . Between
two steps, the linear transformation between ψn → Cm or its
inverse transformation Cm → ψn is applied in order to switch
back and forth from one to the other basis, and vice versa.
The succession of the eight or six (using a certain symmetry
optimization) individual integration time steps is carefully
chosen as certain fractions of 
t such that the global precision
of the method is fourth order, with a global error of ∼(
t )4

(see [12] and references therein for details).
In the presence of pumping and dissipation terms, the

system described by (3) is no longer symplectic, but the nu-
merical method can still directly be applied to this case using
the analytical solution (4) for β = 0 for the integration steps
in Cm representation and the overall precision is still ∼(
t )4.

These terms break norm and energy conservation, leading
to turbulent energy and norm flows between energy scales
which are at the basis of KZ spectra [4]. However, in-between
pumping and dissipation, the dynamics (3) remains Hamilto-
nian, as is assumed in KZ theory.

A. Direct cascade of KZT

We start with the analysis of the direct energy cascade from
low to high energies, where the pumping is done at the lowest
linear energy modes m = 1, . . . , 4 and absorption (or dissipa-
tion) is done at the highest energy modes m = N − 4, . . . , N .
We choose the initially populated modes at m = 1, . . . , 8
with random amplitudes Cm(t = 0) and a total norm κ =∑

m |Cm(0)|2 = 0.01. A small value of κ corresponds to an
image of a calm sea surface with very weak wind modeled by
pumping. The results for system sizes N = 128, 256, β = 1,
γ = σ = 0.01 are presented in Fig. 1. They show that at large
times t = 222, there is a convergence to a stationary norm
distribution ρm which is approximately described by an alge-
braic decay of the norm population ρm with energy Em + 1,
counted from the spectrum border. The decay exponent s0,
given by fit, decreases with an increase of the system size
of s0 = 1.48; 1.24 at N = 128, 256. The fit for the algebraic
decay is done for the range 0.2 � Em + 1 � 1.8 to exclude the
boundary effects of pumping and absorption. Indeed, at low
values of m (or Em + 1), the amplitudes Cm(t ) fluctuate around
the saturation value (for β = 0) Cm ≈ Csat = √

γ /σ = 1 cor-
responding to the regime when γ pumping is compensated by
the nonlinear σ term. The total norm is κ = 5.31, showing that
the largest fraction of norm is located on the pumping modes
m = 1, . . . , 4 and a smaller norm fraction is transferred by a
turbulent flow to high energies. At the boundary near m = N ,
the norm values ρm drop due to absorption.

We point out that the steady-state distributions ρm, shown
in Fig. 1 for a specific random realization of RMT matrix Hn,n′

in (1), are qualitatively the same for other random realizations
of Hn,n′ . In Fig. 2, we show steady-state distributions ρm for 10
different realizations that have approximately the same shape
with an average algebraic exponent s0 = 1.32 ± 0.03. The
pumping region at m = 1, . . . , 4 contains the main fraction of
the total norm κ and, depending on the disorder realization
of Hn,n′ and Em, there are considerable fluctuations of the
numerical prefactor of the power law, while the shape of the
algebraic decay of ρm at higher energies remains independent
of disorder.

1

10−5

10−4

10−3

10−2

10−1

8.12.0 11.0

ρ
m

Em + 1

N = 128

N = 256

FIG. 1. Distribution ρm vs Em + 1 in a double-logarithmic rep-
resentation for N = 128 (red +) and N = 256 (blue ∗), γ = σ =
0.01, β = 1, pumping at m = 1, . . . , 4, and absorption at m = N −
3, . . . , N . The values of ρm have been obtained from the time average
ρm(t ) = 〈|Cm(τ )|2〉 for t/2 � τ � t with t = 222. The initial condi-
tion corresponds to uniform random values Cm(0) for m = 1, . . . , 8
and Cm(0) = 0 for m > 8, with initial squared norm

∑
m |Cm(0)|2 =

0.01. Data points with Em + 1 < 0.09 have been artificially moved to
Em + 1 = 0.09. The black straight lines show the power-law fit ρm =
A (1 + Em )−s0 using the fit range 0.2 � 1 + Em � 1.8 with A =
(9.52 ± 0.10) × 10−3, s0 = 1.48 ± 0.02 (for N = 128), and A =
(2.69 ± 0.01) × 10−3, s0 = 1.24 ± 0.01 (for N = 256). The aver-
age total norm is κ = ∑

m ρm = 6.25 (for N = 128) and κ = 5.31
(for N = 256). The green curves show the theoretical equipartition
distribution ρEQ(Em ) of Eq. (2) obtained from a reduced spectrum
4 < m < N − 3, excluding both pumping and dissipation modes
with effective temperature T = 8.40 × 10−3 and chemical potential
μ = −0.881 (for N = 128) and T = 2.45 × 10−3, μ = −0.918 (for
N = 256; see text for details). The values of the reduced norm κr and
reduced energy Er used in Eq. (8) are κr = 2.489, Er = −1.185 (for
N = 128) and κr = 1.417, Er = −0.6930 (for N = 256).

1

10−6

10−5

10−4

10−3

10−2

10−1

8.12.0 11.0

ρ
m

Em + 1

10 × (N = 256)

FIG. 2. Same as Fig. 1 for N = 256 and 10 different random
matrix realizations Ĥ (the other parameters are the same and blue
◦ represent data points). The straight line shows the power-law fit
ρm = A (1 + Em )−s0 using the fit range 0.2 � 1 + Em � 1.8 and all
data points for all 10 random matrix realizations with A = (1.64 ±
0.03) × 10−3, s0 = 1.32 ± 0.03. The average norm is in the interval
4.18 � κ = ∑

m ρm � 6.57 for the 10 random matrix realizations.
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1

10−12

10−9

10−6

10−3

8.12.0 11.0

ρ
m

Em + 1

γ = 0.01

γ = 0.005

γ = 0.0001

FIG. 3. Same as Fig. 1, but N = 512 and modified values γ =
0.01 (red +), γ = 0.005 (green × and shifted down by a factor of
10 for better visibility), and γ = 0.0001 (blue ∗). (Values for β = 1,
σ = 0.01, t = 222 modes for pumping and absorption and initial con-
dition are unchanged with respect to Fig. 1.) The straight lines show
the power-law fit ρm = A (1 + Em )−s0 using the fit range 0.2 � 1 +
Em � 1.8, with A = (1.584 ± 0.003) × 10−3, s0 = 1.130 ± 0.004
(for γ = 0.01), A = (1.343 ± 0.004) × 10−3, s0 = 1.117 ± 0.005
(for γ = 0.005), and A = (1.82 ± 0.03) × 10−12, s0 = 2.17 ± 0.03
(for γ = 0.0001). The average total norm is κ = 5.99 (for γ = 0.01),
3.58 (for γ = 0.005), and 0.0455 (for γ = 0.0001).

The fit values of s0 in Figs. 1 and 2 are somewhat higher
than the theoretical value s0 = 1 from (6). We attribute this
to effects of finite system size N and to deviations from the
assumed constant density of states at the boundary of the
semicircle spectrum. Indeed, for the higher value N = 512
shown in Fig. 3, we obtain the exponent s0 = 1.130 ± 0.004
that is close to the theoretical KZT value s0 = 1 of Eq. (6) [4].

One can also ask the question of how far the numerical
results for Fig. 1 correspond to the statistical equipartition
distribution (2). Obviously, the numerical values of ρm in
Fig. 1 are significantly enhanced (reduced) for pumping (dis-
sipation) modes m if compared to ρm for other close m
nonpumping (nondissipation) modes, and also from a theo-
retical viewpoint, it is not reasonable to expect that Eq. (2) is
valid for the full spectrum including pumping and dissipation
modes. However, one may surmise that the long-time (t =
222) steady-state distribution for the reduced spectrum with
4 < m < N − 4, excluding pumping and dissipation modes,
approximately satisfies the statistical equipartition distribution
(2). To verify this point, we have determined T and μ by the
two implicit equations

κr =
∑

m

′
ρEQ(Em), Er =

∑

m

′
EmρEQ(Em), (8)

where the sums
∑′ are taken over the reduced spectrum

4 < m < N − 4 and the reduced norm κr and energy Er are
obtained from the numerical values of ρm at t = 222 by

κr ≡
∑

m

′
ρm, Er ≡

∑

m

′
Emρm. (9)

The green curves in Fig. 1 show ρEQ(Em) for the reduced spec-
trum of N = 128, 256, β = 1, γ = σ = 0.01 (the obtained
values of T, μ, κr, Er are given in the caption of Fig. 1).
These curves are rather close to the numerical data, but for
modes close to the energy boundaries, there are some small
but significant deviations and especially for energies in the
interval 1 < Em < 1.8, the power law based on KZ theory
(straight black lines) provides a slightly better fit than the
classical equipartition distribution.

Of course, the distribution ρEQ(Em) in (2) can also be
viewed as an approximate algebraic decay 1/(Em + 1) at
Em + 1 � μ with the algebraic exponent s0 = 1 as in KZ
theory (6). However, there is a fundamental physical differ-
ence between the thermal steady state (2) and the turbulence
steady state (6): there is no flow between energy scales in
(2), while there is a turbulent flow from low to high en-
ergies in (6). Thus the empirical fits based on (2) for the
numerical data in Fig. 1 can be considered only as some
additional empirical descriptions without physical grounds
behind.

We show in Fig. 3 the steady-state norm distribution ρm

for three values of pumping, γ = 0.01; 0.005; 0.0001, and
the same value σ = 0.01. For the two largest γ values, the
pumping is sufficiently strong and the steady-state distribution
is rather close to the KZ theory. It is important to note that
this steady state is practically independent of the initial values
of amplitudes, Cm(t = 0) (for a given fixed realization of the
RM Ĥ ). We have verified this point by choosing different
random realizations of the initial condition [for the random
initial values Cm(0) for m � 8 with κ (t = 0) = 0.01] and also
localized initial conditions Cm0 (0) = 1 for a specific mode
value m0 (e.g., with m0 = 1 or m0 = N/2, etc.) and Cm(0) = 0
for m �= m0 [typical initial condition chosen in [12] with κ (t =
0) = 1]. In all cases and for N � 512, we obtain essentially
the same steady-state distribution at t = 222 with average rel-
ative differences 〈δρm/ρm〉 of the order of (1 − 2) × 10−2 (for
N = 128, 256) or (5 − 10) × 10−2 (for N = 512). This shows
that there a single global chaotic attractor with describes a
turbulent flow in the system.

According to Fig. 3, a sufficiently strong pumping with
γ = 0.01; 0.005 leads to a turbulent flow and a steady-state
distribution ρm, in agreement with the KZ theory. However,
at small pumping with γ = 0.0001, the distribution ρm has a
very different shape with a fit exponent s0 = 2.17 ± 0.03. In
this case, the total norm is reduced by a factor of 100 with
κ = 0.0455, corresponding to the estimate κ ≈ 4γ /σ and a
main norm fraction located on pumping modes m = 1, . . . , 4,
while ρm ∼ 10−12-10−6 for other m > 4. These results show
that there is no turbulent flow at a pumping strength below
a certain chaos border that corresponds to the spirit of KAM
theory. We stress that the notion of chaos border for emer-
gence of the turbulence flow is absent in the theory of KZ
turbulence [4]. We do not enter into a deep discussion on the
value for the exponent s0 ≈ 2 in the nonturbulent regime, but
we note that due to RMT properties, the matrix elements V
in (3) have approximately the same random values and there-
fore, based on simple perturbation theory with direct V -matrix
element transitions, one can estimate Cm ∼ 1/(Em − E1) and
ρm ∼ 1/(Em − E1)2 (with E1 ≈ −1) corresponding to s0 = 2,
which is close to the numerical value 2.17.
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FIG. 4. Color density plot of 〈ρm(t )〉 in the plane log10(Em + 1)
(x axis) and log2(t ) (y axis) for the data of Fig. 2 with (a) γ =
0.0001 and (b) γ = 0.01 (the other parameters are the same).
The values of ρm(t ) have been obtained from the time average
ρm(t ) = 〈|Cm(τ )|2〉 for t/2 � τ � t with t = 2 j and the index j =
log2(t ) = 1, 2, . . . , 22 corresponding to the 22 vertical cells. The
40 horizontal cells correspond to 40 uniform cells in the interval
log(0.09) � log(Em + 1) � log(2.1) with an additional average of
ρm(t ) → 〈ρm(t )〉 for data points (with different Em) in the same
cell. Data points with Em + 1 < 0.09 have been artificially moved
to Em + 1 = 0.09 and are taken into account in the average of the
first column of cells. The values of the color bar correspond to
(〈ρm(t )〉/ρmax)1/4 with (a) ρmax = 0.005058 and (b) ρmax = 0.5051.
The top row of (a) corresponds to the bottom data points of Fig. 2 for
γ = 0.0001 and the top row of (b) corresponds to the top data points
of Fig. 2 for γ = 0.01, both for the last time value t = 222.

The time development of turbulent flow from low to high
energies is shown in Fig. 4. At low pumping below the chaos
border with γ = 0.0001, there is no flow to high energies,
while for sufficiently strong pumping, a turbulent flow to high
energies emerges with a steady-state distribution, in agree-
ment with KZ theory. The turbulent steady-state distribution
approximately stabilizes at times t ≈ 218.

Finally, in Fig. 5, we show results for the largest studied
system size N = 1024. Here, at γ = 0.01, the algebraic decay
exponent s0 = 2.43 ± 0.01 is significantly different from the
theoretical value s0 = 1 (6). We attribute this to the fact that
the RMT density of states at lowest energies drops signifi-
cantly and thus, with an increase of matrix size N , the spacing
between the lowest Em values becomes relatively larger com-
pared to those in the middle of the energy band. Thus a higher
nonlinearity β is needed to have a dynamical thermalization
of these initial eigenmodes. This effect has been discussed
in [12] for Hamiltonian dynamics (1). Therefore, a stronger
pumping is required to be above a chaos border for KZT.
Indeed, the effective nonlinear parameter of the system is
βκ ∼ βγ /σ and an increase of γ pumping should drive the
system to the KZ turbulent regime. The results of Fig. 5

1

10−6

10−3

8.12.0 11.0

ρ
m

Em + 1

γ = 0.01

γ = 0.02

FIG. 5. Same as Fig. 1 for N = 1024 and γ = 0.01 (red +)
or γ = 0.02 (blue ∗) (the other parameters are the same). The
straight lines show the power-law fit ρm = A (1 + Em )−s0 using the
fit range 0.2 � 1 + Em � 1.8 with A = (7.64 ± 0.04) × 10−6, s0 =
2.43 ± 0.01 (for γ = 0.01) and A = (2.713 ± 0.005) × 10−4, s0 =
1.134 ± 0.003. The total norm is κ = 4.15 (for γ = 0.01) and 9.07
(for γ = 0.02).

confirm that this is the case and at γ = 0.02 the exponent
s0 = 1.134 ± 0.003 is in good agreement with the KZ theory.

B. Regime of inverse cascade

According to KZ theory [4], there should also be an inverse
turbulent cascade of norm flow with the algebraic exponent
x0 = 2/3 (7). There have been experiments (see, e.g., [6])
and numerical simulations (see, e.g., [38,39]) of realizations
of such an inverse cascade. We try to realize the regime of
an inverse cascade (for β = 1, γ = σ = 0.01, N = 512) by
performing γ pumping in the same way as before, but placing
it either in the middle of the energy band Em (four modes near
m0 = N/2) or in the vicinity of maximal Em energies (four
modes near m0 = N − 40). The absorption is done at both
energy boundaries at eight eigenmodes with m = 1, . . . , 4 and
m = N − 3, . . . , N (using γm = −γ < 0 and σm = 0). The
initial state is always composed of eight eigenmodes placed
around m0 with random amplitudes and the total initial norm
κ (t = 0) ≈ 0.01.

Typical results are shown in Fig. 6. They clearly show
an approximately homogeneous norm distribution ρm over
all energies Em; there are more fluctuations for pumping at
m0 = N − 40. Clearly, there is no theoretical inverse cascade
(7). We explain this fact as follows: a pumping at high m0

modes leads to a norm transfer at low m modes as is expected
from KZ theory. Thus an initially pumped norm κ ≈ 4γ /σ is
transferred to low energy m modes that leads to a growth of
the total norm accumulated in the system. Indeed, the results
of Fig. 7 show that in the steady state of the inverse cascade,
the total norm κ ≈ 48 is larger by a factor 10 compared to the
case of the direct cascade with κ ≈ 6. Thus, for the inverse
cascade case, the effective nonlinearity parameter becomes
rather large, βκ ≈ 48, therefore breaking the regime of weak
or moderate nonlinearity. It is possible that one can still try
to find a regime where the inverse cascade is present in the
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FIG. 6. Distribution ρm vs Em in normal representation for N =
512, β = 1, and γ = σ = 0.01. The values of ρm have been ob-
tained from the time average ρm(t ) = 〈|Cm(τ )|2〉 for t/2 � τ � t
with t = 222. Both panels correspond to pumping at m ≈ m0 with
(a) m0 = N − 40 = 472 or (b) m0 = N/2 = 256, i.e., at m = m0 −
2, . . . , m0 + 1 and absorption at both boundaries m = 1, . . . , 4 and
m = N − 3, . . . , N . The initial condition corresponds to eight uni-
form random values Cm(0) at m ≈ m0, i.e., m = m0 − 4, . . . , m0 + 3
and Cm(0) = 0 for other m with initial norm

∑
m |Cm(0)|2 = 0.01.

The final norm at t = 222 is (a) κ = 74.08 or (b) κ = 48.52. The
straight line [only for (b)] shows the linear fit ρm = A − B Em using
nonpumping and nonabsorption modes with A = (9.51 ± 0.01) ×
10−2 and B = (1.35 ± 0.02) × 10−2.

RM model of KZT. However, this would require the use of
very small γ pumping, which may be below the chaos border.
Furthermore, even at small γ values, the total norm should
significantly grow in the limit of large system size N , where
the weak turbulence approximation is broken. For the case of
a direct cascade, there is no such problem since ρm is decreas-
ing with growing energy Em + 1 and the total norm κ with
related effective nonlinearity parameter βκ remains bounded
to moderate values (see Fig. 7) and the system remains in a
regime of weak turbulence where KZ theory is valid.

Here we consider finite-size systems with random matrix
couplings between modes. Such a situation corresponds to
multimode fibers with a cross section generating chaotic ray
dynamics corresponding to a regime of quantum chaos (e.g.,
D-shape cross section as discussed in [12]); such fibers may
have up to a thousand modes. Such systems are rather different
from the quasi-infinite sizes used to study the weak turbulence
of waves in large systems [5,38,39] (e.g., about a billion
modes in [39]). It was shown that at large sizes and a spe-
cific pumping, the theoretical inverse cascade can be realized
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m
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m
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t
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FIG. 7. Time dependence of the (nonaveraged) norm∑
m |Cm(t )|2 at selected time values for N = 512, β = 1,

γ = σ = 0.01. The pumping and absorption parameters are
(a) as in Fig. 2 for data points (red +) or (b) as in Fig. 6(b) for data
points (blue ∗). Note that the total norm for times τ in the interval
221 � τ � 222 is (a) κ = 5.99 and (b) κ = 48.52 (see, also, the
captions of Figs. 2 and 5).

[39]. We do not exclude that for some specific pumping and
very large random matrix sizes, one can find regimes with a
theoretical inverse cascade. But for moderate sizes of about
a thousand, typical for fibers, we tried various typical forms
of pumping that were always leading to a regime of strong
nonlinearity. Thus we conclude that the theoretical regime
of inverse cascade is hardly reachable for finite-size systems
with random matrix interactions between modes, e.g., chaotic
fibers. Also, we think that for fibers, it is rather difficult to
pump only very high modes.

C. KZT and Anderson localization

In the case of RMM described by Eqs. (1) and (3), the
matrix elements V between linear eigenmodes have random
amplitudes of the same order between all eigenmodes. It is
interesting to consider a case when such couplings have a
local structure with transitions only between modes in a cer-
tain finite energy range of eigenmodes. As such a model, we
consider the discrete Anderson nonlinear Schrödinger equa-
tion (DANSE) in a static Stark field,

i
∂ψn

∂t
= ( f n + εn)ψn + β|ψn|2ψn + (ψn+1 + ψn−1). (10)

Here, εn are random on-site energies randomly and ho-
mogeneously distributed in the interval −W/2 � εn � W/2,
where the hopping takes place only on nearest sites with unit
amplitude, and f describes a static Stark field. At f = β = 0,
this system represents the one-dimensional Anderson model
with exponentially localized eigenmodes (see, e.g., [40,41]).
The localization length at the middle of the energy band is
� = 96/W 2. At moderate nonlinearity with β ∼ 1 and f = 0,
this Anderson localization is destroyed and an unbounded
subdiffusive spreading of the wave packet takes place [42,43].
This spreading is preserved in the presence of a moderate
Stark field [44]. In fact, the spreading is subdiffusive such that
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FIG. 8. ρm vs Em − E1 in a double-logarithmic representation for
the DANSE model with diagonal shift parameter f = 0.125, disorder
strength W = 4, N = 256, γ = σ = 0.01, β = 1, and pumping, ab-
sorption, and initial condition as in Fig. 1. The values of ρm have been
obtained from the time average ρm(t ) = 〈|Cm(τ )|2〉 for t/2 � τ � t
with t = 222 (red +), t = 220 (green ×), t = 218 (blue ∗), and t = 216

(pink �). The straight line shows the power-law fit ρm = A (1 +
Em )−s0 using the data for t = 222 and the fit range 0.01(EN − E1) �
(Em − E1) � 0.5(EN − E1) with A = 1.00 ± 0.04, s0 = 1.02 ± 0.02
(and E1 = −1.67, EN = 33.42, EN − E1 = 35.09). The total norm
is κ = 13.86 (for t = 216), 17.16 (for t = 218), 19.58 (for t = 220),
and 21.19 (for t = 222).

the second moment grows as 〈n2〉 ∝ tν with the numerical ex-
ponent value ν ≈ 0.3-0.4 in 1D [42–44]. This value is smaller
than ν = 0.5 following from the random phase approximation
[45,46]. In [12], it was shown that in such a system of finite
size N , the dynamical thermalization takes place at a mod-
erate nonlinearity β ∼ 1 and a moderate Stark field f with
the steady-state thermal distribution corresponding to energy
equipartition (2).

In the basis of linear eigenmodes of the 1D-Anderson
Hamiltonian, the coupling between modes appears only due
to the β nonlinearity. In this basis, the time evolution is
still described by Eq. (3). However, due to the exponential
localization of linear eigenmodes in (10), the matrix elements
V are coupling m modes only in a range 
m ∼ �, while
outside of this range, their amplitude drops exponentially due
to Anderson localization.

Due to the above properties, it is natural to use the DANSE
model with Stark field for studies of KZT by introducing
pumping and absorption in the same way as for the RMM
case described above. Another advantage of the model (10)
is that due to the presence of the Stark field, the energy band
range can be significantly increased compared to the RMT
case, where it is fixed to 2.

The results for KZ turbulence in model (10) are presented
in Figs. 8 and 9. Here, as in RMM (for the direct cascade),
the pumping is done for the four lowest modes m = 1, . . . , 4
at γ = σ = 0.01 and absorption is at the highest modes m =
N − 4, . . . , N . The numerical integration is done in the same
way as for the RMM case. We use parameters β = 1, W = 4,
and f = 0.125 so that at N = 256, the energy band width is
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FIG. 9. Color density plot of 〈ρm(t )〉 in the plane log(Em − E1)
(x axis) and log2(t ) (y axis) for the DANSE model using the data
of Fig. 8 (similar style as in Fig. 4). The values of ρm(t ) have been
obtained from the time average ρm(t ) = 〈|Cm(τ )|2〉 for t/2 � τ � t ,
with t = 2 j and the index j = log2(t ) = 1, 2, . . . , 22 corresponding
to the 22 vertical cells. The 40 horizontal cells correspond to 40
uniform cells in the interval log(0.1) � log(Em − E1) � log(1.1 ×
EN ) (same energy interval shown in Fig. 8), with an additional
average of ρm(t ) → 〈ρm(t )〉 for data points (with different Em) in
the same cell. The column 3 with first nonzero (nonblue) values
corresponds to the data for E2. The values of the color bar cor-
respond to (〈ρm(t )〉/ρmax)1/4, with ρmax = 1.072. The top 1,3,5,7
rows correspond to the data points of Fig. 8 for t = 222, 220, 218, 216,
respectively.

approximately 32, which is larger by a factor of 16 compared
to RMM. At such parameters, the localization length � = 16
is significantly smaller than the lattice size N . The time evo-
lution of the norm distribution ρm is shown in Fig. 8 at four
discrete time values. The color density plot of Fig. 9 shows
the same data as Fig. 8, but for all times 2 � t � 222 in the
same style as Fig. 4 for the RMM. It takes a rather long time
to reach the absorption boundary due to the slow subdiffusive
spreading in the DANSE model. However, with time, the
KZT profile (6) stabilizes as well as the total norm growth.
In the steady state, we find the algebraic decay exponent
s0 = 1.02 ± 0.02 that is practically equal to the theoretical
value s0 = 1. We think that an increase of the energy band
width allows one to obtain a more exact value of s0.

We note that previously, an interplay between the KZ
turbulence process and the Anderson localization has been
discussed in [47,48]. It was found that the KZ turbulent flow
to high energies can be stopped by the Anderson localization
and KAM integrability. However, in the models considered in
[47,48], the energy pumping at low energy modes was chosen
to be unitary so that the total norm was conserved. Due to this,
the nonlinear interaction was kept on a fixed level. In the case
of model (10) considered here, the pumping is changing the
total norm so that the system itself relaxes to a steady state
with a self-determined total norm. Therefore, in such a case,
the Anderson localization cannot stop the KZ turbulent flow
which propagates to the highest available energies. However,
as with the RMM case (see Figs. 3 and 4), a weak pumping in
the DANSE model with Stark field (10) keeps the system in
the KAM integrable regime below the chaos border and there
is no turbulent flow to high energies.

Finally, we note that for the case of the DANSE model
(10) with f = 0 and with the pumping done in the original
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n basis, we find that the total norm is growing and the wave
packet spreads over the whole system size. Due to this, the
norm growth of such a case is not of physical interest.

V. DISCUSSION

In this work, we introduced and studied a random matrix
model of the Kolmogorov-Zakharov turbulence. The model
evolution is described by purely dynamical equations of mo-
tion without any external thermal bath or noise. As shown in
[12], in the absence of dynamical pumping and dissipation,
the Hamiltonian chaotic dynamics leads to a thermal equi-
librium distribution with energy equipartition over energies
of linear modes. Thus the dynamical evolution produces an
emergence of a thermal law description of statistical mechan-
ics. The introduction of energy and norm pumping at low
energy modes and dissipation at high energy modes (also de-
scribed by dynamical equations only) leads to a global chaotic
attractor which describes an energy flow from low to high
energies corresponding to the KZ theory concept [4]. This
direct turbulent flow is characterized by an algebraic decay
of norm from low to high energies, with the exponent being
close to the KZT theoretical value (s0 = 1). Thus the studied
system can be viewed as a purely dynamical model of KZ
turbulence. At the same time, we show that in this model,
a turbulent flow appears only at a pumping strength that is
above a certain chaos border related to KAM integrability of
motions in the case of very weak nonlinearity. We also show
that the RMM case of KZT is rather generic and, even when
linear eigenmodes are exponentially localized in the lattice
basis due to Anderson localization, we still have the direct

turbulent cascade well described by KZ theory when pumping
is above a certain chaos border.

However, in the RMM case, we do not find a regime of
the inverse KZ cascade. We attribute this to a strong norm
growth driving the system to a strongly nonlinear regime when
the approach of weak turbulence and weak nonlinearity is not
applicable.

We note that the dynamical thermalization has been re-
cently observed in the experiments with multimode fibers
(see, e.g., [30–34]) and we assume that the RMM system
discussed here for the KZ turbulence can be realized in fibers
with a cross section of a chaotic 2D billiard. Such quantum
billiards have many properties of quantum chaos [16,17] that
are similar to the RMT case studied here. As discussed in
[12], we think that a most optimal billiard section of fiber
is a D-shape one (a circle with cut), where the classical dy-
namics is know to be chaotic (see, e.g., [49]). We expect that
in multimode fibers, the KZT regime can be realized by a
continuous laser pumping of low energy modes, while the
light at high energy modes will escape from a fiber due to
high angle collisions with the fiber perimeter, thus leading to
a stationary KZT flow from low to high energies.
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