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We introduce and study a random matrix model of Kolmogorov-Zakharov turbulence in a non-
linear purely dynamical finite size system with many degrees of freedom. For the case of a direct
cascade the energy and norm pumping takes place at low energy scales with absorption at high
energies. For a pumping strength above a certain chaos border a global chaotic attractor appears
with a stationary energy flow through a Hamiltonian inertial energy interval. In this regime, the
steady-state norm distribution is described by an algebraic decay with an exponent in agreement
with the Kolmogorov-Zakharov theory. Below the chaos border the system is located in the quasi-
integrable regime similar to the Kolmogorov-Arnold-Moser theory and the turbulence is suppressed.
For the inverse cascade the system rapidly enters a strongly nonlinear regime where the weak tur-
bulence description is invalid. We argue that such a dynamical turbulence is generic showing that it
is present in other lattice models with disorder and Anderson localization. We point out that such
dynamical models can be realized in multimode optical fibers.

PACS numbers:

I. INTRODUCTION

The Kolmogorov concept of turbulence [1, 2] assumes
emergence of energy flow through an inertial interval
from large spacial scales, with an external pumping, to
small scales where energy is absorbed by dissipation. The
scaling arguments lead to appearance of a power law
energy distribution over wave modes for hydrodynamics
turbulence [1, 2]. This concept was generalized and ex-
tended to weak wave turbulence, based on diagrammatic
techniques and the kinetic equation, indeed showing the
emergence of power law distributions for various types
of weakly interacting nonlinear waves [3–7]. This the-
ory became known as Kolmogorov-Zakharov (KZ) tur-
bulence (or spectra) [5–7]. In spite of various successful
confirmations of this theory in experiments and numeri-
cal simulations(see e.g. [5–7]) it is still based on a funda-
mental hypothesis directly stated in the seminal work of
Zhakharov and Finonenko [3]: “In the theory of weak tur-
bulence nonlinearity of waves is assumed to be small; this
enables us, using the hypothesis of the random nature of
the phase of individual waves, to obtain the kinetic equa-
tion for the mean square of the wave amplitudes”. Never-
theless, the dynamical equations for waves do not involve
Random Phase Approximation (RPA) and hence, the va-
lidity for the whole concept of energy flow from large to
small scales remains open.

Indeed, a flow through an inertial interval is Hamilto-
nian and it is well known that in nonlinear systems with
weak nonlinearity the Kolmogorov-Arnold-Moser (KAM)
theory guarantees that the main part of the system phase
space remains integrable and non-chaotic in the limit of
very weak nonlinearity (see e.g. [8, 9]). More physi-
cal analysis of nonlinear dynamical Hamiltonian systems
also shows the existence of a chaos border below which
the phase space contains mainly an integrable dynamics
opposite to the turbulent one [10, 11]. Also a simple ob-
servation of a sea surface clearly shows that a weak wind

is not able to generate turbulence.

Therefore to understand better the fundamental as-
pects of KZ turbulence (KZT), we introduce and study
here a new Random Matrix Model (RMM) of KZT de-
scribed only by dynamical equations of motion. This
model is an extension of the Nonlinear Random Matrix
model (NLIRM) introduced recently in [12] and which
describes a dynamical system of linear oscillators cou-
pled by a random matrix combined with a nonlinear
interaction between oscillators in the form of a quartic
nonlinearity corresponding to four-wave interactions in
nonlinear media. This system is Hamiltonian with two
conserved integrals of motion.

RandomMatrix Theory (RMT), introduced by Wigner
[13], describes generic spectral properties of complex nu-
clei, atoms and molecules [14, 15], and systems of quan-
tum chaos [16, 17]. In particular, RMT eigenstates are
ergodic and uniformly distributed on the N -dimensional
unit sphere, and the level spacing statistics is character-
ized by the universal RMT distribution.

These ergodic RMT eigenstates provide nonlinear long
range couplings between the oscillator modes in the
NLIRM which leads for a rather weak nonlinearity (but
still above a certain chaos border) to dynamical thermal-
ization according to classical statistical mechanics [18]
with a steady-state thermal distribution characterized by
energy equipartition [12].

In particular, in the NLIRM the dynamical thermal-
ization appears in absence of any thermal bath. This is
possible because due to the ergodic RMT eigenstates the
NLIRM allows to avoid specific features of nonlinear os-
cillator models which can be close to certain completely
integrable systems which makes it difficult to achieve dy-
namical thermalization. Indeed, this happened for the
seminal Fermi-Pasta-Ulam (FPU) problem [19], which
appeared to be close to completely integrable soliton sys-
tems such as the Korteweg-De Vries equation [20], the
nonlinear Schrödinger equation [21] or the Toda lattice
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[22].
Due to these reasons we think that the NLIRM [12]

can be used as a basis for dynamical modeling of KZ
turbulence. For this we extend the NLIRM by additional
terms describing pumping with nonlinear saturation at
low energies and dissipation at high energies. The form
of such pumping is rather standard being used in systems
of fluid mechanics [23] and models of random lasing (see
e.g. [24, 25]). We call this extended model RMM of KZ
turbulence.

Our studies for this new model show that the direct
cascade in this system is described by an algebraic decay
of the KZ turbulent spectrum [4] with an exponent being
close to the expected theoretical value, if the pumping
strength is above a certain chaos border, while below this
border the flow to high energies is suppressed in analogy
with KAM theory. The properties of the inverse cascade
are more complex as we discuss below.

The paper is organized as follows: in section II we
remind the NLIRM of [12] and generalize it to include
pumping and dissipation at certain energy modes. Sec-
tion III provides some theoretical conclusions based on
the KZ theory of [4] for our model. Section IV presents
and analyzes the numerical results for three different
cases of a direct and an inverse cascade of the RMM and
also the direct cascade for a variant with short range os-
cillator couplings similar to the Anderson 1D model and
section V provides the final discussion.

II. MODEL DESCRIPTION

In absence of pumping and dissipation the RMM of
KTZ is reduced to the NLIRM model studied in [12] with
the time evolution described by

iℏ
∂ψn(t)

∂t
=

N∑

n′=1

Hn,n′ψn′(t) + β|ψn(t)|2ψn(t) . (1)

Here Hn,n′ are elements of an RMT matrix Ĥ of size
N generated from the Gaussian Orthogonal Ensem-
ble (GOE) [14], they have zero mean and variance
⟨H2

n,n′⟩ = (1 + δn,n′)/(4(N + 1)). The averaged den-
sity of states is described by the the semi-circle law
dm/dE = 2N

π

√
1− E2 with typical eigenvalues in the

interval Em ∈ [−1, 1] (we use dimensionless units with
ℏ = 1). Here, β is a dimensionless constant character-
izing the nonlinear interaction strength in the original
basis n. In a first approximation we can consider that
the eigenenergies Em are changing linearly with m in the
range [−1, 1], however, keeping in mind that at the spec-
trum boundaries the density of states drops significantly.

We denote by ϕ
(m)
n the eigenmodes of Ĥ at eigenener-

gies Em. They are ergodic with a uniform distribution on
the N -dimensional unit sphere [14] for fixedm and mutu-
ally orthogonal between different m. The time evolution
of the system wave function can be also expressed in the

basis of eigenmodes ϕ
(m)
n by ψn(t) =

∑N
m=1 Cm(t)ϕ

(m)
n

(see below). Here the coefficients Cm(t) give the occupa-
tion probability ρm = ⟨|Cm(t)|2⟩ where brackets denote
some long time or ensemble average (see below). The
time evolution (1) has two integrals of motion. They
are: the (squared) norm

∑
n |ψn(t)|2 = 1 and total en-

ergy E =
∑

n[< ψn(t)|Ĥ|ψn(t) > +(β/2)|ψn(t)|4]. At
β = 0 the model (1) can be viewed as a quantum sys-
tem or as a classical system of coupled linear oscillators
whose Hamiltonian in the basis of oscillator eigenmodes
is H =

∑
EmC

∗
m(t)Cm(t) with Cm, C

∗
m being a pair of

conjugated variables; Em plays the role of oscillator fre-
quencies.

Due to the nonlinear term the eigenmodes are getting
a nonlinear frequency shift being δω ∼ β|ψn|2 ∼ β/N .
In [26, 27, 42] it was argued that a developed chaos takes
place when this shift δω becomes comparable to a typical
energy spacing between energies (or frequencies) of the
linear system ∆ω ∼ 1/N . Thus δω > ∆ω implies chaos
with the chaos border βc = const ∼ 1 being independent
of system sizeN . Thus above chaos border β > βc a mod-
erate nonlinearity destroys KAM integrability leading to
chaotic dynamics with a positive maximal Lyapunov ex-
ponent λ and dynamical thermalization as it was shown
in [12].

The steady-state thermal distribution of probabilities
ρm has the standard form corresponding to results of
statistical mechanics [18]:

ρm = ρEQ(Em) ≡ T

Em − µ
(2)

corresponding to the equipartition of energies ⟨(Em −
µ)|Cm|2⟩ = (Em−µ)ρm = T where T is the system tem-
perature, µ(T ) is the chemical potential dependent on
temperature. These two parameters are determined from
the total norm1 κ ≡ ∑

m ρm = 1 and the energy E, which
are conserved integrals of motion, by the implicit equa-
tions κ =

∑
m ρEQ(Em) = 1 and

∑
mEmρEQ(Em) = E

(for E we assume the case of a weak or moderate non-
linearity which provides only a weak contribution to the
total energy). The entropy S of the system is given by
the usual relation [18]: S = −∑

m ρm ln ρm with the
implicit theoretical dependencies on temperature E(T ),
S(T ), µ(T ) (see details in [12]).
It is interesting to note that the dynamical thermal, or

Rayleigh-Jeans, distribution (2) has been observed in op-
tical multimode fibers [29–33] (there a length z along the
fiber corresponds to time variable discussed here). At low
temperatures T the thermal distribution (2) has maximal

1 For simplicity of notation we use the notation norm for the quan-
tity κ even though it is a certain time averaged norm |Cm(t)|2
of the quantum state with amplitudes Cm(t). Actually, κ is
mathematically the 1-norm of the vector with coefficients ρm.
Furthermore, we denote as norm distribution the dependence of
ρm on energies Em in particular for the cases where κ ̸= 1.
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probabilities at low energy modes that was called self-
cleaning in fibers. At the same time we note that in all
fiber experiments [29–33] the dynamics of rays in the lin-
ear system (at zero nonlinear term) is always integrable
usually corresponding to a case of two-dimensional oscil-
lator (2D) potential with equal frequencies. The linear
mode frequencies (or quantum energy levels) of such a
2D oscillator are degenerate and formally the KAM the-
ory is not valid in such a situation. In particular, it was
shown that for 3 oscillators with equal frequencies about
half of the phase-space is chaotic even at arbitrary small
nonlinear coupling [26, 34]. A similar situation appears
also for equidistant mode frequencies coupled by a non-
linear interaction in the FPU problem [35]. Therefore
the situation of fiber experiments [29–33] does not di-
rectly correspond to the case of RMT mode frequencies
or a case when a linear system belongs to the domain of
quantum chaos [16, 17] which has spectral properties be-
ing close to those of RMT. We discuss relations between
the NLIRM model (1) with multimode fiber experiments
below in more detail.

To model the KZ turbulence we generalize (1) by
adding terms for pumping and dissipation (absorption) at
specific energy eigenmodes. For this it is more convenient
to rewrite the time evolution equation (1) by replacing
ψn with the amplitudes Cm(t) obtained from the expan-

sion of ψn in the basis of the linear eigenmodes ϕ
(m)
n .

This provides the following generalized NLIRM model
with pumping and dissipation :

i
∂Cm

∂t
= EmCm + (γm − σm|Cm|2) (3)

+ β
∑

m1m2m3

Vmm1m2m3
Cm1

C∗
m2
Cm3

.

The Hamiltonian case (1) is a special case of (3) with
γm = σm = 0 (taking into account the linear trans-
formation ψn → Cm). In (3) the transitions between
linear eigenmodes appear only due to the nonlinear β-
term and the transition matrix elements are Vmm1m2m3

=∑
n ϕ

(m)∗
n ϕ

(m1)
n ϕ

(m2)∗
n ϕ

(m3)
n ∼ 1/N3/2 [27] due to the sum

of N random terms with typical size N−2 since, accord-

ing to RMT [14], ϕ
(m)
n ∼ N−1/2. Furthermore, assuming

“random” Cm values of comparable size Cm ∼ C the β-
term in (3) has an overall size ∼ βC3 (sum of about N3

random terms of typical size V ∼ N−3/2).
In (3), non-zero values of γm > 0, σm > 0 correspond

to pumping modes or γm < 0, σm = 0 to dissipation
modes. To obtain the energy flow of a direct cascade from
low to high energy modesm we choose for pumping γm =
γ > 0 for the 4 lowest energy modes at m = 1, 2, 3, 4 with
corresponding saturation coefficients σm = σ > 0 and for
dissipation γm = −γ < 0, σm = 0 for the 4 highest energy
modes with m = N,N − 1, N = 2, N − 3. For all other
m values we chose γm = σm = 0. Here γ and σ are two
parameters of our model and in most cases we choose
γ = σ = 0.01.

To model an inverse cascade we also consider the

case when pumping is done at 4 m-values close to a
certain pumping mode m0 in mode space (with m =
m0 − 2, . . . ,m0 +1 and dissipation at system boundaries
(m = 1, . . . 4 and m = N − 3, . . . , 1).
In this way we obtain a purely dynamical Random Ma-

trix Model of KZ turbulence described by Eq. (3) which
we call RMM of KZT. This can be considered as a model
of dynamical turbulence without any couplings to an ex-
ternal thermal bath or external noise.
We mention, that in absence of the nonlinear coupling,

i.e. if β = 0, the amplitudes Cm(t) decouple and (3)
allows for the analytical solution :

Cm(t) =
Cm(0) e−iEmt

√
(Dm + (1−Dm)e−2γmt

, Dm ≡ |Cm(0)|2σm
γm

,

(4)
which simplifies to Cm(t) = Cm(0) e(−iEm+γm)t if σm =
0. For the pumping case with γm = γ > 0 and σm =
σ > 0 this solution provides |Cm(t)| → Csat ≡

√
γ/σ for

t→ ∞ with Csat being the saturation value of the ampli-
tudes. Initial small amplitudes |Cm(0)| ≪ Csat grow for
short time scales as |Cm(t)| ∼ eγt and large initial am-
plitudes |Cm(0)| ≫ Csat decay as |Cm(t)| ∼ Csat/

√
2γt

for (very) short time scales and in both cases they satu-
rate at Csat with

∣∣|Cm(t)|−Csat

∣∣ ∼ e−2γt for longer time
scales. For β = 0 and dissipation modes, there is a simple
exponential decay |Cm(t)| ∼ e−γt. In all cases the phase
Cm(t)/|Cm(t)| = e−iEmt behaves as in the quantum or
pure oscillator case.
It is interesting to note that in the limit of a strong

β-term, or Em = 0, and γm = σm = 0 Eq. (3) is similar
to the random coupling model of turbulence that can be
considered as a classical SYK model [36].

III. THEORETICAL KZ SPECTRA FOR RMM

In the theory of KZ spectra, it is usually assumed that
the frequency ω spectrum of linear waves is an algebraic
function of the wave vector k with ω(k) ∝ kα, the four-
wave interaction matrix elements are also algebraic func-
tions of k with an exponent χ (V ∝ kχ) and the system
dimension is d. Then the stationary solution of the direct
cascade of energy flow from low to high energies also has
an algebraic solution with the density in k-space being
[4] (see Eq. (3.1.10a) there):

ρk ∝ k−s0 , s0 = 2χ/3 + d (5)

In our case for RMM the wave vector k corresponds to the
eigenmode index m and we have d = 1, χ = 0 (matrix
elements V in (3) are independent of m) with α ≈ 1
(assuming a constant density of states for the center part
of the semi-circle law we have approximately Em + 1 ∝
m with an energy shift counted from the lower energy
border). Hence, the theoretical steady-state density for
RMM is

ρm ∝ 1/(Em + 1)−s0 , s0 = 1 . (6)
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For the inverse cascade of norm flow in RMM we have
from [4] (see Eq. (3.1.10b there):

ρm ∝ (Em + 1)−x0 , x0 = 2χ/3 + d− α/3 = 2/3 . (7)

We perform for RMM of KZT a comparison of the
above theoretical predictions with the results of numeri-
cal simulations in next Section.

IV. NUMERICAL RESULTS FOR RMM OF KZT

The numerical integration of the time evolution de-
scribed by equation (3) is done in the same way as de-
scribed in [12] using a fourth order integration method
with a basic time step ∆t = 0.1. In absence of pump-
ing and dissipation, the method conserves the symplectic
symmetry and is also called “symplectic integrator”. In
particular in this case the total norm κ =

∑
m |Cm(t)|2

is conserved up to numerical precision and the classi-
cal energy is conserved numerically at a level of 10−8.
This integration method applies alternate small integra-
tion steps in the original lattice n-basis (only using the
nonlinear β-term) followed by a small integration step of
the other terms (obtained by putting β = 0) in the linear

eigenmode m-basis of the random matrix Ĥ. Between
two steps the linear transformation between ψn → Cm

or its inverse transformation Cm → ψn is applied in or-
der to switch forth and back from one to the other basis
and vice versa. The succession of the 8 or 6 (using a cer-
tain symmetry optimization) individual integration time
steps is carefully chosen as certain fractions of ∆t such
that the global precision of the method is fourth order
with a global error being ∼ (∆t)4 (see [12] and references
therein for details).

In the presence of pumping and dissipation terms the
system described by (3) is no longer symplectic, but the
numerical method can still directly be applied to this
case using the analytical solution (4) for β = 0 for the
integration steps in Cm-representation and the overall
precision is still ∼ (∆t)4.
These terms break norm and energy conservation lead-

ing to turbulent energy and norm flows between energy
scales which are at the basis of KZ spectra [4]. How-
ever, in-between pumping and dissipation the dynamics
(3) remains Hamiltonian as it is assumed in KZ theory.

A. Direct cascade of KZT

We start with the analysis of the direct energy cascade
from low to high energies where the pumping is done
at the lowest linear energy modes m = 1, . . . , 4 and ab-
sorption (or dissipation) is done at the highest energy
modes m = N − 4, . . . , N . We choose the initially pop-
ulated modes at m = 1, . . . , 8 with random amplitudes
Cm(t = 0) and a total norm κ =

∑
m |Cm(0)|2 = 0.01.

A small value of κ corresponds to an image of a calm

1

10−5

10−4

10−3

10−2

10−1

0.2 1.80.1 1

ρ
m

Em + 1

N = 128

N = 256

FIG. 1: Distribution ρm versus Em +1 in a double logarith-
mic representation for N = 128 (red +) and N = 256 (blue ∗),
γ = σ = 0.01, β = 1, pumping at m = 1, . . . , 4 and absorption
at m = N − 3, . . . , N . The values of ρm have been obtained
from the time average ρm(t) = ⟨|Cm(τ)|2⟩ for t/2 ≤ τ ≤ t
with t = 222. The initial condition corresponds to uniform
random values Cm(0) for m = 1, . . . , 8 and Cm(0) = 0 for
m > 8 with initial squared norm

∑
m |Cm(0)|2 = 0.01. Data

points with Em + 1 < 0.09 have been artificially moved to
Em + 1 = 0.09. The black straight lines show the power law
fit ρm = A (1+Em)−s0 using the fit range 0.2 ≤ 1+Em ≤ 1.8
with A = (9.52±0.10)×10−3, s0 = 1.48±0.02 (for N = 128)
and A = (2.69±0.01)×10−3, s0 = 1.24±0.01 (for N = 256).
The average total norm is κ =

∑
m ρm = 6.25 (for N = 128)

and κ = 5.31 (for N = 256). The green curves show the
theoretical equipartition distribution ρEQ(Em) of Eq. (2) ob-
tained from a reduced spectrum 4 < m < N − 3, excluding
both pumping and dissipation modes with effective tempera-
ture T = 8.40× 10−3 and chemical potential µ = −0.881 (for
N = 128) and T = 2.45×10−3, µ = −0.918 (for N = 256; see
text for details). The values of the reduced norm κr and re-
duced energy Er used in Eq. (8) are κr = 2.489, Er = −1.185
(for N = 128) and κr = 1.417, Er = −0.6930 (for N = 256).

sea surface with very weak wind modeled by pump-
ing. The results for system sizes N = 128, 256, β = 1,
γ = σ = 0.01 are presented in Fig. 1. They show that
at large times t = 222 there is a convergence to a sta-
tionary norm distribution ρm which is approximately de-
scribed by an algebraic decay of the norm population ρm
with energy Em + 1, counted from the spectrum bor-
der. The decay exponent s0, given by fit, decreases with
an increase of the system size being s0 = 1.48; 1.24 at
N = 128, 256. The fit for the algebraic decay is done for
the range 0.2 ≤ Em + 1 ≤ 1.8 to exclude the boundary
effects of pumping and absorption. Indeed, at low values
of m (or Em +1) the amplitudes Cm(t) fluctuate around

the saturation value (for β = 0) Cm ≈ Csat =
√
γ/σ = 1

corresponding to the regime when γ-pumping is com-
pensated by the nonlinear σ-term. The total norm is
κ = 5.31 showing that the largest fraction of norm is lo-
cated on the pumping modes m = 1, . . . , 4 and a smaller
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1

10−6

10−5

10−4

10−3

10−2

10−1

0.2 1.80.1 1

ρ
m

Em + 1

10× (N = 256)

FIG. 2: As Fig. 1 for N = 256 and 10 different random
matrix realizations Ĥ (same other parameters and blue ◦ for
data points). The straight line shows the power law fit ρm =
A (1 +Em)−s0 using the fit range 0.2 ≤ 1+Em ≤ 1.8 and all
data points for all 10 random matrix realizations with A =
(1.64 ± 0.03) × 10−3, s0 = 1.32 ± 0.03. The average norm is
in the interval 4.18 ≤ κ =

∑
m ρm ≤ 6.57 for the 10 random

matrix realizations.

norm fraction is transferred by a turbulent flow to high
energies. At the boundary near m = N the norm values
ρm drop due to absorption.

We point out that the steady-state distributions ρm,
shown in Fig. 1 for a specific random realization of RMT
matrix Hn,n′ in (1), are qualitatively the same for other
random realizations of Hn,n′ . In Fig. 2, we show steady-
state distributions ρm for 10 different realizations that
have approximately the same shape with an average al-
gebraic exponent s0 = 1.32±0.03. The pumping region at
m = 1, . . . , 4 contains the main fraction of the total norm
κ and depending on disorder realization of Hn,n′ and Em

there are considerable fluctuations of the numerical pref-
actor of the power law while the shape of the algebraic
decay of ρm at higher energies remains independent of
disorder.

The fit values of s0 in Fig. 1 and Fig. 2 are somewhat
higher than the theoretical value s0 = 1 from (6). We
attribute this to effects of finite system size N and to
deviations from the assumed constant density of states
at the boundary of the semi-circle spectrum. Indeed for
the higher value N = 512 shown in Fig. 3, we obtain the
exponent s0 = 1.130±0.004 being close to the theoretical
KZT value s0 = 1 of Eq. (6) [4].

One can also ask the question in how far the numerical
results for Fig. 1 correspond to the statistical equiparti-
tion distribution (2). Obviously, the numerical values
of ρm in Fig. 1 are significantly enhanced (reduced) for
pumping (dissipation) modes m if compared to ρm for
other close m non-pumping (non-dissipation) modes and
also from a theoretical view point it is not reasonable to
expect that Eq. (2) is valid for the full spectrum includ-

ing pumping and dissipation modes. However, one may
surmise that the long time (t = 222) steady state distri-
bution for the reduced spectrum with 4 < m < N − 4,
excluding pumping and dissipation modes, satisfies ap-
proximately the statistical equipartition distribution (2).
To verify this point we have determined T and µ by the
two implicit equations :

κr =
∑

m

′
ρEQ(Em) , Er =

∑

m

′
EmρEQ(Em) (8)

where the sums
∑′

are taken over the reduced spectrum
4 < m < N − 4 and the reduced norm κr and energy Er

are obtained from the numerical values of ρm at t = 222

by :

κr ≡
∑

m

′
ρm , Er ≡

∑

m

′
Emρm . (9)

The green curves in Fig. 1 show ρEQ(Em) for the re-
duced spectrum of N = 128, 256, β = 1, γ = σ = 0.01
(the obtained values of T, µ, κr, Er are given in the figure
caption of Fig. 1). These curves are rather close to the
numerical data but for modes close to the energy bound-
aries there are some small but significant deviations and
especially for energies in the interval 1 < Em < 1.8 the
power law based on KZ theory (straight black lines) pro-
vide a slightly better fit than the classical equipartition
distribution.
Of course the distribution ρEQ(Em) in (2) also can be

viewed as an approximate algebraic decay 1/(Em +1) at
Em+1 ≫ µ with the algebraic exponent s0 = 1 as in KZ
theory (6). However, there is a fundamental physical dif-
ference between the thermal steady-state (2) and the tur-
bulence steady-state (6): there is no flow between energy
scales in (2) while in (6) there is a turbulent flow from low
to high energies in (6). Thus the empirical fits based on
(2) for numerical data in Fig. 1 can be considered only as
some additional empirical descriptions without physical
grounds behind.
We show in Fig. 3 the steady-state norm distribution

ρm for three values of pumping γ = 0.01; 0.005; 0.0001
and the same value σ = 0.01. For two largest γ values
the pumping is sufficiently strong (strong wind on a sea)
and the steady-state distribution is rather close to the KZ
theory. It is important to note that this steady-state is
practically independent of the initial values of amplitudes
Cm(t = 0) (for a given fixed realization of the RM Ĥ).
We have verified this point by choosing different random
realizations of the initial condition (for the random initial
values Cm(0) for m ≤ 8 with κ(t = 0) = 0.01) and also
localized initial conditions Cm0

(0) = 1 for a specific mode
value m0 (e.g. with m0 = 1 or m0 = N/2 etc.) and
Cm(0) = 0 for m ̸= m0 (typical initial condition chosen
in [12] with κ(t = 0) = 1). In all cases and for N ≤ 512,
we obtain essentially the same steady-state distribution
at t = 222 with average relative differences ⟨δρm/ρm⟩
of the order of (1 − 2) × 10−2 (for N = 128, 256) or
(5 − 10) × 10−2 (for N = 512). This shows that there a
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1

10−12

10−9

10−6

10−3

0.2 1.80.1 1

ρ
m

Em + 1

γ = 0.01

γ = 0.005

γ = 0.0001

FIG. 3: As Fig. 1 but N = 512 and modified values γ = 0.01
(red +), γ = 0.005 (green × and shifted down by a factor of
10 for better visibility) and γ = 0.0001 (blue ∗). (Values for
β = 1, σ = 0.01, t = 222, modes for pumping/absorption and
initial condition are unchanged with respect to Fig. 1.) The
straight lines show the power law fit ρm = A (1+Em)−s0 using
the fit range 0.2 ≤ 1 + Em ≤ 1.8 with A = (1.584± 0.003)×
10−3, s0 = 1.130±0.004 (for γ = 0.01), A = (1.343±0.004)×
10−3, s0 = 1.117 ± 0.005 (for γ = 0.005) and A = (1.82 ±
0.03)× 10−12, s0 = 2.17± 0.03 (for γ = 0.0001) The average
total norm is κ = 5.99 (for γ = 0.01), 3.58 (for γ = 0.005)
and 0.0455 (for γ = 0.0001).

sigle global chaotic attractor with describes a turbulent
flow in the system.

According to Fig. 3 a sufficiently strong pumping with
γ = 0.01; 0.005 leads to a turbulent flow and a steady-
state distribution ρm in agreement with the KZ theory.
However, at small pumping with γ = 0.0001 the distri-
bution ρm has a very different shape with a fit exponent
s0 = 2.17 ± 0.03. In this case the total norm is reduced
by a factor 100 with κ = 0.0455, corresponding to the
estimate κ ≈ 4γ/σ and a main norm fraction located on
pumping modes m = 1, . . . , 4 while ρm ∼ 10−12 − 10−6

for other m > 4. These results show that there is no tur-
bulent flow at a pumping strength being below a certain
chaos border that corresponds to the spirit of KAM the-
ory. We stress that the notion of chaos border for emer-
gence of the turbulence flow is absent in the theory of KZ
turbulence [4]. We do not enter into a deep discussion on
the value for the exponent s0 ≈ 2 in the non-turbulent
regime, but we note that due to RMT properties the
matrix elements V in (3) have approximately the same
random values and therefore based on simple perturba-
tion theory with direct V -matrix element transitions one
can estimate Cm ∼ 1/(Em−E1) and ρm ∼ 1/(Em−E1)

2

(with E1 ≈ −1) corresponding to s0 = 2 which is close
to the numerical value 2.17.
The time development of turbulent flow from low to

high energies is shown in Fig. 4. At low pumping be-
low the chaos border with γ = 0.0001 there is no flow to
high energies while for sufficiently strong pumping a tur-

0

0.25

0.5

0.75

1

(a)

(b)

FIG. 4: Color density plot of ⟨ρm(t)⟩ in the plane log(Em+1)
(x-axis) and log2(t) (y-axis) for the data of Fig. 2 with γ =
0.0001 (a) and γ = 0.01 (b) (same other parameters). The
values of ρm(t) have been obtained from the time average
ρm(t) = ⟨|Cm(τ)|2⟩ for t/2 ≤ τ ≤ t with t = 2j and the index
j = log2(t) = 1, 2, . . . , 22 corresponding to the 22 vertical
cells. The 40 horizontal cells correspond to 40 uniform cells
in the interval log(0.09) ≤ log(Em + 1) ≤ log(2.1) with an
additional average of ρm(t) → ⟨ρm(t)⟩ for data points (with
different Em) in the same cell. Data points with Em+1 < 0.09
have been artificially moved to Em + 1 = 0.09 and are taken
into account in the average of the first column of cells. The
values of the color bar correspond to (⟨ρm(t)⟩/ρmax)

1/4 with
ρmax = 0.005058 (a) and ρmax = 0.5051 (b). The top row of
panel (a) corresponds to the bottom data points of Fig. 2 for
γ = 0.0001 and the top row of panel (b) corresponds to the
top data points of Fig. 2 for γ = 0.01 both for the last time
value t = 222.

bulent flow to high energies emerges with a steady-state
distribution in agreement with KZ theory. The turbu-
lent steady-state distribution approximately stabilizes at
times t ≈ 218.

Finally, in Fig. 5 we show results for the largest stud-
ied system size N = 1024. Here at γ = 0.01 the algebraic
decay exponent s0 = 2.43 ± 0.01 is significantly differ-
ent from the theoretical value s0 = 1 (6). We attribute
this to the fact that the RMT density of states at low-
est energies drops significantly and thus with an increase
of matrix size N the spacing between lowest Em values
becomes relatively larger as compared to those in the
middle of the energy band. Thus a higher nonlinearity β
is needed to have a dynamical thermalization of these ini-
tial eigenmodes. This effect has been discussed in [12] for
Hamiltonian dynamics (1). Therefore a stronger pump-
ing is required to be above a chaos border for KZT. In-
deed, the effective nonlinear parameter of the system is
βκ ∼ βγ/σ and an increase, of γ-pumping should drive
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0.2 1.80.1 1

ρ
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Em + 1

γ = 0.01

γ = 0.02

FIG. 5: As Fig. 1 for N = 1024 and γ = 0.01 (red +)
or γ = 0.02 (blue ∗) (same other parameters). The straight
lines show the power law fit ρm = A (1 + Em)−s0 using the
fit range 0.2 ≤ 1 + Em ≤ 1.8 with A = (7.64 ± 0.04) × 10−6,
s0 = 2.43±0.01 (for γ = 0.01) and A = (2.713±0.005)×10−4,
s0 = 1.134± 0.003. The total norm is κ = 4.15 (for γ = 0.01)
and 9.07 (for γ = 0.02).

the system to the KZ turbulent regime. The results of
Fig. 5 confirm that this is the case and at γ = 0.02 the
exponent s0 = 1.134 ± 0.003 is in good agreement with
the KZ theory.

B. Regime of inverse cascade

According to KZ theory [4] there should also be an
inverse turbulent cascade of norm flow with the algebraic
exponent x0 = 2/3 (7). There have been experiments
(see e.g. [6]) and numerical simulations (see e.g. [37]) of
realizations of such an inverse cascade. We try to realize
the regime of an inverse cascade (for β = 1, γ = σ = 0.01,
N = 512) by performing γ-pumping in the same way as
before but placing it either in the middle of the energy
band Em (4 modes near m0 = N/2) or in the vicinity
of maximal Em energies (4 modes near m0 = N − 40).
The absorption is done at both energy boundaries at 8
eigenmodes with m = 1, . . . , 4 and m = N − 3, . . . , N
(using γm = −γ < 0 and σm = 0). The initial state is
always composed of 8 eigenmodes placed aroundm0 with
random amplitudes and the total initial norm κ(t = 0) ≈
0.01.

0
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0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

(a)

ρ
m

Em

N = 512

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-1 -0.5 0 0.5 1

(b)

ρ
m

Em

N = 512

FIG. 6: Distribution ρm versus Em in normal representation
for N = 512, β = 1 and γ = σ = 0.01. The values of ρm have
been obtained from the time average ρm(t) = ⟨|Cm(τ)|2⟩ for
t/2 ≤ τ ≤ t with t = 222. Both panels correspond to pumping
at m ≈ m0 with m0 = N − 40 = 472 (a) or m0 = N/2 = 256
(b), i.e. at m = m0 − 2, . . . ,m0 + 1 and absorption at both
boundaries m = 1, . . . , 4 and m = N − 3, . . . , N . The initial
condition corresponds to 8 uniform random values Cm(0) at
m ≈ m0, i.e. m = m0 − 4, . . . ,m0 + 3 and Cm(0) = 0 for
other m with initial norm

∑
m |Cm(0)|2 = 0.01. The final

norm at t = 222 is κ = 74.08 (a) or κ = 48.52 (b). The
straight line (only for panel (b)) shows the linear fit ρm =
A−BEm using non-pumping and non-absorption modes with
A = (9.51± 0.01)× 10−2 and B = (1.35± 0.02)× 10−2.

Typical results are shown in Fig. 6. They clearly
show an approximately homogeneous norm distribution
ρm over all energies Em; there are more fluctuations for
pumping at m0 = N−40. Clearly, there is no theoretical
inverse cascade (7). We explain this fact as follows: a
pumping at high m0 modes leads to a norm transfer at
low m-modes as it is expected from KZ theory. Thus an
initially pumped norm κ ≈ 4γ/σ is transferred to low
energy m-modes that leads to a growth of the total norm
accumulated in the system. Indeed, the results of Fig. 7
show that in the steady-state of the inverse cascade the
total norm κ ≈ 48 is by a factor 10 larger as compared
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FIG. 7: Time dependence of the (non-averaged) norm∑
m |Cm(t)|2 at selected time values for N = 512, β = 1,

γ = σ = 0.01. The pumping/absorption parameters are as in
Fig. 2 for data points (a) (red +) or in (b) panel of Fig. 6 for
data points (b) (blue ∗). Note that the total norm for times
τ in the interval 221 ≤ τ ≤ 222 is κ = 5.99 (a) and κ = 48.52
(b) (see also captions of Figs. 2 and 5).

to the case of the direct cascade with κ ≈ 6. Thus for
the inverse cascade case the effective nonlinearity param-
eter becomes rather large βκ ≈ 48 therefore breaking the
regime of weak or moderate nonlinearity. It is possible
that one can still try to find a regime where the inverse
cascade is present in the RM model of KZT. However,
this would require to use very small γ-pumping which
may be below the chaos border. Furthermore, even at
small γ values the total norm should significantly grow
in the limit of large system size N where the weak tur-
bulence approximation is broken. For the case of a direct
cascade there is no such problem since ρm is decreas-
ing with growing energy Em + 1 and the total norm κ
with related effective nonlinearity parameter βκ remains
bounded to moderate values (see Fig. 7) and the system
remains in a regime of weak turbulence where KZ theory
is valid.

C. KZT and Anderson localization

In the case of RMM described by Eq. (1) and Eq. (3)
the matrix elements V between linear eigenmodes have
random amplitudes of the same order between all eigen-
modes. It is interesting to consider a case when such
couplings have a local structure with transitions only be-
tween modes in a certain finite energy range of eigen-
modes. As such a model we consider the discrete Ander-
son nonlinear Schrödinger equation (DANSE) in a static
Stark field:

i
∂ψn

∂t
= (fn+εn)ψn+β|ψn|2ψn+(ψn+1+ψn−1) . (10)

1

10−4
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10−2

10−1

0.1 1 10

ρ
m

Em − E1

t = 222

t = 220

t = 218

t = 216

FIG. 8: ρm versus Em − E1 in a double logarithmic rep-
resentation for the DANSE model with diagonal shift pa-
rameter f = 0.125, disorder strength W = 4, N = 256,
γ = σ = 0.01, β = 1, and pumping/absorption/initial con-
dition as in Fig. 1. The values of ρm have been obtained
from the time average ρm(t) = ⟨|Cm(τ)|2⟩ for t/2 ≤ τ ≤ t
with t = 222 (red +), t = 220 (green ×), t = 218 (blue ∗)
and t = 216 (pink □). The straight line shows the power law
fit ρm = A (1 + Em)−s0 using the data for t = 222 and the
fit range 0.01(EN − E1) ≤ (Em − E1) ≤ 0.5(EN − E1) with
A = 1.00 ± 0.04, s0 = 1.02 ± 0.02 (and E1 = −1.67, EN =
33.42, EN − E1 = 35.09). The total norm is κ = 13.86 (for
t = 216), 17.16 (for t = 218), 19.58 (for t = 220), 21.19 (for
t = 222).

Here εn are random on-site energies randomly and ho-
mogeneously distributed in the interval −W/2 ≤ εn ≤
W/2, the hopping takes place only on nearest sites with
unit amplitude, f describes a static Stark field. At
f = β = 0 this system represents the one-dimensional
Anderson model with exponentially localized eigenmodes
(see e.g. [38, 39]). The localization length at the middle
of the energy band is ℓ = 96/W 2. At moderate nonlin-
earity with β ∼ 1 and f = 0 this Anderson localization
is destroyed and an unbounded subdiffusive spreading
of wave packet takes place [40, 41]. This spreading is
preserved in presence of a moderate Stark field [42]. In
[12] it was shown that in such a system of finite size N
the dynamical thermalization takes place at a moderate
nonlinearity β ∼ 1 and a moderate Stark field f with
the steady-state thermal distribution corresponding to
energy equipartition (2).
In the basis of linear eigenmodes of the 1d-Anderson

Hamiltonian the coupling between modes appears only
due to the β-nonlinearity. In this basis the time evolu-
tion is described still by Eq. (3). However, due to ex-
ponential localization of linear eigenmodes in (10) the
matrix elements V are coupling m-modes only in a range
∆m ∼ ℓ while outside of this range their amplitude drops
exponentially due to Anderson localization.
Due to the above properties it is natural to use the

DANSE model with Stark field for studies of KZT by
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FIG. 9: Color density plot of ⟨ρm(t)⟩ in the plane log(Em −
E1) (x-axis) and log2(t) (y-axis) for the DANSE model us-
ing the data of Fig. 8 (similar style as in Fig. 4). The
values of ρm(t) have been obtained from the time average
ρm(t) = ⟨|Cm(τ)|2⟩ for t/2 ≤ τ ≤ t with t = 2j and the in-
dex j = log2(t) = 1, 2, . . . , 22 corresponding to the 22 vertical
cells. The 40 horizontal cells correspond to 40 uniform cells in
the interval log(0.1) ≤ log(Em − E1) ≤ log(1.1 × EN ) (same
energy interval shown in Fig. 8) with an additional average
of ρm(t) → ⟨ρm(t)⟩ for data points (with different Em) in the
same cell. The column 3 with first non-zero (non-blue) val-
ues corresponds to the data for E2. The values of the color
bar correspond to (⟨ρm(t)⟩/ρmax)

1/4 with ρmax = 1.072. The
top 1, 3, 5, 7-rows correspond to the data points of Fig. 8 for
t = 222, 220, 218, 216 respectively.

introducing pumping and absorption in the same way as
for RMM case described above. Another advantage of
the model (10) is that due to the presence of the Stark
field the energy band range can be significantly increased
as compared to the RMT case where it is fixed to 2.

The results for KZ turbulence in model (10) are pre-
sented in Figs. 8 and 9. Here as in RMM (for the direct
cascade) the pumping is done for the 4 lowest modes
m = 1, . . . , 4 at γ = σ = 0.01 and absorption is at the
highest modes m = N − 4, . . . , N . The numerical inte-
gration is done in the same way as for RMM case. We
use parameters β = 1, W = 4 and f = 0.125 so that
at N = 256 the energy band width is approximately 32
being by a factor 16 larger compared to RMM. At such
parameters the localization length ℓ = 16 is significantly
smaller than the lattice size N . The time evolution of the
norm distribution ρm is shown in Fig. 8 at four discrete
time values. The color density plot of Fig. 9 shows the
same data as Fig. 8 but for all times 2 ≤ t ≤ 222 in the
same style as Fig. 4 for the RMM. It takes a rather long
time to reach the absorption boundary due to the slow
subdiffusive spreading in the DANSE model. However,
with time the KZT profile (6) stabilizes as well as the
total norm growth. In the steady-state we find the alge-
braic decay exponent s0 = 1.02 ± 0.02 being practically
equal to the theoretical value s0 = 1. We think that an
increase of the energy band width allows to obtain a more
exact value of s0.

We note that previously an interplay between the KZ
turbulence process and the Anderson localization has

been discussed in [43, 44]. It was found that the KZ
turbulent flow to high energies can be stopped by the
Anderson localization and KAM integrability. However,
in the models considered in [43, 44] the energy pumping
at low energy modes was chosen to be unitary so that
the total norm was conserved. Due to this the nonlinear
interaction was kept on a fixed level. In the case of model
(10) considered here the pumping is changing the total
norm so that the system itself relax to a steady state with
a self-determined total norm. Therefore in such a case the
Anderson localization cannot stop the KZ turbulent flow
which propagates to highest available energies. However,
as with the RMM case (see Figs. 3, 4), a weak pump-
ing in the DANSE model with Stark field (10) keeps the
system in the KAM integrable regime below the chaos
border and there is no turbulent flow to high energies.
Finally, we note that for the case of the DANSE model

(10) with f = 0 and with the pumping done in the origi-
nal n-basis we find that the total norm is growing and the
wave packet spreads over the whole system size. Due to
this norm growth of such a case is not of physical interest.

V. DISCUSSION

In this work we introduced and studied a random ma-
trix model of the Kolmogorov-Zakharov turbulence. The
model evolution is described by purely dynamical equa-
tions of motion without any external thermal bath or
noise. As shown in [12], in absence of dynamical pump-
ing and dissipation, the Hamiltonian chaotic dynamics
leads to a thermal equilibrium distribution with energy
equipartition over energies of linear modes. Thus the dy-
namical evolution produces an emergence of thermal law
description of statistical mechanics. The introduction of
energy and norm pumping at low energy modes and dis-
sipation at high energy modes (also described by dynam-
ical equations only) leads to a global chaotic attractor
which describes an energy flow from low to high energies
corresponding to the KZ theory concept [4]. This direct
turbulent flow is characterized by an algebraic decay of
norm from low to high energies with the exponent be-
ing close to the KZT theoretical value (s0 = 1). Thus
the studied system can be viewed as a purely dynamical
model of KZ turbulence. At the same time, we show that
in this model a turbulent flow appears only at a pump-
ing strength being above a certain chaos border related
to KAM integrability of motions in the case of very weak
nonlinearity. We also show that the RMM case of KZT is
rather generic and even when linear eigenmodes are ex-
ponentially localized in the lattice basis due to Anderson
localization we still have the direct turbulent cascade well
described by KZ theory when pumping is above a certain
chaos border.
However, in the RMM case we do not find a regime

of the inverse KZ cascade. We attribute this to a strong
norm growth driving the system to a strongly nonlinear
regime when the approach of weak turbulence and weak
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nonlinearity is not applicable.
We note that the dynamical thermalization has been

recently observed in the experiments with multimode
fibers (see e.g. [29–33]) and we assume that the RMM
system discussed here for the KZ turbulence can be real-
ized in fibers with a cross-section of a chaotic 2D billiard.
Such quantum billiards have many properties of quantum
chaos [16, 17] being similar to the RMT case studied here.
As discussed in [12], we think that a most optimal bil-
liard section of fiber is a D-shape one (a circle with cut)

where the classical dynamics is know to be chaotic (see
e.g. [45]).
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