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On capillary-gravity waves generated by a slow moving object
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(c) Laboratoire Kastler Brossel, ENS, Université Paris 6, CNRS, 24 rue Lhomond, 75005 Paris, France

(Dated: May 1, 2007)

We investigate theoretically and experimentally the capillary-gravity waves created by a small
object moving steadily at the water-air interface along a circular trajectory. It is well established
that, for straight uniform motion, no steady waves appear at velocities below the minimum phase
velocity cmin = 23 cm · s−1. We show theoretically that no such velocity threshold exists for a
steady circular motion, for which, even at small velocities, a finite wave drag is experienced by the
object. This wave drag originates from the emission of a spiral-like wave pattern. Our results are in
good agreement with direct experimental observations of the wave pattern created by a circularly
moving needle in contact with water. Our study leads to new insights into the problem of animal
locomotion at the water-air interface.

PACS numbers: 47.35.-i , 68.03.-g

Capillary-gravity waves propagating at the free surface
of a liquid are driven by a balance between the liquid in-
ertia and its tendency, under the action of gravity and
surface tension forces, to return to a state of stable equi-
librium [1]. For an inviscid liquid of infinite depth, the
dispersion relation relating the angular frequency ω to
the wave number k is given by ω2 = gk + γk3/ρ where ρ
is the liquid density, γ the liquid-air surface tension, and
g the acceleration due to gravity [2]. The above equation
may also be written as a dependence of wave velocity
c = ω(k)/k on wave number

c(k) = (g/k + γk/ρ)1/2 (1)

The dispersive nature of capillary-gravity waves is re-
sponsible for the complicated wave pattern generated at
the free surface of a still liquid by a moving disturbance
such as a partially immersed object (e.g. a boat or an in-
sect) or an external surface pressure source [2, 3, 4, 5, 6].
The propagating waves generated by the moving dis-
turbance continuously remove energy to infinity. Con-
sequently, the disturbance will experience a drag, Rw,
called the wave resistance [3]. In the case of boats and
large ships, this drag is known to be a major source of
resistance and important efforts have been devoted to
the design of hulls minimizing it [7]. The case of objects

small relative to the capillary length κ−1 = (γ/(ρg))
1/2

has only recently been considered [8, 9, 10, 11].
It has been shown [8] that in the case of a distur-

bance moving at constant velocity V , the wave resis-
tance Rw cancels out for V < cmin where V stands for
the magnitude of the velocity and cmin = (4gγ/ρ)1/4

is the minimum of the wave velocity Eq.(1). For wa-
ter with γ = 73 mN · m−1 and ρ = 103 kg · m−3, one
has cmin = 0.23 m · s−1 (room temperature). This strik-
ing behavior of Rw around cmin is similar to the well-
known Cerenkov radiation emitted by a charged parti-
cle [12], and has been recently studied experimentally
[13, 14]. In this letter, we demonstrate that just like ac-

celerated charged particles radiate electromagnetic waves
even while moving slower than the speed of light [15],
an accelerated disturbance experiences a non-zero wave
resistance Rw even when propagating below cmin. We
consider the special case of a uniform circular trajec-
tory, a situation of particular importance for the study
of whirligig beetles (Gyrinidae, [16]) whose characteris-
tic circular motion might facilitate the emission of surface
waves that may be used for echolocation [17, 18].

We consider the case of an incompressible infinitely
deep liquid whose free surface is unlimited. In the ab-
sence of external perturbation, the free surface is flat
and each of its points can be mapped by a radius vector
r = (x, y) in the horizontal plane. The motion of a small
object along the free surface disturbs the equilibrium po-
sition of the fluid, and each of the free surface acquires
a finite vertical displacement ζ(r). Rather than solving
the complex hydrodynamic problem of finding the flow
around a moving object, we consider the displacement of
an external pressure source Pext(r, t) [5, 6]. The equa-
tions of motion can then be linearized in the limit of small
wave amplitudes [19].

In the frame of this linear-response theory, it is conve-
nient to introduce the Fourier transforms of the pressure

source P̂ext(k, t) and of the vertical displacement ζ̂(k, t).

The Fourier transform P̂ext(k, t) is related to Pext(r, t)
by :

Pext(r, t) =

∫

d2k

(2π)2
eik.rP̂ext(k, t) (2)

(a similar relation exists between ζ̂(k, t) and ζ(r, t)). It
can be shown that, in the limit of small kinematic viscos-

ity ν, the relation between ζ̂(k, t) and P̂ext(k, t) is given
by

∂2ζ̂

∂t2
+ 4 ν k2 ∂ζ̂

∂t
+ ω2(k) ζ̂ = −

kP̂ext(k, t)

ρ
(3)
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In this letter we assume that the pressure source has
radial symmetry Pext(r) = Pext(r), and that the trajec-
tory r0(t) of the object is circular, namely : r0(t) =
R (cos(Ωt), sin(Ωt)). Here R is the circle radius and
Ω is the angular frequency. The velocity of the ob-
ject is then given by V = RΩ. These arguments lead
to the following time dependence of the applied field
Pext(r, t) = Pext(|r−r0(t)|). In Fourier space, this equa-

tion reads P̂ext(k, t) = P̂ext(k)e−ik.r0(t). Since the right
hand side of Eq. (3) is periodic with frequency Ω, it is
possible to find its steady state solution by expanding the
right hand side into Fourier series. Indeed, the problem
becomes equivalent to the response of a damped oscil-
lator to a sum of periodic forces with frequencies nΩ,
where n is a positive integer. The vertical deformation
at any time t can then be reconstructed by evaluating the
inverse Fourier transform. For the particular case of uni-
form circular motion, the time dependence is rather sim-
ple. Indeed, in the steady state regime, the deformation
profile rotates with the same frequency Ω as the moving
body. Therefore in the rotating frame ζ depends on the
position on the surface r only. The analytical expression
of ζ(r) in cylindrical coordinates (x, y) = r(cos φ, sin φ)
reads :

ζ(r, φ) =

∞
∑

n=−∞

einφ

∫

k2dk

2πρ

P̂ext(k)Jn(kr)Jn(kR)

n2Ω2 − ω2(k) + 4inνk2Ω

(4)

where Jn is n-th order Bessel function of the first kind.
The summation index n is directly related to the n-
th Fourier harmonic of the periodic function e−ik.r0(t)

: since the problem is linear, the contribution of all the
harmonics add together.

The knowledge of the exact structure of the wave pat-
tern is precious, but a quantitative measurement of the
wave resistance is needed in order to understand, for
example, the forces developed by small animals mov-
ing at the surface of water. The force F (t) furnished
by the external pressure source is given by : F (t) =
−

∫

d2rPext(r, t)∇ζ(r, t) [20]. The wave resistance Rw(t)
is defined as the projection of F (t) along the direction of
the velocity: Rw(t) = F (t) · V (t)/V (t). For a periodic
motion, it is convenient to consider the time-averaged
power Pw = 〈−F (t) · V (t)〉 furnished by the force F (t).
One can show that

Pw = −

∫

d2r

〈

Pext(r, t)
∂ζ(r, t)

∂t

〉

(5)

This equation reflects the time-averaged power due to the
action of the pressure field on the water-air interface [21].
For uniform circular motion, Rw is time independent and
is simply given by Rw = Pw/V . Combining Eqs. (3) and
(5), it is possible to derive an explicit formula for Rw:

Rw(V,R) =
∑

n>0

n

ρR

(knJn(knR)P̂ext(kn))2
(

d ω2

dk

)

kn

(6)

FIG. 1: (Color online) Dependence of the wave resistance Rw

as a function of the reduced velocity V/cmin = RΩ/cmin for
different ratios between the trajectory radius R, and the ob-
ject size b, as predicted by Eq. (6). The red curve (presenting
many oscillations) corresponds to R/b = 100, while the black
one (with fewer oscillations) corresponds to R/b = 10. The
green curve displaying a typical discontinuity at V = cmin is
the wave drag for a straight uniform motion with velocity V
[8]. The object size, b, was set to b = 0.1 κ−1.

where kn is the unique solution of the equation ω(kn) =
n Ω (the notation Rw(V,R) stresses the dependence of
Rw on the velocity magnitude and on the trajectory ra-
dius). Note that the above equation does not depend of
the precise form of the dispersion relation of capillary-
gravity waves and thus should be of more general rele-
vance. In deriving Eq. (6), the limit νκ/cmin → 0 was
taken (for water, νκ/cmin ∼ 10−3). Equation (6) shows
that the wave resistance Rw takes the form of a sum
Rw =

∑

n>0 An, where the An are positive numbers that
measure the contribution of each Fourier mode of the ex-
ternal pressure source (with frequency n Ω) to the wave
resistance.

The result Eq. 6 differs significantly from the original
prediction on the wave drag due to a straight uniform
motion with velocity V [8, 11]. Indeed, in this case, for
a pressure source with axial symmetry Pext(r), the wave
drag Rw,l experienced by the object is given by :

Rw,l(V ) =

∫ ∞

0

kdk

2πρ

P̂ 2
ext(k) θ(V − c(k))

V 2
√

1 − (c(k)/V )2
(7)

where θ(.) is the Heavyside function and c(k) = ω(k)/k
is the phase velocity. The expressions of the wave drag
for circular and uniform motion (respectively Rw(V,R)
and Rw,l(V )) are compared on Fig. 1. For the numeri-
cal simulations we have assumed the following expression
for the pressure source P̂ext(k) = p0 exp(−kb). Here p0 is
the total force exerted on the surface and b is the typical
object size. While all the data shown in this letter are
obtained with this expression for Pext(r), we have veri-
fied that other distributions (gaussian, step function, ...)
lead qualitatively to the same results. Figure 1 shows
the value of the reduced wave resistance γRw/(p2

0κ) as
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a function of the reduced velocity V/cmin in the limit
of large values of R/b. In this regime, one expects the
effect of acceleration and curvature to be negligible. We
confirmed this behavior by checking numerically that in
the limit R → ∞, Rw(V,R) → Rw,l(V ). However even
if the circular wave drag Rw(V,R) is close to Rw,l(V )
starting from R/b ∼ 10, important differences remain
even up to very large values of R/b such as R/b ∼ 100.
Namely the circular wave drag Rw(V,R) is non zero even
for V < cmin and is continuous at V = cmin. Moreover,
the wave resistance develops a small oscillating compo-
nent as a function of the velocity V .

The fact that, for a circular motion, the wave resistance
is finite even below cmin can be understood as follows.
In the case of uniform motion all the wavenumbers such
as c(k) < V contribute to the wave drag, whereas for
circular motion this is the case for only a discrete set
of wavenumbers kn. While the condition c(k) < V can
be satisfied only when V > cmin, the equations on the
wavenumber kn, ω(kn) = nV/R have positive solutions
for any velocity V . These wavenumbers kn create finite
contributions An > 0 to the wave drag. Therefore for a
circular trajectory a finite wave drag exists at any veloc-
ity V > 0, for the same reasons the result is also continu-
ous at V = cmin. The origin of the oscillations displayed
by the wave resistance (see Fig. 1) above cmin is related
to the oscillatory behavior of Bessel functions and will be
analyzed more thoroughly in a future publication.

FIG. 2: (Color online) Diagram of the surface deformation
ζ(r) for V/cmin = 0.8, κR = 15 and κb = 0.1 as computed
numerically from Eq. (4). This image represents a square re-
gion of size 400κ−1. The perturbation moves counterclockwise
along the black circle and is located at its bottom. The black
spiral represents the predicted Archimedean spiral shape of
the wave crests with radius given by Eq. (8).

Figure 2 represents the wave crest pattern (computed
numerically form Eq.(4)) at the origin of this finite wave
drag. It exhibits characteristic concentric Archimedean
spirals (also known as arithmetic spirals) of the form

r = aφ + b. This can be understood from our theoretical
results as follows. In a first estimation, one can assume
that the integrals in equation Eq. (4) are dominated by
the contribution of the poles at k = kn. Thus ζ(r) can
be written as ζ(r) ∼ 1√

r

∑

n Bnei(nφ−knr), where we have

used the asymptotic development of Jn(knr) at large dis-
tances r and Bn are complex coefficients that do not de-
pend on the position r = r(cos φ, sin φ). By separating
the contribution of the different modes in the relation
F (t) = −

∫

d2rPext(r, t)∇ζ(r, t), one finds that Bn is
proportional to An (where, as defined earlier, the positive
coefficients An measure the contribution of each Fourier
mode to the wave drag: Rw =

∑

n>0 An). One can show
that in the regime of small object sizes κb ≪ 1, the pro-
portionality constant between Bn and An depends only
weakly on the Fourier mode number n; thus, one has
ζ(r) ∝ 1√

r

∑

n Anei(nφ−knr). We have checked numeri-

cally that in the regime V < cmin, the distribution of the
coefficients An is usually peaked around n ∼ κR. For ex-
ample, for κR = 10 and κb = 0.1, An is peaked around
n = 10 for velocities V in the interval (cmin/2, cmin).
The wave-crests are given by the lines of constant phase
nφ−knr = const of the dominant mode n = κR, leading
to the following expression:

a ≈
κR

k(ω = κV )
(8)

where k(ω) is the inverse function of ω(k). An interest-
ing special case of the formula Eq. (8) corresponds to
V = cmin, for which one obtains a ≈ R. The spiral
predicted by Eq. (8) is in very good agreement with the
exact numerical results (Eq. (4)), as can be seen in Fig. 2.

We have also compared our theoretical approach with
experimental results obtained using a one millimeter wide
stainless steel needle immersed in a 38 cm wide water
bucket. The needle was rotated on circular trajecto-
ries of various radii and angular velocities. A typical
wave pattern obtained by this method is shown on Fig. 3
for R ≈ 2.7cm and Ω ≈ 2π × 1.2 Hz (corresponding to
V/cmin ≈ 0.9) and unambiguously demonstrates the ex-
istence of a wake at velocities smaller than cmin. The
observed wave pattern is in remarkable agreement with
the theoretical prediction r = aφ + b with a given by
Eq. (8) and b a free parameter corresponding to an over-
all rotation of the spiral [22]. For V/cmin lower than
0.8, no wake was observed by naked eye. At lower ro-
tation velocities, we probed the surface deformation by
measuring the deflexion of a laser beam reflected by the
air-water interface at a distance r = 11 cm from the ro-
tation axis. Using this scheme, we have established the
existence of waves down to V/cmin ≈ 0.6 below which
the signal to noise ratio of the experiment becomes to
small to observe the laser deflection. Note that this value
is in qualitative agreement with Fig. 1 where the wave
resistance (hence the wave amplitude) has also significa-
tively decreased with respect to its maximum value for
V/cmin . 0.5.
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FIG. 3: (Color online) Photography of the wave crests gener-
ated on a water surface by a needle rotating counterclockwise
along a circular trajectory (radius R ≈ 2.7 cm ≈ 9 κ−1) with
a velocity V ≈ 21 cm · s−1

≈ 0.9 cmin. The black curve rep-
resents the predicted Archimedean spiral with radius a given
by Eq. (8).

To summarize, we have shown theoretically that a dis-
turbance moving along a circular trajectory experienced

a wave drag even at angular velocities corresponding to
V < cmin, where cmin is the minimum phase velocity
of capillary-gravity waves. Our prediction is supported
by experimental observation of a long distance wake for
V/cmin as low as 0.6. For V/cmin > 0.8, we observed
by naked eye Archimedean spiral shaped crests, in good
agreement with theory. These results are directly related
to the accelerated nature of the circular motion, and
thus do not contradict the commonly accepted thresh-
old V = cmin that is only valid for a rectilinear uniform
motion, an assumption often overlooked in the literature.
It would be very interesting to know if whirligig beetles
can take advantage of such spirals for echolocation pur-
poses. More generally, the results presented in this letter
should be important for a better understanding of the
propulsion of water-walking insects [23, 24, 25, 26] where
accelerated motions frequently occurs (e.g when hunting
a prey or escaping a predator [27]). Even in the case
where the insect motion is rectilinear and uniform, one
has to keep in mind that the rapid leg strokes are accel-
erated and might produce a wave drag even below cmin.
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fruitful discussions. F.C. acknowledges support from
Région Ile de France (IFRAF) and A.C. acknowledges
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