
ar
X

iv
:0

80
2.

23
26

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  1

6 
Fe

b 
20

08

Disorder induced transverse delocalisation in ropes of carbon nanotubes.

M.Ferrier, A. Chepelianskii, S.Guéron, and H. Bouchiat
Univ. Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France

A rope of carbon nanotubes is constituted of an array of parallel single wall nanotubes with nearly
identical diameters. In most cases the individual nanotubes within a rope have different helicities
and 1/3 of them are metallic. In the absence of disorder within the tubes, the intertube electronic
transfer is negligeable because of the longitudinal wave vector mismatch between neighboring tubes
of different helicities. The rope can then be considered as a number of parallel independent ballis-
tic nanotubes. On the other hand, the presence of disorder within the tubes favors the intertube
electronic transfer. This is first shown using a very simple model where disorder is treated perturba-
tively inspired by the work in reference3. We then present numerical simulations on a tight binding
model of a rope. Disorder induced transverse delocalisation shows up as a spectacular increase
of the sensitivity to the transverse boundary conditions in the presence of small disorder. This is
accompanied by an increase of the longitudinal localisation length. Implications on the nature of
electronic transport within a rope of carbon nanotubes are discussed.

PACS numbers:

I. INTRODUCTION

A rope of single wall carbon nanotubes (SWNT) is
generally made of ordered parallel tubes with different
helicities, but with a narrow distribution of diameters1,2.
The center of the tubes form a triangular lattice so that
there is for each metallic tube in a rope on average two
neighboring tubes which are also metallic. In the ab-
sence of disorder within the tubes, the intertube elec-
tronic transfer, defined as the matrix element of the
transverse coupling between two neighboring tubes, in-
tegrated over spatial coordinates, is negligeable because
of the longitudinal wave vector mismatch between tubes
of different helicities3. The rope can then be consid-
ered as made of parallel independent nanotubes. The
transport is ballistic and the dimension less conductance
(in units of the quantum conductance GQ = 2e2/h) is
two times the number of metallic tubes within the rope.
However, it has been shown3,4 that disorder within the
tubes favors intertube scattering by relaxing the strict or-
thogonality between the longitudinal components of the
wave functions. Using a very simple model where disor-
der is treated perturbatively, we show in section II that
the intertube scattering time is shorter than the elas-
tic scattering time within a single tube. In tubes longer
than the elastic mean free path, this intertube scatter-
ing can provide additional conducting paths to electrons
which would otherwise be localized in isolated tubes.
In the limit of localised transport along the tubes we
show that the longitudinal localisation length is not a
monotonous function of disorder and increases at mod-
erate disorder. In order to go beyond these analytical
results we have performed numerical simulations on a
tight binding model of coupled 1D chains with different
longitudinal hopping energies. This model described in
section III mimics the physics of transport in a rope of
carbon nanotubes in the sense that in the absence of dis-
order the electronic motion is localised within each chain.
Transverse delocalisation as a function of disorder is in-

vestigated through the sensitivity of eigen-energies to a
change of transverse boundary conditions from periodic
to antiperiodic.

These results show that disordered ropes of carbon
nanotubes can be considered as anisotropic diffusive con-
ductors, which in contrast to individual tubes, exhibit a
localization length that can be much greater than the
elastic mean free path.

II. ELECTRONIC STRUCTURE OF ROPES OF

CARBON NANOTUBES

A. Band structure of a rope without disorder

We consider a rope constituted from SWNT with di-
ameters ranging between 1.2 and 1.5 nm. It can be shown
(see table I) that the tubes within such a rope can have
different kind of helicities. Following the model devel-
oped by Maarouf and Kane3 one can characterize the
electron wave functions at the Fermi energy ǫF with two
wave vectors k⊥ and k‖ respectively perpendicular and
parallel to the tube axis : |Ψ >= |k⊥ > |k‖ > such that

Ψ(x, y) ∼ eik⊥yeik‖x. From this model, it is possible to
compute the matrix elements of the transverse coupling
hamiltonian H⊥ between 2 tubes a and b:

〈Ψa |H⊥|Ψb〉 = t⊥(a, b)δka‖,kb‖
(1)

with t⊥(a, b) = tT e−(1/4)Ra0(ka⊥−kb⊥)2 and tT =
tG

√

a0

4πR = 7.5 meV for an average tube radius R =
0.7 nm, tG = 0.1 eV is the inter-plane hopping energy
in graphite and a0 = 0.5 × 10−10m is the Bohr radius.
The term δka‖,kb‖

is due to the othogonality between wave
functions of different longitudinal wave vectors and shows
that tubes of different helicities are uncoupled to first or-
der in H⊥. The exponential part takes into account the
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FIG. 1: Top, Brillouin zones of two metallic tubes of dif-
ferent helicities. Bottom: Dispersion relation as function of
the longitudinal component of the wave vector of the low-
est energy bands for these 2 tubes for which k0

a‖ 6= k0
b‖

at the Fermi energy illustrating the second order coupling
〈Ψa |H⊥|Ψb〉 = 2t⊥(a, b)2/δǫ(a, b) via the higher energy state
at energy ǫF + δǫ(a, b)/2 for which ka‖ = kb‖.

mismatch between the π orbitals belonging to neighbor-
ing tubes of different helicities3.

Going beyond first order perturbation it is possible to
show that neighbouring tubes of different helicities are
coupled to second order in H⊥ with a characteristic en-
ergy scale e⊥2 = 2t⊥(a, b)2/δǫ (Fig. 1) involving transi-
tions to higher energy states for which ǫb(k) = ǫa(k) =
ǫF + δǫ(a, b)/2. This second order coupling gives rise
to an intertube hopping probability which is very small
compared to the inverse ballistic time L/vF of a micron
long nanotube. It is thus reasonable to assume that, in a
rope constituted of tubes of different helicities, electronic
transport is confined within each ballistic tube and ex-
hibits a strong 1D character.

B. Disordered ropes in the perturbative regime

In the presence of disorder, plane waves localised on
individual tubes are perturbed into wave packets and
become much more sensitive to the transverse coupling
leading to a transport regime which is no longer 1D
but can be delocalised on percolating clusters of metallic
tubes within the rope.

We consider a very short range (on site) disorder poten-
tial, such that its average < V (x) >= 0 and its variance

√

< V (x)2 > = W .

V (x) =
∑

a,xa

W (xa)δ(x − xa) (2)

where the index a runs on the chains constituting the
rope, each of them being characterized by its atomic sites
xa and the the disorder potential W (xa) which probabil-
ity distribution is given by:

P (W (xa)) = 1/W if w(xa) ∈ [−W/2; W/2]
0 otherwise

(3)
The disorder perturbed wave functions can be written

to first order in disorder:

|Ψ′ >= |k⊥0 >

(

|k‖0 > +
∑

i

Ṽ (k‖i − k‖0)

ǫ(0) − ǫ(i)
|k‖i >

)

(4)

where i runs over unoccupied states and Ṽ (k) is the
Fourier component of V at wave vector k. We do not
consider transitions involving different values of k⊥ and
neglect possible perturbation of t⊥(a, b) with disorder.

This perturbed wave function contains plane waves of
all values of parallel momentum. As a result electrons
can hop from tube to tube and conserve their momentum.
The intertube coupling energy between 2 tubes a and b
is now E⊥ =< Ψ′

a|H⊥|Ψ′
b > which reads to first order in

the disorder potential:

E⊥(a, b) =< ka⊥|H⊥|kb⊥ >
2

L

∑

xa

W (xa) cos((k‖a − k‖b)xa)

ǫb(k‖b) − ǫb(k‖a)

(5)
The disorder average value of this coupling is zero but its

typical value e⊥ =

√

E2
⊥ is equal to:

e⊥(a, b) = t⊥(a, b)
W

3δǫ(a, b)
(6)

with δǫ(a, b) = ~vF

∣

∣k‖a − k‖b

∣

∣.
This disorder induced intertube coupling energy is re-

lated to the second order coupling term calculated in
the previous section through: e⊥(a, b, W )/e⊥2(a, b) =
W/t⊥(a, b) which, as will be shown below, can be much
larger than one in a typical rope of SWNT. The coef-

ficients t⊥(a, b) and t⊥(a,b)
δǫ(a,b) were calculated for all the

helicities corresponding to metallic tubes given in table I
with diameter between 1.2 and 1.5 nm, and are depicted
in the histogram fig. (2). From these values we obtain
the average value e⊥ = 0.03 W .

To investigate the nature of transport in ropes, it is in-
teresting to compare the typical intertube hopping time
τh = ~/ 〈e⊥〉 to the intra tube scattering time τe in-
duced by the same disorder. The related elastic mean
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helicity (n,m) (9,9) (10,10) (11,8) (12,9) (12,6) (13,7) (15,6)

diameter (nm) 1.24 1.38 1.32 1.45 1.26 1.4 1.5

helicity (n,m) (14,5) (13,4) (16,4) (15,3) (17,2) (16,1) (18,0)

diameter (nm) 1.36 1.23 1.46 1.33 1.44 1.32 1.43

TABLE I: Values of possible helicities and diameters of
the 14 metallic tubes with a diameter between 1.5 and 1.2
nm. Diameter and helicity are related through: D(n, m) =
0.25

π

√
m2 + mn + n2. There are also 24 insulating tubes in

the same diameter range.
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FIG. 2: Histogram of possible values of the coefficients t⊥(a, b)

and t⊥(a,b)
∆ǫ(a,b)

for all couple of helicities (a, b) of metallic tubes

with a diameter between 1.2 and 1.5nm. The average yields
3ebot = 0.09.

free path le = vF τe was calculated by White et Todorov9

and found to be given by le =
ǫ2

F

W 2 nC for a tube of nC car-
bon atoms along the circumference, where ǫF = 2.7 eV
is the Fermi energy (measured from the bottom of the
band) and W 2 is the variance of the disorder (assumed
to be short range). This value of le is unusually large
compared to what is expected in an ordinary conductor,
since it is proportional to the number of sites along the
circumference of the tube. This is due to the existence of
only 2 conduction modes at the Fermi energy regardless
of the diameter of the tube. As a result there exists a
rather large range of disorder W for which τe is greater
than τh = ~/ 〈e⊥〉, which means that a charge carrier
can visit several neighboring tubes between 2 elastic col-
lisions. As shown schematically on fig.3 comparing the
relevant time scales for transport in a rope of micron
length, four different regimes (1,2,3,4) can be reached as
the amplitude of disorder is increased.

1. At very low amplitude of disorder, when both τe

and τh are long compared to the ballistic time τb =
L/vf , transport is ballistic and one dimensional and
electronic wave functions are localised within single
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FIG. 3: Different transport regimes depending on the ampli-
tude of disorder compared in a rope of length L = 1µm as
discussed in the text. Region 1 = 1D ballistic, region 2 = 3D
ballistic and region 3 = 3D diffusive.

tubes.

2. When τh < τb < τe transport is still ballistic but
wave functions are delocalised over several tubes.

3. When τb < τh < τe transport is diffusive along
the percolating clusters of metallic tubes along the
rope as long as the rope is shorter than the local-
isation length which typical value is ξ = 2Nmle;
where Nm is the number of metallic tubes in the
largest percolating cluster of metallic tubes within
the rope. Typical values of Nm for commonly in-
vestigated SWNT ropes in experiments are given
in the appendix.

4. At large disorder τb < τe < τh electronic states are
localised within individual tubes at the scale of le
(not shown in fig.3).

From this qualitative model one expects that trans-
verse transport but possibly also longitudinal transport is
favored when increasing disorder in the rope. We present
in the following section numerical simulations which con-
firm this statement.

C. Analytical results in the localised regime

In the following we consider the case where, in the
absence of inter chain coupling, electronic wave functions
are localised within each tube aligned along the x axis
and can be characterised by the set of parameters xa, ka

and the localisation length ξa such that:

Ψa(x) = cos(ka(x − xa) exp−(|x − xa|/ξa)/
√

ξa =

Σ
2nπ/L
k=0 (fa(k − ka) + fa(k + ka) exp [i((x − xa)]

(7)
where fa is a Lorentzian function centered on ka of width
δka = 2π/ξa. In the presence of a small intertube cou-
pling such as described by eq. 12, one can easily compute
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the typical transverse coupling energy between two near-
est neighbor tubes at lowest order in t⊥ :

< Ψa|H⊥|Ψb >=
4t⊥(a, b)

λL
Σk

exp ik(xa − xb)λ
4

(λ2 + (k ± ka)2)(λ2 + (k ± kb)2)

(8)

In the following we assume that δka = δkb = λ = 2π/ξ
the summation Σk runs on multiple values of 2π/L up
to n = L/a0 the number of sites on the tubes of length
L. Averaging over the random phase factors exp i(k −
k′)(xa −xb) for k 6= k′ leads to the average square of this
coupling:

Γab = | < Ψa|H⊥|Ψb > |2 =

4t⊥(a, b)2/(λL)2Σk
λ8

[λ2 + ((k ± ka)2]
2
[λ2 + ((k ± kb)2]

2

(9)
Keeping in the summation over k only the λ/(2π/L)
terms centered around ka and kb within δk = λ, finally
yields:

Γab = 4(t⊥(a, b))2λL
λ2

πL2(λ2 + (ka − kb)2)2
(10)

λ, the inverse typical localisation length for 1D disor-
dered chains can be approximated by λ = Ca−1

0 W 2/E2
F

where the amplitude W of the intra chain on site disor-
der is assumed to be small compared to the Fermi energy
EF . One can see from expression (10) that the typical
transverse coupling between tubes of different helicities
ka 6= kb obtained after averaging on the positions xa and
xb increases with disorder like W 6 at low disorder and de-
creases like 1/W 2 at large disorder such that λ > |ka−kb|.

III. A SIMPLIFIED ANISOTROPIC TIGHT

BINDING MODEL FOR A ROPE OF SWNT.

We investigate in the following a simplified tight bind-
ing model for the transport in a rope containing a perco-
lating cluster of Nm metallic SWNT. As shown in the ap-
pendix, we expect that in commonly investigated SWNT
ropes Nm is at most equal to 10. Each SWNT labeled n
is described by a simple 1D atomic chain of Ns sites with
a nearest neighbor coupling energy along the chain tn
which can be different from one chain to the other. The
variables tn are randomly distributed around their aver-
age value t‖ with a square distribution of width δt‖. For
convenience we take the chains on the surface of a cylin-
der where only sites belonging to nearest neighbor chains
are coupled (see Fig.4). This crudely reproduces the sit-
uation of a hexagonally packed rope, where each metallic
tube has on average 2 metallic tubes as nearest neigh-
bors. The interchain transverse coupling is described by
a transverse nearest neighbor coupling t⊥ ≪ t‖. The dis-
tribution among the tn plays the same role as the helicity
distribution among the tubes in a rope i.e. the inter chain

coupling becomes zero to first order in t⊥ since identi-
cal longitudinal Bloch wave vectors correspond to differ-
ent energies tn cos ka0, except at half filling ka0 = π/2.
Note however that this disorder among the tn also im-
plies a distribution of Fermi velocities which does not
exist in CNT. This leads to the following hamiltonian
H = H‖ + H⊥.

H‖ =

Nm
∑

n=1

Ns−1
∑

ns=1

tn [|n, ns >< n, ns + 1| + h.c.] (11)

H⊥ = t⊥
∑Ns

ns=1 [
∑Nm−1

n=1 |n, ns >< n + 1, ns|+
exp(iφ)|Nm, ns >< 1, ns| + h.c.]

(12)

The last term in H⊥ corresponds to the periodic
boundary conditions around the cylinder modeling the
rope. This periodic boundary condition involves a phase
factor exp(iφ) equivalent to a fictitious flux Φ through
the cylinder which modifies the phase φ = 2πΦ/Φ0 of
transverse boundary conditions of the wave functions6.
Due to the different values of tn the wave functions are
localised within each chain in the limit of very long chains
Ns ≫ Nm and t⊥ ≪ t‖. An extra disorder hamiltonian
Hd is added either as a random distribution of on-site
potentials wi of width W or as an extra random con-
tribution δtn(s, s + 1) to the nearest neighbor coupling
tn within the chain n (bond disorder) characterized by a
distribution of width δtw assumed to be independent of
n.

A. Numerical results.

FIG. 4: Left: Schematic modelisation of a rope of nanotubes
by Nm slightly coupled tight binding chains of different longi-
tudinal energies t1 6= t2 6= t3 etc.... Right: The chains lye on
a cylinder threaded by a fictitious Aharonov Bohm flux which
enables to investigate transverse transport.

In order to investigate the interchain localisation and
the effect of disorder along the chains, we have calcu-
lated the eigenvalues of H(φ) = H0(φ) + Hd. As shown
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in the seminal work of Thouless7 the sensitivity of these
eigenvalues to a change of the phase φ of the boundary
conditions can be considered as a measure of the delo-
calisation of the wave functions on the various chains
constituting the rope. More precisely we have computed
the quantity δǫperp =< |ǫk(φ = π) − ǫk(0)| >k where
the average <>k is taken on the NmNs/4 energy levels
of the spectrum between 1/8 and 7/8 filling excluding
the region between 3/8 and 5/8 filling. Around half fill-
ing the tight binding dispersion relations for all chains
are indeed crossing each other whatever the values of tn
are and the model is inadequate. For ropes of Nm = 10
chains of Ns = 100 sites the phase dependent eigenvalues
were determined using a standard matlab diagonalisation
routine. On the other hand for longer ropes (Ns = 1000)
a Lancsos algorithm8 was used to compute the eigenval-
ues spectrum. The quantity δǫperp calculated for ropes
of ten tubes is shown on Fig.5 as a function of disorder
strength both for on site and bond disorder.

When the tn are all equal (δt‖ = 0), δǫperp is a
monotonously decreasing function of disorder as expected
in the physics of standard localisation. On the other
hand when the tn are different, δǫperp is very small at
low values of disorder as expected, with a power law de-
pendence in t10⊥ (this exponent corresponds to the hop-
ping probability around a circumference with 10 sites),
see Fig.6. More important, at fixed value of t⊥, δǫperp

increases with disorder amplitude, goes through a maxi-
mum and decreases at large disorder. As shown in Fig.6
the conditions of observation of this non monotonous de-
pendence of δǫperp as a function of disorder amplitude
depends drastically on the amplitude of the transverse
hopping integral. It is clearly observed for very small
values of t⊥ with a low disorder increase in W 2.5±0.5 fol-
lowed by a decrease in 1/W 9±1. This power law exponent
is consistent with the analytical result derived in previous

section for the quantity Γ
1/2
ab ∝ 1/W describing the large

disorder hoping between two adjacent tubes, its exten-
sion to hopping processes around a rope containing Nm

chains yielding a decrease in 1/W (Nm). When increasing
t⊥ multiple order hopping processes in t10⊥ dominate the
transverse transport and δǫperp becomes independent of
disorder at low value of W .

The sensitivity to a phase shift along the chain di-
rection was also investigated from the computation
δǫpar =< |ǫk(φ‖ = π) − ǫk(0)| >k where φ‖ is the phase
factor on periodic boundary conditions parallel to the
tube axis. For long ropes (1000 sites along the longitu-
dinal axis) it is possible to observe an increase of δǫpar

with t⊥, see Fig. 7. This behavior is associated with
an increase of the longitudinal localisation length with
t⊥ in the range of disorder where the inter tube cou-
pling increases with disorder. One can easily deduce from
this figure that for the value of W = 1.3 the localisation
length ξ(t⊥) increases by approximatively a factor 4 at
t⊥/t‖ = 0.06. This is done assuming an exp(−L/ξ(t⊥))
behavior for δǫpar.

FIG. 5: Transverse delocalisation by disorder: Evolution of
δǫperp with the amplitude of disorder for 10 coupled chains
of 100 sites, corresponding to W for on site disorder, and
δtw for bond disorder. The situation of identical values of tn

corresponding to δt‖ = 0 exhibits expected disorder induced
localisation, whereas the situation with different values of tn

where δt‖/t‖ = 0.2 shows a regime of disorder induced trans-
verse delocalisation . The transverse hopping energy is chosen
to be t⊥ = 0.06t‖. ν is the density of states (inverse nearest
level spacing).

IV. CONCLUSION: IMPLICATION FOR THE

TRANSPORT IN ROPES ON CARBON

NANOTUBES.

We have shown that a rope of single wall carbon nan-
otubes of different helicities is expected to exhibit very
different regimes of electronic transport depending on
the amount of disorder. When disorder is very small
electronic transport takes place in independent 1D bal-
listic tubes. The conductance is then expected to be
G = 2NGQ where N is the number of connected metal-
lic tubes. The experimental observation of a strong shot
noise reduction in short low resistive ropes5 confirms the
ballistic nature of transport in these ropes. On the other
hand disordered tubes are expected to behave as 3D dif-
fusive multi channel conductors whose maximum value
of conductance is G = 2Nm(le/L)GQ when L is smaller
than the localization length ξ = 2Nmle, where Nm is the
number of metallic tubes in the largest percolating cluster
of metallic tubes in the rope. Four probe transport mea-
surements on NT ropes after ion irradiation damage10

have been shown to give information on the intertube
hopping processes within the rope which was found to
increase with disorder. These findings can also be inter-
preted taking into account the increase of the intertube
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FIG. 7: Results obtained by diagonalisation of a sys-
tem of Nm = 10 chains of Ns = 1013 sites. Aver-
age typical energy difference δǫpar between the symmet-
ric/antisymmetric boundary conditions in the longitudinal di-
rection as a function of t⊥/t‖. From top to bottom W/t‖ =
0.55, 0.9, 1.1, 1.3, 1.5

scattering rate with disorder. The physics of intertube
transfer has also been shown to play an important role
in the transport in multiwall nanotubes11,12. The situa-
tion is however different than in ropes since each tube is
only coupled within first order to two other tubes (near-
est inner and outer shells) and moreover only the most
external tube is connected to electrodes.

Let us also mention that a similar scenario of disorder
induced delocalisation has been predicted to take place in
networks of disordered polymers as discussed in13,14,15.

We finally note that these different types of trans-
port are also expected to influence the superconductiv-
ity observed at very low temperature on ropes of carbon
nanotubes. The superconductivity in weakly disordered
ropes has been observed to exhibit a strongly 1D char-
acter with a T=0, H=0 transition. On the other hand
more resistive ropes exhibit a broad transition at finite
temperature characteristic of a multi channel quasi 3D
system16,17.

Acknowledgments: We acknowledge very fruitful dis-
cussions with Christophe Texier, Nicolas Dupuis, Michael
Feigelmann, Piotr Chudzinski and Alexei Ioselevitch on
this problem.

V. APPENDIX: DETERMINATION OF THE

TYPICAL SIZE OF PERCOLATING CLUSTER

OF METALLIC TUBES WITHIN A ROPE.

Carbon nanotubes in a rope are arranged according
to a triangular network, with on average 1/3 of metal-
lic tubes and 2/3 of semiconducting ones. Since 1/3 is
below the percolating threshold, 1/2, for nearest neigh-
bor couplings in the 2D triangular lattice, the metallic
tubes do not percolate over the full rope and constitute
disconnected clusters which size distribution depends on
the number of tubes within the rope. We have calculated
numerically this size distribution for ropes containing a
few hundred tubes. This result is shown on Fig.8 for
ropes containing 100 and 400 tubes. The size distribu-
tion decays exponentially with the number of tubes in a
cluster. We find that for a rope containing 400 tubes the
average cluster size is 3 but by integrating the number of
clusters of size above a given value we find that there is
at least one cluster of tubes of size above 15.
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B. Reulet, and H. Bouchiat, Very Low Shot Noise in Car-



7

FIG. 8: Size distribution of the number of tubes n in a per-
colating cluster of metallic tubes for ropes containing N=100
and N=400 tubes among which 1/3 on average are metallic.

bon Nanotubes, Eur. Phys. J. B 28, 217 (2002).
6

7 J. T. Edwards and D. J. Thouless, Numerical Studies of
Localization in Disordered Systems, J. Phys. C: Solid State

Phys 5, 807 (1972).
8 C. Lanczos, J.Res. Nat. Bur. Standards, Sec. B 45, 225

(1950).
9 C. T. White and T. N. Todorov, Carbon Nanotubes as

Long Ballistic Conductors, Nature 393, 240 (1998).
10 H. Stahl, J. Appenzeller, R. Martel, Ph. Avouris, and B.

Lengeler 85,5186(2000).
11 J.C. Charlier, X. Blase, and S. Roche Rev. Mod. Phys.,

79, 677 (2007).
12 B. Bourlon, C. Miko, L. Forr, D. C. Glattli, and A. Bach-

told Phys. Rev. Lett. 93, 176806 (2004).
13 V. N. Prigodin and K. B. Efetov, Localization Transition in

a Random Network of Metallic Wires: A Model for Highly
Conducting Polymers, Phys. Rev. Lett 70, 2932 (1993).

14 I. Zambetaki, S. N. Evangelou, and E. N. Economou, The
Anderson Transition in a Model of Coupled Random Poly-
mer Chains, J. Phys.: Condens. Matter 8, 605 (1996).

15 N. Dupuis, Metal-Insulator Transition in Highly Conduct-
ing Oriented Polymers, Phys. Rev. B 56, 3086 (1997).

16 M. Kociak, A. Kasumov, S. Guéron, B. Reulet, I. I. Kho-
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