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Hall detection of time-reversal symmetry breaking under AC electric driving.

A.D. Chepelianskii and H. Bouchiat
Univ. Paris-Sud, CNRS, UMR 8502, F-91405, Orsay, France

In a four terminal sample microscopic time-reversibility leads to symmetry relations between
resistance measurements where the role of current and voltage leads are exchanged. These reciprocity
relations are a manifestation of general Onsager-Casimir symmetries in equilibrium systems. We
investigate experimentally the validity of time reversal symmetry in a GaAs/Ga1−xAlxAs Hall bar
irradiated by an external AC field, at zero magnetic field. For inhomogeneous AC fields we find
strong deviations from reciprocity relations and show that their origin can be understood from the
the billiard model of a Hall junction. Under homogeneous irradiation the symmetry is more robust,
indicating that time-reversal symmetry is preserved.

PACS numbers: 63.22.Np, 73.23.Hk, 73.21.Ac

The Onsager-Casimir relations are a consequence at
a macroscopic scale of microscopic time-reversal sym-
metry [1, 2]. In mesoscopic physics, these relations
proved crucial in the understanding of magnetotransport
properties when the reciprocity relation between resis-
tances R and R∗ measured in experiments which ex-
change the current and voltage leads: R(H) = R∗(−H)
was derived [3] and verified experimentally [4]. Since
then the possibility to extend the reciprocity relation
to out-of equilibrium conductors has attracted consid-
erable attention. In the special case where the conduc-
tor has only two contacts the reciprocity relation implies
that the transport is symmetrical with magnetic field H :
R(H) = R(−H). In the nonlinear transport regime,
it was predicted theoretically that two terminal trans-
port can be asymmetric with magnetic field [5, 6, 7],
providing a signature of time-reversal symmetry break-
ing. This fact was later confirmed in several experiments
[8, 9, 10, 11, 12], and lead to new theoretical proposals
for the generalization of reciprocal relations to nonlin-
ear transport [13, 14]. Recently it was proposed that
time-reversal symmetry breaking can be analyzed from
linear dc-magnetotransport of a system coupled to non-
equilibrium baths [15], however in this model the pres-
ence of a magnetic field is necessary to reveal the breaking
of reciprocity relations. Other manifestations of time-
reversal symmetry breaking in non-equilibrium conduc-
tors at zero magnetic fields were predicted including com-
mensurability effects in the frequency domain [16] and
generation of stationary orbital magnetism [17]. How-
ever to our knowledge these effects have not yet been ob-
served experimentally. In this Letter we directly probe
experimentally time-reversal symmetry in zero magnetic
field by measuring deviations from the four terminal reci-
procity relations in a Hall geometry. We interpret our re-
sults by extending a billiard model initially developed by
Beenakker et.al [18]. to describe both dc-magnetic field
behavior and the influence of an inhomogeneous time de-
pendent potential.

We have investigated two Hall bars fabricated in a
GaAs/Ga1−xAlxAs two dimensional electron gas (2DEG)
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FIG. 1: (Color online) Left panel, optical micrograph of sam-
ples (A) and (B). The black scale line correspond to 10 µm.
Right panel, on the top we show the experimental behavior of
: ∆RH = RH −

H

ne
as a function of magnetic field for different

top gate voltages Vg = 0.1, 0.2, 0.4 (doted , dashed and contin-
uous line respectively), on the bottom theoretical predictions
for ∆RH for Hall junctions with increasing curvatures (doted,
dashed and continuous line). The specular walls are sketched
on the bottom left panel. Temperature was 0.3 K.

with density ne ≃ 1.2 × 1011 cm−2 and mobility µ ≃
1.2 × 102 m2/Vs. The two samples, (A) and (B), were
fabricated using wet etching and an aluminum mask.
They have six Au/Ge ohmic contacts to 2DEG labeled
(1)− (6) (see Fig. 1). Both samples are covered by a cop-
per top-gate allowing to modulate carrier density. On
sample (A) we have also fabricated a local split gate [S]
connected to a high frequency transmission line; this gate
can produce an AC field inhomogeneous on the micron
scale. We define the four terminal resistances Rij,kl as
Rij,kl = (Vk − Vl)/Ii where Vk and Vl are the voltages
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on the leads k and l and Ii = −Ij is the current in-
jected to the source lead i. The resistance measured in
the configuration where current and voltage leads are in-
terchanged is noted R∗

ij,kl = Rkl,ij . With this notations
the reciprocity relation reads R∗

ij,kl(H) = Rij,kl(−H) [3].
As expected the magnetic field dependence of the Hall
resistances RH,1 = R14,26, RH,2 = R14,35, and of the
longitudinal resistance Rxx = R14,23 exhibits quantum
Hall effect plateaux and Shubnikov-de Haas oscillations
at high magnetic fields H > 0.5 T. The resistances were
measured at temperature T = 0.3 K with an excitation
current I = 1 µA modulated at 67 Hz. Voltages were
detected with a low noise amplifiers and standard lock-in
technique. At lower magnetic fields we observe magneto-
size peaks, which occur when the size of cyclotron orbits
matches the width of the 2DEG sample, on both Hall and
longitudinal resistance for magnetic fields H ≃ 200 G.
These observations confirm that our samples are in a bal-
listic regime.

The magneto-size peaks on the Hall resistance are an-
alyzed in more detail in Fig. 1 for different top-gate volt-
ages. To emphasize the magneto-size peaks, we have sub-
tracted the classical Hall resistance ∆RH = RH − H

nee

where ne is the 2DEG density determined by a linear fit
to the Hall resistance at fields above the magneto-size
peak. An additional cusp appears in ∆RH at low mag-
netic fields for higher gate voltages Vg = 0.4 V. This can
be understood from the billiard model of a Hall junc-
tion [18]. In this model the Hall junction is treated as
a classical billiard with specular walls and four contact
channels of width W with absorbing boundary conditions
at the reservoirs distant by L > W (possible theoretical
geometries are sketched on the left of Fig. 1). The
classical probabilities Pi,j of propagating from lead (j)
to lead (i) are then determined numerically by inject-
ing a large number of classical particles (typically 105)
at Fermi velocity vF into lead j and monitoring them
until they reach one of the leads i. The propagation is
determined by classical equations of motion in constant
field H . The exit probabilities are then normalized to∑

j Pi,j = 1, and the conductance matrix is calculated
from:

Gij =
1

R0

[(1 − Pii)δij + Pij(1 − δij)] (1)

Here R0 = h
2e2N

≃ h
2e2

π
kF W

where N is the channel
number and kF the Fermi wavevector. The character-
istic magnetic field scale in this model is Hc = mvF

eW
,

where m is the carrier effective mass in 2DEG. From the
conductance matrix all the four terminal resistances can
be calculated including the Hall resistance RH . On the
bottom panel of Fig. 1, we show theoretical magneto-
resistances ∆RH of Hall junctions with different central
curvatures. For the largest curvature, a cusp appears
that is very similar to the behavior observed at higher
positive gate voltages. When the curvature radius is
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FIG. 2: (Color online) Calculated dependence of of the
Onsager-Casimir symmetric and anti-symmetric components
of the Hall resistance RH as a function of the reduced AC-
potential frequency ωW/vF . Inset shows a ballistic trajectory
in presence of an external potential of the form U(r, t) =
U0 exp(−k2r2/2) cos ωt centered around r0 inside the Hall
junction with kW = 1 (colored circle). The anti-symmetric
component appears only for ω > ωc. Symbols represent
different potential amplitudes: circles U0 = 0.7ǫF , squares
U0 = 0.5ǫF and diamonds U0 = 0.35ǫF .

decreased the cusp disappears, as in the magnetoresis-
tance curves at lower gate voltages. These observations
suggest that positive gate voltage favor larger curvature
radius, which is reasonable since higher gate voltages
are likely to reduce depletion at the sample boundaries.
While there is a very good qualitative agreement between
the billiard model and our data, the agreement is not
quantitative. For example for Vg = 0.4 V with electron
gas density ne ≈ 2.8 × 1011cm−2 and estimated channel
width W ≃ 5 µm we find Hc = mvF

eW
≃ 170 G (we used

vF = ~
√

2πne/m) . This leads to a predicted magneto-
size peak at H ≃ 100G whereas experimentally the peak
appears at H ≃ 250 G.

We now address the question of the influence of an ex-
ternal time dependent potential on the Hall resistance, in
zero magnetic field. This problem can be treated theoret-
ically if we generalize the billiard model and introduce a
localized oscillating potential U(r) cos ωt. As previously
the transmission probabilities Pi,j are determined by in-
tegrating the classical equations of motion (see typical
particle trajectory inset in Fig. 2). In the static limit
ω = 0, an external potential creates a contribution to the
Hall resistance by deforming the electronic trajectories.
However time reversal symmetry implies that the relation
Pi,j = Pj,i is preserved, and reciprocity relation holds
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FIG. 3: (Color online) Change of Hall resistance on sample
(A) under microwave irradiation on the local split-gate S as a
function of microwave frequency. Continuous curves represent
the Onsager-symmetric part of the Hall resistance δRH+δR∗

H ,
while the dashed curves show the anti-symmetric part δRH −

δR∗

H . The data was obtained on the two Hall probes δRH,1

and δRH,2 at injected microwave powers of 1µW and 10µW.
The origin of the different curves is shifted by an arbitrary
offset for clarity (δRH vanishes at low frequencies f < 1 MHz)
and the values of δRH at power 1µW are scaled upwards by
a factor 2.

RH = R∗

H . Our numerical simulations show however
that when the driving frequency ω is increased the prob-
abilities Pi,j and Pj,i are no longer equal. This causes
a difference between RH and R∗

H even at zero magnetic
field. For frequencies larger than a certain threshold ωc

the difference RH −R∗

H becomes of the order of the sym-
metric contribution RH + R∗

H . We compare the ampli-
tude of these two components as a function of frequency
on Fig. 2. Our simulation shows that this frequency is
nearly independent on the amplitude of the external po-
tential. We note that trajectories that are absorbed in
the reservoirs after a single scattering on U(r) do not
break time reversal symmetry. Indeed in this case it is
possible to choose the phase of the external field in a way
that the time reversed trajectory is also solution of the
equations of motion. As a result the difference between
Pi,j and Pj,i must stem from trajectories that scatter sev-
eral times on the potential U(r) centered around r0. This
allows us to associate the frequency ωc with the average
return time to r0. Interestingly we find in the simulations
that the frequency ωc is several times smaller than the
characteristic frequency associated with the size of the
channels vF /W . This points to the role of long trajec-
tories with many reflections on the edges of the sample
with typical length Lc = vF

ωc

which can be much larger
than W , of the order of the distance between reservoirs
L.

Our theoretical model predicts that the onset of time-

reversal symmetry breaking by an ac-radiation can be
probed directly by measurements of the difference RH −
R∗

H as a function of ac-frequency without introducing an
external magnetic field. We have checked this prediction
experimentally by applying a high frequency potential
on the split gate [S] on sample (A). In order to remove
the contribution of geometrical imperfections of our Hall
junctions that lead to non-zero RH even in the absence
of magnetic field we now focus on the difference δRH be-
tween the Hall resistance with AC-driving and its equilib-
rium value. We have measured the change of Hall resis-
tances for the two Hall junctions of the sample, polarized
in the two reciprocal configurations: δRH,1, δR

∗

H,1, δRH,2

and δR∗

H,2 as a function of microwave frequency f for
fixed injected microwave power. The data, shown on
Fig. 3, indicate the following scenario. At very low
driving frequencies f < f0 ≃ 10MHz both symmet-
ric and anti-symmetric components δRH,i + δR∗

H,i and
δRH,i − δR∗

H,i are zero (i = 1, 2), we attribute this to
the fact that our capacitive coupling is not efficient at
so low frequencies and the amplitude of the AC poten-
tial is very small in this limit. For higher frequencies, a
change of Hall resistance due to microwave irradiation is
observed, however as expected from our model the reci-
procity relations is still valid δRH,i ≃ δR∗

H,i. It is only
for f > fc ≃ 50 MHz that the anti-symmetric component
becomes significant, and for higher frequencies (we mea-
sured up to f = 10 GHz) we observe that the symmetric
and anti-symmetric components are of the same order of
magnitude. We find that that the critical frequency fc

is similar for both Hall junctions and weakly depends on
injected microwave power. This is consistent with our
simulations where the threshold ωc did not depend on
the potential amplitude U0. We note that as in our theo-
retical results on Fig. 2, δRH +δR∗

H scales proportionally
to power (U2

0
) for f < fc. At higher higher frequencies a

more complicated behavior is observed since δRH + δR∗

H

may change sign as a function of frequency. We showed
that in a ballistic sample the length Lc = vF

ωc

is of the
order of the distance between reservoirs L, in a diffusive
sample with mean free path le (we estimate L ≃ 65 µm
and le ≃ 10 µm for our samples) we expect that the rele-
vant length scale is determined by Lc ≃ L2/le ≃ 400 µm.
Such a value for Lc is consistent with a critical frequency
fc = 50 MHz as observed in the experiment. We remark
that the onset of the difference δRH − δR∗

H could also
be caused by the appearance of stationary orbital mag-
netism under microwave irradiation, an effect that was
predicted theoretically in Ref. [17]. Indeed the quantity
RH − R∗

H is proportional to the induced magnetic field.
However the magnetic field required to change the value
of Hall resistance by δRH ≃ 10 Ω as observed on Fig. 3
is H ≃ 30 G. This is several orders of magnitudes larger
than the effect predicted in [17], which under our exper-
imental conditions should create magnetic fields of the
order of H ≃ 10−2 G.
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FIG. 4: (Color online) Change of Hall and longitudinal re-
sistance under homogeneous microwave irradiation of sam-
ple (B) as a function of microwave frequency at injected mi-
crowave power of 10 µW and T = 0.3 K. The curves are
marked with circles for δRxx/6, triangles for δRH,2, squares
for δR∗

H,2 and stars for δRH,1/2. The origin (δR = 0) is indi-
cated by the dashed lines and is shifted for clarity. Note that
the signal measured on RH,2 closely follows Rxx.

We now show that the spatial inhomogeneity of the
alternating electric field is essential in order to observe
strong deviations from Onsager symmetries. We prove
this experimentally by irradiating sample (B) with an
external electromagnetic field homogeneous on the sam-
ple scale emitted with a macroscopic antenna. For the
Hall junction RH,1 the presence of a quantum dot a few
microns away from the sample (see Fig. 1) is expected to
deform the external potential creating inhomogeneities
in the electric field. On the contrary for RH,2 we expect
an homogeneous irradiation. On Fig. 4, we compare the
variation of Hall resistances δRH,2, δR

∗

H,2 with frequency
f at fixed power. We find that the Onsager relations
are verified even in the limit of very high frequencies
f ≃ 1 GHz compared to our previous experiment, and
the relation δRH,2 ≃ δR∗

H,2 is valid. We also note that
δRH,2 is proportional to the change of sample resistance,
δRxx which is negative at all frequencies. The sign of
δRxx corresponds to heating, since we are in a regime
where the sample resistivity decreases with temperature
(T ≃ 0.3 K). The proportionality between δRxx and
δRH,2 can be explained as a geometrical offset in RH,2

proportional to Rxx. In fact, such a simple proportion-
ality relation is a good indication of the external electric
field homogeneity in the Hall junction. It does not hold
for inhomogeneous irradiation, as shown by our measure-
ments on RH,1. In this case the proportionality to δRxx

is not observed and we find δRH,1 6= δR∗

H,1 (data not
shown) as in sample (A).

In conclusion we have addressed the validity of reci-
procity relations in a Hall bar under AC driving. We
have established that the magnetotransport in our sam-
ples is well described by the billiard model of [18]. We
have generalized this model to include the effect of an
AC field. With this model we predicted the onset of
deviations from reciprocity relations at high enough AC
frequencies even at zero magnetic field. We have checked
this prediction experimentally by applying an inhomo-
geneous AC-field on the Hall bar. The transition from
the low frequency regime where reciprocity symmetry
holds to the asymmetric regime at high frequencies was
clearly observed. Finally by irradiating a Hall bar with a
macroscopic antenna, we established that the reciprocal
relations are more robust under homogeneous irradiation.
Intriguingly the signal we observe: RH − R∗

H resembles
a static magnetic field except for its very large ampli-
tude. This raises the question of a detector that can dis-
criminate between inhomogeneous AC-electric fields and
a small static magnetic field.

We are grateful to A. Cavanna, B. Etienne and U.
Gennser for the GaAl/Ga1−xAlxAs heterojunction and
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