
ar
X

iv
:1

00
3.

54
55

v1
 [

cs
.S

E
]

 2
9

M
ar

 2
01

0

Towards physical laws for software architecture

A.D. Chepelianskii
LPS, Univ. Paris-Sud, CNRS, UMR 8502, F-91405, Orsay, France

Starting from the pioneering works on software architecture precious guidelines have emerged to
indicate how computer programs should be organized. For example the “separation of concerns”
suggests to split a program into modules that overlap in functionality as little as possible. However
these recommendations are mainly conceptual and are thus hard to express in a quantitative form.
Hence software architecture relies on the individual experience and skill of the designers rather
than on quantitative laws. In this article I apply the methods developed for the classification of
information on the World-Wide-Web to study the organization of Open Source programs in an
attempt to establish the statistical laws governing software architecture.

PACS numbers: 89.20.Hh, 89.75.Hc, 05.40.Fb

The rapid increase in the size of software systems cre-
ates new challenges for the design and maintenance of
computer software. Modern systems are constructed
from many components forming a complex interdepen-
dent network. Starting from pioneering works in the early
1970s [1–4] software architecture has developed in a ma-
ture field that provides precious guidelines for efficient
software development [5, 6]. However these recommen-
dations are mainly conceptual and are thus difficult to
express in a quantitative form. In this article I construct
the network formed by procedure calls in several open
source programs with emphasis on the code of the Linux
kernel [7]. The obtained networks have scale-free prop-
erties similar to hyperlinks on the World-Wide-Web and
other types of scale-free networks [8–12]. Thus proce-
dures can be ordered efficiently using the link analysis
algorithms developed for web-pages [13, 14]. This allows
to find automatically the important elements in the struc-
ture of a program and to propose a quantitative criterion
characterizing well organized software architectures. Fi-
nally I analyze the spectral properties of the transition
matrix between the procedures and compare it with re-
cent results for other networks [15].

In order to analyze quantitatively the network proper-
ties of computer code, I study several open source pro-
grams written in the C programming language [16]. In
this widespread language the code is structured as a se-
quence of procedures calling each other, thus the orga-
nization of a program can be naturally represented as
a procedure call network (PCN) where each node rep-
resents a procedure and each oriented edge corresponds
to a procedure call. This network is built by scanning
lexically the source code of a project, identifying all the
defined procedures. For each of them a list keeps track of
the procedures calls inside their definition. An example
of the obtained network for a toy code with two proce-
dures is shown on Fig. 1.

The out/in-degrees of a node i in this network are
noted ν̄(i) and ν(i) respectively. The values of these
numbers for the toy code are also given on Fig. 1, they
correspond to the number of out/in-going calls for each

10
0

10
1

10
2

10
3

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
-8

10
-6

10
-4

10
-2

ν-2ν -3

ν
-5

νν

(distinct only)

outP Pin

ν = 0

ν = 0 ν = 1

ν = 1

FIG. 1: The diagram in the center represents the PCN of a
toy kernel with two procedures written in the C programming
language. The graph on the left/right shows the out/in de-
gree probability distribution Pout(ν̄)/Pin(ν). The colors cor-
respond to different Kernel releases. The most recent version
2.6.32 with N = 285509 and an average 3.18 calls per pro-
cedure is represented in red. Older versions (2.4.37.6, 2.2.26,
2.0.40, 1.2.12, 1.0) with N respectively equal to (85756, 38766,
14079, 4358, 2751) follow the same behavior. The dashed
curve shows the out-degree probability distribution if only
calls to distinct destination procedures are kept.

procedure. A network is called scale-free, when the dis-
tributions of the degrees ν and ν̄ are characterized by
power-law tails. Many networks in nature and in com-
puter science fall in this class, for example this is the case
for the World-Wide-Web (WWW) [12, 17–20] and for the
package dependencies in Linux distributions [21]. The de-
gree distributions for the PCN of several releases of the
Linux kernel are presented on Fig. 1. They show unam-
biguously that PCN is a scale-free network with proper-
ties similar to WWW. Indeed the decay of the probability
distribution Pin(ν) of in-going calls is well described by
the power law Pin(ν) ∝ ν−γin with γin = 2.0±0.02. The
probability distribution of out-going calls also follows a
power law Pout(ν̄) ∝ ν̄−γout with γout = 3.0± 0.1. These
values are close to the exponents found in the WWW
where γin = 2.1 and γout ≈ 2.7 [17, 18]. In the above

http://arxiv.org/abs/1003.5455v1

2

distributions all procedure calls were included, if only
calls to distinct functions are counted in the out-degree
distribution the exponent drops to γout ≈ 5 whereas γin
remains unchanged. It should be stressed that the dis-
tributions for the different kernel releases remain stable
even if the network size increases from N = 2751 for
version 1.0 to N = 285509 for the latest 2.6.32 version.
This similarity between PCN and WWW networks can

be attributed to important development constraints that
exist for both networks. Indeed WWW was designed
as an information sharing system where users can easily
access and create entries. The same principle applies
also for Open Source development where the project is
advanced by a loosely-knitted programmer community.
Due to this similarity it is natural to apply the methods

developed to organize information on the WWW to the
PCN. PageRank is probably the most successful known
link analysis algorithm [13]. It is based on the construc-
tion of the Google matrix :

Gij = αSij + (1− α)/N (1)

where the matrix S is constructed by normalizing to
unity all columns of the adjacency matrix, and replacing
columns with zero elements by 1/N , N being the net-
work size [12]. The damping parameter α, in the WWW
context describes the probability to jump to any node for
a random surfer. For PCN this parameter can describe
the probability to modify a global variable that affects
the overall code behavior. The value α ≈ 0.85 seems to
give a good classification [12] for WWW, thus I also used
this value for PCN. The matrix G belongs to the class
of Perron-Frobenius operators. Its largest eigenvalue is
λ = 1 and other eigenvalues have |λ| ≤ α. The right
eigenvector at λ = 1 gives the probability ρ(i) to find a
random surfer at site i; it is called the PageRank vector.
Once the PageRank is found, WWW sites are sorted by
decreasing ρ(i), the site rank in this index K(i) reflects
the site relevance.
The PageRank ρ for the Linux PCN is shown on Fig. 2

as a function of rank K. The decay of ρ(K) is well de-
scribed by a power-law ρ(K) ∝ K−β with β ≈ 1, this
value is consistent with the relation β = 1/(γin − 1)
which would be exact if the PageRank of a procedure
was proportional to its in-degree ν. It is known that
for WWW this proportionality is qualitatively valid [18]
although the PageRank classification introduces signifi-
cant mixing compared to a classification based only on
the in-degree distribution. The inset on Fig. 2 illustrates
that this mixing exists also for PCN, hence PageRank
classification for procedures is expected to be more in-
formative and stable as in WWW. Fig. 2 also reports
the three procedures with the highest PageRank in the
Linux Kernel. These popular procedures perform well
defined tasks which may be useful in any part of the
code: for example printk() reports system messages and
memset(), kfree() intervene in memory allocation.

increasing (i) increasing (i)

10
0

10
1

10
2

10
3

10
4

10
5

Rank

10
-6

10
-5

10
-4

10
-3

10
-2

ρ

influence PageRank (i)

menu_filalize(): 2.50x10

btrfs_ioctl() : 2.55x10

start_kernel() : 2.80x10
−4

−4

−4

kfree() : 0.011
memset(): 0.012
printk(): 0.024

*

ρPageRank (i)

ρ

ρ

νρ

ρ*
~ K

 ~ K* −1/2

−1

FIG. 2: PageRank ρ and influence-PageRank ρ∗ as a function
of the ranks K (for ρ) and K∗ (for ρ∗) for the PCN of the
Linux Kernel, release 2.6.32. The procedures with highest ρ

and ρ∗ are given on the left. The inset illustrates the correla-
tion between ρ and the in-degree ν: procedures are serpentine
ordered from low ρ at the bottom to high ρ on the top, while
the color code follows the value of the in-degree.

Although these procedures with high PageRank take
care of highly useful tasks, their role in the overall pro-
gram structure is limited. This suggests the existence of
another complementary classification reflecting the pro-
cedure influence on the code organization. In the Hubs
and Authority algorithm [14] proposed in the WWW
context, the sites are characterized by two ranks reflect-
ing their “hubness” (influence) and “authority” (popu-
larity). However this method is less stable than PageR-
ank and is generally used for small subnetworks [14, 19].
Hence I apply an alternative approach which is still
based on the PageRank algorithm. It consists in invert-
ing the direction of links in the adjacency matrix before
the construction of the Google matrix. This transposed
adjacency matrix describes the flow of information re-
turned from the called procedures to their parents. I
will call influence-PageRank ρ∗(i) the PageRank vector
of this modified Google matrix, the procedures can now
be sorted according to their influence ρ∗(i) yielding a
new rank K∗(i). The dependence of ρ∗(i) on K∗(i) for
the Linux Kernel code is presented on Fig. 2. Again
the decay is well described by ρ∗(K∗) ∝ K∗−β∗

where
β∗ ≈ 1/(γout − 1) ≈ 1/2. In this classification, the
first procedures fulfill an important organizational role:
e.g. start kernel() initializes the Kernel and manages
the repartition of tasks.

The correlation between popular and influential pro-
cedures in the PCN network is described by the joint
probability distribution P (ρ, ρ∗) that gives the probabil-
ity of finding a procedure i with (ρ(i), ρ∗(i)) in a small

3

−5.8 −5.4 −5 −4.6

10
3

10
4

10
5

-0.1

0

N

κ = Σ ρ()ρ () − 1i iiN *

1.0 1.2 2.0 2.2 2.4

2.6
version

−5.8 −5.4 −5 −4.6

−4.6

−5

−5.6

**ρ ρ log log c)b)

log ρ

Linux PCN

a)

log ρ−6 −5 −4

−6

−5

−4

ρ−6 −5 −4

e)d) log ρ*

log

 log

ρ

 log ρ* Cambridge WWW

FIG. 3: The left panel b) represents the joint probability dis-
tribution P (ρ, ρ∗) as a function of log ρ and log ρ∗ for the PCN
of the Linux Kernel, release 2.6.32. Regions with low prob-
ability are colored in Black/Red, while high probability are
colored in Blue/Green. The panel c) shows the product prob-
ability p(ρ)p∗(ρ∗) on the same scale, it reproduces P (ρ, ρ∗)
with a high fidelity. The panel a) shows the value of the
correlator κ as a function of PCN size N for the Linux Ker-
nel releases from Fig. 1. The two panels d) and e) compare
the joint probability distribution P (ρ, ρ∗) with the product
probability p(ρ)p∗(ρ∗) for the Cambrdige University WWW
network. The correlated structure along the diagonal ρ = ρ∗

which is present in panel d) is not reproduced on panel e).

area around (ρ, ρ∗). This distribution is displayed on
Fig. 3 where it is compared with the distribution that
is obtained under the assumption that ρ and ρ∗ are in-
dependent quantities. This distribution stems from the
product of probabilities p(ρ) and p∗(ρ∗) to find a proce-
dure in an interval around ρ and ρ∗ respectively so that
P = p(ρ)p∗(ρ∗). These two distributions are very simi-
lar, showing that the popularity and influence are weakly
correlated in the PCN network. The direct computation
of the correlator κ :

κ = N
∑

i

ρ(i)ρ∗(i)− 1 (2)

supports this assumption of independence. Indeed it was
found that |κ| ≪ 1 for the PCN of the Linux Kernel for
all releases. For most releases this correlator is negative
indicating a certain anti-correlation between popular and
influential procedures. These observation hold also for

-1 -0.5 0 0.5 1

Re λ

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

Im
 λ

1% of eigenvalues 0.1 < |λ| < 1

FIG. 4: Distribution of eigenvalues λ in the complex plane for
the Google matrix of the Linux Kernel 2.0.40 with N = 14079.
Circles highlight the ring region 0.1 < |λ| < 1.

other OpenSource software including Gimp 2.6.8 (κ =
−0.068, N = 17540) and X Windows server R7.1-1.1.0
(κ = −0.027, N = 14887).
This absence of correlations between popularity and in-

fluence in PCN contrasts with the WWW hyperlink net-
work. In the latter case, the correlator is positive and of
order unity: this was confirmed by analyzing hyperlinks
for several UK universities available at [22]. For exam-
ple, I find for the web sites of Universities at Cambridge
(κ = 3.79, N = 376836), Oxford (κ = 1.52, N = 331955),
Bath (κ = 7.22, N = 112143) and Hull (κ = 2.09, N =
21061). Note that the typical vale of κ does not di-
rectly depend on the network size. The joint probability
P (ρ, ρ∗) and the product probability p(ρ)p∗(ρ∗) for the
Cambrdige University network are compared on Fig. 3.
The product probability reproduces to some extent the
behavior of P (ρ, ρ∗) but fails to capture the correlations
along the diagonal ρ = ρ∗ as expected from the positive
value of the correlator κ = 3.79.
The above observations suggest that the independence

between popular procedures, fulfilling important but well
defined tasks, and influential procedures, which organize
and assign tasks in the code, is an important ingredi-
ent of well structured software. The heuristic content of
this independence criterion is related to the well-known
concept of “separation of concerns” [4] in software archi-
tecture. The correlation coefficient κ allows to express
this concept in a quantitative way. Procedures that have
high values of both ρ(i) and ρ∗(i) can therefore play a
critical role since they are popular and influential at the
same time. For example in the Linux Kernel, do fork()
that creates new processes belongs to this class. These
critical procedures may introduce subtle errors because
they entangle otherwise independent segments of code.
The eigenvalues of the matrix G provide information

on the relaxation rates to the PageRank. Eigenvalues
with |λ| close to unity, represent independent compo-

4

nent weakly connected with the rest of the network. The
WWW has a significant number of such modes [12, 15, 20]
showing the existence of many independent communities.
A typical eigenvalue distribution in the complex plane for
Linux PCN is shown on Fig. 4. The proportion of modes
with |λ| > 0.1 is very small (around 1% for network size
N = 14079) compared to the case of University networks
[15] where this percentage is around 50% (for example for
the Liverpool John Moores University with N = 13578).
This result can be interpreted as follows: the web con-
tains many quasi-independent communities whereas the
PCN must ensure a strong coordination between the dif-
ferent procedures that therefore must be able to exchange
information.
The presented studies demonstrate close similarities

between software architecture and scale-free networks es-
pecially with the World-Wide-Web. However they show
that these networks have also substantial differences: the
absence of correlation between popularity and influence
in procedure call networks, and a large number of vanish-
ing eigenvalues in the Google matrix which indicates on
the small number of independent communities in com-
puter codes. The properties of software networks found
here may lay the foundation for a quantitative descrip-
tion of functional software architectures. The proposed
methods can be generalized to object oriented program-
ming and may find several applications in software devel-
opment. Possible applications include indications for the
conception of code documentation and improvements in
code refactoring techniques. Finally the identification of
critical procedures may facilitate the correction of subtle
errors that arise due to unintended entanglement in the
code.
I thank T.C. Phan for fruitful discussions on software

development and acknowledge DGA for support.

[1] Donald E. Knuth The Art of Computer Programming,
Addison-Wesley, ISBN 0-201-03801-3 (1968)

[2] E.W. Dijkstra, Go to statement considered harmful,
Comm. ACM, 11, 147 (1968)

[3] D.L. Parnas, On the criteria to be used in decomposing
systems into modules, Comm. ACM, 15, 1053 (1972)

[4] E.W. Dijkstra, Selected writings on Computing: A Per-
sonal Perspective, Springer-Verlag New York, ISBN 0-
387-90652-5 (1982)

[5] I. Jacobson Object-oriented software engineering,
Addison-Wesley (1992) ISBN 0-201-54435-0

[6] L. Bass, P. Clements, R. Kazman Software Architec-
ture in Practice, Addison-Wesley (2003) ISBN-10: 0-321-
15495-9

[7] The source code of the different Linux Kernel releases
were downloaded from http://www.kernel.org/

[8] D.J.Watts and S.H.Strogatz, Collective dynamics of
“small-world” networks (1998), Nature 393, 440 (1998)

[9] M. E. J. Newman, The structure of scientific collabora-

tion networks, Proc. Natl. Acad. Sci. USA 98, 404 (2001).
[10] R. Albert, A.-L. Barabsi, Statistical mechanics of com-

plex networks, Rev. Mod. Phys. 74, 47(2002).
[11] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of

Networks, Oxford University Press (Oxford, 2003).
[12] A. M. Langville and C. D. Meyer, Google’s PageRank

and Beyond: The Science of Search Engine Rankings,
Princeton University Press (Princeton, 2006)

[13] S. Brin and L. Page, The anatomy of a largescale hyper-
textual web search engine, Computer Networks and ISDN
Systems 30, 107 (1998).

[14] J. Kleinberg , Authoritative sources in a hyperlinked en-
vironment, Jour. ACM 46, 604 (1999)

[15] O. Giraud, B. Georgeot and D. L. Shepelyansky, ”De-
localization transition for the Google matrix Phys. Rev.
E 80, 026107 (2009); B. Georgeot, O. Giraud, D.L.
Shepelyansky ”Spectral properties of the Google matrix
of the World Wide Web and other directed networks
arXiv:1002.3342 (2010)

[16] B.W. Kernighan and D.M. Ritchie The C Programming
Language Englewood Cliffs, NJ: Prentice Hall. ISBN 0-
13-110163-3.

[17] D. Donato, L. Laura, S. Leonardi and S. Millozzi, Large
scale properties of the Webgraph Eur. Phys. J. B 38, 239
(2004)

[18] G. Pandurangan, P. Raghavan and E. Upfal, Using
PageRank to Characterize Web Structure, Internet Math.
3, 1 (2005).

[19] P. Balid, P. Frasconi and P. Smyth Modeling the In-
ternet and the Web : Probabilistic Methods and Algo-
rithms, Published by John Wiley & Sons, Ltd. ISBN:
0-470-84906-1 (2003)

[20] K. Avrachenkov, D. Donato and N. Litvak (Eds.), Al-
gorithms and Models for the Web-Graph: 6th Interna-
tional Workshop, WAW 2009 Barcelona, Proceedings,
Springer-Verlag, Berlin, Lecture Notes Computer Sci.
5427, Springer, Berlin (2009).

[21] T. Maillart, D. Sornette, S. Spaeth and G. von Krogh
Empirical Tests of Zipf ’s Law Mechanism in Open Source
Linux Distribution, Phys. Rev. Lett. 101, 218701 (2008)

[22] Academic Web Link Database Project
http://cybermetrics.wlv.ac.uk/database/

http://www.kernel.org/
http://arxiv.org/abs/1002.3342
http://cybermetrics.wlv.ac.uk/database/

