News and Comments

on "Resonant Photovoltaic Effect in Surface State Electrons on Liquid Helium"

The Enigma of Zero Resistance

by Keiya Shirahama (Department of Physics, Keio University)
Published September 14, 2012

Vanishing electrical resistance is the most dramatic phenomenon in condensed matter. Superconductivity and the quantum Hall effect are the best-known examples of zero-resistance states (ZRSs). In the 21st century, the existence of new ZRSs were discovered in quite different situations. In two-dimensional electron systems (2DESs) exposed to microwave radiation in a small perpendicular field, the longitudinal resistivity ρ_{xx} vanishes when the microwave frequency matches an integer multiple of the cyclotron frequency of electrons. This zero-resistance phenomenon was first observed in high-mobility 2DESs formed in semiconductor heterostructures [1-3]. Although a number of studies have investigated ZRSs, the mechanism leading to the ZRS remains unclear [3].

Recently, Konstantinov and Kono discovered similar microwave-induced ZRSs in 2DESs formed on the free surface of liquid helium (3He) [4]. A 2DES on liquid helium is significantly unique: it is not Fermi-degenerate, and it exhibits record high electron mobility owing to the absence of impurities on the free surface of helium [5]. A 2DES on helium is characterized by surface-state subbands with an intersubband energy on the order of 100 GHz (~10 K). Konstantinov and Kono found that the longitudinal conductivity σ_{xx} reaches zero when the microwave frequency matches both the intersubband transition frequency and an integer multiple of the cyclotron frequency of the electrons. In the 2DES in a magnetic field, the zero longitudinal conductivity means vanishing ρ_{xx}. Their discovery shows that the microwave-induced zero-resistance phenomena are a universal property of 2DESs.

In a more recent study, Konstantinov et al. examined the transient response and spatial electron distribution of a circular 2DES upon its irradiation with microwaves [6]. Surprisingly, under irradiation, the electrons accumulated at the center of the sample (Figs. 1 and 2). Konstantinov et al. confirmed that the electron accumulation occurred when the 2DES was in the ZRS. The nonequilibrium electron distribution produced an extremely large electrostatic potential energy approaching 1 eV (~10^4 K) per electron, which is considerably larger than any other relevant energy scales of 2DESs.
This nonequilibrium charge accumulation is a novel photovoltaic effect. The microwave photons produce a DC electric field inside a 2DES even if there is no application of bias voltage from the electrodes. This photovoltaic behavior is likely related to the ZRS, which is possibly caused by the microwave-induced occupation of high Landau levels belonging to the second subband.

The photovoltaic effect identified by Konstantinov et al. suggests a solution to the problem of zero resistance in 2DESs. As compared to semiconductor heterostructures, a 2DES on liquid helium has the advantages of simplicity and an impurity-free nature. It is hoped that the mystery of zero resistance will be solved in near future.
References

Note
The above article should be referred as “K. Shirahama: JPSJ Online—News and Comments [September 14, 2012]” when citing.

Copyright © 2012 The Physical Society of Japan.