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Enhancement of edge channel transport by a low frequency irradiation
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The magnetotransport properties of high mobility two dimensional electron gas have recently
attracted a significant interest due to the discovery of microwave induced zero resistance states.
Here we show experimentally that microwave irradiation with a photon energy much smaller than
the spacing between Landau levels can induce a strong decrease in the four terminal resistance. This
effect is not predicted by the bulk transport models introduced to explain zero resistance states,
but can be naturally explained by an edge transport model. This highlights the importance of edge
channels for zero resistance state physics that was proposed recently.

PACS numbers: 89.20.Hh, 89.75.Hc, 05.40.Fb

High frequency transport in high purity two dimen-
sional electron gases (2DEG) reveal many intriguing and
unexpected phenomena of which microwave induced zero
resistance (ZRS) states are probably the most striking
manifestation. As experiments in Refs. [1, 2] show, mi-
crowave irradiation can lead to a complete disappear-
ance of longitudinal resistance Rxx for particular values
of the ratio j = ω/ωc between the driving frequency ω
and the cyclotron frequency ωc. Until 2010 this dissi-
pationless effect was only observed in GaAs heterostruc-
tures of ultra high purity [1, 2] or high densities [3] .
However the recent observation of ZRS for electrons on
the liquid helium surface indicates that it is actually a
generic effect that may appear in very different physi-
cal systems [4]. Despite the important theoretical efforts
that were made to understand this effect, the physical
origin of ZRS is still controversial. Most cited models
[5–7] argue that microwave irradiation creates a nega-
tive resistance state which is unstable and gives rise to
a zero resistance state through the formation of current
domains. However many experimental features can not
be explained with the above picture. In the ZRS regime
resistance decreases exponentially with microwave power
[8] and inverse temperature [2], instead of a direct switch-
ing to a non-dissipative state. Also it was shown that zero
resistance states are not affected by the sense of circular
polarization which questions mechanisms relying explic-
itly on transitions between Landau-levels [9]. Moreover
ZRS disappear in Hall bars with a small channel size of
a few microns, which indicates the importance of edge
effects [10]. These experimental properties highlight the
difficulties encountered by conventional theoretical de-
scriptions of ZRS, other arguments against these theories
are described in [11, 12].

In this Letter we investigate the adiabatic limit ω ≪ ωc

where transitions between Landau-levels are excluded.
We show experimentally that even in this case microwave
irradiation can lead to a strong suppression of Rxx in a
wide range of magnetic fields. We then propose a semi-
classical model that explains the observed effect through

the enhancement of the drift velocity of trajectories skip-
ping along sample edge and argue that this effect can not
be explained properly in a bulk transport model. Our re-
sults support the recent theory [11] which proposed that
ZRS appears due to microwave stabilization of electron
transport along sample edges.

We have investigated magneto-transport under mi-
crowave irradiation in a GaAs/Ga1−xAlxAs 2DEG with
density ne ≃ 3.3 × 1011cm−2, mobility µ ≃ 107 cm2/Vs
corresponding to transport time τtr ≃ 1.1 ns. The Hall
bar with a 100 µm wide channel was patterned using
wet etching (see Fig. 1 inset). A micro-bonding wire
was positioned on the Hall bar chip, parallel to the cur-
rent channel at a distance of 100 µm from the nearest
edge. One of the extremities of the wire was connected
to a coaxial cable, which allowed to send microwave ir-
radiation in a broad frequency range from 1 GHz to 40
GHz. The sample was cooled in a He3 insert to a tem-
perature of around 500 mK. We compared the effect of
microwaves on the magnetoresistance at two different fre-
quencies f = 38.65 GHz and f = 2.3 GHz. As shown, on
Fig. 1, the high frequency irradiation leads to microwave
induced resistance oscillations (MIRO) similar to those
reported in [13]. The magnetoresistance under irradia-
tion is characterized by a series of peaks and dips as a
function of magnetic field whose position are determined
by the ratio j = ω/ωc of the microwave frequency ω to
the cyclotron frequency ωc. At higher microwave power
these oscillations are expected to develop into ZRS, how-
ever in our experiments this regime was out of reach due
to the limited cooling power of the He3 insert. The mag-
netoresistance under high frequency microwave irradia-
tion f = 38.64 GHz contrasts sharply with the behavior
under irradiation at f = 2.3 GHz. In this case the mag-
netoresistance does not exhibit oscillations anymore but
presents a significant drop under irradiation in a large
range of magnetic fields (H ≥ 0.05 Tesla). This drop
can not be explained by an increase in electron temper-
ature since resistance increases with temperature in the
explored range of magnetic fields.
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FIG. 1: Magnetoresistance of a high mobility Hall bar (op-
tical photograph of the sample is shown in the inset) in the
absence of microwaves and under irradiation at f = 38.7 GHz
and f = 2.3 GHz. The high frequency irradiation induces os-
cillations in the magnetoresistance (MIRO), whereas the low
frequency driving leads to an homogeneous drop in Rxx for
H > 0.1 Tesla.

Let us first try to of explain the effect of the low fre-
quency irradiation through a bulk mechanism. For a
frequency f = 2.3 GHz and a typical magnetic field of
H ≃ 0.1 Tesla, we find j ≃ 0.05. In this adiabatic limit,
the microwave field can not give rise to transitions be-
tween Landau levels, thus neither elastic nor inelastic
ZRS theories can justify a strong drop in resistance of
around 50%. The only expected effect is that of a weak
heating leading to a thermal broadening of the Landau
levels. Also for ωτtr ≫ 1 the electric field penetrates the
sample in the form of plasmon excitations. At frequencies
ω < ωc bulk-magnetoplasmons excitation are evanescent
thus we expect the excitation field to be screened in the
bulk of the sample [15]. On the contrary edge magneto-
plasmon excitations are gapless and appear even at fre-
quencies ω ≪ ωc which may lead to an enhancement of
the microwave field near the edges of the sample. As a
consequence the effect of irradiation should be confined to
the sample edges. This and recent results from [11] lead
us to develop a model explaining the observed drop of
resistance through the dynamics of orbits skipping along
the sample edge under adiabatic microwave fields.

We first use the Landauer formula to make a con-
nection between the four terminal resistance Rxx and
the drift velocities of the skipping orbits along sam-
ple edges. This formula relates Rxx to the transmis-
sion Tn of the channels propagating along sample edges:
Rxx = h

2e2N

∑

(1 − Tn)/
∑

Tn, where N is the number
of occupied Landau levels; N ≃ 70 at H = 0.1 Tesla
[14]. For this magnetic field, the typical transmission
T = 1 − NRxx(2e

2/h) ≃ 0.985 is very close to unity
(Rxx ≃ 2.5 Ω). Since N is high in our experiments, we
can make a semi-classical approximation for the trans-

missions: Tn ≃ 1 − L
vg(n)τn

where L is the distance be-

tween voltage probes, vg(n) is the group velocity of the
channel which is given by the drift velocity in the semi-
classical limit. Here τn is the typical time after which an
electron from channel n is scattered into the sample bulk
(it is however longer than τtr because the probability of
scattering back to the edge is high after a collision on an
impurity [16]); this yields

Rxx =
h

2e2N2

∑

n

L

vg(n)τn
(1)

This expression shows that orbits with low drift velocity
give the main contribution to Rxx. We thus start by
investigating the effects of microwave irradiation on a
typical channel propagating along the edge with a drift
velocity vg ≪ vF where vF is the Fermi velocity (a typical
trajectory is shown on Fig. 2). The relation Eq. (1) allows
us to compute the resistance Rxx from the knowledge of
the drift velocities under irradiation. This avoids the
direct computation of the transmissions from a classical
billiard model [11] which is numerically more expensive.
The polarization of the field is chosen along the y axis,

perpendicular to the edge of the sample. This choice
is related to the experimental geometry, another moti-
vation is that the ratio between the perpendicular and
longitudinal components of the electric field at the edge
is given by the Hall parameter α = σxy/σxx ≃ 270 at
H ≃ 0.1 Tesla.
Two classical trajectories with and without microwave

irradiation are compared on Fig. 2, they start with the
same initial conditions but progressively diverge due to
the effect of microwaves. The trajectory with irradia-
tion propagates on average faster, which on the basis of
our previous arguments, will lead to a decrease of Rxx.
We will now show that this enhancement of drift ve-
locity under irradiation is actually a general feature of
edge transport and derive a simple analytical estimation
for the increase in drift velocity. Our theoretical anal-
ysis is based on the conservation of the action S under
adiabatic driving, which reflects the absence of transi-
tions between Landau levels in the limit ω ≪ ωc. In
absence of irradiation the drift velocity vg is a function
of the action S and of the position Yc of the guiding
center with respect to the wall vg = vg(S, Yc). The
dependence on Yc is illustrated in the bottom panel of
Fig. 2; the expression for S and calculation details are
given in [17]. The application of a microwave irradiation
induces a modulation of the position of the guiding cen-
ter Yc → Yc + δY cosωt, where δY = eEω

mω2
c

; Eω is the

amplitude of the microwave field, ωc = eH/m is the cy-
clotron frequency and m is the electron mass. Thus the
time-averaged drift velocity under irradiation becomes
< vg >=< v(S, Yc + δY cosωt) >. The results of this
averaging procedure are displayed Fig. 3 and show the
dependence of < vg > /vF (where vF is the Fermi ve-



3

-2 -1 0 1 2 3
0

1

2

3

0 5 10 15 20 25 30 35
-3

-2

-1

0

x / RL

y 
/ 

R
L

Eω

Yc

FIG. 2: Top panel: Comparison between two classical tra-
jectories propagating along the edge with the same initial
conditions but with (red) and without (black) microwaves.
The propagation is faster in presence of driving (simulation
parameters are ω/ωc = 0.1 and ǫω = eEω/(mωcvF ) = 0.6).
Bottom panel: dependence of the group velocity vg on the dis-
tance of the orbit guiding center to the wall Yc at fixed action
S. The rescaled variables allow to obtain a functional depen-
dence valid for all action S (continuous curve), the asymptote
for high Yc is shown in dashed lines [17]. This high Yc limit
corresponds to trajectories almost tangent to the wall.

locity) on dimensionless field ǫω = eEω/(mωcvF ) which
is also the ratio between δY and the Larmor radius
RL = vF /ωc. It confirms the increase of the drift ve-
locity for a large range of driving field amplitudes. A
comparison with the drift velocities extracted from direct
numerical integration of the dynamics along the sample
edge shows that the adiabatic theory gives a good quan-
titative prediction (see Fig. 3 inset).

The following simple argument gives a good ap-
proximation for the average drift velocity under ir-
radiation. The quasistatic transverse electric field
Eω cosωt induces a drift along the wall with velocity
(eEω/mωc) cosωt. The equilibrium drift velocity vg(0)
is enhanced when (eEω/mωc) cosωt > 0. However when
(eEω/mωc) cosωt+vg(0) < 0, the electron does not move
efficiently in the direction opposite to its equilibrium
propagation direction and the drift freezes. This behav-
ior can be seen directly on the trajectory on Fig. 2. By
keeping the positive contribution only, we find < vg >≃
vg(0) +

eEω

mωcπ
(see dashed line Fig. 3). This expression

can be also be obtained within the adiabatic formalism
by retaining only the contribution from the asymptotes
vg(S, Yc) = 0 when Yc → −∞ and vg(S, Yc) ≃ Ycωc

for high Yc in the time averaging. The above compact
expression is compared with exact adiabatic theory on
Fig. 3 and provides a satisfactory agreement. More-
over the results of adiabatic theory are well described
by straight lines even if the numerical coefficient derived
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FIG. 3: Time averaged drift velocity as a function of the re-
duced driving field ǫω = eEω/(mωcvF ) computed using the
adiabatic theory for several values of the ratio between Yc and
the Larmor radius RL = vF /ωc. The behavior at large fields
is well described by the relation < vg >≃ ǫωvF /π represented
by the dashed line. The inset shows the good agreement be-
tween the adiabatic theory (continuous line) and direct nu-
merical simulations of the classical dynamics for Yc = −0.9RL

(symbols).

from our heuristic argument is only approximate. This
allows to derive a scaling for the magnetoresistance under
irradiation which can be compared with our experimen-
tal data. For simplicity we keep the contribution of only
a single typical channel propagating with drift velocity
vg(0) ≪ vF in Eq. (1), which leads to:

Rxx(0)

Rxx
− 1 =

< vg >

vg(0)
− 1 ∝ Eω

ωc
∝

√
Pω

H
(2)

where Pω is the injected microwave power. Note that
a scaling with the square root of microwave power was
derived for ZRS in [11] and observed experimentally for
low temperature MIRO in [18].

The equation Eq. 2 predicts that the quantity ρ =

P−1/2
ω (Rxx(0)/Rxx− 1) should vary linearly with inverse

magnetic field and be independent of microwave power.
The magnetoresistances at different microwave powers
indeed collapses on a single curve according to this scal-
ing. This is represented on Fig. 4 for f = 10.3 GHz,
note that a similar collapse was observed at other fre-
quencies including 1.66, 2.3, 3.9 and 5.5 GHz. Thus this
model is successful at describing the observed decrease
of magnetoresistance under irradiation in the regime of
adiabatic driving ω ≪ ωc at sufficiently strong magnetic
fields where the 1/H decay is observed (see Fig. 4 in-
set). At lower magnetic fields the scaling breaks down as
the guiding along sample edges is destroyed by disorder.
Our explanation relied on the enhancement of the drift
velocity of skipping orbits along sample edge under adi-
abatic irradiation (ω ≪ ωc) and is not suited to describe
this regime. In the following, we will emphasize several
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FIG. 4: The solid lines show the dependence of ρ =
(Pω/mW )−1/2(Rxx(0)/Rxx −1) on the inverse magnetic field
for three power values (−15,−10 and −5 dBm) at frequency
10.3 GHz. The curves are shifted for clarity and collapse on
a single straight line (dashed curve) with slope independent
on microwave power as predicted by Eq. (2), power was var-
ied by an order of magnitude. Inset shows the dependence of
Rxx(0)/Rxx on magnetic field for the same values of power.

experimental observations that appear to us relevant for
constructing a theory valid at all magnetic fields.

The disorder potential in a high mobility 2DEG in-
duces mainly small angle scattering. As a consequence
it is characterized by two time scales the elastic life-
time τe ≃ 20 ps which is the average time between
two collisions and the transport lifetime τtr ≃ 1.1 ns
which measures the time needed for an electron to loose
memory of its momentum [19]. While τtr is extracted
from the mobility, τe is obtained from the decay of the
Shubnikov-de Haas oscillations. By varying microwave
frequency we found that the decrease of resistance due
to the enhancement of drift velocity occurred only for
ωτtr ≫ 1 (the effect was present for f = 1.67 GHz but
absent for f = 1.13 GHz). However the lowest magnetic
field for which resistance still decreases under irradiation
(H ≃ 0.06 Tesla for data on Fig. 1) does not seem deter-
mined by τtr but rather by τe. Indeed at H ≃ 0.06 Tesla,
ωcτtr ≃ 160 while ωcτe ≃ 3 is of the order of unity.
Compared to the adiabatic effect, MIRO appear only
at higher frequencies in our experiments. They could
be observed only for frequencies larger than 30 GHz,
suggesting that they require the absence of scattering
during a microwave oscillation period ωτe ≥ 1. How-
ever MIRO can persist down to very low magnetic fields
around 10 mTesla [2], which corresponds to ωcτtr ≥ 1.
Therefore enhancement of guiding and MIRO/ZRS seem
to appear in complementary regimes of magnetic fields
and frequency. These observations demonstrate the im-
portance of the two timescales τe and τtr for understand-
ing phototransport in 2DEG.

In conclusion we report a strong reduction of sample

resistance under microwave irradiation in a high mobility
two dimensional electron gas. This effect occurs in the
regime where the irradiation energy ~ω is much smaller
than the spacing between Landau levels ~ωc and does
not induce interlevel transitions. We explain our results
through the enhancement of the mean drift velocity along
sample edges by a low frequency electric field. The the-
oretical analysis of this enhancement leads to a scaling
relation between power and magnetic field which is con-
firmed experimentally, whereas bulk transport theories
predict a vanishing effect for ω ≪ ωc. Thus our results
strongly support the important role played by edge chan-
nel transport in zero resistance state physics which was
recently put forward theoretically. After completion of
this work one of us, A.C., paricipated in experiments
with electrons trapped on a helium surface which also
support this conclusion [20].
We thank D.L. Shepelyansky for fruitful discussions
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APPENDIX: ADIABATIC THEORY

In this appendix we give the main formulas used for
the calculation of the mean drift velocity under low fre-
quency microwave irradiation within the adiabatic ap-
proximation. In the Landau-Gauge the Hamiltonian for
the motion of an electron along an edge in presence of
magnetic field reads [17]

H =
p2y
2m

+ U(y) (3)

the potential U(y) is created by a hard specular wall
located at y = 0:

U(y) =

{

mω2

c

2 (y − Yc)
2 if y < 0

∞ if y ≥ 0
(4)

where Yc = k~/(eH) is the position of the guiding center;
and k is the wavenumber in the direction parallel to the
wall.
The oscillation period in this potential for a particle

with energy E and guiding center Yc reads:

T (E, Yc) =
2

ωc
Arccos(t) (5)

t = ωcYc

√

m

2E
=

Yc

RL
(6)

and integration over energy yields the expression for ac-
tion:

S(E, Yc) =
2E

ωc
σ(t) (7)

σ(t) = Arccos(t)− t
√

1− t2 (8)

In the semiclassical approximation valid for levels with
number n ≫ 1, the positions of the energy levels are given
by the equation:

S(En(Yc), Yc) ≃ 2π~n (9)

Using this expression we find the value of the group
velocity

vg =
1

~

∂En

∂k
(10)

= −
1

mωc

∂Yc
S

∂ES
(11)

=
2
√

R2
L − Y 2

c

T (Yc, E)
(12)

As expected the group velocity coincides with the drift
velocity of a classical trajectory propagating along the
sample edge with guiding a center Yc.
The above equation gives an expression of vg as a func-

tion of E, Yc, however to apply the adiabatic theory we
need to evaluate vg as a function of S, Yc. For this pur-
pose we use the following expression :

S(E, Yc) =
2E

ωc
σ(t) = mωcY

2
c σ(t)t

−2 (13)

Inverting this equation we would find an expression of t
as a function of S/(mωcY

2
c ), however this quantity does

not depend on the sign of Yc as a result Eq. (13) has
in general two solutions of opposite sign. The correct
solution can then be chosen by noting that t and Yc have
the same sign. Thus we instead invert numerically the
relation:

√

mωc

S
Yc =

t
√

σ(t)
(14)

which gives an expression of t as a function of
√

mωc

S Yc:

t = t(

√

mωc

S
Yc) (15)

As a result the rescaled group velocity vg
√

m
ωcS

de-

pends only on
√

mωc

S Yc through the relation:

vg

√

m

ωcS
=

√
t−2 − 1

Arccos(t)

√

mωc

S
Yc (16)

which is displayed on Fig. 2. In the limit of high values
of

√

mωc

S Yc Eqs. (14,16) can be expanded in power series
to lead the asymptotic behavior shown on Fig. 2.

We now determine of conductance in presence of adi-
abatic microwave driving. Let YF (S) be the value of the
guiding center Yc for which the Landau levels tilted by
the presence of the wall potential intersect the Fermi level
E(S, Yc) = EF where EF is the Fermi energy. Without
microwaves the particles at the Fermi energy with ac-
tion S move at a mean velocity vg(S, YF (S)). When the
low frequency irradiation is turned on, the action is not
changed (adiabatic limit) however the group velocities
are modified by the presence of a the quasi-static field
Eω cosωt

vg(S, YF (S)) → vg(S, YF (S) + Yω)−
Eω

mωc
cosωt (17)

where Yω = Eω/(mω2
c) cosωt. Indeed the electric field

Eω cosωt changes the energy levels to :

En(Yc) → En(Yc + Yω)− Eω cosωtYc −
E2

ω

2mω2
c

(18)

Averaging over the oscillations of the electric field
Eω cosωt, yields the expression for the mean drift ve-
locity:

< vg >=< vg(S, YF (S) + Yω cosωt) >t (19)

This average was computed numerically leading to the
results displayed on Fig. 3.


