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Abstract – We study a generalized Thomson problem that appears in several condensed matter
settings: identical point-charge particles can penetrate inside a homogeneously charged sphere,
with global electro-neutrality. The emphasis is on scaling laws at large Coulombic couplings,
and deviations from mean-field behaviour, by a combination of Monte Carlo simulations and
an analytical treatment within a quasi-localized charge approximation, which provides reliable
predictions. We also uncover a local overcharging phenomenon driven by ionic correlations alone.

The venerable Thomson problem of finding the ground
state of an ensemble of electrons confined in an homoge-
neously charged neutralizing sphere, is still unsolved and
has a long history, see e.g. [1–3] and references therein for
the different generalizations that have been put forward.
The model was introduced at the beginning of the 20th
century [1], just after the discovery of the electron, but
before that of the proton, as a classical representation of
the atom; hence the ”plums” representing the electrons,
and the introduction of an homogeneous background (the
”pudding”), to fulfill electro-neutrality. This picture, al-
though obsolete in the atomic realm, has nevertheless at-
tracted the interest of mathematicians, physicists and bi-
ologists alike, due to its relevance in particular for ionic
ordering at interfaces [4], for the behaviour of colloids self-
assembled at the edge of emulsion droplets (colloidosomes,
see e.g. [5]), for the study of one-component plasmas and
their experimental realizations (electrons on a liquid He-
lium surface [6]) or for understanding viral morphology
[7]. The Thomson problem reappeared recently in sheep’s
clothing in different contexts, from the screening effects
in hydrophobic polyelectrolytes [8], to the behaviour of
Coulomb balls (identical particles confined in an harmonic
trap [11]), including hydrogels [12], where the uptake of
counter-ions by a cross-linked polymer network (the “pud-
ding”) is the key feature leading to the expansion of the
network by osmotic pressure, hence the capability to ab-
sorb large quantities of water. At variance with Thomson’s

preoccupation where ground state configurations were un-
der scrutiny, those articles were concerned with the finite
temperature behaviour (T 6= 0). At high to moderate tem-
peratures, mean-field theory provides a trustworthy frame-
work, and allows to obtain some analytical results [8]. The
regime of low temperatures (large couplings, a notion to be
specified below) is more elusive, and it will be our primary
objective in the present contribution. Several analytical
predictions will be derived, including scaling laws for two
important quantities characterizing the screening proper-
ties. These predictions will be tested against numerical
simulations, that also give access to detailed microscopic
information concerning the structure.

We start by defining the model and introducing a rel-
evant coupling parameter. We consider a single perme-
able and spherical globule of radius Rg and charge −zqZg

(referred to as the background), surrounded by its Zg

counter-ions of charge zq, where q is the elementary charge
and z the ionic valency. It should be stressed that the
counter-ions can penetrate but also leave the homoge-
neously charged globule, which is an important difference
with Thomson’s original formulation. Without loss of gen-
erality, the globule is assumed negatively charged (positive
counter-ions). In such a salt-free system, a confining cell
is required to avoid evaporation of all counter-ions; its ra-
dius is denoted Rc. A key quantity is the “globule total
uptake” charge −Zup, which includes the background and
the counter-ions present within the globule [13]. Hence,
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Zg−Zup can be viewed as the number of counter-ions out-
side the globule. Following [10,11], we define the coupling
(plasma) parameter Γ as the ratio between the character-
istic electrostatic energy of a counterion-counterion inter-
action, z2q2/(4πǫδ), and the thermal energy, kT . Here
ǫ is the solvent dielectric constant, and the distance δ is
taken as the ion sphere radius: Zgδ

3 = R3
g. Introducing

the Bjerrum length ℓB = q2/(4πǫkT ), which is about 7 Å
in water at room temperature, we get

Γ =
z2q2

4πǫδ kT
= Z1/3

g

z2ℓB
Rg

. (1)

For Γ < 1, mean-field Poisson-Boltzmann theory [10] pro-
vides an accurate description, while the strong coupling
regime corresponds to Γ > 1. It has been shown in [8]
that within the non-linear mean-field regime [9], counter-
ion penetration into the globule lead to Zup ∝

√

Zg for
large enough bare charge Zg. For the purpose of compar-
ison with numerical calculations in the strongly coupled
regime, this quantity needs suitable rescaling, and we de-
fine

Π = Zup

z4ℓ2B
R2

g

, (2)

which only depends on Γ [14]. Within mean-field, we then
have Π ∝ Γ3/2 up to a prefactor of order 1, and in addition,
the relation n ∝ exp(−zeφ/kT ) between counter-ions den-
sity n(r) and the local mean electrostatic potential φ(r)
[10], allows us to relate the reduced charge Π to the char-
acteristic decay length of n(r) at r = Rg. To this end, we
define the positive quantity

S = −z2ℓB
d

dr

∣

∣

∣

∣

r=Rg

logn(r), (3)

that can be viewed as the reduced (inverse) decay length of
the counter-ion profile in the globule vicinity. Gauss theo-
rem implies S = Π, again within irrelevant prefactors: the
reduced decay length S−1 is inversely proportional to the
reduced total charge, that is itself an increasing function
of the background charge Zg.
How are the previous results affected in the strong-

coupling regime? To make analytical progress when Γ ≫
1, we take advantage of the caging of particles that takes
place under their strong mutual repulsion [15, 16]. This
basic feature of strongly-coupled Coulomb or Yukawa plas-
mas is at the root of the quasi-localized charge approxi-
mation, that has proved useful for the determination of
dynamic quantities [20]: the charges inside the globule
are trapped around local potential minima, and there-
fore oscillate at a frequency close to the Einstein value
ω2
E = n0z

2q2/(3mǫ) [21, 22], where n0 = Zg/(4πR
3
g/3) is

the background density, and m is the counter-ion mass.
The potential felt locally by a counter-ion then reads

U(x) =
1

2

z2q2n0

3 ǫ
x2 =

1

6

kT x2

λ2
(4)

where x stands for the deviation from potential minimum,
and λ = [z2q2n0/(ǫkT )]

−1/2 can be thought of as a Debye
length. The typical cage size is given by δ, as required from
local electro-neutrality, and likewise, those cages located
near the boundary of the globule (r = Rg) are centered at
r = Rg−δmax. We expect δmax and δ to scale accordingly,
and more precisely, we write δmax = αδ, where α will be
an important quantity for what follows. Due to the re-
pulsion of neighboring counter-ions, we anticipate α < 1
(the outer layer of confined ions is “pushed” towards the
boundary r = Rg, by a mechanism reminiscent of deple-
tion in hard core systems). This is precisely the scenario
at work in the ground state (i.e. at infinite Γ), where
several approximate expressions have been proposed for α
[15]. Consistent with these approximations and with nu-
merical simulations that report 0.73 < α < 0.77 [15], we
will take α = 3/4 for our large coupling expansions.
We are now in position to compute the uptake charge of

the globule, from the number of counter-ions that are able
to escape their cage. At large Γ, only those cages located
near the globule boundary can loose particles; there are
(Rg/δ)

2 such cages, so that

Zup ≃
R2

g

δ2

∫ ∞

δmax

dx

λ
exp

(

−
x2

6λ2

)

(5)

≃
R2

g

δ2
λ

δmax

exp

(

−
δ2max

6λ2

)

. (6)

Since δ2/λ2 = 3z2ℓB/δ = 3Γ, and going from Zup to its
rescaled form Π, we obtain

Π ∝ Γ3/2 exp(−α2Γ/2). (7)

This shows, under strong coupling and at variance with
mean-field, that the uptake charge actually decreases upon
increasing the globule charge; furthermore, it is notewor-
thy that our argument, valid at large Γ, also reproduces
the mean-field small Γ behaviour with a power law of ex-
ponent 3/2.
We now seek a more microscopic information and at-

tempt to predict the radial dependence of the counter-ion
profile n(r) outside the globule. When a counter-ion ap-
proaches the globule, it polarizes the trapped ions in their
cages, and in turn feels the potential V (r) thereby created
(the more obvious Zup/r contribution appears to be sub-
dominant, see below). More specifically, the test particle
located at r creates a field E = −zq(r− x)/(4πǫ|r− x|3)
at point x where a counter-ion located inside the globule
will be displaced from its equilibrium position, creating a
dipole moment p = 3z2q2λ2 E/kT [23]. The contribution
of this dipole to the potential V felt by the test charge
is p · (r − x)/(4πǫ|r − x|3), an expression that we have
to integrate over all cages of counter-ions (one dipole for
each cage); moreover, for consistency with our previous
argument with outer cages centered at a radial position
Rg − δmax, and gathering expressions, we have

V (r) ≃ −n0

3z3q3λ2

(4πǫ)2kT

∫

|x|≤Rg−δmax

1

|r− x|4
d3x. (8)
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To obtain the dominant contribution, in the vicinity of
Rg, we neglect the curvature of the globule, which gives

−zqV (r)

kT
∝

ℓB
r −Rg + δmax

with r = |r|. (9)

The corresponding density profile follows from n(r) ∝
e−V/kT , which yields the dominant behaviour log n ∝
ℓB/(r −Rg + δmax). This allows not only to compute the
scaling parameter S but also to propose a scaling function
for n(r). Indeed we obtain here S ∝ z2ℓ2B/δ

2 from the
definition (3), i.e. S ∝ Γ2, and

1

Γ
log

n(r)

n(Rg)
∝ F(ζ) = [(ζ + α)−1 − α−1] (10)

with ζ = (r − Rg)/δ. As a consequence, if the scaling re-
lation (10) holds, an important test for the consistency of
our approach is to recover the same value of α as in expres-
sion (7), close to 3/4. To summarize our analytical find-
ings, we obtained, in addition to the explicit scaling form
(10), that while Π ∝ S ∝ Γ3/2 in the non-linear mean-
field regime (meaning the limit of large bare charges Zg

within Poisson-Boltzmann theory), strong coupling leads
to S ∝ Γ2 and an uptake charge (background plus counter-
ions present within the globule) Π ∝ Γ3/2 exp(−α2Γ/2).
The slope (S) increases with Γ steeper than in mean-field,
and ionic correlation effects lead at large Γ to a decrease
of the charge Π.
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Fig. 1: Counter-ion density profile n normalized by background
density n0 as a function of distance from the globule center
(normalized by the globule radius Rg). Here Γ = 13, Rc/Rg =
2 and Zg = 200. The density peak location defines the distance
δmax, that is shown in the inset at various couplings, different
cell radii (Rc/Rg = 2, 4 and 8 and Zg from 50 to 3000. The
dashed line shows the value 3/4, used for α throughout this
work.

To put these predictions to the test, we have performed
Monte Carlo simulations, where the counter-ion interact
through the exact Coulomb law and feel the background
charge of the globule, the whole system being furthermore
enclosed in a larger sphere of radius Rc [14]. Following the
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Fig. 2: Plots of rescaled counter-ion profiles in the vicinity
of the globule, Γ−1 log[n(r)/n(Rg)], as a function of ζ = (r −
Rg)/δ. The different symbols correspond to different values of
Γ, from 8 to 24. The thick dashed curve is for the function
F(ζ)/2 where F is defined in Eq. (10), with a value α = 3/4.
Inset: Integrated charge Qint vs radial distance, at weak and
strong couplings. For Γ < 1, Qint is always of the same sign
as the background, while over-charging is observed at strong
couplings. The dashed line shows the mean-field result.

analytical treatment, we located the position of counter-
ionic density peak close to the globule edge, which defines
δmax, see Fig. 1. The inset of this figure shows that the ra-
tio α = δmax/δ does not depend on the coupling strength,
and remains close to its ground state limit α ≃ 3/4. Re-
covering the proper value of α at large Γ can be viewed
as an assessment of the validity of our simulations, and
we can then proceed with the explicit check of the scaling
form Eq. (10). It can be seen in Fig. 2 that the different
curves exhibit good collapse at different Γ, and that the
function F(ζ) captures the density decay in the external
vicinity of the globule (ζ > 0). While our argument above
only provides the relation Γ−1 log[n(r)/n(Rg)] ∝ F(ζ), a
more refined analysis indicates that the prefactor is close
to 1/2 [24], so that we have plotted F(ζ)/2 in Fig. 2. We
have also computed the values of S and Π in the simula-
tions. They are shown in Fig. 3, which fully corroborates
the analytical scaling behaviours. First, at small Γ, we
have the mean-field behaviour S ∝ Π ∝ Γ3/2, while at
larger couplings, S ∝ Γ2 and Π becomes non monotonous.
The detailed behaviour of Π versus Γ provides a stringent
test for our arguments: as shown in the inset of Fig. 3, the
dependence of log(Π/Γ3/2) on Γ is linear at large Γ, with
a (negative) slope compatible with the predicted value of
α2/2 = 9/32. We see that a unique value of α, inherited
from ground state properties, accounts for the behaviour
of the density profile together with more global quantities
like the uptake charge.

The previous considerations provide a detailed descrip-
tion for the ionic density profile outside the globule. The
behaviour for r < Rg is more intricate, and has been an-
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Fig. 3: Rescaled counter-ion density slope S defined in Eq. (3),
and reduced uptake charge Π = Zup z

4ℓ2B/R2
g, as a function of

coupling parameter Γ. The dashed lines have slope 3/2 (to
evidence the mean-field behaviour) and 2. Here S has been
divided by 2 to have S ≃ Π at low Γ. The inset shows Π/Γ3/2

as a function of coupling, on a linear-log scale. The line has
slope −α2/2 ≃ −0.28.

alyzed in Monte Carlo. A quantity of interest is the total
integrated charge Qint(r) inside a sphere of radius r. By
definition, Qint(Rg) = −Zup and Qint(Rc) = 0 due to
electro-neutrality. Within mean-field, it is interesting to
note that Qint is always of the same sign as the back-
ground (here, negative). One can also note that the salt-
free nature of our system imposes Qint(Rg) < 0, and more
precisely, that Qint(r) < 0 for all r ≥ Rg. Hence, a true
overcharging cannot be observed in our salt-free system
[10, 17]. However, for Γ > 1, the inset of Fig. 2 shows
that Qint(r) exhibits a range of distances where it is posi-
tive: we refer to such a possibility as a local over-charging,
and we note that it is somehow reminiscent of its counter-
part occurring for impermeable colloids [10, 17]. Indeed,
as for impermeable colloids, it is possible to prove that
local overcharging is precluded within mean-field theories
[24,25], so that when present, it is a manifestation of ionic
correlations, that become prevalent at Γ > 1. The elec-
trophoretic consequences of this over-charging effect are
unclear, and left for future study. Incidentally, the close
agreement between Monte Carlo and mean-field results at
small Γ (see inset of Fig. 2) can be seen as assessing the
validity of the numerical methods employed.
To summarize, we investigated the screening properties

of a uniformly charged spherical globule, neutralized by
point counter-ions. Invoking a quasi-localized charge ar-
gument at strong Coulombic coupling Γ, we obtained an-
alytically the counter-ion density profile n(r) outside the
globule, together with two more global quantities: one,
denoted S, follows from n(r) and is its characteristic in-
verse decay length in the globule edge vicinity (r = Rg);
the second quantity, Π, stands for the reduced total charge
inside the globule and quantifies the counter-ion uptake.

At small couplings, S and Π coincide and scale as Γ3/2.
Strong ionic correlations, on the other hand, were shown to
lead to a departure of both quantities: the slope S becomes
steeper (algebraic increase in Γ2) and the counter-ion up-
take is much more efficient, leading to a charge Π that de-
creases upon increasing Γ (which can be obtained increas-
ing the globule bare charge Zg): the algebraic mean-field
increase turns into an exponential decrease, see Eq. (7).
Our scaling predictions are free of adjustable parameters,
and make use of known ground state properties [15] (that
fix the parameter α = δmax/δ). These predictions were
corroborated by Monte Carlo simulations, that provide
the exact static properties of our system at arbitrary Γ,
and that furthermore revealed an over-charging effect that
is absent within mean-field scenario. We have treated the
phenomenon of caging at a rather simple level, that turns
out to be sufficient to capture the interesting violations of
mean-field, driven by ionic correlations. In addition, while
the mean-field theory applies schematically for Γ < 1 and
the strong-coupling arguments cover the range Γ > 10,
a quantitative understanding of the cross-over region at
moderate couplings presumably requires intermediate ap-
proaches in the spirit of Refs. [27].
Our work opens interesting venues for future studies.

First, our predictions can be tested experimentally, in the
spirit of the experiments reported in [26]. For the corre-
sponding hydrophobic polyelectrolytes, we estimate that
Γ ≃ z2 at room temperature, where z is the valency of the
counter-ions. Consequently, with trivalent ions, one has
Γ ≃ 9, which is the regime where mean-field no longer
applies, and our strong-coupling predictions take over, see
Fig. 3. Second, the phase behaviour of an ensemble of
such globules is unknown, together with the effects of an
added electrolyte. Finally, the response to external per-
turbations, both static (sedimentation) or dynamic (elec-
trophoresis), should provide a relevant ground to investi-
gate the signature of strong Coulombic correlations.
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