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PACS 47.35.-i – Hydrodynamic waves
PACS 47.15.km – Potential flows
PACS 47.35.Pq – Capillary waves
PACS 47.55.D- – Drops and bubbles

Abstract. - The behavior of weakly deformed drops on non wetting surfaces is usually described
using linear models. We show that these simple pictures cannot account for measurements of the
dynamics of droplets that oscillate or bounce on super-hydrophobic substrates. We demonstrate
that several peculiar experimental observations observed in previous works can be understood
through a logarithmic correction of the linear model.

Water impacts on surfaces are one the most common
physical phenomena observed in every day life, with a
wide range of applications, going from agriculture to inkjet
printers. Recent progresses in experimental and theoret-
ical methods have yielded a better understanding of this
problem [1, 2]. In particular, the development of novel
superhydrophobic surfaces has allowed the study of these
phenomena in well controlled situations [3,4], where some
of the most challenging effects, and most notably the line
contact dynamics and hysteresis [5], can safely be ne-
glected.
In this Letter, we present a description of the dynam-

ics of a sessile droplet in the regime of small deforma-
tion. Contrasting with the commonly accepted scenario,
we show that the droplet behaves as a non-linear spring
whose stiffness decreases logarithmically with the defor-
mation. Our model is based on an analogy with the clas-
sical Hertz contact for an elastic sphere and leads to ac-
curate quantitative comparisons with existing data on su-
perhydrophobic surfaces. We suggest that the analysis
can be extended to the oscillations of droplets sitting on
non-wetting substrates.

Consider a droplet of radius R, surface tension σ and
density ρ at the surface of a non-wetting substrate. For
R ≪ κ−1, where κ−1 =

√

σ/ρg is the capillary length
and g is gravity, then the sag ε the drop (see Fig. 2)
is given by a balance between a linear capillary restoring

force ≃ σε and the weight ≃ ρgR3 yielding the scaling
relation ε ∼ κ2R3 [6, 7].
We measured the dimensionless sag ε/κ2R3 for water

droplets coated with lycopodium grains (a way to generate
superhydrophobicity [8]), and the results are presented in
figure 1. As seen on this semi-log plot, this ratio is not
observed to be independent on the drop radius for Rκ < 1,
but it weakly (logarithmically) diverges, suggesting rather
a scaling

ε ∼ κ2R3 |ln(κR)| . (1)

This singular scaling was first pointed out in a study
of the static properties of wet foams [9], and it can be
justified by calculating the shape of the drop in the regime
of weak deformation using an expansion very similar to
that of [10, 11]. Laplace equation relating the pressure
discontinuity to the mean curvature C of the liquid/air
interface reads in spherical coordinates (Fig. 2)

P ′

0 + ρgr cos θ = P0 + 2σC, (2)

where P0 is the atmospherical pressure and P ′

0 is an in-
tegration constant for the hydrostatic equations. In the
limit of small deformations, we write r = R + ζ, with
ζ ≪ R, and we obtain [12] for an axisymmetric drop

σ

R2
(2 + ∆θ) ζ = ∆P0 + ρgR cos θ, (3)
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Fig. 1: Color online. Measurement of the sag of the top of a
liquid marble obtained by deposition of lycopodium spores at
the surface of a water droplet. Black dashed line : theoretical
calculation using the numerical integration of the exact Laplace
law 2. Red solid line : asymptotic expansion (Eq. 7) in the
weakly deformed regime. This asymptotic expansion is valid
only in the regime κR . 1 where the drop is weakly deformed.

where ∆P0 = P ′

0−P0−2σ/R and ∆θ is the angular Lapla-
cian given by

∆θ =
1

sin(θ)
∂θ (sin θ∂θ(·)) . (4)

This equation is supplemented by the following con-
ditions: 1) Conservation of volume,

∫

sin θdθζ = 0; 2)
The position of the “contact” at θ = θc is given by
(R + ζ(θc)) cos θc = R (see Fig. 2); 3) The contact an-
gle is 180◦, implying that ζ′(θc) = R tan θc.
These equations are readily solved and we get

ζ(θ) =
κ2R3

3

[

1 + cos θ

2
+ cos θ ln

(

1− cos θ

1− cos θc

)]

, (5)

with

θ2c ∼ 2κ2R2/3, (6)

as derived in [6] and checked experimentally in [8]). We
then calculate the static sag of the top of the droplet
ε = −ζ(π), and that of the center of mass εG, yielding
respectively:

ε =
κ2R3

3

∣

∣

∣

∣

ln

(

κ2R2

6

)
∣

∣

∣

∣

. (7)

εG =
κ2R3

3

∣

∣

∣

∣

ln

(

e5/6
κ2R2

6

)
∣

∣

∣

∣

. (8)

where we recover the logarithmic correction assumed in
Eq. (1). In order to interpret these equations, we invert
Eq. 8, which yields to leading order:

z

ε

Fig. 2: Solide circle: Schematic profile of the sessile droplet
compared to the shape of a sphere of same volume centered in O
(dashed circle). θc represents the location of the “contact” line
of the drop with the surface. The sag of the drop is measured
by the shift ε of the top of the droplet compared to that of the
unsquashed sphere.

4πρR3

3
g = keffεG, (9)

with

keff =
4πσ

∣

∣ln
(

e5/6εG/2R
)
∣

∣

. (10)

Eq. 10 can be interpreted as a balance between the
liquid weight of the droplet and a non-linear elastic force
keffεG, with an effective stiffness keff . Remarkably, the
stiffness vanishes for small deformations, meaning that
the liquid spring becomes softer when the deformation is
weaker. During small amplitude impacts or oscillations,
we therefore expect the characteristic time of deformation
to diverge as

√
keff ∼

√

|ln (ε/R)|.
Building on this qualitative argument, we now give

a more quantitative calculation of the dynamics of the
droplet. Using the same argument as for Hertz contact
[13], the existence of a characteristic timescale longer than
the oscillation period

√

ρgR3/σ of the Rayleigh oscilla-
tions of a free droplet allows one to use the static response
studied in the previous section to calculate its dynamical
properties. In the weak deformation limit the pressure in
the liquid is given in first approximation by 2σ/R, and
Newton’s law can be written as

Mε̈G =Mg − 2σ

R
Σ(t), (11)

where M is the mass of the drop, and Σ(t) = πR2θ2c (t)
is the “contact” area. The problem is closed by deducing
from Eq. (6) and (8) the relationship between εG and Σ
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Fig. 3: Dynamics of a weakly deformed drop on a non wet-
ting substrate. For all graphs, times are scaled in units of
1/ω0 =

√

ρR3/σ, velocities in units of
√

σ/ρR, and lengths

in units of κ−1 =
√

σ/ρg. Top: Contact time during an im-
pact. Black squares: drops of radius 0.4 mm; Red diamonds:
drops of radius 0.6 mm. Dashed line : prediction of (13) with-
out gravity; Black and red solid lines: prediction of Eq. (13)
with gravity for drops of radii 0.4 mm and 0.6 mm. Bottom:
Small amplitude oscillation period of a sessile drop: black di-
amonds: resonance frequency of a mercury droplet; red trian-
gles: free oscillation frequency of a coated water droplet; black
line: asymptotic expansion (15) for small radii. Note that for
both graphs, theory is plotted without any adjustable param-
eter and that its range of validity is restricted to the limit of
small deformation V/V0 ≪ 1 and κR ≪ 1 respectively.

εG = − Σ

2πR
ln

(

e5/6Σ

4πR2

)

. (12)

Using Eq. (11) and (12), we first study the impact of
the droplet bouncing off a non-wetting surface. Just before
impact we have ε = 0, and ε̇ = V , where V is the impact
velocity. The contact duration Tc is calculated readily by
noting that the right-hand term in Eq. (12) derives from
a potential energy U(ε) defined by the implicit relation:

dU =M (g − 2σΣ(εG)/R0) dεG.

Integrating the associated conservation of energy then
leads to

Tc =

∫ εm

0

2dε
√

V 2 − 2U(ε)/M
, (13)

where εm is the maximum deformation of the drop, defined
by U(εm) =MV 2/2. In Fig. 3 we compare the prediction
of equation (13) with data of ref. [7]) obtained for droplets
of radii R = 0.4 mm and R = 0.6 mm bouncing over
a superhydrophobic surface. The fairly good agreement
between experimental points and theory provides a first
validation of our approximations. In particular the model
explains why the contact time increases in the regime of
small deformations (V small) where we may naively have
expected a constant contact time.
Moreover, Eq. (11) and (12) allow one to study the

small amplitude oscillations of the drop around equilib-
rium. In this pursuit, we linearize Eq. (11), which can be
written as ε̈G = −ω2εG, with

ω2 = − 3σ

2πρR4

(

dΣ

dεG

)

0

, (14)

where the subscript 0 indicates that the derivative is evalu-
ated at equilibrium. Differentiating Eq. (12), one obtains
after some straightforward algebra,

ω2 =
3σ

ρR3

∣

∣

∣

∣

∣

∣

1

ln
(

e11/6

6 κ2R2
)

∣

∣

∣

∣

∣

∣

(15)

To test experimentally this prediction, we measured the
free oscillation period of Hg droplets as well as water
droplets on superhydrophobic surfaces. The results are
displayed in 3.b) as a function of the drop radius. It is ob-
served that the dimensionless period is not constant, but
increases (by a factor 3) as the droplet radius decreases.
Again the system behaves in a softer way when it is more
weakly deformed. In this limit, Eq. 15 compares favorably
with the data, without any adjustable parameters, except
in the limit κR & 1 for which the drop is strongly flat-
tened by gravity and cannot be described within a weak
deformation approximation.
The later result contradicts an earlier work on the oscil-

lations of sessile drops where no logarithmic behavior was
found [14]. We argue that this discrepancy is due to an in-
consistency in the calculation presented in [14] where the
eigenmodes of the droplet were decomposed on a single
spherical harmonic even though the system is no longer
rotationally invariant in the presence of the substrate. We
show here that reintroducing the full set of spherical har-
monics allows us to recover Eq. (15) and extends it to
higher order modes.
For high frequency modes, the quasi-static approxima-

tion performed above is no longer valid, and one needs
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in principle to solve the full Rayleigh-like problem in the
presence of boundary conditions imposed by the substrate.
In [14], it was proposed to replace the boundary condition
by a pressure field Pc(Ω) located on the contact region.
In the limit of small droplets, the contact area is small
and the pressure field can be approximated by a Dirac
distribution

Pc(Ω) =
Fc

R2
δ(Ω) =

Fc

R2

∞
∑

ℓ=0

Y 0
ℓ (θ)Y

0
ℓ (θ = 0)∗, (16)

where Fc is the force exerted by the substrate on the
droplet and where we have decomposed the angular Dirac
δ on the basis of spherical harmonic Y m

ℓ (by symmetry
around the z axis, the m 6= 0 do not contribute). Us-
ing the definition of the spherical harmonics, we have
Y 0
ℓ (θ = 0) =

√

(2ℓ+ 1)/4π, hence

Pc(Ω) =
Fc

3R2

∞
∑

ℓ=0

√

2ℓ+ 1

4π
Y 0
ℓ (θ), (17)

The presence of this pressure field modifies the Laplace
condition, and we now have

Pc +
σ

R2
(2 + ∆θ,ϕ) ζ = ∆P0 + ρgR cos θ, (18)

This equation mixes the effects of gravity and oscilla-
tions. However we can decouple them using the linearity

of Eq. 18. We thus set ζ = ζ(0)+ζ(1) and Fc = F
(0)
c +F

(1)
c ,

where the subscript 0 (1) denotes the static (dynamic)
part of the deformation. Let’s now project this equation
on the basis of the spherical harmonics. Since Pc possesses
non-zero components on all Y 0

ℓ , ζ
(1) must be written as

ζ(1)(Ω) =
∑

ℓ ζ
(1)
ℓ (t)Y 0

ℓ (Ω). This point is the main dif-
ference with the analysis of [14] where a less general form

ζ(1) = ζ
(1)
ℓ (t)Y 0

ℓ (Ω) was assumed, in contradiction with
the decomposition of Pc on the full set of ℓ values.
In the case of an inviscid fluid, the flow in the bulk can

be derived from a velocity potential ψ(r, t) solution of the
Laplace equation ∆ψ = 0. Using the boundary conditions
at the surface of the droplet ∂rψ(r = R,Ω) = ∂tζ(Ω),
the decomposition of ψ of the spherical harmonic can be
readily expressed in terms of the ζ(1)ℓ’s and we have

ψ(r,Ω, t) =
∑

ℓ

ζ̇
(1)
ℓ

(

rℓ

ℓRℓ−1

)

Y 0
ℓ (Ω). (19)

Using the time-dependent Bernoulli equation ρ∂tψ =
−p, we can express the pressure field in Eq. (18) in terms
of ζℓ. Projecting Eq. (18) on the basis of the spherical har-
monics and using the condition ∆θ,ϕY

m
ℓ = −ℓ(ℓ + 1)Y m

ℓ ,
we get an expression for ζℓ:

ζ
(1)
ℓ =

Fc

σ

ℓ

ℓ(ℓ− 1)(ℓ+ 2)− ω2/ω2
0

√

2ℓ+ 1

4π
(20)

with ω2
0 = σ/ρR3. To obtain the excitation spectrum of

the droplet, we use the condition ζ(1)(θ = 0) = 0 imposed

by the substrate. With the expression of ζ
(1)
ℓ obtained

above, this yields the following equation for the eigenfre-
quency ω

∞
∑

ℓ=1

ℓ(2ℓ+ 1)

ω2/ω2
0 − ℓ(ℓ− 1)(ℓ+ 2)

= 0, (21)

The sum in Eq. (21) is divergent and it must be reg-
ularized. The origin of this divergence comes from the
singular nature of the δ pressure-field used to describe the
contact between the substrate and the droplet. Indeed,
modes with high values of ℓ oscillate very fast spatially
(on angular ranges of the order θ ≃ 2π/ℓ) and can there-
fore be sensitive to the actual shape of the contact region.
This suggests to introduce in the sum (21) a cutoff at
ℓmax ≃ θ−1

c ≃ (κR)−1, as done in the static case. Using
this assumption, we reformulate Eq. (21) as

ℓmax
∑

ℓ=0

ℓ(2ℓ+ 1)

ω2/ω2
0 − ℓ(ℓ− 1)(ℓ+ 2)

= 0. (22)

To get a further insight on the solutions of this equation,
we recast it as

ℓmax
∑

ℓ=1

[

ℓ(2ℓ+ 1)

ω2/ω2
0 − ℓ(ℓ− 1)(ℓ+ 2)

+
2

ℓ

]

= 2

ℓmax
∑

ℓ=1

1

ℓ
, (23)

The series in the lhs of the equation is now convergent,
and we can safely take the limit ℓmax → ∞. As for the
rhs, using the definition of the Euler constant γ, it can be
expanded as

∑ℓmax

ℓ=1 ℓ
−1 = ln(ℓmax) + γ + o(1). Finally, we

can formally rewrite Eq. (23) as

F (ω2/ω2
0) = 2 (ln(ℓmax) + γ) , (24)

with F being defined by

F (z) =

∞
∑

ℓ=1

[

ℓ(2ℓ+ 1)

z − ℓ(ℓ− 1)(ℓ+ 2)
+

2

ℓ

]

. (25)

Since ℓmax is large, the solutions of Eq. (24) must be
close to the poles of F located at the values zℓ = ℓ(ℓ−1)(ℓ+
2) corresponding to the Rayleigh frequencies of a levitated
droplet. Let us expand F (z) close to zℓ up to the constant
terms. We have in this limit F (z) ≃ ℓ(2ℓ + 1)/(z − zℓ) +
aℓ + o(1), where aℓ is a number that can be calculated
numerically (a1 = −1/6, a2 = 2.0889, a3 = 3.0927,...). To
this approximation we get the following dispersion relation
for the sessile droplet

ω2
ℓ

ω2
0

= ℓ(ℓ− 1)(ℓ+ 2) +
ℓ(2ℓ+ 1)

ln (ℓ2maxe
2γ−aℓ)

. (26)

Except for the case ℓ = 1 for which z1 = 0, the eigen-
frequencies of the sessile droplet are given by the Rayleigh
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Fig. 4: Comparison between resonances of vibrated Mer-
cury droplets from [14], and the Rayleigh prediction ωℓ/ω0 =
√

ℓ(ℓ− 1)(ℓ+ 2).

frequencies of a levitated droplet, up to a logarithmic cor-
rection. The case ℓ = 1 corresponds to the low frequency
mode studied in the first part of this Letter. Eq. (15) and
(26) coincide if ℓmax =

√
6e−1−γ/κR, which agrees with

the general scaling introduced earlier to define ℓmax.

We now compare this prediction to the measurements
of ref. [14]. We argue that in this article the values of ℓ
were not attributed to the proper modes. Indeed, Courty
et al. claimed that, by monitoring the center of mass of
the droplet excited by the vibration of the substrate along
the vertical direction, their detection scheme could only
detect modes with even values of ℓ and thus attributed
the value ℓ = 2n to the n-th mode. On the contrary, we
argue here that the apparatus could track all resonances,
since all modes are coupled to the ℓ = 1 spherical har-
monic describing the motion of the center of mass. We
thus attribute here the value ℓ = n to the n-th resonance
observed experimentally. Using this new attribution, we
observe a fairly good agreement between the position of
the resonances observed by Courty et al. and the predic-
tion of Eq. (26) (see Fig. 4)

The comparison between the predictions of Eq. (11) and
(12) with existing experimental data support our model of
logarithmic spring to describe the dynamics of a weakly
deformed droplet. In future works, we plan to extend our
findings to other experimental situations which are yet
unresolved. Among these, we will include hysteresis of
the contact angle observed on real surfaces, which might
explain the critical velocity below which the drop does not
bounce anymore [15]. We will also study the impact on
elastic or liquid surfaces. This would for instance help
understanding recent experiments on droplets walking at
the surface of water [16]. Finally, it could be interesting
to extend the present analysis to higher deformations to
probe impacts at high velocity and explain the saturation
of the contact time observed in [3].

FC acknowledges support from Institut Universitaire de
France. We thank C. Clanet and G. Lagubeau for helpful
discussions and P. Aussillous for providing us with the
data of Fig. 1.
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