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Transport properties of overheated electrons trapped on a Helium surface
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An ultra-strong photovoltaic effect has recently been reported for electrons trapped on a liquid
Helium surface under a microwave excitation tuned at intersubband resonance [D. Konstantinov et.
al. : J. Phys. Soc. Jpn. 81, 093601 (2012) ]. In this article, we analyze theoretically the redistri-
bution of the electron density induced by an overheating of the surface electrons under irradiation,
and obtain quantitative predictions for the photocurrent dependence on the effective electron tem-
perature and confinement voltages. We show that the photo-current can change sign as a function
of the parameters of the electrostatic confinement potential on the surface, while the photocurrent
measurements reported so far have been performed only at a fixed confinement potential. The exper-
imental observation of this sign reversal could provide a reliable estimation of the electron effective
temperature in this new out of equilibrium state. Finally, we have also considered the effect of the
temperature on the outcome of capacitive transport measurement techniques. These investigations
led us to develop, numerical and analytical methods for solving the Poisson-Boltzmann equation in
the limit of very low temperatures which could be useful for other systems.

PACS numbers: 89.20.Hh, 89.75.Hc, 05.40.Fb

Electrons trapped on the liquid helium surface were the
first experimental realization of a high mobility two di-
mensional conductor [1, 2]. The extremely high mobility
of the surface electrons allows to explore in an unique way
many problems in fundamental physics, examples include
Wigner crystallization [3], propagation of magnetoplas-
mon waves [4, 5], transport of correlated charges in con-
fined geometries [6, 7], quantum melting [8] and sliding
[9]. The interest in this system has been renewed by its
potential for quantum computation that comes from their
very large spin coherence times [10] and from the spacial
addressability of the electrons on the surface [11, 12]. Re-
cently, an unexpected transport regime was observed in
novel experiments where surface electrons were excited
by a Millimeter-wave irradiation [13, 14]. This regime
occurs when the perpendicular magnetic field lies within
regularly spaced intervals for which the ratio between
the microwave and cyclotron frequencies is close to an
integer value. It also appears only when the photon en-
ergy is equal to the energy spacing between the two low-
est transport subbands. This transition is usually called
inter-subband resonance, it corresponds to transitions be-
tween the ground state and the first excited state of the
electronic wavefunction in the direction perpendicular to
the Helium surface. Once the above conditions on the
perpendicular magnetic field and on the photon-energy
are satisfied, the irradiation can lead to a complete sup-
pression of the dissipative component of the electronic
response in capacitive measurements. This effect is strik-
ingly similar to zero-resistance states that were first re-
ported in ultra high mobility GaAlAs hetero-structures
[15, 16].

Further experiments on surface electrons showed a

strong redistribution of the electronic density compared
to its equilibrium shape under zero-resistance conditions
[17]. This redistribution was characterized by a deple-
tion of the electronic density at the center of the electron
cloud and by an accumulation of electrons towards the
edge of the cloud. These experiments were motivated
by the possibility of trapping at the edges of the system
under microwave irradiation that was proposed theoret-
ically [18]. However, experiment and theory are still in
their early stages and other mechanisms could be respon-
sible for this redistribution. In order to distinguish be-
tween the different mechanisms that can compete with
each other we have analyzed theoretically the change in
the electron density induced by a strong overheating of
the surface electrons.

When surface electrons (SE) absorb microwave irradia-
tion their effective temperature can increase significantly
above the temperature of the Helium bath. At zero mag-
netic field, the effective temperature of the electrons un-
der microwave pumping of the intersubband resonance
was studied both theoretically and experimentally in [19].
It was shown that electrons could be overheated to tem-
peratures in the range of Te ≃ 10 K even if the temper-
ature of the Helium bath was much lower T0 ≃ 0.3 K,
however no estimation of Te is available in the zero resis-
tance state (ZRS) regime. Experimentally it was shown
that the formation of ZRS is accompanied by a strong re-
distribution of the electrons on the Helium surface, which
can cost up to a 100 meV charging energy per electron
[17]. Thus the electrons need to absorb many microwave
photons (typical frequencies are in the 100 GHz range)
to store the needed energy, which suggests that they can
occupy highly excited states. It is probable that their
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energy distribution cannot be described appropriately by
an effective temperature in this regime. However, since
this is the simplest starting model to understand the dis-
tribution of the electrons under irradiation, we have in-
vestigated the effect of a high electron temperature on
the electron density profile ne(r) in the trapping poten-
tial. As the charging energy cost is surprisingly high we
are led to consider temperatures much larger than the
thermal energy of the bath, we note however that these
temperatures are still an order of magnitude lower than
the penetration barrier into the liquid Helium or than
the height of the confining potentials which are both in
the eV range.

I. SIMULATION OF HOT ELECTRON DENSITY
DISTRIBUTION

Since SE form a non degenerate system, their distribu-
tion on the surface is governed by a Boltzmann statistics
at the electron temperature Te:

ne(r) =
Ne

∫

d2r′ exp
(

eV (r′)
kBTe

) exp

(

eV (r)

kBTe

)

(1)

Here e is the absolute value of the electron charge, V (r)
the electrostatic potential created by the confining elec-
trodes and the electron cloud. The quantity Ne is the
total number of electrons trapped in the cloud. The
electrostatic potential V (r) is determined by solving the
Poisson equation in a cylindrical cell that is sketched on
Fig. 1. The potential and electron density depend only
on the distance r to the cell axis and the potential V (r)
can be expressed in the following form:

V (r) = Vext(r) +

∫

G(r, r′)ne(r
′)2πr′dr′ (2)

where Vext(r) is the potential created by the confining
electrodes alone, in absence of the electron cloud, and
G(r, r′) a Green-function giving the potential created by
electrons located at radius r′. Analytic formulas for
Vext(r) and the Green-function are derived in the ap-
pendix for the case where the effect of the finite radius
of the experimental cell can be neglected. This approx-
imation is accurate in the limit where the difference be-
tween the radius of the experimental cell and the radius
of the electron cloud is larger than the cell height 2h
(see Fig. 1). Finite elements simulations in a more re-
alistic geometry confirmed that finite cell size effects are
expected to be negligible in the experimental geometry
used in [13, 14, 17]. The appendix also gives an explicit
analytic formula for the potential Vext(r) as a function of
the potential of the bottom disc B and guard electrodes
G1,2. The combination of Eqs. (1,2), forms a Poisson-
Boltzmann equation that needs to be solved in order to
determine the electron density ne(r) and the electrostatic

RG  = 1.3 cm

R2  = 1 cm

R1  = 0.7 cm

2h = 0.26 cm

C2G2

G1

G2C2

G1

C1

B

e- e-

Liquid Helium

FIG. 1: Schematic diagram of the experimental cell modeled
in our simulations. The cell is cylindrically symmetric, sur-
face electrons are trapped above the central disc electrode B
and the bottom guard electrode G1. The potential of B was
fixed to VB = 4.2 V in all the simulations (a typical experi-
mental value). Electrodes C2 and C1 are grounded, except in
section IV where a small AC potential is applied to C1. In
all simulations the potential difference between G1 and G2 is
fixed to VB for reasons that are explained in the text. The
voltage VG1 is thus the main control parameter for the shape
of the electron cloud.

potential V (r). Interestingly we have previously studied
a similar problem in the context of counterion condensa-
tion around permeable hydrophobic globules [20].
The numerical solution of this equation in the limit of

low (but finite) temperatures is challenging since small
errors on the value of the potential V (r) can lead to
a large errors on the electron density ne(r) as a con-
sequence of Eq. (1). This can introduce instabilities
in many numerical procedures (for example direct itera-
tion of Eqs. (1,2) or relaxation methods based on drift-
diffusion equations). From our numerical experiments,
we found that the best stability at low temperatures was
achieved by a Monte-Carlo computational method.
In this method, an ensemble of Nt ≃ 104 trial particles

were displaced on the simulated region of the Helium
surface, using a Metropolis algorithm in the potential
landscape given by Eq. (2). The unknown density ne(r)
that appears in this equation was determined by aver-
aging over time the probability of presence of the trial
particles in thin circulars shells in which the surface of
the electron cloud was separated (typically the available
configuration space was divided into 100 circular shells).
The outlined numerical method was stable for tempera-
tures as low as Te = 0.1 K, convergence was checked by
computing the relative error:

ǫerr =
1

Ne

∫
∣

∣

∣

∣

ne(r) −
Ne

Z
exp

(

eV (r)

kBTe

)∣

∣

∣

∣

d2r (3)

with Z =
∫

d2r′ exp
(

eV (r′)
kBTe

)

the normalization factor in

the Boltzmann-distribution. In this expression the po-
tential V (r) was computed by numerical integration of
Eq. (2) for the electron density obtained from the Monte-
Carlo algorithm. Note that a more detailed description of
the numerical method that we used here will be published
elsewhere [21]. The value of this relative error parameter
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FIG. 2: Electronic Density profiles ne (r) at the liquid helium
surface as a function of the radius r from the center of the cell,
represented at two different electron temperatures (Te = 1K
and Te = 500K) and for different potentials of the electrode
G1 (VG1 = 3V : blue curves ; 5V : green curves and 5.4V :
red curves) with a fixed total number of electrons Ne = 107.
The potential of the lower central electrode B is VB = 4.2V.

in our simulations was around ǫerr ≃ 10−3 at high tem-
peratures (Te ≃ 100 K), ǫerr ≃ 5× 10−3 at Te ≃ 1 K and
ǫerr ≃ 4 × 10−2 at the lowest temperatures Te ≃ 0.1 K;
as discussed above ǫerr is higher at low temperatures due
to the longer convergence times.

Typical electron density distributions are shown in
Fig. 2 for several values of the gate parameters for
Ne = 107 electrons in the cloud. As the potential in
the guard electrodes is increased we observe a transition
between different shapes of the electron cloud. In the
limit of a low potential on the guard electrodes, the elec-
trons are confined in the central region of the cell below
the electrode C1 and the shape of the electron cloud is
described by a monotonic distribution where the density
vanishes at large radius r. This case corresponds to the
curves at VG1 = 3 V which are represented on Fig. 2. The
value of the bias voltage between the guard G1 and the
disc B is then VG1−VB = −1.2 V. As in the experiments,
a potential is also applied to the top guard electrode G2

in order to enforce the relation VG1 −VG2 = VB = 4.2 V.
This constraint allows to keep the perpendicular compo-
nent of the electric field constant across the cell which
is important to keep the same intersubband transition
energy for all the electrons in the system. On the con-
trary, when the potential of the peripheral electrode VG1

is much higher than VB, the electrons are confined only
above the guard electrode G1, forming a ring (see the
curve at VG1 = 5.4V and Te = 1K on Fig. 2). Finally an
intermediate case appears when the Coulomb repulsion
between electrons or their thermal energy is sufficiently
strong to overcome the energy barrier created by the pos-
itive bias potential VG1 − VB. In this case the electrons
are mainly confined under the electrode G2 but a part of
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FIG. 3: Electronic density variation ∆n̄e =
[n̄ (Te)− n̄ (Te = 0.1K)] as a function of the guard po-
tential VG1 for different effective temperatures (from top
to bottom at VG1 = 1 Volt: 0.1K, 50K, 100K, 200K and
300K). The plain black curve corresponds to the predictions
of the analytic theory Eq. (11,12) at effective temperature
Te = 300K. In the inset, the density variation is rescaled
by the temperature. For VG1 < VC all curves collapse on
each other with a very good agreement with the analytical
predictions. For VG1 > VC , the scaling breaks down since the
photocurrent becomes thermally activated (see discussion in
the text).

the electrons density is also localized above the central
electrode B forming a non-monotonic disk shaped dis-
tribution ne(r). This case is represented on Fig. 2) for
VG1 = 5.0V and Te = 1K or 500K, and VG1 = 5.4V and
Te = 500K. Note the transition between a ring shaped
density to a non-monotonic disk which is observed when
temperature increases at VG1 = 5.4V.

The comparison between low and high temperature
curves for these three cases reveals the following trend. In
the case of a monotonic ring density the electron cloud
tends to expand outwards as the electrons are heated,
however when electrons form a non-monotonic disc den-
sity the trend is reversed and the electrons tend to come
back towards the center as Te increases. This effect can
be qualitatively understood as the tendency of the elec-
tron temperature to smooth the electron density profile
in the cloud.

In order to study quantitatively the effects of electron
heating on the electron density we have focused on a
quantity that can be accessed directly in experiments.
In [17] the change of the electron density was probed by
measuring the transient currents created on the top elec-
trodes C1, C2, G1 by a periodic change of the density pro-
file induced by an On/Off modulation of the microwave
power under ZRS conditions. Since the electrodes C1

and C2 are held at the same potential ne(r) is almost
constant below these two electrodes, thus a simple plane
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capacitor model can be used to relate the transient cur-
rent i1(t) measured by a current amplifier connected to
C1 and the change in the SE density:

i1(t) = −
e

2

d

dt

∫

S(C1)

ne(r)d
2
r (4)

where S(C1) denotes the Helium surface below the elec-
trode C1. Within the frame of our simplified model,
the On/Off modulation of the microwave power changes
the electron temperature between its equilibrium value
T0 ≃ 100 mK and its (unknown but possibly several or-
der of magnitude larger) steady state value Te under illu-
mination. The time-integral of the photo-current during
a microwave ON half-cycle will thus be given by:

∫

i1(t)dt = −
e

2
S(C1)(n̄e(Te)− n̄e(T0)) (5)

where n̄e denotes the average electron density below the
central electrode C1. Thus knowing ∆n̄e = n̄e(Te) −
n̄e(T0), it is possible to estimate the amount of charge
displaced in the experiment. The dependence of ∆n̄e

on the guard voltage is displayed on Fig. 3 for several
temperatures Te.
This figure shows that ∆n̄e changes sign as a function

of the guard voltage VG1, and exhibits a sharp maxi-
mum for VG1 close to the transition from a ring to a
non-homogeneous disc which occurs at VG1 = VC with
VC ≃ 5.21 Volt, this value is obtained from numerical
simulations at low temperatures. For potential VG1 <
VB , a temperature increase causes an expansion of the
cloud below the electrode VG1 leading to ∆n̄e < 0. The
quantity ∆n̄e changes sign at VG1 ≃ VB = 4.2 Volt (more
precisely at a slightly higher value VG1 ≃ 4.45 Volt) and
when the bias voltage VG1 −VB becomes positive we ob-
serve ∆n̄e > 0. We note also that the density change ∆n̄e

almost vanishes when SE form a ring with a vanishing
density in the center at VG1 > VC . The latter behavior
can be explained with the following argument: at zero
temperature when VG1 > VC the potential at the center
of the cell is lower than the potential inside the electron
ring. This potential difference creates an energy barrier
that precludes the electron from exploring the center of
the cell when the thermal energy is small compared to
the barrier height. The maximal values of ∆n̄e are ob-
tained when the electron cloud is in a non-homogeneous
disc configuration VB < VG1 < VC . This is intuitively
plausible since in this case the center of the cell and the
ring are at the same potential at Te = 0 and there is
no energy barrier to prevent hot electrons from exploring
the center of the cloud. As expected ∆n̄e increases with
temperature.
The above heuristic arguments can explain the sign of

∆n̄e as a function of VG1, but fail to account for some sur-
prising aspects of the functional dependence such as the
seemingly non-analytic behavior at VG1 ≃ VC . Indeed

∆n̄e(VG1) features a sharp maximum for VG1 < VC , but
quickly vanishes at VG1 > VC , the asymmetry of this
peak becomes even more pronounced at lower Te. In
the next section, we develop a perturbation theory that
allows to explain this singularity and its temperature de-
pendence.

II. PERTURBATIVE CALCULATION OF THE
EFFECT OF TEMPERATURE

In this section, we derive a simplified analytic theory
to explain the behavior of the SE when the electronic
temperature is raised from 0 to Te. At zero temperature,
the potential of the electron cloud is fixed and equal to
a constant value V0. This allows to effectively linearize
the equations since the electron cloud can be replaced by
an equipotential surface. The boundaries of the cloud are
then fixed by the constrain that the electric field vanishes
on the boundary (stability condition) and the potential
of the cloud V0 is fixed by the number of electrons in the
cloud Ne. Thus the problem of finding the zero tempera-
ture density distribution ne(r, T = 0) is computationally
much simpler, and we assume that ne(r, T = 0) is known
in the following derivation.
If the temperature changes, the number of electron in-

side the cloud changes by an amount of δne, modifying
the potential inside the cloud by an amount δV . We
assume that the density inside the cloud is just a little
perturbed δne ≪ ne(r, Te = 0):

ne (r, Te) = ne(r, Te = 0) + δne(r). (6)

Using the Boltzmann-equation Eq. (1) we also have:

ne (r, Te) = n′
av exp

(

eV0

kBTe

)

exp

(

eδV

kBTe

)

= nav exp

(

eδV

kBTe

)

, (7)

where nav and n′
av are normalization constants. Using

our assumption δne ≪ ne(r, Te = 0) we are led to

ne(r, Te = 0) ≃ nav exp

(

eδV

kBTe

)

(8)

or equivalently:

eδV = kBTe [log ne (r, T = 0)− lognav] . (9)

The quantity δV can be estimated in an other way; in
the center of the electron cloud where the density is uni-
form, the variation of density δne leads to a change in
the potential δV :

δne = −
2ǫ0δV

eh
, (10)
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this expression just comes from the electrostatics of a
planar capacitor. The value of δne taken at the center
of the cell is equal to ∆n̄e, eliminating δV between the
equations (9) and (10), we obtain the following relation

∆n̄e =
2ǫ0kBTe [logne (r = 0, T = 0)− lognav]

e2h
. (11)

This equation is accurate only in the center of the elec-
tron cloud where density gradients can be neglected.
Outside the electron cloud, the density decays exponen-
tially with the temperature and can be neglected. If we
tentatively assume that Eq. (11) is valid in the entire
cloud, we can find nav from the requirement of the con-
servation of electron number:

∫

δnerdr = 0, leading to

nav =

∫

cloud
log[ne (r, T = 0)]rdr

∫

cloud
rdr

. (12)

The integral in this expression is performed for the elec-
tron density at T = 0 for which the limits of the cloud
are well defined.
The combination of Eqs. (11,12) allows to find the vari-

ation of the electron density at the center of the cell based
on the knowledge of the electron density at T = 0, they
also imply that ∆n̄e scales linearly with the temperature
Te (we assume Te is much larger than the Helium bath
temperature T0). The above analysis is justified only for
VG < VC where the density ne (r = 0, T = 0) is non van-
ishing, we have thus compared our semi-analytical the-
ory with the simulations only in this domain. The results
are displayed on Fig. 3, and show that our semianalyt-
ical approach is very successful for VG ≃ VC where it
reproduces the numerical results with very good accu-
racy without any adjustable parameters. The agreement
is worse in the limit VG ≪ VB probably because our as-
sumption that Eq. (11) is valid in the entire cloud does
not hold anymore when the electrons are strongly con-
fined by the guard electrodes. The scaling ∆n̄e ∝ Te is
also confirmed by the simulations as it is illustrated in the
inset of Fig. 3. To summarize the proposed theory seems
to explains quantitatively the change of the electron den-
sity under heating, and allows detailed comparison with
numerical simulations and hopefully future experiments.

III. EFFECT OF HEATING ON TRANSPORT
MEASUREMENTS

In previous sections we have investigated the effect of
an elevated out of equilibrium temperature on the dis-
tribution of the electrons on the Helium surface. The
information on electron density can be accessed through
photo-current measurements similar to those performed
in [17]. However the most wide-spread type of experi-
ments on SE is a Sommer-Tanner technique which allows
to determine the electron longitudinal mobility µxx [22].

We have thus analyzed numerically the effect of Te on
the outcome of such experiments.
In a Sommer-Tanner measurement an A.C. potential

Vac cosωt is applied to one of the top electrodes (we have
taken this electrode to be C1 in our simulations) an the
induced AC displacement of image-charges is detected
from the remaining ones using a lock-in technique. Our
numerical approach to simulate this experiment was a
direct numerical integration of the time dependent drift-
diffusion equations:

∂ne

∂t
+

µxx

r

∂

∂r

(

rne

∂V

∂r
−

kBT

e
r
∂ne

∂r

)

= 0 (13)

This equation is coupled to a Laplace equation on the
electrostatic potential, which includes the electron den-
sity and the static and time dependent potentials on the
electrodes as a boundary conditions. The drift-diffusion
equations were integrated using an implicit first order
integration scheme solved with a finite element method
(FEM). For reference we give here the weak formulation
of the differential equation connecting ne(r, t + ∆) and
ne(r, t) in our numerical calculations:

1

µxx

∫

[ne(r, t+∆t)− ne(r, t)] u(r)rdr =

∫
(

ne(r, t+∆t)
∂V

∂r

∂u

∂r
−

kBT

e

∂ne(r, t+∆t)

∂r

∂u

∂r

)

rdr

(14)

the potentials are evaluated at time t and recomputed at
time t + ∆t (∆t is our integration time step) using the
updated value of the density ne, u(r) denotes a finite ele-
ment trial function. Finite element simulations were per-
formed using the FreeFem programming language [23],
for typical parameters Ne = 3 × 106, VB = 4.2 V,
VG1 = VG2 = 0 V. The AC potential with amplitude
Vac = 3 mV was applied to the electrode C1, and the
modulation of the image-charge number was determined
on the neighboring electrode C2 after subtraction of the
direct capacitive coupling. This modulation Q(t) was
separated into in-phase and out of phase components:
Qx and Qy which respectively denote the amplitude of
the cosωt and sinωt components in the total signal Q(t).
An immediate consequence of Eq. (13) is that the quan-
tities Qx and Qy depend only on the ratio ω

µxx
, this is a

consequence of the fact that the potentials react instan-
taneously to the displacement of charges at the typical
experimental frequencies in the kHz range. This quan-
tity should then be compared with the parameters of the
electron cloud which, for a monotonic disc density dis-
tribution are the density at the cloud center ne and the
cloud radius Rc. These considerations lead us to define
the dimensionless parameter W = ǫ0ωRc

µxxene
which charac-

terizes the ratio between the frequency and the response
time of SE.
We summarized our numerical results in a Cole-Cole

diagram that displays trajectories followed by Qx and Qy
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FIG. 4: Cole-cole diagram of the in-phase (Qx) and out of
phase (Qy) charge modulation on electrode C2 as the modu-
lation frequency ω is changed. The AC potential is applied
to C1 and the charge modulation due to the direct capacitive
coupling between both electrodes was subtracted. The contin-
uous curves were obtained at different temperatures that are
indicated in the legend (as temperature increases the semicir-
cle radius decreases), the direction of increasing ω (decreasing
µxx) is indicated by the arrows on the curves. The dashed
curve with symbols joins points at different temperatures for
a fixed value of ω/µxx = 2 cm2/V.

on (Qx, Qy) plane as the measurement frequency ω is var-
ied at fixed Te. At low frequencies when W ≪ 1 the elec-
trons have time to follow the time varying potential adi-
abatically and all the displaced image-charge is in phase
with the excitation Qx ≫ Qy. As frequency increases, an
out of phase component appears since the electrons are
unable to respond fast enough to follow the phase of the
external potential. Finally at frequencies much higher
that the electron characteristic response time W ≫ 1
their response vanishes and the trajectory converges to
the origin (Qx = 0, Qy = 0).

The simulation results at different temperatures are
shown on Fig. 4, the obtained trajectories in the (Qx, Qy)
plane are very similar to semicircles. As the temperature
is increased the radius of the semicircle tends to shrink,
qualitatively this occurs because some of the terminally
exited electrons are not sensitive to the applied bias po-
tential. As a consequence the shape of the trajectories
in the (Qx, Qy) plane, are very different if the mobil-
ity of the electrons changes under microwave irradiation
or their temperature. Indeed when µxx is changed the
points (Qx, Qy) still collapse on their semi-circular trajec-
tory because it is parametrized only by the ratio ω

µxx
. On

the contrary, when the temperature changes the points
(Qx, Qy) lie on different semicircles which leads to very
different trajectories. An example of a trajectory versus
temperature at fixed ω/µxx = 2 cm2/V is shown Fig. 4.
Thus heating can create deviations of the (Qx, Qy) tra-
jectories from the behavior that would be expected if only
the electron mobility changed under microwave irradia-

tion.

IV. CONCLUSIONS

We investigated the effect of an elevated out of equilib-
rium electron temperature on the distribution of surface
electrons on liquid Helium in a typical experimental ge-
ometry. Our main result is probably the determination of
the photocurrent induced by an increase of the electron
temperature under irradiation. This was achieved nu-
merically by developing a Monte-Carlo method capable
of computing the electron density even in the limit of very
low temperatures, and analytically through a perturba-
tion theory analysis of the effects of temperature. The
dependence of the photocurrent on the control gate volt-
ages that is predicted within our model is quite specific
and should provide a reliable signature of electron heat-
ing, against other mechanisms possibly at play. Namely
we predict that the photocurrent generated by density
variation at the center of the cloud changes sign as a
function of the guard voltage and is stronger in the re-
verse bias configuration. Unexpectedly, we also find that
the photo-current is maximal when center of the electron
cloud is almost depleted. Finally we have also demon-
strated numerically that in Sommer-Tanner experiments,
heating should induce trajectories on the Cole-Cole di-
agram that differ strongly from those expected from a
change in electron mobility. This could be checked in
transient conductance measurements, where the trajec-
tory on the Cole-Cole plane can be measured as the sys-
tem is driven in and out of a zero resistance state by an
on/off modulation of the microwaves power. We hope
that our results will allow a quantitative analysis of the
electron energy distribution under zero-resistance con-
ditions, and that the analytical and numerical methods
developed here will be useful in other systems that are
described by a Poisson-Boltzmann equation.

We are thankful to E. Trizac, D. Konstantinov and K.
Kono for fruitful discussions. One of us, A.C. acknowl-
edges the support from RIKEN and St Catharine college
in Cambridge.

APPENDIX

In this appendix, the electrode potential Vext (r) and
the Green function G (r, r′) are calculated. The total
potential V (r) is the sum of the electrode potential
Vext (r) and the contribution coming from the electrons
Ve (r) =

∫

G (r, r′)ne (r) d
3
r. The cylindrical symmetry

of the system allows us to write the different potential
as functions of the cylindrical coordinate r = (r, θ, z) but
we also make use the Eulerian coordinate r = (x, y, z).
Note that in our notations ‖r‖ 6= r.
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Electrode potential Vext (r)

The potential Electrode Vext (r) is solution of the Pois-
son Equation

∆Vext = 0. (15)

Taking the xy-Fourier transform of this equation (15),
we get :

∂zzṼext − k2Ṽext = 0 (16)

where k2 = k2x + k2y, k = (kx, ky) and

Vext (r) =

∫∫

d2k

2π
eik·rṼext (k, z) . (17)

The solution of Eq.(16) are

Ṽext (kx, ky, z) = A(kx, ky) cosh(kz)

+B(kx, ky) sinh(kz) (18)

where A (kx, ky) and B (kx, ky) are functions which sat-
isfy the bordering conditions. The cylindrical symmetry
imposes A (kx, ky) = A (k) and B (kx, ky) = B (k), lead-
ing to

Vext (r, θ, z) =

∫ ∞

0

kdkJ0 (kr) [A(k) cosh(kz)

+ B(k) sinh(kz)] , (19)

where Ji (x) is the i − th Bessel function of the first
kind. Quoting Vi the potential of the electrode i, Ri

the maximal radius of the electrode i and H (r < Ri) the
Heaviside function (equal 1 if the argument is true, else
zero), the electrode potential has to respect the following
boundary conditions :

Vext(r, z = h) = VG2
[H(r < RG2

)−H(r < RC2
)] (20)

Vext(r, z = −h) = VBH(r < RB)+

VG1
[H(r < RG1

)−H(r < RB)] . (21)

It is straightforward to calculate

H(r < R) =

∫ ∞

0

RJ1(kR)J0 (kr) dk. (22)

From the equations (20), (21) and (22), we obtain the
following boundary conditions :

Vext(r, h)
=

∫∞

0 J0(kr) VG2
[RG2

J1(kRG2
)−RC2

J1(kRC2
)] dk

=
∫∞

0 kJ0(kr) [A(k) cosh[kh] +B(k) sinh[kh]] dk
Vext(r,−h)
=

∫∞

0 J0(kr) [(VB − VG1
)RBJ1(kRB)

+VG1
RG1

J1(kRG1
)] dk

=
∫∞

0
kJ0(kr) [A(k) cosh[kh]−B(k) sinh[kh]] dk .

Which leads to:

A(k) =
1

2k cosh[kh]
[VG2

[RG2
J1(kRG2

)−RC2
J1(kRC2

)] + (VB − VG1
)RBJ1(kRB) + VG1

RG1
J1(kRG1

)] , (23)

B(k) =
1

2k sinh[kh]
[VG2

[RG2
J1(kRG2

)−RC2
J1(kRC2

)]− (VB − VG1
)RBJ1(kRB)− VG1

RG1
J1(kRG1

)] . (24)

With these expressions of A (k) and B (k), the elec-
trode potential Vext (r) is completely determined.

Electron potential Ve (r)

Lets us consider an electron in the center of the sys-
tem, that means localized at the coordinate (0, 0, 0). This
electron creates a potential Ve (r). This potential can be
written

Ve (r) = −
e

4πǫ0

(

1

‖r‖
+ V̄

)

. (25)

The term 1/ ‖r‖ is coming from the solution of the
Laplace equation for a punctual charge and the term
V̄ , solution of the Laplace equation ∆V̄ = 0, per-

mits at the potential to satisfy the boundary conditions
Ve (r, θ, z = ±h) = 0. As previously, the potential V̄ can
be obtained as, see Eq.(19) :

V̄ (r, z) =

∫ ∞

0

kdkJ0 (kr)
[

Ā(k) cosh(kz)

+ B̄(k) sinh(kz)
]

. (26)

The function B̄ (k) must be equal to 0 due to the sym-
metry of the problem. Furthermore, we can calculate

1

‖r‖
=

∫

kJ0(kr)
e−k|z|

k
dk , (27)
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leading to the full electronic potential Ve (r) :

Ve(r, z)=
−e

4πǫ0

∫ ∞

0

kJ0(kr)

[

Ā(k) cosh[kz]+
e−k|z|

k

]

dk.

(28)

The boundary conditions Ve (r, z = ±h) = 0 lead to the
following expression for Ā (k) :

Ā(k) = −
e−kh

k cosh[kh]
, (29)

and then

Ve(ρ, z) =
−e

4πǫ0

∫ ∞

0

J0(kρ)

[

e−k|z|−e−kh cosh[kz]

cosh[kh]

]

dk. (30)

The complete potential V (r)

To obtain the complete potential due to all electrons
and electrodes, we have to sum the electrode potential
and the potential created by the surface electrons dis-
tributed with a density ne (r) in the plan z = 0:

V (r, z) = Vext(r, z)

+

∫ Rc

0

∫ 2π

0

Ve(‖r− r
′‖ , z)ne(r

′) r′dr′dθ. (31)

Now, we have to note that the electrons can move only
in the plan z = 0 and, by this fact, the electrons feel a
potential V (r, z = 0) ≡ V (r) defined by :

V (r) = Vext(r, z = 0)

−
e

2ǫ0

∫ ∞

0

dk tanh[kh]

∫ Rc

0

dr′r′J0(kr) J0(kr
′)n(r′) .

(32)

The comparison between Eq.(32) and Eq.(2) give the fol-
lowing expression for the Green function

G (r, r′) =
−e

4πǫ0

∫ ∞

0

dk tanh [kh]J0(kr)J0(kr
′) . (33)

The full potential V (r), see eq. (32), is numerically ob-
tained. In order to increase the numerical precision, the
integrations are done successively between two consecu-
tive zeros of the Bessel functions J0(kr) or J0(kr

′).
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P. Leiderer, and K. Kono, Phys. Rev. Lett. 106, 026803
(2011)

[7] A.V. Smorodin, V.A. Nikolaenko, S.S. Sokolov, L.A.
Karachevtseva, and O.A. Lytvynenko, Low Temp. Phys.
38, 915 (2012)

[8] T. Günzler, B. Bitnar, G. Mistura, S. Neser and P. Lei-
derer, Surface science 361/362, 831 (1996)

[9] K. Shirahama and K. Kono, Phys. Rev. Lett. 74, 781
(1995); K. Shirahama and K. Kono, Journal of Low Tem-
perature Physics 104, 237 (1996)

[10] D. I. Schuster, A. Fragner, M. I. Dykman, S. A. Lyon and
R. J. Schoelkopf, Phys. Rev. Lett. 105, 040503 (2010)

[11] G. Papageorgiou, P. Glasson, K. Harrabi, V. Antonov,
E. Collin, P. Fozooni, P.G. Frayne, M. Lea, D.G. Rees,
Y. Mukharsky, Appl. Phys. Lett. 86 153106 (2005)

[12] F. R. Bradbury, M. Takita, T. M. Gurrieri, K. J. Wilkel,
Kevin Eng, M. S. Carroll and S. A. Lyon, Phys. Rev.
Lett. 107, 266803 (2011)

[13] D. Konstantinov, M. I. Dykman, M. J. Lea, Yu. P.
Monarkha, and K. Kono: Phys. Rev. Lett. 103 (2009)
096801.

[14] D. Konstantinov and K. Kono: Phys. Rev. Lett. 105
(2010) 226801.

[15] R. G. Mani, J.H. Smet, K. von Klitzing, V. Narayana-
murti, W. B. Johnson, and V. Umansky: Nature (Lon-
don) 420 (2002) 646.

[16] M. A. Zudov, R. R. Du, L. N. Pfeiffer, and K. W. West:
Phys. Rev. Lett. 90 (2003) 046807.

[17] D. Konstantinov, A.D. Chepelianskii, K. Kono, J. Phys.
Soc. Jpn. 81, 093601 (2012)

[18] A. D. Chepelianskii and D. L. Shepelyansky: Phys. Rev.
B 80 (2009) 241308(R).

[19] Denis Konstantinov, Hanako Isshiki, Hikota Akimoto,
Keiya Shirahama, Yuriy Monarkha, Kimitoshi Kono, J.
Phys. Soc. Jpn. 77, 034705 (2008)

[20] A. Chepelianskii, F. Mohammad-Rafiee, E. Trizac, E.
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