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1 1Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud,
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We investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N)
with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological
and non topological behaviors.In the non topological case, modeled by a square lattice with Rashba
interactions, we find that as soon as the normal quantum wires can host several conduction channels,
the spin degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs which
breaks time reversal symmetry in zero Zeeman field. The Andreev states remain degenerate at phases
multiple of π for which time reversal symmetry is preserved, giving rise to level crossings which are
not lifted by disorder. In contrast with the dc Josephson current, the finite frequency admittance
(susceptibility) is very sensitive to these level crossings and the lifting of their degeneracy by a
small Zeeman field. More interesting is the case of the hexagonal lattice with next nearest neighbor
spin-orbit interactions which exhibit 1D topological helical edge states [1]. The finite frequency
admittance carries then a very specific signature at low temperature of a protected Andreev level
crossing at π and zero energy in the form of a sharp peak split by a Zeeman field.

PACS numbers:

INTRODUCTION

A number of intriguing phenomena have been pre-
dicted recently when quantum wires made from materials
with strong spin-orbit interaction (SO) are used as weak-
links coupling two superconductors : Spin-dependent su-
percurrents [2–4] supercurrents through edge-states when
the wire is made of a topological insulator [1, 5] super-
currents at zero phase difference (φ0 junctions) [7–10],
topologically protected zero-energy states [5, 6]. Differ-
ent materials have been used to explore experimentally
some of these ideas: semiconducting nanowires (InAs or
InSb), demonstrating φ0 junctions [12] and probing Ma-
jorana physics [13–17], and HgTe/HgCdTe or InAs/GaSb
quantum wells heterostructures [18, 19], BiSe flakes[20],
Bi nanowires [21, 22] revealing supercurrent through he-
lical edge states.

Spin-orbit interaction, by coupling the kinetic momen-
tum to the electronic spin, is known to break the spin
degeneracy of electronic states in a quantum dot in the
absence of any magnetic field. We consider here both
the effect of the intrinsic atomic spin-orbit interaction
specific of heavy atoms and are at the origin of the emer-
gence of the spin-Hall insulator state for the hexagonal
2D lattice [1, 11] and the Rashba [23] spin-orbit inter-

action HR ∝ ~ER.(~p × ~σ) at 2D interfaces of semicon-
ductors where inversion symmetry is broken by a per-
pendicular electric field ~ER . In the case of a purely
1D wire along the x axis the Rashba spin-orbit coupling
[23], HR‖ = λRpxσy commutes with the 1D kinetic mo-
mentum. The spin components of the eigen states are
polarized along or opposite to the y axis. Their spa-
tial components are Bloch waves whose wave vector are
shifted by ±kSO = 2meffλR/h̄

2 depending on the spin

direction. When the wire has a finite width allowing the
formation of several transverse channels with different
ky, the transverse component of the Rashba Hamiltonian
HR⊥ = λRpyσx couples the longitudinal components of
the wave functions corresponding to different channels.
The eigen-states which energy is close to the crossing
points between these different channels acquire different
velocities along the x axis as shown on Fig.1 They are
not uniformly spin polarized but display a spatially de-
pendent spin texture [24].

When the quantum wire is strongly coupled to super-
conducting reservoirs, proximity induced superconduc-
tivity leads to the formation of Andreev pairs which
are the combination of time reversed electron and hole
states. Time reversal symmetry imposes that these An-
dreev states keep their spin degeneracy in the presence
of SO interaction. This is however no longer the case
when the two superconducting reservoirs impose a finite
phase difference φ on the boundary conditions of Andreev
states. When this phase factor is different from an inte-
ger multiple of π, Andreev wave functions acquire imagi-
nary components and Andreev levels loose their two-fold
degeneracy. The phase dependence of Andreev levels is
therefore split in the presence of SO interaction. This is
the signature of a spin supercurrent which coexists with
the charge supercurrent when time reversal symmetry is
broken.

In the second section of this paper we first investigate
the conditions to induce spin split Andreev states in the
absence of any Zeeman field in a non topological wire.
This is illustrated by numerical results obtained by diag-
onalizing the Bogolubov Hamiltonian of a quantum wire
with a square lattice and Rashba spin-orbit interaction
between superconducting electrodes. The effects of the
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geometry of the junction (length, number of channels),
disorder, position of Fermi energy are discussed. The
broken degeneracy of Andreev states at phases between
0 and π, is observed in the Andreev spectrum of multi-
channel wires as a result of the combination of electron
and hole wave functions originating from different trans-
verse channels ky coupled through the transverse Rashba
term HR⊥ = pyσx. Whereas this effect is not significant
in very short junctions of a few atomic sites [9] it strongly
modifies the Andreev spectrum of long junctions even
with disorder. We then discuss the Andreev spectrum
of the 2D hexagonal lattice with next nearest neighbor
spin-orbit couplings (equivalent to the implementation
of atomic spin-orbit coupling at low energy) leading to a
2D topological insulator and a Quantum spin Hall state
(Kane and Mele model [1]). As expected, we confirm for
wide enough samples, the presence of 1D ballistic An-
dreev edge states crossing each other at zero energy and
robust against disorder.

In section 3 we show that the Josephson current for
non topological junctions is only weakly affected by SO
interaction, with a decrease of the Josephson current in
the absence of disorder but a substantial increase in the
diffusive regime which can be understood as a signature
of antilocalisation in the Andreev spectrum. On the other
hand the phase dependence of the Josephson current ex-
hibits a saw tooth shape, characteristic of 1D ballistic
transport, for the hexagonal lattice in the topological
quantum spin Hall state. This signature of 1D ballis-
tic edge states does not however reveal the topological
character of these states.

In contrast, we show in Section 4 that the non adiabatic
linear response of the Josephson current to a high fre-
quency phase modulation is extremely sensitive to level
crossings or anticrossings in the Andreev spectrum at all
energies below the superconducting gap. The dissipative
response χ′′ = iωY has a contribution that is propor-
tional to the sum of i2n, the square of the single level cur-
rents, in an energy window whose width is determined by
temperature. A very small Zeeman field breaks the level
degeneracy at 0 and π, yielding discontinuities in these
single level currents and consequently sharp dips in χ′′.
The topological case is characterized by protected level
crossings at zero energy and can be clearly identified in
experiments measuring this dissipative response at very
low temperature. χ′′ exhibits a sharp peak at π which
does not exist in the non topological case, and is split by
a Zeeman field.

ANDREEV SPECTRUM WITH SPIN-ORBIT
INTERACTION

Square lattice with Rashba spin-orbit interaction

We first consider the case of a wire described by a tight
binding model on a 2D square lattice. We implement the
Bogoliubov-de Gennes Hamiltonian described by the 4
blocks matrix:

H =

(
H − EF ∆

∆† EF −H∗
)

(1)

The BCS matrix ∆ couples electron and hole states
of opposite spin, exclusively in the S part, and imposes
the phase difference φ between the 2 superconducting
reservoirs:

∆ = ∆is,i′s′ = exp(iφ/2)

(
0 −1
1 0

)
(2)

H and −H∗ are N ×N matrices that describe respec-
tively the electron- and hole-like spin dependent wave
functions of the hybrid NS wire with Rashba spin-orbit
interaction[23].

H =
∑
s,s′=+,−

∑N
i=1 εi(|i, s >< i, s|+ |i, s′ >< i, s′|)+∑

i 6=j tij |i, s >< j, s|+ iλij(~ez × ~uij)σ̃|i, s >< j, s′|+ C.C.

(3)
The vector ~uij connects the nearest neighbor sites i and
j , ~ez is the unitary vector perpendicular to the plane of
the sample, σ̃ is the vector of Pauli matrices σx,y,z. The
wire has N = NN + NS = Nx × Ny sites on a square
lattice of period a, with a normal part of NN = NN

x ×
Ny sites in contact on both sides with superconducting
regions of length NS

x /2. (NS = NS
x ×Ny sites). The on-

site random energies εi of zero average and variance W 2

describe the disorder in the wire. The hopping and spin
dependent coupling matrix elements tij = t and λij = λ
are restricted to nearest neighbors.

We have chosen the amplitude of the superconduct-
ing gap ∆ = t/4 and the number of superconducting
sites larger than 30 such that the S coherence length
ξs = 2ta/∆ � NS

x in order to avoid any reduction of
the superconducting correlations in the S region (inverse
proximity effect). We have checked that increasing the
number of S sites does not change the spectrum of An-
dreev states below the superconducting gap. The number
of transverse channels and the amplitude of the disor-
der correspond to the diffusive regime where the length
L = NN

x a of the normal region is longer than the elas-
tic mean free path le and shorter than the localization
length Nyle. The length le is related to the amplitude
of disorder by le ' 15a(t/W )2 at 2D [25]. In the follow-
ing we will mostly focus on the long junction limit where
L� ξs .
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v+v-

FIG. 1: Schematic tight binding band structure of a 2 channel
ballistic wire in the presence of both longitudinal HR‖ and
HR⊥ transverse Rashba spin-orbit interactions. The trans-
verse Rashba coupling between the 2 channels HR⊥ opens a
gap at the 2 band crossings leading to a non parabolic asym-
metric band structure with different velocities v+, v− when
the Fermi energy lies just below this gap.

We first consider a single channel 1D wire with Ny = 1.
The Andreev spectrum shown in Fig.2 (right) contains 10
levels in the superconducting gap with avoided crossings
at zero and π due to a small on site disorder. This An-
dreev spectrum remains spin degenerate in the presence
of spin- orbit interaction. This can be simply understood
considering that in this 1D limit, the effect of SO inter-
action can be cast into a phase shift which is opposite
for electrons and holes and leaves the Andreev levels un-
changed whatever the position of the Fermi energy.

The situation is very different when there are more
than one transverse sites( Ny ≥ 2). A degeneracy break-
ing of the Andreev states shows up, due to the mix-
ing between different transverse channels ky coupled by
HR⊥ = pyσx. As a result, the dispersion relation of the
SO perturbed 1D bands are strongly distorted compared
to the original ones, see [24] and Fig.2. Eigen wave func-
tions do not correspond to uniformly polarized spin states
but to more complex spatially non uniform spin textures.
These band distortions also yield different velocity mod-
ulus along the x axis for the pairs of states crossing the
Fermi energy, this velocity shift is maximum when the
chemical potential sits close to the bottom of the upper
energy spin-split subbands [4, 7] as in Fig. 1.

The Andreev states split into 2 families corresponding
to different spin states which also have different veloci-
ties v+ and v− along the x axis (see Fig.1). As shown
in Fig.2(right) the eigen-energies of these states cross at
0 andπ as expected from time reversal symmetry. In the
long junction limit, the phase dependence of Andreev
states is determined by the Fermi velocity, their spin de-
generacy is therefore lifted for phase values different from
0 and π by a quantity δεS of the order of h̄π(|v+|−|v−|/L)
which can be of the order of 0.5δε where δε is the average
level spacing. This mixing between transverse channels
in a quantum wire induced by SO interaction was al-

  

FIG. 2: Phase dependent spectrum of Andreev levels for 1D
quasi ballistic wires (L� le )with one and two transverse sites
in the long junction limit Nx = 50.Left: Ny = 1, λ = 3∆,
the spectrum is the same as for λ = 0. Right: Ny = 2,
λ = 3(The number of S sites are respectively NS = 100 × 1
and NS = 100 × 2). The Fermi energy is taken at 1/4 of
the tight binding lower 1D band (εF = −t/2 = −2∆) which
corresponds to the bottom of the upper band, see Fig.2. Note
the breaking of spin degeneracy for Ny = 2 which is absent
in for Ny = 1 where the Andreev levels are spin degenerate.

ready discussed in a different context by Yokohama et
al. in short junctions [9] as the condition to observe an
anomalous Josephson current at φ = 0 in the presence of
a Zeeman field along the y axis (the so called φ0 junction
behavior predicted by Buzdin [8] and only recently ob-
served [12, 22]. It is interesting that the conditions for ob-
serving spin split Andreev states in zero Zeeman field and
a finite Josephson current at zero phase in the presence
of an in plane Zeeman field (φ0 junction behavior),[9] are
identical in long junctions, see also appendix.

When increasing the number of channels and disorder,
one enters the diffusive regime. We still find a sizable
splitting of Andreev levels which is of the order of the
level spacing. Whereas in the ballistic regime SO in-
teractions tend to reduce the phase dependence of the
Andreev levels, we observe instead an increase of this
phase dependence in the diffusive regime with a more
pronounced harmonics content of the phase dependence
of the eigen-energies. This splitting of Andreev levels is
therefore a very robust phenomenon in long SNS junc-
tions with SO interaction and shows that the supercur-
rent in long SNS junctions is in general associated to a
spin current of the order of µB(|v+| − |v−|)/L.
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FIG. 3: Phase dependent spectrum of Andreev levels, for a
diffusive wire with NN

x = 50 × 20 normal sites and on site
disorder of amplitude W/t = 1 corresponding to L/le ' 2.5
. (The number of S sites with ∆ = t/4 is NS = 30 × 20 ),
with Rashba spin-orbit interaction λ = 3∆ (left) and without
(right). Note the lifting of spin-degeneracy as well as larger
and sharper phase dependence of Andreev levels in the pres-
ence of spin-orbit interactions.

Hexagonal lattice and quantum spin Hall edge states

We now discuss the Andreev spectrum of graphene-
like ribbons with NN = Nx × Ny sites on an hexagonal
lattice oriented along the armchair direction, in contact
with two superconducting electrodes (NS = NS

x × Ny
sites) on a square lattice (inset of Fig.4). Following the
model of Kane and Mele [1] the spin-orbit interaction
is now implemented on the next nearest neighbors (in
contrast with eq.3) according to:

HSO =
∑

s,s′=+,−

∑
i,j

+iλijσz|i, s >< j, s′|+ C.C. (4)

withλij = −λji. This model is equivalent at very low
energy to the implementation of an ‘intrinsic’ spin-orbit
interaction which couples the real spin to the pseudo spin
and is opposite in sign for the 2 valleys of the Dirac spec-
trum. It leads to the opening of opposite spin-orbit gaps
at the Dirac points of the 2 valleys and the formation of
2 counter- propagating spin-polarized edge states char-
acteristic of a 2D topological insulator. When the Fermi
level sits in this spin-orbit gap, the Andreev spectrum
is identical to the spectrum of a single channel ballistic
wire with 2 degenerate states crossing at zero energy for
φ = π. They correspond to the two helical edge states on
the 2 sides of the wire not connected to superconducting
electrodes (see Fig. 4). There is no degeneracy break-
ing if there si no Rashba contribution. As expected, this
spectrum shown in Fig.4 is very robust against disorder
or barriers at the NS interface, which strongly modify the
Andreev spectrum in the absence of SO interaction. Is
does not depend on the transverse number of sites when
the width of the sample is much greater than the super-
conducting coherence length. The small residual avoided

  

d(p)

S

L

S W

FIG. 4: A ribbon with hexagonal lattice (dimensions L =
Nxa and W = Nya) with second neighbour spin-orbit in-
teractions is connected to superconducting electrodes (square
lattice). The Andreev sepctrum is shown for Nx = Ny = 20
with on site disorder W = t, corresponding to the diffusive
regime in the absence of SO interaction. The amplitude of SO
interaction is equal to the superconducting gap. Fermi energy
is chosen to be εF = −0.33t and sits in the spin-orbit gap. The
spectrum consists in two chiral Andreev levels corresponding
to the two edges of the sample (short junction limit). These
states exhibit a linear phase dependence and cross each other
at zero energy at phase π. Inset: residual gap at φ = π as
function of the sample width W.

crossing observed is due to the small coupling between
the 2 edge states due to the finite width of the sample.
We find that this residual gap atπ, δ(π) decreases expo-
nentially with the distance between the edges (i.e. the
width of the sample) with a characteristic length given
by the superconducting coherence length ξS ' 10a.

JOSEPHSON CURRENT

At zero temperature, the Josephson current IJ(φ) =
(2π/φ0)∂EJ/∂φ is the derivative of the Josephson En-
ergy EJ which is the sum of the phase dependent en-
ergy levels below the Fermi energy. We first discuss the
non topological case corresponding to the square lattice
with Rashba SO interaction whose Andreev spectrum are
shown in Fig.2 and 3 We have seen in the previous section
that the presence of spin-orbit interaction strongly mod-
ifies the spectrum by lifting the spin degeneracy, leading
to crossings at phases multiple of π . This results in
even phase dependent contributions to the single level
currents, which are non zero at 0 and π and opposite
from one another for reversed spin states, see Fig.5. A
small Zeeman field perpendicular to the plane of the wire
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FIG. 5: Top panel: phase dependence of the 2 first levels
in the Andreev excitation spectrum of a square lattice tight-
binding wire, with Rahshba SO interaction, parameters are
Nx = 130, Ny = 4, W = 3∆, λ = 2∆ . These 2 levels
correspond to opposite spin states and cross each other at 0
and π. Middle panel: currents carried by these levels, one
can clearly identify a component which is an even function of
phase. Bottom same quantity in the presence of a small Zee-
man field perpendicular to the wire EZ = 0.02 (in ∆ units).
Avoided crossings at 0 andπ lead to discontinuities in the sin-
gle level currents which become odd functions of phase.

lifts degeneracies and induces avoided crossings at multi-
ples of π. The single level currents become therefore odd
functions of phase with discontinuities at 0 anπ, see Fig.5.
The phase dependence of the total Josephson current is
however not affected, due to the compensation between
these opposite current contributions of adjacent levels.
This is shown in Fig.6 both for ballistic and diffusive
wires in the long junction limit whose Andreev spectrum
are shown in Fig.1 and Fig.3. One can see that the ef-
fect of spin-orbit interactions is opposite in both cases:
the ballistic current is decreased whereas an increase of
the amplitude of the Josephson current and its harmon-
ics content is observed for the diffusive wire. (This effect
may be related to the phenomenon of antilocalisation ob-
served in quantum transport in the presence of spin-orbit
interactions [26].) As expected and previously shown in
other works [8, 9] the presence of a in plane Zeeman field
gives rise to a φ0 behavior accompanied with 0π transi-
tions with discontinuities for certain values of this field,
in the current phase relation. This is shown in the ap-
pendix.

Different behaviors are found when the normal part of
the junction is built from the Kane and Mele topological
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FIG. 6: Effect of spin-orbit interactions on the phase depen-
dent Josephson current for the square lattice with rearrest
neighbor Rashba S0 . Left: ballistic wire with Ny = 2 (same
parameters as Fig.1). Right: diffusive wire in the long junc-
tion limit with the same parameters as Fig.3. The amplitude
and skewness of the phase dependent Josephson current are
decreased in the presence of SO interaction for the ballistic
wire whereas they are increased for the diffusive wire.
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FIG. 7: Effect of S0 interaction on the phase dependent
Josephson current: hexagonal lattice without and with (λ =
2∆) next nearest neighbor SO interaction. Parameters are
Nx = 10 and Ny = 60). The Josephson current is strongly
modified by spin-orbit interactions and acquires a saw tooth
shape with sharp discontinuities at odd multiple values of π
which is characteristic of a 1D ballistic SNS junction. The
curves with circle points correspond to a small disorder W/t =
0.02 and a perfect transmission at the S/N interfaces, whereas
diamonds correspond to W/t = 2 and a transmission barrier
at the S/N interfaces equal to 0.25.

insulator discussed above ( hexagonal lattice with next
nearest neighbor SO interaction) whose Andreev spec-
trum is shown in Fig.4. As a result of the formation of
topological edge states, the Josephson current is strongly
modified by spin orbit interactions and acquires a saw-
tooth shape with sharp discontinuities at odd multiple of
π which is characteristic of the Josephson current of a sin-
gle channel ballistic long SNS junction, Fig.7. It is inde-
pendent of the number of transverse channels and resists
to large disorder as well as low transmission interfaces.
Measuring this saw tooth current phase relation cannot
however be considered as a definite signature of topo-
logical edge states. Topological crossings are expected to
give rise to a 4π periodicity very difficult to detect exper-
imentally because of unavoidable quasiparticle poisoning
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[27].

NON ADIABATIC FINITE FREQUENCY
RESPONSE

In this section we show that the finite frequency cur-
rent susceptibility which is the linear response to an ac
phase bias, is much more sensitive to spin orbit inter-
actions than the dc Josephson current discussed above.
As previously shown [28, 30, 32, 33] this susceptibility
is investigated experimentally in a RF SQUID geometry
where a hybrid NS ring is inductively coupled to a mi-
crowave cavity generating a small ac flux superimposed to
a dc Aharonov Bohm flux . The linear response function
relating the ac current to the ac flux bias is described by
the complex susceptibility χ(ω) = iωY (ω), (Y (ω) is the
admittance) and can be computed from the eigen-states
of the ring using a Kubo formalism [32].

χ(ω) =
∂IJ
∂φ
−
∑
n

i2n
∂fn
∂εn

iω

γD − iω
−

∑
n,m 6=n |Jnm|2

fn − fm
εn − εm

ih̄ω

i(εn − εm)− ih̄ω + h̄γND

(5)

Jnm is the matrix element of the current operator be-
tween the Andreev eigenstates n and m of energies εn
and εm, fn is the Fermi Dirac function. The first term is
the zero frequency susceptibility of the ring which is the
flux derivative of the Josephson current χ(0) = ∂IJ/∂φ.
The second and third terms only exist at finite frequency
and describe the dynamical responses due respectively to
the relaxation of the populations χD and to the transi-
tions between the levels induced by microwave photons
emission or absorption χND, the quantities γD and γND
being respectively the diagonal and non diagonal relax-
ation rates of the system determined by its interaction
with its thermodynamic environment. Both χD and χND
give rise to frequency dependent dissipation described by
their imaginary components. From now on we focus on
χ′′D which yields the largest contribution at low frequency.
Note that this contribution is specific to the ring geom-
etry [34] and is ignored in most derivations of the Kubo
formula.

χ′′D = − ωτin
(1 + ω2τ2in)

∑
n

i2n
∂fn
∂εn

(6)

( with τin = γ−1D ). This quantity has a very peculiar
phase dependence with a singularity at π in a diffusive
wire with a continuous Andreev spectrum, due to the
closing of the minigap. It was predicted by Lempitsky
in 1983 [29, 31] but only directly measured recently by
Dassonneville et al.[30]. When the temperature is large
compared to εn the quantity ∂fn

∂εn
can be approximated

by 1/kBT in eq.6. As a result when T ≥ ∆, χ′′D is pro-
portional to S2 =<

∑
n i

2
n > over the whole spectrum

[28, 31]. In the presence of SO interactions Andreev lev-
els are not spin degenerate except at 0 and π leading to
level crossings at these points. As a result the single level
quantities in and i2n are finite at 0 and π as well as their
sum S2. The resulting phase dependence of χ′′D is very
different from its characteristic dependence without spin
orbit interactions which is zero at multiples of π. More-
over this phase dependence is extremely sensitive to a
Zeeman field perpendicular to the wires which couples
levels of opposite in-plane spins and opens small gaps at
φ = nπ. These avoided crossings give rise to disconti-
nuities in in(φ) and sharp peaks in i2n and S2 leading to
a phase dependence of χ′′D which exhibits sharp singu-
larities at 0 and π. This extreme sensitivity of χ′′D to
a small perpendicular Zeeman field carries the signature
of the Rashba spin splitting of Andreev levels as shown
in Fig.8comparing the phase dependence of χ′′D with and
without Rashba spin orbit interaction. We have so far
discussed the phase dependence of χ′′D at temperatures
of the order or larger than the superconducting gap. In
the low temperature limit, the derivative of the Fermi
function in expression 6 selects the very low energy con-
tribution (below kBT ) of the Andreev levels. For a non
topological spectrum χ′′D vanishes if the temperature is
smaller than the energy gap at π separating electrons and
hole states. This sensitivity to the existence of absence
of energy levels at zero energy can be exploited to reveal
the presence of topological crossings at zero energy as we
discuss below.

We move to the case of the Kane and Mele topolog-
ical insulator in the presence of protected crossings at
zero energy We then expect a single peak in χ′′D(φ) at π
as shown in Fig.9. In practice because of the presence
of the 2 edge states on each side of the wire of finite
width, there is a very small avoided crossing of the lev-
els at pi leading to a very sharp and narrow dip in χD at
φ = π. This dip observed for Ny = 20 fades out when the
width of the sample is larger than the superconducting
coherence length. The amplitude of this peak diverges at
low temperature like 1/T like the derivative of the Fermi
function. It is also very sensitive to the application of
a perpendicular Zeeman field yielding 2 split peaks sym-
metrically around φ = π . The experimental observation
of the dissipation peak at π in the non adiabatic linear
response function and its splitting in a small Zeeman field
presents strong similarities with the predictions of [35] in
the normal state. It should provide a unique signature
of the nature of the level crossing at zero energy and
constitutes therefore a stringent check of the topologi-
cal nature of the Andreev spectrum. It is different from
the proposals of ref. [36–38] focused on the contribution
of the non diagonal elements coupling fundamental to
exited states, χND, which contribute at higher frequen-
cies (of the order of the Thouless energy for long junc-
tions). These measurements of the ac current response to
a small phase bias can be conducted very close to ther-
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FIG. 8: Phase dependence of χ′′D for the square lattice (non
topological regime) at a temperature equal to the supercon-
ducting gap as explained in the text, this quantity is close to
the average single level current square over the whole spec-
trum and is nearly π periodic in the absence of spin orbit
interactions (upper pannel) nearly insensitive to a small Zee-
man field ( blue curve BZ = 0, red curve BZ = 0.02 ). The
same quantities are shown the presence of spin orbit interac-
tions λ = 2∆ in the lower panel. Spin splitting and crossings
of the energy levels at φ = 0 and π give rise to a very differ-
ent behavior with broad maxima at 0 and π reflecting levels
crossings, and sharp dips in a Zeeman field. Numerical sim-
ulations correspond to Nx = 100 and Ny = 4 with a square
lattice. The amplitude of disorder is W = 3∆.

modynamic equilibrium in contrast with the switching
current measurements also proposed in [38]. They also
allow an independent control of the amplitude and fre-
quency excitation. This is not possible with ac Josephson
effect measurements from which it is very difficult to dis-
entangle topological effects from out-of-equilibrium Zener
tunneling effects.

We acknowledge R. Aguado, C. Bena, R. Deblock, M.
Ferrier, M. Houzet, J. Meyer, H. Pothier, P. Simon and
M. Triff for fruitful discussions as well as V. Croquette
for great help in making a user friendly interface for the
program written by A. Chepelianskii. We have bene-
fited from financial support of the grants MASH ANR-
12-BS04-0016 and DIRACFORMAG ANR-14-CE3L-003
of the French agency of research.
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FIG. 9: Phase dependence of χ′′D computed for the hexagonal
lattice in the topological regime: SO interaction λ = 2∆ ,
Nx = 10, L = Ny = 60 (red) and 20 (blue) at temperatures
equal to 0.01∆ and 0.1∆. The peak at π carries the signature
of the level crossing in the spectrum and is very sensitive to
the presence of a small gap when the width of the sample is
of the order of the superconducting coherence length. This
gap gives rise to a cancellation of the single level current at π
leading to a narrow dip in center of the peak at π. The grey
curve is obtained in the presence of a Zeeman field for Ny =
60. The effect of the Zeeman field is to split the zero energy
level crossing into 2 avoided crossings symmetric around π.
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Brüne, C.
Gould, A. Oiwa, K. Ishibashi, S. Tarucha, H. Bühmann,
and L. W. Molenkamp, Nat Commun, 7, 10303, (2016).

[21] Chuan Li, A. Kasumov, Anil Murani, Shamashis Sen-
gupta, F. Fortuna, K. Napolskii, D. Koshkodaev, G. Tsir-
lina, Y. Kasumov, I. Khodos, R. Deblock, M. Ferrier,
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Appendix: Anomalous Josephson current

We show below the φ0junction behavior in a 2 channel
wire with Rashba SO coupling.

http://arxiv.org/abs/1603.04069
http://arxiv.org/abs/1609.04848
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FIG. 10: The phase dependent Josephson current is shown for
different values of in plane Zeeman field BZ perpendicular to
the wire going from 0 to 0.12 from bottom to top (in ∆ units).
One observes a continuous phase shift of the Josephson rela-
tions together with abrupt discontinuities for certain values
of BZ . he Fermi energy is taken at 1/4 of the tight binding
lower 1D band.(Other parameters are Nx = 80, W = 0.1∆,
λ = 3∆)
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