
Thèse
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Chapitre 1

Introduction

Dans cette thèse je m’intéresse à deux aspects physiques fondamentaux de systèmes
nanoscopiques et moléculaires : la chiralité et la non-linéarité. Un système ou un objet tri-
dimensionnel est dit chiral s’il ne peut pas être superposé à son image miroir. Un système
est non-linéaire si les équations qui le gouvernent n’obéissent pas au principe de super-
position. Cette définition mathématique se prête mal à une étude expérimentale, on est
donc tenté de donner une définition plus concrète : un système est non-linéaire si soumis à
une excitation monochromatique à fréquence f , il produit une réponse non-linéaire à une
fréquence distincte f ′. Ces définitions ne sont en fait pas équivalentes, puisque l’appari-
tion d’une réponse non-linéaire n’est souvent possible que lorsque des symétries spatiales
ou temporelles le permettent. Un des problèmes que j’ai abordé dans cette thèse est de
caractériser une molécule chirale : l’Acide-Desoxyriboso-Nucléique (ADN) à travers des
mesures de transport électroniques. Cette problématique m’a conduit à examiner en détail
le lien subtil entre chiralité et non linéarité. Je commencerai donc cette introduction en
décrivant plusieurs exemples de systèmes chiraux, avant de me concentrer sur le trans-
port non-linéaire. En particulier je chercherai à déterminer s’il est possible de détecter la
chiralité avec une mesure de transport électronique.

1.1 Chiralité

Probablement l’exemple le plus familier où la chiralité joue un rôle est le problème
des gants. Il est en effet impossible de mettre un gant droit sur la main gauche même
en tournant le gant dans tout les directions. Pour mieux représenter graphiquement la
différence entre un objet chiral et non chiral on peut comparer les deux dessins de feuilles
d’arbre sur la Figure 1.1, une seule des feuilles est chirale malgré les similitudes entre les
deux motifs.

Un composé chiral peut donc exister sous deux formes distinctes reliées par une symétrie
miroir, on parle alors de formes énantiomères d’une même molécule. Le biologie est un do-
maine ou la chiralité joue un rôle clef puisque, les principales molécules biologiques sont chi-
rales. En général une seule des formes énantiomères possibles intervient dans les réactions
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Chiral Non chiral

Fig. 1.1 – Un seul de ces deux dessins de feuille d’arbre est chiral malgré les similitudes
entre les deux motifs. La figure rouge est chirale seulement si le plan de la feuille n’est pas
un plan de symétrie du motif (ce qui est vrai en pratique car l’image n’est imprimé que
d’un seul côté du papier !)
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Fig. 1.2 – Formules stéreochimiques des deux formes énantiomères de l’alanine. La
désignation L ou D (Lévogyre/Dextrogyree) se réfère au pouvoir rotatoire de chaque
énantiomère.
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Fig. 1.3 – Formules stéreochimiques de deux formes énantiomères du ribose.

biochimiques au sein d’un organisme vivant. Je vais en donner ici plusieurs exemples :

– Acides aminés : A part la glycine, les vingt acides aminés présents dans le code
génétique sont chiraux. Sur la figure 1.2 j’ai représenté les deux formes énantiomères
possibles de l’alanine, seule la forme L est présente dans les protéines [1, 2]. On
remarquera qu’au niveau chimique la chiralité provient de la présence d’atomes de
carbone asymétriques en liaison covalente avec quatre groupes chimiques différents.

– Sucres : Le ribose qui intervient dans la formation de l’acide désoxyribonucléique
(ADN) et de l’acide ribonucléique (ARN) est également chiral. Seule la forme D de
cette molécule apparâıt dans les organismes vivants, sa forme miroir ne peut être
obtenue que de manière synthétique.

– Acide désoxyribonucléique (ADN) : L’ADN, une molécule d’une importance fon-
damentale en biologie, est en forme de double hélice ; sur la Figure 1.4 j’ai représenté
un modèle simplifié qui permet d’en illustrer la structure. L’ADN est donc une
molécule chirale.



Fig. 1.4 – Représentation schématique d’une structure en double hélice similaire a celle de
l’ADN placée entre deux électrodes.

La découverte de l’importance de la chiralité a été rendue possible par des expériences
optiques utilisant de la lumière polarisée. En effet des solutions contenant une seule des
formes énantiomères font tourner le plan de polarisation d’un faisceau de lumière polarisée.
Cette propriété a été observée pour la première fois par Jean-Baptiste Biot en 1815 sur
des solutions de sucre. En effet, comme souligné plus haut les sucres obtenus de manière
naturelle sont sous forme dextrogyre : au passage à travers la solution le plan de polarisation
tourne donc dans le sens des aiguilles d’une montre pour un observateur qui reçoit la
lumière. Cette propriété d’un milieu de faire tourner la polarisation de l’onde qui le traverse
s’appelle activité optique. Le lien avec la structure à l’échelle moléculaire ne fut fait que
plus tardivement grâce au travaux de Louis Pasteur, qui a montré le lien entre le pouvoir
rotatoire d’une solution d’acide tartrique et la chiralité des cristaux formés par celui ci.
Les expériences d’optique sont donc une méthode privilégiée pour étudier la chiralité.

Cependant il est intéressant d’un point de vue fondamental de se demander s’il existe
d’autres méthodes en physiques sensibles à la chiralité. Ces méthodes doivent par exemple
être capables de distinguer entre les deux formes énantiomères d’une molécule ou d’un
système physique. Plusieurs domaines ont contribué à une meilleure compréhension des
différents effets de la chiralité au niveau microscopique à commencer par d’autres sources
de radiation comme les rayons X ou les neutrons. Par exemple la structure en double hélice
de l’ADN à été proposée grâce à des expériences de diffraction aux rayons X [3].

La formation de structures supra-moléculaires à été observée dans des cristaux liquides
composés de molécules chirales, par exemple la phase cholesterique est formée de plans
de molécules orientées dans une même direction la direction d’orientation tournant d’un



plan à l’autre [4]. L’étude des films de Langmuir a également mis en évidence l’apparition
de structures chirales [5]. Cependant elle a également montré que la formation de mo-
tifs chiraux n’est pas forcement reliée à une chiralité au niveau moléculaire, une rupture
dynamique de la symétrie chirale étant possible [6, 7].

Il est également important de souligner que la symétrie chirale n’est en réalité qu’ap-
proximative puisqu’elle n’est pas respectée par les interactions faibles [8, 9] importantes à
l’échelle subatomique. Des effets liés à ce non respect fondamental de la parité, ont pu être
montrés dans des expériences de physiques atomique. Cependant il semblerait que cette
asymétrie soit trop faible pour qu’il existe un lien avec la chiralité privilégiée observée pour
les molécules biologiques [2].

Dans cette description certainement incomplète j’ai volontairement omis la physique
du transport électronique, sur laquelle je vais me concentrer à partir de maintenant. Je
commencerai par décrire les systèmes chiraux les plus simples qui apparaissent en physique
du solide.

– Électrons en champ magnétique : Les électrons dans un champ magnétique
uniforme H décrivent des cercles à la fréquence cyclotron ωc = eH

m
où −e est la charge

de l’électron et m est sa masse, les trajectoires sont illustrées sur la Figure 1.5. La
base (i, j,H) est une base directe l’angle orienté (i, j) donne le sens de rotation de
l’électron dans le plan.

En généralisant cet exemple, il est clair qu’un milieu homogène soumis à un champ
magnétique devient “magnéto-chiral” (l’ensemble système avec le champ magnétique est
chiral) et donc optiquement actif. Ceci donne lieux à des effets physiques célèbres comme
l’effet Faraday (mesure optique en transmission à travers un milieu soumis à un champ
magnétique) ou l’effet Kerr magnéto-optique (mesure en réflexion sur des systèmes ai-
mantés). Cependant la signature de cette chiralité induite reste une mesure optique.

Il est important de souligner qu’un champ magnétique brise le renversement par le sens
du temps, l’analogie avec l’activité optique liée à la chiralité est en ce sens trompeuse. Ainsi
le sens de rotation de la polarisation dans l’effet Faraday change de signe selon si la lumière
se propage dans la direction du champ magnétique où dans la direction opposée. Néanmoins
il existe une connection entre “magnéto-chiralié” et chiralité intrinsèque, ainsi la constante
diélectrique d’un liquide constitué de molécules chirales acquiert une composante en Bk
dont le signe change pour les deux formes énantiomères, k étant la direction de propagation
de la lumière. [10].

– Effet Hall : L’effet Hall permet de distinguer entre deux champs magnétiques uni-
formes de signes opposés, il s’agit donc d’une mesure sensible à la chiralité. Cette
propriété peut se voir directement à partir de la géométrie de la mesure (voir Figure
Fig. 1.6). En effet pour les deux signes du champ magnétique le trièdre formé par les
vecteurs (I,V,H) forme une base directe. Ici le vecteur I relie les contacts de courant
de la sonde de Hall (orientée dans le sens du courant), V est le vecteur qui relie les
sondes de tension (orienté dans le sens des potentiels croissants) et B est le champ
magnétique.

L’utilisation d’une mesure quatre fils peut parâıtre superflue pour déterminer le signe du
champ magnétique. En effet du point de vue des symétries spatiales la magnéto-résistance
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Fig. 1.5 – Trajectoire d’un électron (bidimensionel) soumis à un champ magnétique en
l’absence de désordre. L’angle orienté (i, j) donne le sens de rotation de l’électron dans le
plan

Fig. 1.6 – Géométrie d’une mesure de champ magnétique par effet Hall.



deux fils d’un échantillon chiral peut également contenir une composante impaire en champ
magnétique. Cependant ce raisonnement qui s’appuie uniquement sur les symétries spa-
tiales ne tient pas compte d’une autre symétrie des systèmes à l’équilibre thermodyna-
mique : l’invariance par renversement du sens du temps. En effet si on remonte en arrière
dans le temps les trajectoire soumises à un champ magnétique H, la trajectoire obtenue est
une solution des équations du mouvement pour un champ magnétique de direction opposée
−H. Cette propriété se voit facilement pour le cas des électrons libres Figure 1.5 : parcourir
les trajectoires en arrière change le sens de rotation à l’instar d’un changement de signe
du champ magnétique. D’après les relations fluctuation dissipation la résistance deux fils
est reliée à une propriété à l’équilibre du système : par exemple le coefficient de diffusion
dans la relation d’Einstein. Or le coefficient de diffusion ne dépend pas de la direction dans
laquelle on parcourt les trajectoires et donc du signe du champ magnétique. La résistance
deux fils est donc une fonction symétrique du champ magnétique.

Cette propriété est en fait un cas particulier des relations d’Onsager aux quelles nous
nous intéresserons en détail pendant cette thèse. Au niveau expérimental, les relations
d’Onsager sont souvent vérifiées avec une très bonne précision pour des conducteurs ma-
croscopiques et même pour des échantillons mésocopiques cohérents où les fluctuations
quantiques jouent un rôle. Cependant tout comme le principe de bilan de balance détaillé,
il n’est pas un principe fondamental (comme la conservation de l’énergie) et il existe des
systèmes où les relations d’Onsager ne sont pas valables : par exemple les bicouches de
gaz bidimensionel electron-trou [11]. Pour l’heure la compréhension physique des causes
derrière la non validité des relations d’Onsager dans ces systèmes reste limitée.

En conclusion, des mesures à plusieurs contacts peuvent être sensibles au signe du
champ magnétique même pour des milieux qui n’ont pas de chiralité intrinsèque (par
exemple de chiralité topologique reliée à la symétrie spatiale des molécules du milieux). Des
mesures de magnéto-résistance deux fil, ne permettent pas de caractériser un objet chiral
puisque la symétrie par renversement du sens du temps conduit à une magnéto-résistance
symétrique en champ magnétique et masque l’effet de la chiralité. Cependant dans des
régimes hors d’équilibre la symétrie par renversement du sens du temps est brisée. On peut
donc espérer observer des signatures de la chiralité dans des expériences de transport non
linéaire.

1.2 Transport non-linéaire

Des mesures de transport non linéaire consistent à étudier l’effet d’une irradiation à
fréquence fext sur une observable mesurée à une fréquence distincte fmes. Dans un contexte
de physique des solides cette observable peut par exemple être la tension continue aux
bornes de l’échantillon ou sa résistance à basse fréquence, on parle alors d’effet photovol-
taique ou de photo-conductivité.

Au cours de ma thèse j’ai étudié la photo-conductivité de plusieurs systèmes : le gaz
d’électrons bidimensionel (2DEG), des molécules d’ADN contactées à des électrodes ainsi
que des nanofils/cristaux massifs de silicium. Dans ce chapitre je commencerai donc par



discuter les propriétés de symétrie de la photo-conductivité, pour aborder ensuite l’effet
photovoltaique que j’ai surtout regardé sur le 2DEG. Enfin je discuterai l’effet de l’illu-
mination sur d’autres observables telles que la polarisabilité ou le moment magnétique
orbital.

Les semi-conducteurs sont en général photo-conductifs : lorsqu’ils sont soumis à une
irradiation lumineuse, les photons d’énergie supérieure au “gap” entre la bande de valence et
la bande de conduction sont absorbés pour créer des paires électrons-trou qui participent
au transport et augmentent la conductivité. Nous avons essayé d’utiliser ce mécanisme
dans nos expériences pour sonder le transport électronique dans l’ADN et les nanofils
de silicium. Les résultats sont exposés en détail dans la seconde partie du manuscrit,
et résumés dans le Chapitre 1.2. Dans ces systèmes la photo-conductivité repose sur un
changement de la densité des porteurs sous l’effet de l’illumination, et n’exige pas la rupture
de symétries spatiales. Elle peut donc être observée dans des cristaux macroscopiques
homogènes, et n’apporte pas d’information directe sur la chiralité. Elle fait cependant
intervenir des processus de relaxation irréversibles telle que la relaxation des paires électron
trou qui fixe le nombre de porteurs total à l’équilibre, la photo-conductivité brise en ce
sens la symétrie par renversement du sens du temps. Néanmoins si la photo-conductivité ne
fait que changer la conductance effective du milieu en augmentant sa densité de porteurs,
les relations de réciprocité restent valables tout comme à l’équilibre masquant l’effet de
l’irréversibilité de la dynamique microscopique.

Des déviations aux relations de réciprocité sur la photo-conductance peuvent en re-
vanche apparâıtre dans des systèmes où la description par un milieu continu de conduc-
tance effective n’est plus valable, par exemple les systèmes balistiques dans les quelles le
désordre joue un rôle extrêmement faible ou encore les conducteurs quantiques cohérents
dans lesquels les effets non locaux peuvent exister même en présence de désordre. Dans les
gaz d’électrons bidimensionel GaAs/GaAlAs les électrons peuvent avoir des longueurs de
libre parcours moyen très grandes de plus de 10 µm à basse température (T ∼ 4.2 K). En
étudiant le comportement d’une sonde de Hall balistique sous irradiation micro-onde non
homogène nous avons ainsi pu montrer que la photo-conductivité ne vérifie plus les relations
de réciprocité une fois que la fréquence d’excitation dépasse un seuil relié au temps de par-
cours des électrons à travers la sonde de Hall (voir Figure 1.7) . Ces mesures montrent que
la rupture de la symétrie par renversement du temps intervient seulement si la fréquence
d’excitation est suffisamment grande devant les temps de réponse du système. On peut
donc avoir une photoconductance non nulle dans un système invariant par renversement
du sens du temps.

Dans les paragraphes précédents j’ai abordé la photo-conductivité dans une limite ou
la fréquence d’excitation est élevée (fréquences optiques pour la photo-conductivité dans
les semi-conducteurs). Il est également instructif d’envisager cet effet dans une limite ou
l’excitation se fait à basse fréquence. Considérons le cas d’un transistor à effet de champ,
dont la conductance dépend de manière non linéaire de la tension de grille :

G(Vg) = G0 + G1Vg + G2V
2
g + ... (1.1)

Lorsqu’une tension sinusöıdale Vg(t) = V0 cos ωt est appliquée sur la grille, la conductance
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Fig. 1.7 – Changement de la résistance de Hall pour deux sonde de Hall sous une irradia-
tion micro-onde non homogène en fonction de la fréquence micro-onde à champ magnétique
nul (un champ magnétique résiduel faible pouvait être présent du fait du champ magnétique
terrestre ou de courants résiduels piégés dans la bobine supraconductrice). La résistance
de Hall est mesurée dans deux configurations où les sources de courant et les sondes de
tension sont interverties, ce qui donne deux valeurs RH et R∗

H . En l’absence de champ
magnétique les relations d’Onsager impliquent que ces valeurs sont égales RH = R∗

H (à
champ magnétique nul la résistance 4-fil en géométrie Hall mesure une composante de la
résistance longitudinale de la sonde de Hall liée à ses imperfections géométriques). Les
quantités δRH et δR∗

H représentent le changement de la résistance de Hall dans les deux
configurations du fait de l’irradiation micro-onde. Les courbes continues représentent la
somme δRH + δR∗

H alors que la différence δRH − δR∗
H est représentée par les traits dis-

continus. Cette différence serait nulle, si les relations d’Onsager s’appliquaient à la photo-
conductance. Dans ces données expérimentales nous avons changé la fréquences d’excitation
pour deux sondes de Hall et deux valeurs de la puissance micro-onde. L’écart δRH − δR∗

H

s’annule pour des fréquences inférieures à f ≤ fc ≃ 50 MHz, alors que la partie symétrique
δRH + δR∗

H reste non nulle. La composante symétrique finit par s’annuler également à plus
basse fréquence f ≤ f0 car le couplage capacitif employé devient inefficace. Ces données
montrent que dans un régime basse fréquence (adiabatique) la photo-conductance ne brise
pas la symétrie par renversement du sens du temps, cependant cette symétrie est brisée
à plus haute fréquence. Les relations d’Onsager ne peuvent alors plus s’appliquer. Cette
expérience est discutée en détail dans le Chapitre 2.11 de la première partie du manuscrit.



change également dans le temps. A des fréquences suffisamment basses, la variation de la
conductance suit la tension de grille, dans cette approximation la conductance moyennée
dans le temps prend la forme suivante :

< G >= G0 + G2V
2
0 /2 + ... (1.2)

On remarquera que le terme linéaire G1Vg(t) n’intervient pas dans la valeur de la photo-
conductance δG =< G > −G0 puisque sa moyenne sur le temps est nulle. Dans cette limite
adiabatatique la symétrie par renversement du sens du temps n’empêche l’apparition d’une
photo-conductance qui provient de la dépendance non linéaire de la conductance en la
tension de grille G(Vg) qui est définie à l’équilibre thermodynamique ou plus précisément
en régime de réponse linéaire. Néanmoins à haute fréquence l’approximation adiabatique
n’est en général plus valable et des effets qui violent la symétrie par renversement du sens
du temps apparaissent.

En somme la photo-conductance donne accès à des informations précieuses sur la dyna-
mique et la densité des porteurs photo-induits. Cependant elle apporte assez peu d’infor-
mation sur les symétries spatiales du système étudié, qu’en est-il de l’effet photovoltaique ?

L’effet photovoltaique consiste en l’apparition d’une tension Vpv ou d’un courant sta-
tionnaire ipv en réponse à une irradiation à fréquence finie. Dans le cas le plus simple
ces deux quantités sont reliées à travers la résistance R de l’échantillon Vpv = Ripv. Le
dispositif de mesure détermine la quantité mesurée (par exemple si on utilise un amplifi-
cateur de tension ou un amplificateur de courant) ; même si expérimentalement on préfère
souvent mesurer la tension photovoltaique la quantité ipv se prête plus facilement à une
interprétation théorique.

La source d’excitation peut être par exemple un champ électrique micro-onde E cosωt
ou une tension alternative aux bornes de l’échantillon Vac cos ωt. Puisque sa moyenne sur
le temps est nulle, elle ne fixe en général pas d’orientation privilégiée dans l’espace pour le
courant photovoltaique stationnaire. Un échantillon qui présente de l’effet photovoltaique
ne peut donc pas avoir de symétrie par inversion (r → −r) et contient une asymétrie
intrinsèque qui fixe la direction de ipv. Bien sur il y a des exceptions, par exemple dans
l’effet “photon drag” la direction du courant est fixée par le vecteur d’onde du champ
électromagnétique ; pour simplifier je ne vais pas aborder pour l’instant les cas où l’irradia-
tion brise elle même la symétrie spatiale. Le courant moyen ipv est également proportionnel
à la vitesse de dérive moyenne des porteurs. Cette vitesse change de signe par renverse-
ment du sens du temps, l’effet photovoltaique brise donc la symétrie par renversement du
sens du temps et dépend donc a-priori des processus irréversibles qui assurent le retour à
l’équilibre du système.

Pour étudier plus en détail les propriétés de symétrie de l’effet photovoltaique, je vais
me concentrer sur un système modèle assez simple constitué d’un réseau de semi-disques
orienté dans une même direction (voir Figure 1.8 et insert sur la Figure 1.9). Remarquons
que ce système n’est pas chiral puisque l’axe des x est un axe de symétrie du système. Dans
ce modèle théorique les électrons suivent des trajectoires classiques obtenues par intégration
des équations de Newton en présence d’un champ magnétique H perpendiculaire au plan



Fig. 1.8 – Cette figure représente des trajectoires typiques pour deux polarisation du
champ électrique alternatif E. Lorsque la polarisation est orientée le long l’axe de symétrie
des semidisques (cas a), les trajectoires se propageant dans la direction −ex sont favorisées.
Une polarisation le long de l’axe ey (cas b), conduit au contraire à un courant de particules
photovoltaique Ipv dans le sens ex. Dans cette représentation le champ magnétique H est
supposé nul, les trajectoires sont donc des lignes droites.

des électrons et d’un champ électrique oscillant E cosωt dans le plan. Les collisions avec
les parois sont supposées spéculaires. Dans ce système le mécanisme responsable de la
rectification est illustré sur la Figure 1.8. Lorsque les électrons sont soumis à un champ
électrique alternatif, les trajectoires se déplaçant dans la direction de la polarisation E
sont favorisées. Après une réflection sur un semidisque ces trajectoires sont en majorité
orientées dans la direction −ex quand la polarisation est alignée le long de l’axe ex qui fixe
l’orientation des semidisques. Si la polarisation tourne de 90 degré, ce sont au contraire les
trajectoire qui se propagent dans le sens ex qui sont majoritaires.

La dépendance du courant photovoltaique du temps τH de relaxation irréversible des
électron vers la distribution à l’équilibre a été étudié numériquement par [13]. Les simu-
lations ont montré que le courant photovoltaique ne dépend pas de τH dans un large
domaine de valeur de ce paramètre. Ceci peut sembler surprenant car en l’absence de re-
laxation (c’est à dire dans la limite τH → ∞) l’effet photovoltaique disparâıt puisque la
dynamique devient invariante par renversement du sens du temps. Cette disparition des
taux de relaxation intervient aussi pour la résistance linéaire qui est déterminée par les col-
lisions élastiques même si elle correspond à un effet dissipatif. Pour le transport classique
elle peut être justifiée en remarquant que la puissance libérée par effet Joule P = V 2/R
est un effet d’ordre supérieur par rapport au courant continu induit I = V/R. Cependant
cet argument n’est plus valable pour le transport non linéaire qui dépend de manière qua-
dratique de la tension/champ alternatif. Les cellules photovoltaique solaires fournissent
d’ailleurs un contre exemple naturel puisque le taux de recombinaison électron-trou est un
paramètre important de ces dispositifs [12]. Il me semble donc que l’origine et la généralité
de l’indépendance de ipv vis à vis du taux de relaxation irréversible τH reste encore mal
comprise.
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Fig. 1.9 – Cette figure décrit la dépendance en champ magnétique de l’effet photovol-
taique dans un réseau constitué de semidisques. L’insert montre la géométrie du motif sur
lequel se réfléchissent les électrons. L’axe des x qui fixe l’orientation des semi-disques est
un axe de symétrie du réseau, en revanche la symétrie miroir est brisée le long de l’axe
des y. La figure principale montre le courant photovoltaique calculé pour la configuration
expérimentale M1 (voir tableau 1.1). Le quotient entre le rayon des semidisques rd et le
rayon de Larmor RL est porté en abscisse, alors que le courant photovoltaique le long
de l’axe y en unités arbitraires est porté en ordonnée. Puisque le rayon de Larmor est
inversement proportionnel au champ magnétique, la quantité rd/RL est en fait proportio-
nelle au champ magnétique H . Comme le courant est mesuré selon l’axe de la polarisation
micro-onde, une telle mesure peut être réalisée dans une expérience à deux contacts. Les
simulations montrent que dans cette configuration de mesure, le courant photovoltaique
est antisymétrique en champ magnétique même en l’absence d’interaction entre porteurs.
Dans ces simulations l’interaction est décrite par le paramètre τK/τH qui est le rapport
entre le temps moyen de parcours τK entre deux semidisques et le temps τH de libre par-
cours moyen associé aux interactions entre électrons. Les simulations montrent que dans
cette géométrie de mesure, l’interaction modifie peu le courant photovoltaique. Dans ces
simulations la fréquence est fixée à ωτH = 1.



Passons maintenant à l’analyse des propriétés de symétrie en champ magnétique. Je note
jpv la densité de courant photovoltaique à travers le réseau constitué par les semidisques,
elle peut être décomposée en une partie symétrique js et antisymétrique ja en champ
magnétique : jpv = js + ja. Les symétries du système imposent la forme suivant pour js et
pour ja :

js =f2(H) (ex · E)E + f1(H)(E2)ex (1.3)

ja =g2(H) (ex · E) (H ∧ E) + g1(H)(E2) (H ∧ ex) (1.4)

Dans cette expression seulement les termes quadratiques en E ont été gardés car ce sont
les termes d’ordre le plus bas qui résistent à la moyenne sur le temps. Les vecteurs qui in-
terviennent dans le résultat sont la polarisation E, la direction ex dans laquelle sont orienté
les semi-disques et le champ magnétique H . Les fonctions f1(H), f2(H), g1(H), g2(H) sont
paires en champ magnétique. Nous pouvons remarquer d’ores et déjà que même si le réseau
de semi-disques n’est pas chiral une composante antisymétrique en champ magnétique du
courant photovoltaique est possible : le rayonnement micro-onde polarisé induit en effet un
sens de rotation privilégié dans le système.

L’existence d’une partie antisymétrique en champ magnétique du courant photovol-
taique a été prédite théoriquement en physique mésoscopique dans les articles pionniers :
[14, 15, 16]. Plusieurs travaux théoriques et expérimentaux dans ce domaine ont montré que
dans un système mésoscopique, comme un anneau Aharanov-Bohm désordonné, la com-
posante antisymétrique de l’effet photovoltaique résulte des interactions entre électrons
pour des fréquences d’irradiation faibles devant l’énergie de Thouless (à des fréquences
plus élevées la composante antisymétrique devient du même ordre de grandeur que la com-
posante symétrique indépendamment du paramètre d’intéraction ; voir par exemple Chap.
2.3). Cette conclusion est en un sens surprenante, car l’interaction entre électrons ne change
pas le groupe de symétrie de l’Hamiltonien du système. Il est donc intéressant d’étudier la
dépendance en interaction de ja dans le système modèle constitué par le réseau de semi-
disques où l’origine de l’asymétrie est plus contrôlée que le potentiel désordonné aléatoire
dans les échantillons mésoscopiques [17].

L’équation Eq. 1.4 suggère deux géométries de mesures qui permettent de déterminer
les coefficients g1(H) et g2(H) de manière indépendante.

La dépendance du courant photovoltaique en champ magnétique dans les deux confi-
gurations de mesures M1/M2 est représentées respectivement sur les Figures. (1.9,1.10)
pour plusieurs valeurs du paramètre d’interaction entre particules. Dans la configuration
M1, le courant photovoltaique dépend de manière antisymétrique ne le champ magnétique
même dans la limite d’interactions faibles. Par contre dans la configuration M2, le cou-
rant photovoltaique est symétrique en champ magnétique en l’absence d’interactions :
l’asymétrie n’apparâıt que lorsque les interactions deviennent suffisamment fortes. Il semble
donc d’après ces données que ipv,a peut dépendre ou non de l’interaction en fonction de la
géométrie de la mesure.

Tournons nous un moment vers l’interprétation du terme qui ne dépend pas des in-
teractions : g1(B)(E2) (H ∧ ex). Sa valeur ne dépend pas de la polarisation du champ
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Fig. 1.10 – Courant photovoltaique pour la configuration expérimentale M2 (voir ta-
bleau 1.1). L’axe des ordonnées représente en unités arbitraires le courant photovoltaique
ipv,x mesuré le long de l’axe des x fixé par l’orientation des semi-disques. Pour rompre la
symétrie miroir le long de cet axe, la polarisation micro-onde E est légèrement incliné de
π/20 radians par rapport à ex. Remarquons que cette géométrie est également compa-
tibles avec une mesure deux fils puisque la direction du champ et la direction de la mesure
du courant sont pratiquement les mêmes. L’axe des abscisse est proportionnel au champ
magnétique, et les différentes courbes correspondent à de différentes valeurs du paramètre
d’interaction (les définitions des symboles sont données dans la légende de la Figure 1.9).
Les simulations montrent que la présence d’interactions est nécessaire pour observer une
asymétrie en champ magnétique dans cette géométrie. La courbe noire (continue) sans
interactions reste en effet symétrique alors que les courbes en présence d’interactions (en
tirets) deviennent asymétriques en champ magnétique, l’asymétrie devenant de plus en
plus importante avec la force des interactions. La fréquence de l’irradiation est ωτH = 1.



mesure dépendance spatiale description de la mesure sélective
M1 g1(B)(E2) (H ∧ ex) mesure de ipv le long de l’axe y

E polarisé selon l’axe y
M2 g2(H) (ex · E) (H ∧ E) mesure de ipv selon l’axe x

E polarisation arbitraire

Tab. 1.1 – Ce tableau décrit les géométries de mesure qui permettent de séparer la contri-
bution des deux termes antisymétriques en champ magnétiques possibles pour l’effet pho-
tovoltaique dans le réseau de semi-disques.
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Fig. 1.11 – L’image de gauche montre montre la dépendance en le champ magnétique
inverse de l’effet photovoltaique dans l’expérience décrite dans le Chapitre 2.9. Elle montre
que l’effet photovoltaique peut être antisymétrique en champ magnétique dans une confi-
guration de mesure bien choisie. Les oscillations de Shubnikov-de Haas sont clairement
visibles sur l’effet photovoltaique (même si leur phase est décalée de π/2 par rapport au
transport linéaire). La figure de droite montre comment la période, des oscillations est
changée par une tension de grille qui module la densité des porteurs.

micro-onde, il peut être interprété comme le courant Hall associé au photo-courant induit
le long de la direction privilégiée dans la quelle sont orientés les semi-disques : ex . Même
si les échantillons mésoscopiques n’ont pas d’axe de symétrie, ils ne définissent pas expli-
citement de direction privilégiée car un potentiel désordonné est proche d’être isotrope.
Ce terme est donc probablement négligeable dans les échantillons mésoscopiques, ce qui
conduit à basse fréquence à une composante asymétrique proportionelle à la constante
d’interaction [14, 15]. Expérimentalement nous avons confirmé que dans une géométrie de
mesure bien choisie, l’effet photovoltaique peut être antisymétrique en champ magnétique
(voir données expérimentales sur la Figure 1.11) comme prédit par les données de la Fi-
gure. 1.9 validant ainsi le mécanisme d’effet Hall induit par les courants photovoltaiques
que je viens de décrire.

En somme l’effet photovoltaique exige (contrairement à la photo-conductance) une rup-
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ture de symétrie spatiale qui se traduit par l’existence d’au moins une direction privilégiée,
et une rupture de la symétrie par renversement du sens du temps par les effets de relaxation
vers l’équilibre qui sont en principe importants (même si souvent le résultat n’en dépend
pas). L’asymétrie en champ magnétique de l’effet photovoltaique ne donne a priori pas accès
à une information directe sur la chiralité du conducteur puisque la présence du champ d’ex-
citation peut également induire une chiralité dans l’échantillon. Cette asymétrie peut avoir
plusieurs causes : la présence d’interactions, l’effet Hall sur les boucles de courant photoin-
duit, la fréquence finie de l’irradiation et le champ magnétique généré par les boucles de
courant dans l’échantillon. Parmi ces mécanismes seul ce dernier est directement sensible
à la chiralité, cela a été montré par G. Rikken dans des expériences sur des conducteurs
chiraux macroscopiques en forme de spirale [18]. Cependant dans une expérience sur des
conducteurs de faible dimension il est difficile de prévoir quel mécanisme sera dominant et
donc d’obtenir une signature fiable de la chiralité.

Il semble donc difficile de proposer une mesure de transport électronique qui soit sen-
sible à la chiralité du conducteur. Une solution envisageable est la détection du magnétisme
orbital induit par une onde linéairement polarisé dans un milieu constitué de molécules chi-
rales d’orientations aléatoires. L’apparition d’un magnétisme orbital sous une irradiation
polarisé elliptiquement est connue sous le nom d’effet Faraday inverse [19, 20, 21], dans des
milieux non chiraux cet effet disparâıt pour des polarisations rectilignes. Cependant dans
un milieu chiral un sens de rotation privilégié existe même pour une polarisation rectiligne



comme le montre la construction géométrique en Figure 1.12. A ma connaissance peu de
choses sont connues concernant les ordres de grandeur de cet effet pour des systèmes com-
posés de molécule chirales d’orientations aléatoires. Pendant la thèse je me suis penché sur
le problème de la modélisation de cet effet pour des systèmes de gaz d’électrons bidimen-
sionel [22] pour lesquels des prévisions théoriques sont plus faciles à obtenir. Pour conclure,
les travaux expérimentaux et théoriques inspirés des idées que je viens de développer m’ont
permis de proposer une théorie prometteuse pour expliquer les états de résistance nulle in-
duits par une irradiation micro-onde dans des gaz d’électrons bidimensionel de très haute
pureté. Les résultats que j’ai obtenus sur les gaz d’électrons bidimensionels sont décrits en
détail dans la première partie de la thèse.

1.3 Mesures de transport sur des molécules d’ADN

et les nanofils de silicium

Je vais maintenant passer à la description des mesures de transport sur les molécules
d’ADN et les nanofils de silicium sur lesquels nous avons essayé de mettre en applications
les concepts développés ci dessus. L’étude systématique des propriétés de symétrie du
transport non linéaire n’a pas été possible sur les molécules d’ADN, du fait de la difficulté
de fabriquer des échantillons conducteurs.

Pour tenter de résoudre ces problèmes nous avons réalisé des échantillons où des molécules
d’ADN sont déposées au travers d’une fente isolante gravée dans un film de platine de
5nm d’épaisseur. Ces fentes ont été réalisées grâce à une technique de gravure au fais-
ceau d’ion focalisé avec contrôle in-situ de la conductance développée dans notre groupe.
Leur longueur est d’environ 50 micromètres pour une largeur de moins de 100 nm. Les
dépôts de molécules ont ensuite été effectués grâce à un traitement qui permet d’accro-
cher les molécules d’ADN sur des électrodes recouvertes de carbone qui semble assurer
un bon contact avec les molécules d’ADN. Des images par microscopie à force atomique
de molécules sur nos échantillons, traversant les fentes isolantes sont montrées sur la Fi-
gure 1.13.

Les échantillons conducteurs, qui ont pu être mesurés à basse température, ont permis
de montrer un comportement avec des corrélations supraconductrices à des températures
inférieures à 4 Kelvins même si les contacts (en Platine) ne sont pas supraconducteurs.
Ces mesures complétées par des caractérisations poussées au microscope électronique à
balayage, et au microscope à force atomique (cAFM) suggèrent que les molécules sont for-
tement dopées par la présence de nanoparticules supraconductrices à l’intérieur de la fente.
Ce sont ces nanoparticules qui induisent des corrélations supraconductrices à l’intérieur
des molécules d’ADN à basse température.

Ces résultats ouvrent de nouvelles perspectives pour permettre la conduction de l’ADN
à des échelles de plusieurs centaines de manomètres. Néanmoins même si plusieurs indices
expérimentaux convergent en ce sens, nous n’avons pas pu démontrer que la conduction
est effectivement assurée par les molécules d’ADN. En effet puisque des résidus métalliques
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Fig. 1.13 – Panneaux a,b : Images par microscopie à force atomique sur un échantillon
conducteur. L’image a) a été prise loin des fentes isolantes et montre l’étalement des
molécules loin de la région exposé au faisceau d’ions. L’image b) montre des molécules
d’ADN qui traversent une fentes isolante creusées au faisceau d’ions focalisé. Cet échantillon
à été détruit au cours des tentatives pour le contacter afin de réaliser des mesures à basse
température, sa résistance à température ambiante était de 1.8 kΩ après le dépôt des
molécules d’ADN (avant le dépôt des molécules la jonction était ouverte). L’image c. a
été prise par D. Klinov et montre également des molécules traversant une fente isolante
(probablement sur le même substrat).

sont présents dans la fente isolante, il est possible qu’ils soient réorganisés par le dépôt des
molécules d’ADN en phase liquide. Dans les expériences témoin sans molécules d’ADN
aucune conduction n’a été observé ce qui rend cette hypothèse peu probable. Toute-
fois elles ne permettent pas de l’exclure complètement. Par ailleurs nous avons essayé
de mener des expériences de photo-conductivité sous irradiation ultra-violette afin d’ob-
tenir une signature spécifique du rôle de l’ADN dans la conduction, mais sur plusieurs
échantillons la conduction a disparu à des échelles de temps trop rapides pour permettre
une caractérisation fiable. Il est possible que l’irradiation ultraviolette ait endommagé les
molécules d’ADN mais à cause du faible nombre d’échantillons conducteurs à notre dis-
position nous n’avons pas pu exclure que la conduction ait disparu à cause d’impulsions
électriques ayant endommagé les échantillons.

Les expériences sur l’ADN sont décrites en détail dans la seconde partie de la thèse,
je m’arrêterai donc à ce résumé succinct de nos expériences et des difficultés rencontrées
pour passer à une description de nos mesures sans contact sur les nanofils de silicium. Au
cours de ces mesures nous avons cherché à vérifier la possibilité de réaliser des mesures
sans contacts sur un système de nanofils en mesurant leur contribution à la constante
diélectrique du milieu. Ces mesures ont été faites grâce à des résonateurs supraconducteurs
multimodes, les fréquences de résonance des différents modes et leurs facteurs de qualité
dépendent respectivement de la partie réelle et imaginaire de la constante diélectrique de
l’environnement. Les nanofils même s’ils sont placés à proximité immédiate du résonateur,
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Fig. 1.14 – La courbe noire représente la résistance différentielle dV/di en fonction du
courant DC atravers une jonction sur laquelle des molécules d’ADN ont été déposées.
La température de mesure est de 100 mK. Cet échantillon est devenu conducteur après
un dépôt de molécules d’ADN avec une résistance à température ambiante de 10 kΩ.
Le transport à basse température, montre des signes de fluctuations supraconductrices.
Le fond coloré montre la dépendance de la résistance différentielle représenté par le code
couleur avec le courant en abscisse et le champ magnétique en ordonnée. Le jaune/violet
représente la conductance différentielle maximale/minimale. Le champ magnétique varie
de 0 à 5 Teslas et conduit à une diminution de la largeur du creux dans la dV/di sans pour
autant détruire complètement la supraconductivité. Ces champs critiques élevés suggèrent
l’influence de nanoparticules supraconductrices dont la présence a été confirmée par mi-
croscopie électronique et par microscopie à force atomique.

ne forment qu’une partie de son environnement électromagnétique : le résonateur repose
par exemple sur un substrat qui contribue lui aussi à la constante diélectrique totale.
Pour isoler la contribution des nanofils, une possibilité consiste à les éclairer avec de la
lumière afin de créer des porteurs dans les nanofils. Le substrat en saphire avec un “gap”
de 9.9 eV est en effet insensible à une lumière visible, alors qu’une lumière bleue d’énergie
d’environ 2.5 eV peut exciter des porteurs dans des nanofils de silicium avec un “gap”
∆ ≃ 1.2 eV. Pour pouvoir effectuer cette mesure sur de l’ADN il faudrait en revanche
avoir une radiation d’énergie plus élevée dans l’ultraviolet. Pour l’instant notre dispositif
expérimental ne permet pas d’éclairer avec une lumière ultraviolette à basse température.
Nous nous sommes donc concentrés sur le cas des nanofils de silicium, afin de valider notre
technique de mesure et de mieux comprendre les informations qu’on peut en extraire.

Des résultats expérimentaux typiques sont montrés en Figure 1.15. Le résonateur supra-
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Fig. 1.15 – L’image de gauche obtenue par microscopie électronique à balayage montre
les nanofils de silicium déposés sur un résonateur supraconducteur multimode. L’image de
droite représente le décalage de la fréquence de résonance et la diminution du facteur de
qualité en présence d’illumination par une lumière bleue. La température de l’expérience est
4.2 K. Le facteur de qualité est élevé (de l’ordre de 104) grâce à l’utilisation de matériaux
supraconducteurs ce qui assure une grande sensibilité à la mesure.

conducteur recouvert de nanofils de silicium, est éclairé par une diode bleue. Sous l’effet de
celle-ci on observe un décalage de la fréquence de résonance et une diminution du facteur
de qualité de la raie. La diminution du facteur de qualité résulte de la création de paires
électrons trou dans le silicium qui contribuent à dissiper l’énergie du champ micro-onde
dans le résonateur. Ce signal photo-conductif existe également sur les échantillons de Si-
licium massifs. En revanche le décalage de la fréquence de résonance n’a été observé que
pour les nanofils, en effet les porteurs photoinduits dans les nanofils sont très confinés et
se polarisent donc facilement. La photo-polarisabilité observée dans nos expériences, peut
permettre d’aborder sous un angle nouveau les propriétés des excitons dans les molécules.
En effet ceux-ci ne participent pas au transport électronique mais peuvent se polariser sous
une irradiation extérieure.

Les résultats sur les nanofils de silicium sont détaillés dans la seconde partie du ma-
nuscrit.



1.4 Application standard de Chirikov

Je vais conclure cette introduction par une description succincte d’un système non-
linéaire très simple mais représentatif des phénomènes subtils qui peuvent apparâıtre dans
d’autres systèmes non linéaires plus complexes : l’application standard de Chirikov. Ceci
me permettra de faire le lien entre la présentation plutôt expérimentale du chapitre sur
le transport non linéaire Chap. 1.2 et les concepts théoriques sous-jacents. En outre je
montrerai dans ce manuscrit que ce système itératif décrit le transport le long des canaux de
bord en présence d’irradiation micro-onde. Cette application est décrite par deux équations
couplées :

{
p̄ = p + K sin x

x̄ = x + p̄
(1.5)

Les quantités p̄ et x̄ dénotent les valeurs des variables p, x après une itération, K est
un paramètre sans dimension qui décrit à quel point le système est proche d’un système
intégrable ou d’un système chaotique. En raison de la périodicité de la fonction sin(x) la
dynamique peut être représentée sur un tore en prenant x = x(mod2π) et p = p(mod2π).

L’application standard de Chirikov Eq. (1.5) décrit en fait la dynamique d’un système
Hamiltonien :

H(p, x, t) =
p2

2
− K cos(x)

∑

n

δ(t − n) (1.6)

où la somme parcourt tout les entiers. Cet Hamiltonien décrit une série de propagations
libres, séparées par des à-coups réguliers qui changent l’impulsion p brutalement. En effet
en intégrant par rapport au temps les équations Hamiltoniennes du mouvement

{ dx
dt

= ∂H
∂p

dp
dt

= −∂H
∂x

(1.7)

sur une période on retrouve l’application Eq. (1.5). Il s’en suit que la dynamique engendré
par cette application conserve le volume dans l’espace phase. Cette propriété peut être
verifiée directement par le calcul du Jacobien :

∂(p̄, x̄)

∂(p, x)
=

∣∣∣∣∣
∂p̄
∂p

∂p̄
∂x

∂x̄
∂p

∂x̄
∂x

∣∣∣∣∣ =

∣∣∣∣∣

∂(p+K sinx)
∂p

∂(p+K sinx)
∂x

∂(x+p+K sinx)
∂p

∂(x+p+K sin x)
∂x

∣∣∣∣∣ = 1 (1.8)

Le comportement de cette application peut être exploré par des simulations numériques
en représentant les valeurs successives par prises la suite (p, x) au cours de l’itération
Eq. (1.5). Ceci revient en fait à construire une section de Poincaré de l’Hamiltonien
Eq. (1.6), les résultats numériques sont représentés sur la Figure 1.16 pour plusieurs valeurs



du paramètre K. Pour K ≪ 1 le comportement de l’application est proche de l’Hamiltonien
d’un pendule :

H(p, x, t) =
p2

2
− K cos(x) (1.9)

La durée entre les à-coups qui changent l’impulsion ( 1 dans les unités de l’Hamiltonien
Eq. (1.6) ) devient en effet très faible devant la période du pendule décrit par l’Hamiltonien
Eq. (1.9) T = 2π/

√
π ≫ 1, ce qui permet de remplacer les peignes de Dirac par leur

valeur moyenne sur la période et conduit à l’Hamiltonien du pendule. L’espace phase pour
K ≪ 1 est donc séparé en plusieurs résonances 2π périodiques en impulsion p, chacune
des résonances a une épaisseur maximale en impulsion de ∆p = 2

√
2K. Cette quantité

correspond à deux fois l’impulsion maximale pour laquelle le pendule Eq. (1.9) admet encore
des solutions périodiques. Entre les résonances, la dynamique est proche de celle d’une
particule libre d’Hamiltonien H = p2

2
. Ces deux régions sont séparées par des séparatrices

dont l’équation pour K ≪ 1 est bien décrite par l’équation de la séparatrice du pendule.
Lorsque la valeur du paramètre K augmente, des résonances secondaires apparaissent,

ceci ce voit bien par exemple sur la Figure 1.16 pour K = 0.2. Néanmoins la dynamique
reste périodique dans la plus grande partie de l’espace phase, sauf près des séparatrices où
des régions stochastiques confinées apparaissent. Le confinement des régions stochastiques
a en fait une origine mathématique très profonde, puisque la théorie Kolmogorov-Arnold-
Moser (KAM) montre que les régions stochastiques creés par une perturbation suffisam-
ment faible d’un Hamiltonien intégrable sont bornées par des courbes invariantes pour
une valeur suffisamment faible de la perturbation. Dans le cas de l’application standard
de Chirikov, l’Hamiltonien initial intégrable est H0 = p2

2
alors que le terme V (x, t) =

−K cos(x)
∑

n δ(t − n) joue le rôle de la perturbation.
Cependant lorsque la perturbation devient suffisamment forte la majorité des courbes

invariantes est détruite (voir Figure 1.16 pour K = 2). Ceci crée une large région stochas-
tique dans la quelle la variable p croit de manière diffusive et n’est plus bornée avec le
temps. Au sein de cette région des ı̂lots de stabilité subsistent encore autour de la position
des résonances pour K ≪ 1. Lorsque K ≃ 1, l’espace phase a une structure complexe où
les régions stochastiques et régulières occupent approximativement la même surface et se
mélangent entre elles.

La détermination de la valeur critique Kc du paramètre K pour laquelle des trajectoires
diffusives non bornées apparaissent a une grande importance du point de vue fondamental
et également en pratique. Par exemple si on imagine, que l’Hamiltonien décrit la dynamique
dans un piège, alors le seuil où la diffusion apparâıt correspond à une valeur des paramètres
où le confinement dans le piège commence à être détruit par la diffusion. B. Chirikov a
proposé un critère universel pour déterminer approximativement le seuil d’apparition du
chaos : le critère de recouvrement des résonances. Sans rentrer dans une discussion de ce
critère dans un cadre général, je vais juste montrer comment ce critère peut s’appliquer
sur l’exemple de l’application standard. Selon le critère de recouvrement des résonances le
chaos apparâıt lorsque les résonances voisines séparées de 2π dans la direction des impul-
sions commencent à se recouvrir. L’épaisseur des résonances en impulsion est donnée dans



l’approximation du pendule par ∆p = 2
√

2K, ceci conduit à une équation qui détermine
Kc

∆p = 2π → Kc = π2/2 ≃ 4.93 (1.10)

Les données de la Figure 1.16 confirment que le chaos se développe au fur et à mesure
que les résonances se rapprochent, cependant déjà pour K = 2 l’espace des phases est
chaotique hormis à l’intérieur des ı̂lots de stabilité. Des études numériques et analytiques
plus poussées ont montré que le seuil de transition vers le chaos se situe en réalité autour de
Kc ≃ 0.97. Le critère de recouvrement entre résonances surestime donc le seuil d’apparition
du chaos. Physiquement ceci est relié au fait que les résonances d’ordre supérieur n’ont pas
été prises en compte dans le critère simple Eq. (1.10). Une extension du critère qui tient
compte des harmoniques plus élevées conduit à Kc ≃ 1.2.

En conclusion, même si des méthodes analytiques plus sophistiquées ont été développées
depuis, le critère de recouvrement entre résonances reste le critère physique le plus simple
et universel pour décrire l’apparition du chaos. Un traitement approfondi des propriétés de
l’application standard et du problème de la transition vers le chaos est présenté dans les
références [23, 24, 25]. En physique mésoscopique, les états de bord en présence de micro-
onde, semblent décrits par l’application standard de Chirikov dans le régime intégrable
K < Kc, je ne discuterai donc pas des problèmes de transition vers le chaos dans la suite
de ce manuscrit. Cependant je crois qu’il était important de récapituler ici les propriétés
les plus simples de ce système très riche.



Fig. 1.16 – Sections de Poincaré de l’application standard de Chirikov dans l’intervalle
x ∈ (0, 2π)mod2π (en abscisse) et p ∈ (0, 4π)mod4π (en ordonnée) pour K = 0.1 (figure
noire), K = 0.5 (figure rouge), K = 1.0 (figure bleue), et K = 2.0 pour la figure violette.
Deux périodes sont représentées sur l’axe des ordonnées afin d’illustrer l’idée d’interaction
entres les résonances voisines.
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Chapitre 2

Non linear dynamics in two
dimensional electron gas

2.1 Transport models in classical and quantum me-

chanics

Macroscopic metallic electrical circuits are well described by the combination of Ohm
and Kirchoff laws. Only when electron transport is studied at smaller scales do the details of
scattering mechanisms become important due to the absence of self-averaging. For this pur-
pose more complete models are required. Low temperature transport measurements proved
very fruitful at introducing new concepts to solid state physics by investigating transport
in previously unattainable regimes. A broad temperature regime is well described by the
kinetic transport theory. In this models the electrons are described by the distribution
function f(p, t) of their momentum p at time t. The time evolution of the distribution
function is obtained from classical equations of motion and probability conservation in the
phase space. Quantum mechanics which is necessary to describe scattering mechanisms on
a microscopic level is introduced through collision integrals Icc(f) that describe the transi-
tion probabilities between states with different momenta. The transition rates can usually
be obtained from the Fermi-Golden rule which keeps the quantum part of the calculations
relatively simple. All these ingredients combine to yield the kinetic Boltzmann equation

∂f

∂t
+ qE(t)

∂f

∂p
= Icc(f) (2.1)

Here q is the carrier charge and E(t) is the electric field driving electron transport. In
general Icc(f) is a non-linear functional of the distribution function f and the kinetic
equation can not be solved explicitly. In order to obtain a solvable equation one notices
that the collision integral vanishes on the equilibrium distribution function f0. For small
perturbations around equilibrium the collision integral can be linearized leading to the
τ approximation Icc(f) = −(f − f0)/τ . The time τ is an overall relaxation time, which
usually depends on electron-impurity, and electron-phonon interactions. In this form the
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kinetic equation can be solved through perturbation theory in the quantity f − f0. In the
above simple example, this entails the usual Drude value for conductivity :

σ(ω) =
q2n

m

τ

1 + iωτ
(2.2)

where ω is the driving frequency and m is the carrier mass.
The kinetic equation describes successfully the temperature dependence of electrical

resistance in a broad temperature range. It also explains some general relations between
transport coefficients (for example the Wiedemann-Franz law). At last kinetic theory is
the starting point for the quantitative description of transport in semiconductor structures
where contrarily to metals extremely nonlinear current voltage I(V ) characteristics are
observed. Despite its successes the kinetic theory usually breaks down at sufficiently low
temperatures when quantum effects start to play a dominant role. A possible reason for
the dramatic failure of kinetic theory, is that at very low temperatures the system occupies
a nontrivial many-body ground state that can not be described as independent electrons
anymore. Perhaps the most spectacular realization of this scenario is the superconductor
transition discovered by Kamerlingh Onnes in 1911. To describe these behaviors theoreti-
cally innovative approaches had to be found, since no general method exists to establish the
ground state directly from a many body Hamiltonian. The Bardeen, Cooper, and Schrieffer
(BCS) theory is an historic example of a construction of this kind. Several other ground
states play a central role in solid state physics, for example the fractional quantum Hall
effect states in two dimensional electron gas and the Kondo ground state for metals with
dilute magnetic impurities. The observation of these new ground states, spurred intense ex-
perimental and theoretical studies and theoretical understanding was often achieved years
after the initial experiments.

Even when carriers can still be described as independent electrons, quantum interfe-
rences in a disordered potential can drastically modify the predictions of the kinetic theory.
This occurs in the localization metal insulator transition discovered theoretically by P. W.
Anderson. He showed that the random inference between waves scattered by random im-
purities lead to an exponential localization of the wave functions in real space. This in
turn leads to an exponential suppression of classical diffusion which is responsible of the
metal-insulator transition. This phenomenon is actually generic to wave propagation in di-
sordered media and spreads well beyond the realm of solid state physics. Important efforts
have been devoted to the observation of Anderson localization of light, and recently An-
derson localization was also observed in cold atom physics. At last dynamical localization
was a spectacular result in the field of quantum chaos.

Recently the intermediate regime where quantum fluctuations start to show up attrac-
ted considerable attention. These investigations, were made possible by the technological
progress in fabrication of small electronic devices where the electron phase could remain
coherent through the entire sample at low temperatures (typical devices have a size in
the micrometer range). In these samples the quantum mechanical contribution is still a
correction to the results of the kinetic theory, and an elegant description of electronic
transport was developed to takes into account interference phenomena. The field devoted
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Fig. 2.1 – Measurement of Aharonov-Bohm oscillations in a two dimensional electron gas
ring with perimeter of 6 µm

to study of this regime is called mesoscopic physics. One of the founding experiments of
mesoscopic physics was the observation of the Aharonov-Bohm interference pattern in the
magnetoresitance of small ring structures [1]. A typical experimental pattern measured at
low temperature in a two dimensional electron gas ring (2DEG) is shown on Fig. 2.1. It
has strikingly the features of an optical interference pattern. To describe this interference
phenomenon one must renounce to the point of view of the kinetic theory where carriers
are mainly treated as classical particles and include quantum mechanics directly into the
transport theory. A simple way to achieve this goal is to use the semi-classical formalism,
where conductance G is expressed as through the sum of the propagation amplitudes along
all paths in the sample. Different paths acquire different phase and interference appear in a
way similar to optical interferometers. In more formal terms, the expression for conductance
reads :

G =

∣∣∣∣∣
∑

i

Aie
iφi

∣∣∣∣∣

2

=
∑

i

|Ai|2 +
∑

i6=j

A∗
i Aje

i(φj−φi) (2.3)

Here Ai is the classical probability of the path i, while the term eiφi represents the phase
acquired during the propagation in the ring. The sum runs over all trajectories that span
between the two contacts of the Aharonov-Bohm ring. An example of typical trajectories
is shown on Fig. 2.2. This expression for G can be decomposed in two parts. The first
part consists of terms with i = j, it is a classical term similar to Drude conductance (see
Eq. (2.2)). The second term contains the contribution of the phase φi accumulated along
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Fig. 2.2 – Two typical trajectories (i) and (j) in an Aharonov-Bohm ring of size L that link
the two contacts of the ring. The area Sij delimited by the two trajectories is approximately
indicated in green. Purple disks represent elastic impurities with average distance Le. The
magnetic flux through the ring is noted Φ.

the classical path. In a semi-classical approximation this phase is given by :

φi =
S[ri(t)]

~
=

1

~

∫ τf

τ0

L(ri(t), r
′
i(t), t)dt (2.4)

where S[ri(t)] is the classical action acquired along trajectory ri(t) and L is the system’s
Lagrangian. I have also introduced the time τ0 when the trajectory leaves the left contact
and the time τf when it is absorbed in the reservoir on the right. To understand the
magnetic field dependence in the Aharonov-Bohm effect, it is enough to consider only the
magnetic field dependent part of the Lagrangian L = −er′(t) · A. The vector potential A
is related to the magnetic field through the relation B = rot A. With this simplification
the phase difference between the two paths shown in Fig. 2.2 becomes :

φi − φj = φ0
ij −

e

~

(∫

(i)

A(ri(t), t)dri −
∫

(j)

A(rj(t), t)drj

)
(2.5)

= φ0
ij −

e

~

∫

Sij

B · dS = φ0
ij −

eΦ

~
(2.6)

In the last step I have approximated the magnetic flux through the complicated domain Sij

enclosed between curves i and j by the average flux through the ring Φ, and I introduced
the notation φ0

ij for the magnetic field independent par of the dephasing φi−φj . The terms
in Eq. (2.3) can now be arranged in the approximate form :

G = G0 + GAH cos

(
2π

Φ

Φ0

)
, Φ0 =

e

h
(2.7)

which shows that the magnetic field period of the Aharonov-Bohm oscillations is given by
the field that induces a flux quantum Φ0 = e

h
in the ring. The conductance G0 is equal to the



classical conductance and the amplitude GAH is usually of the order of the conductance
quantum G0 = e2/h when temperature is low enough for the phase of the electrons to
remain coherent across the sample on a length scale Lφ called phase coherence length and
determined by inelastic interactions. At temperature T ≃ 100 mK, Lφ is of the order of a
few micrometers. Another important characteristic length-scale is the mean free path Le

which is determined by elastic scattering. Elastic processes do not destroy phase coherence,
since electron energy is conserved, but they blur the regular interference pattern predicted
by Eq. (2.7) as can be seen from the experimental data in Fig. 2.1. Usually mesoscopic
physics experiments take place in a regime the size L of the samples is in the range :
Le < L < Lφ (see Fig. 2.2).

The semi-classical model is very convenient to qualitatively understand interference
phenomena in mesoscopic devices, but quantitative results are difficult to derive in this
framework because it provides no rule to compute the sum over trajectories that appear in
Eq. (2.3). These sums may be evaluated in more rigorous theoretical approaches based on
Landauer-Buttiker or the Green function formalisms. However the accuracy is often achie-
ved at the expense of the physical transparency of the calculations. Therefore sometime
we will adopt an intermediate approach where a qualitative picture is obtained from the
semi-classical formulas and the missing parameters are estimated from a more involved
calculation.

The reduction of electrical devices to nanometric dimensions has revealed new exciting
quantum effects (with Aharonov-Bohm oscillations being one of the examples). However
some unexpected behaviors can still be understood from classical physics. An intuitive
example is the quenching of the Hall effect in small ballistic junctions of size L > Le.
Classical mechanics suggests that Hall effect can be observed only when the electrons have
time to describe at least one cyclotron orbit before leaving the junction (otherwise the
effect of magnetic field can be neglected). This predicts that Hall effect should decrease in
ballistic samples with channel size L ≪ vF /ωC where vF is the Fermi velocity and ωC is the
cyclotron frequency. This effect has indeed been observed by [72] however the theoretical
explanation did not emerge immediately. Indeed first theoretical explanations attempted
to model this effect in a purely quantum formulation. And the simple picture from classical
physics does not emerge easily in these approaches.

In summary depending on the context transport can be described more naturally with
different theoretical approaches. Kinetic theory is very successful when quantum mechanics
is restricted to a microscopic scale smaller than the sample size. But note that even if
this condition is satisfied kinetic-theory can break down for example if interactions among
carriers are too strong or if the details of the classical dynamics must be taken into account
more accurately. The Wigner crystal (formed for example by electrons trapped on a liquid
Helium surface) is an example where both these situations are realized. In the mesoscopic
regime quantum interferences start to play a role. These effects can be described only
if electrons are treated as waves, instead of an ensemble of particles with a well defined
momentum distribution function. However while the interferences appear naturally in these
theories some aspects of classical mechanics may be hard to recover. As we will see non-
linear transport often involves both aspects of quantum and classical physics and therefore



it will be important to choose the transport description most appropriate for the physical
context.

2.2 Non linear high frequency transport experiments

The previous section focused on the stationary (low frequency) linear conductance. As
can be seen straightforwardly from the Drude relation Eq. (2.2), the conductance G(ω)
at a finite frequency ω probes the characteristic time-scales of the system. In the Drude
formula only the elastic relaxation rate appears but in a mesoscopic samples additional
time-scales set-in for e.g. the diffusion time across the sample and the information which
could be extracted from G(ω) is very rich. However it is difficult to measure G(ω) directly
in a low temperature dilution fridge environment. Indeed for a frequency f = 1 GHz, the
electromagnetic wavelength is 30 cm. The high frequency measurement setup is located at
room temperature outside the cryostat. It is connected to the sample by wires typically
longer that 1 m, thus propagation becomes important. To actually measure G(ω) one needs
a 50 Ω adapted transmission line down to the mesoscopic sample in a constraining dilution
fridge environment. Although this direct approach allowed to obtain several key experi-
mental results including the measurement of AC-conductance Aharaonv-Bohm oscillations
[2] and the determination of mesoscopic capacitance [3], it is technologically very difficult
to achieve in practice.

Fig. 2.3 – a) Typical measurement scheme for the microwave induced photovoltaic vol-
tage VPV . b) Measurement scheme for measuring the change of sample conductance under
microwave irradiation.

Instead of attempting to measure the high frequency conductance G(ω) or σ(ω) directly,
it is easier to measure the effect of microwave irradiation on low frequency quantities. Such
experiments give access to information on the nonlinear response properties of mesoscopic
samples and are therefore highly interesting from a fundamental point of view. Two simple
experiments can be imagined in this direction. One can study the rectification proprie-
ties of a sample by measuring the DC-voltage that develops under microwave irradiation.



By analogy with semiconductor photovoltaic cells that develop a voltage under light ir-
radiation, we will call this behavior the photovoltaic effect (in the microwave frequency
range). Another possibility is to measure the change of DC-conductance G in the presence
of a microwave field. In the following I will call this a photoconductance measurement.
Photovoltaic and photoconductive effects require some non-linearity in the sample because
they measure the change of a DC quantity (voltage, conductance) under high frequency
irradiation. In the case of the photovoltaic effect a directed current appears in presence
of a zero mean force, such a behavior has attracted strong interest recently in connection
with transport in bio-systems where this phenomenon became known as ratchet [4, 5, 6].
Thus understanding ratchet properties in well controled microscopic devices could lead to
interesting insights on this generic phenomenon [7].
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Fig. 2.4 – Dependence of photovoltaic voltage and of photo-resistance on the microwave
frequency for the Ahoronov-Bohm ring from Fig. 2.1. As it is highlighted by the blue circles,
VPV can change sign as a function of frequency while δR is always negative.

A possible measurement of photovoltaic and photoconductive effects on an Aharonov-
Bohm ring is sketched in Fig. 2.3. For a photovoltaic effect measurement the sample is
connected directly on a low noise voltage amplifier. Since DC-voltage measurements at
low temperatures suffer from uncontrolled thermoelectric offsets, we need to measure pho-
tovoltaic effect at a low frequency. This is achieved by modulating the amplitude of the
microwave field at a low frequency f0 ≃ 700 Hz, a lockin detector then measures the com-
ponent of the voltage Vpv across the ring at frequency f0. Frequency f0 is chosen small
enough so that all the signal is in phase with the amplitude modulation (see Fig. 2.3.a ). In
photoconduction measurements, the sample is usually polarized with a small AC-current i
and voltage across the ring is detected at the current frequency (Fig. 2.3.b). The conduc-
tance is determined by the ratio G = i/V , in the linear response regime where i is small



enough for this ratio to be independent of current amplitude. The photoconductivity is
then the difference δG = GRF − G between the value of conductance GRF in presence of
microwaves and its equilibrium value G. In this case the amplitude of the microwave signal
is not modulated (yet both current and microwave amplitude modulation may be used in
a more sophisticated detection scheme). Sometimes it is more convenient to deal with the
photo-resistance δR = RPV −R ≃ − δG

G2 where RPV and R are sample resistances with and
without microwaves.

Both photovoltaic and photoconductive effects are non linear signals since the exciting
field and the measured signals vary at very different frequencies. Therefore compared to
the high-frequency conductance G(ω) their theoretical interpretation is more challenging.
A comparison between VPV and photo-resistance δR measured on the Aharonov-Bohm
ring from Fig. 2.1 is shown on Fig. 2.4. Both quantities show characteristic peaks as a
function of microwave frequency. The origin of these resonances are mainly reflections
along the transmission line which leads from the generator towards an antenna inside the
dilution fridge. This antenna is a short wire connected at the end of the transmission
cable and placed ≃ 1 cm away from the sample. It ensures a capacitive coupling between
the Aharonov-Bohm ring and the microwaves. Peaks correspond to wavelengths where a
maximal ac-potential is applied to the antenna, zero signal is measured for wavelengths
where this potential is zero.

An important feature of the results displayed on Fig. 2.4 is that the quantity δR is
negative for all frequencies. This property can be understood as heating of the sample
by the microwave irradiation. Indeed at sufficiently low temperature (T ≃ 50 mK in the
experiment) the electrons in 2DEG start to localize. Therefore a small increase in electron
temperature leads to a drop in sample resistance and δR < 0. On the contrary the sign
of the photovoltaic voltage VPV can change as a function of microwave frequency. This
suggests that photovoltaic voltage is a mesoscopic effect.

2.3 Magnetic field symmetry of non-linear transport

Electron transport occurs in devices which are driven out of thermal equilibrium by
an external potential V . Hence the current voltage characteristic i(V ) of the device can
be found only when the out of equilibrium distribution function (or density matrix in a
quantum description) has been determined. This can be achieved by solving the Kinetic
equation Eq. (2.1), which usually has to be supplemented by a Poisson equation relating the
potential distribution with the charge density distribution. In practise, the above approach
has to be implemented numerically and sophisticated codes of this type have been created
to describe semiconductor field effect transistors and diodes.

However at low enough bias V the external potential is a minor perturbation of the
equilibrium state of the system. The voltage range where this condition is observed, is
called the linear response regime. In this regime a simple linear current-voltage relation
holds i(V ) = GV . The conductance G does not dependent on the external voltage and
can be found from an average over the equilibrium state of the system. This idea was



first proposed by A. Einstein in his fluctuation dissipation theorem that relates mobility
and diffusion coefficients. The diffusion coefficient is invariant under the change of sign of
the magnetic field, which is a consequence of time reversal symmetry of the underlying
microscopic dynamics. Indeed the diffusion coefficient does not depend on whether we
travel forward or backward in time along a trajectory. As a result two terminal resistance
is symmetric with respect to the magnetic field (see also experimental data from Fig. 2.1) :

G(H) = G(−H) (2.8)

The argument described above relies on Einstein’s relation, which is valid only in the
simplest transport models. For example there is no direct relation between mobility and
diffusion coefficient if interaction among carrier is taken into account. However it is also
more general since the two main ingredients : a form of the fluctuation dissipation theorem
and magnetic field symmetry of the underlying equilibrium quantity hold for very different
transport models and regimes. Finally one may notice that Eq. (2.8) is a specific case of
the Onsager relation, which will be discussed in more detail later on in this thesis.

Fig. 2.5 – Low field dependence of the photovoltaic voltage at several RF frequencies.
Left : ω ≤ 1/τD the phase of the AB oscillations remains pinned to 0 or π at B = 0. Right
ω ≥ 1/τD the phase of the AB oscillations take any value between 0 and π. The vertical
line in the plots corresponds to zero magnetic field. The curves have been shifted vertically
for clarity. Even for low excitation frequencies ω ≤ 1/τD, a magnetic field asymmetry
appears when the magnetic field becomes larger than 10 Gauss. This effect is probably due
to electron-electron interactions.

As we stressed in the previous paragraph Eq. (2.8) holds only in the linear response
regime, but it is interesting to understand physically why non linear transport may start
to deviate from this rule. For this reason we have studied the magnetic field symmetry
properties of the rectified voltage Vpv in an Aharonov-Bohm ring. In the previous section
we showed the behavior of Vpv as a function of microwave frequency at zero magnetic field.



We now choose several frequencies corresponding to peaks of the photovoltaic effect and
measure their dependence on magnetic field. The experimental results are summarized on
Fig. 2.5. The photovoltaic (PV) voltage varies both in sign and amplitude with magnetic
field around a zero average value. This clearly indicated the mesoscopic origin of this PV
Voltage. The magnetic field dependence of the PV voltage is reproducible for a given
frequency but strongly differs from one frequency to the other. One may see that Vpv

presents Aharonov-Bohm oscillations similar to those observed on the magnetoresistance
(aperiodic fluctuations also appear because of the flux entering inside the 2DEG channels
of the ring). These results show that mesoscopic systems behave as diodes which polarity
depends on quantum interferences and can be thus inverted by applying a magnetic field
or changing the RF frequency. The typical amplitude of the photovoltaic signal is 100
times larger than on metallic rings [44]. This difference can be easily related to the value
of the resistance of GaAs samples, of the order of 6 kΩ, to be compared to several tens
of Ω for metallic samples. The maximum amplitude measured at the resonances of our
experimental setup is of the order of 0.3 Re/τD and only slightly varies with frequency for
a given injected power on the resonances of our experimental set-up.

We now turn to the analysis of the magnetic field symmetry of the PV-voltage. For low
frequencies f < 3 GHz the dependence on magnetic field is mainly symmetric Vpv(H) =
Vpv(−H), while at higher frequencies a completely asymmetric dependence is observed. In
the low frequency regime the Aharonov Bohm oscillations of the PV voltage exhibit either
a maximum or a minimum at zero field up to f = fc/2, i.e. their phase is either equal to 0
or π. On the other hand this phase takes random values at higher frequencies. We attribute
these effects to the time reversal symmetry breaking induced by the high frequency electric
field experienced by an electron diffusing around the ring. However this can occur only at
high enough frequencies, otherwise the microwave effect is similar to local electrostatic
gating and does not break microscopic time reversal symmetry.

The typical time scale for electron transport across the ring in the diffusive transport
regime is the diffusion time across the sample τD = L2/D. Here L is the distance between
contacts (half a perimeter) and D is the diffusion rate. In Table 2.1 we summarize the main
characteristics of the sample and give the value of the diffusion time. We find that the
transition to a magnetic field asymmetric PV voltage indeed occurs for frequencies higher
than fc = 1/(2πτD) = 3.5 GHz. The energy Ec = hfc = ~/τD that is obtained from the
diffusion rate is called the Thouless energy. It plays a central role in mesoscopic physics
and sets the typical energy scale for quantum transport phenomena. In our experiment
this energy Ec ≃ 170 mK is very small compared to the Fermi energy EF ≃ 150 K that
determines classical conductance (for example through the Drude formula). This regime
where the energy scales are clearly separated Ec ≪ EF corresponds physically to a semi-
classical regime with weak disorder (no strong localization). From a theoretical point of
view this allows to treat the disorder potential using perturbation theory. Diagrammatic
techniques allow to sum the contributions of the disorder potential to all orders, which leads
to highly accurate theoretical predictions on weak localization and universal conduction
fluctuations in mesoscopic samples.

In the next section we present a semiclassical analysis which explains the dependence



Mean perimeter of the ring 2L 6 µm
Width W= 0.2µm

le 2µm
D = vF le/2 0.2m2s−1

τD = L2/D 0.45 10−10s
fc = 1/(2πτD) 3.5GHz
Ec = ~D/L2 170mK

Phase coherence time τφ 10−10s

Tab. 2.1 – Characteristics of the ring. W , le are deduced from weak localization measu-
rements on wires etched in the same heterojunction with the same width. Note that the
investigated frequency range between 2 and 20 GHz corresponds to to a range of tempe-
rature between 0.1K and 1K.

of magnetic field symmetric and anti-symmetric components of the PV-voltage as a func-
tion of microwave frequency. This analysis allows to understand why the Thouless energy
determines the frequency scale for the transition from the symmetric to asymmetric regime.

2.4 Semi-classical model for the origin of magnetic

field asymmetry

In this section, we derive approximate expressions for the photovoltage across a 1D
mesoscopic conductor starting from the semi-classical expression of conductance. I will
note Ipv+ and Ipv− the magnetic field symmetric and antisymmetric components of the
photovoltage respectively.

In the semi-classical approximation (kf le >> 1 ) it is possible to express the conduc-
tance at zero temperature in terms of interferences using Eq. 2.3. To describe the effect
of the magnetic field, it is useful to write this expression in a form that directly leads to
Onsager relations G(B) = G(−B) in the absence of microwave driving.

G =
∑

i,j

AiAj(cos(φj − φi) + cos(φ−j − φ−i)) (2.9)

In this expression the sum is taken on all possible classical trajectories leading from contact
A to contact B. The trajectory −i is obtained by moving along the trajectory i in the
opposite direction, and the phases φi and φ−i are defined as the integral of the system’s



Lagrangian L(v, r, τ) :

φi =
1

~

∫

i

L(v(τ), r(τ), τ)dτ (2.10)

=
1

~

∫

i

(
mv2(τ)

2
− eA(r(τ), τ)v(t) + eV (r(τ), τ)

)
dτ (2.11)

φ−i =
1

~

∫

i

L(−v(τi − τ), r(τi − τ), τ)dτ (2.12)

Here V (r, τ),A(r, τ) are the scalar and vector potentials and τi is the time needed to reach
contact A starting from contact B along the trajectory i. In the case where the external
fields are stationary, the particle energy is conserved and only trajectories at the Fermi
energy contribute to the conductance. If we assume now that the potential in the leads is
stationary and that only the mesoscopic ring is exposed to microwave field, the particle
energy is conserved inside the leads, but the initial energy in contact A can differ from
the final energy in contact B. In the following, we will assume for simplicity that as in the
stationary case the initial and final energy are both equal to the Fermi Energy EF . This
approximation is questionable at very high frequency ωτD ≫ 1

In the presence of a static magnetic field B = rotA = rotB×r
2

, the phases are given
by :

φi = φ0
i + αiB, φ−i = φ0

i − αiB (2.13)

where φ0
i = 1

~

∫
i

mv2(τ)2

2
dτ . αi = e

2~

∫
i
v(τ)×r(τ)dτ . By inserting these expression in Eq. 2.9,

one can show that

G(V ) = 2
∑

i,j

AiAj cos(φ0
ij) cos(αijB) (2.14)

with φ0
ij = φ0

i − φ0
j and αij = αi − αj = 2πSij/φ0.

Under the influence of a radiofrequency field, the values of the phases are changed by
time dependent quantities δφi, δφ−i which are proportional to the amplitude of the RF
field

φi = φ0
i + αiB + δφi (2.15)

φ−i = φ0
i − αiB + δφ−i (2.16)

At finite frequency the increments δφi and δφ−i are different, leading to the appearance of
a nonlinear component in the conductance that is odd upon the inversion of magnetic field.
The time dependent conductance G(t) can then be decomposed in a symmetric G+(t) and
antisymmetric G−(t) part as a function of magnetic field :

G(t) = G+(t) + G−(t)

=
∑

i,j

AiAj

(
cos(φ0

ij + δφij) + cos(φ0
ij + δφ−ij)

)
cos(αijB)

−
(
sin(φ0

ij + δφij) − sin(φ0
ij + δφ−ij)

)
sin(αijB)



After averaging the time dependent current I(t) = G(t)V cos(ωt) over an oscillation per-
iod, we find the symmetric Ipv+ and antisymmetric Ipv− components of the photovoltaic cur-
rent Ipv =< I(t) >t. These quantities are respectively equal to Ipv+ =< G+(t)V cos(ωt) >
and to Ipv− =< G−(t)V cos(ωt) >. First we will estimate the amplitude of the photovoltaic
current Ipv+ even in magnetic field. In the limit of small phase shifts δφi, δφ−i we have

Ipv+ =< G+V cos(ωt) >t= −2V <
∑

i,j

AiAj sin(δφ0
ij)(δφi + δφ−i) cos(αijB) cos(ωt) >t

On has to estimate terms of the form :

< δφi cos(ωt) >t =<
e

~
cos(ωt)

∫ t+τi

t

Ex cos(ωτ)xi(τ)dτ >t (2.17)

= − e

2~

∫ τi

0

Ex cos(ωτ)xi(τ)dτ (2.18)

∼ eV

~

sin(ωτi)

ω
(2.19)

Where xi(τ) is the x coordinate of the i-th trajectory, τi the time needed to go from point
A to point B and V = Ex|AB| is the AC-voltage. A similar estimate holds for δφ−i leading
to

Ipv+ ∼ eV 2

~

∑

i,j

AiAj sin(φj − φi) cos(αijB)
sin(ωτi)

ω
(2.20)

In the high frequency region ωτD ≫ 1, sin(ωτi) is essentially a random phase, and leads
(similarly to cos(αijB)) to conductance fluctuations of the order e2

~
√

ωτD
at high frequency.

This property will be derived in the next section using a more sophisticated theoretical
approach.

Hence

Ipv+ ∼ e3V 2

~2ω
√

ωτD
(ωτD ≫ 1) (2.21)

In the low frequency regime the quantity sin(ωτi)/ω ∼ τi has fluctuations of the order
τD around its average value, and the conductance fluctuations are of the order e2

~
therefore

Ipv+ ∼ e3V 2τD

~2
(ωτD ≪ 1) (2.22)

The term antisymmetric in B is zero in the absence of rf-field :

G− =
∑

i,j

AiAj cos(φj,i,0) sin(αj,iB)(δφj,i − δφ−j,−i) (2.23)

= 2
∑

i,j

AiAj cos(φj,i,0) sin(αj,iB)(δφj − δφ−j) (2.24)



In the presence of an RF-field the component of the photovoltaic current antisymmetric
in field is calculated from :

Ipv− =< G−V cos(ωt) >t=< 2V
∑

i,j

AiAj cos(φj,i,0) sin(αj,iB)(δφi(t) − δφ−i(t)) cos(ωt) >t

δφi(t) − δφ−i(t) =
−eEx

~

∫ τi

0

dτx(τ) × (cos(ωτ + ωt) − cos(ω(τi − τ) + ωt))

This leads to a term in sin(ωt) and a term in cos(ωt). When calculating Ipv− =< δG−(V (t))V cos(ωt) >t

we keep only the term in cos(ωt). This means that we have neglected the imaginary com-
ponent of the linear conductance induced at finite frequency by quantum interferences
[2].

< (δφi − δφ−i) cos(ωt) >t (2.25)

=
eEx

~
sin(ωτi/2)

∫ τi

0

dτx(τ) sin(ω(τ − τi/2)) (2.26)

∼ sin(ωτi/2)
√

(δφ)2 (2.27)

Bellow follow the calculation of the mean square phase difference < (δφ)2 > inspired
by reference [8].

< (δφ)2 > (2.28)

=
(eEx)

2

~2

∫ τi

0

∫ τi

0

dτ1dτ2 × sin(ω(τ1 − τi/2)) sin(ω(τ2 − τi/2)) < x(τ1)x(τ2) > (2.29)

=
(eEx)

2

~2

∫ τi

0

∫ τi

0

dτ1dτ2 × sin(ω(τ1 − τi/2)) sin(ω(τ2 − τi/2))Dmin(τ1, τ2) (2.30)

=
(eEx)

2D

~2

2ωτi(2 + cos(2ωτi)) − 3 sin(2ωτi)

2ω3
(2.31)

In the low frequency limit ωt → 0 we recover the result of reference [8]. In the high
frequency regime, ωt ≫ 1, < δφ2 > decays ∝ 1/ω2 :

Omitting numerical factors, we can estimate the induced dephasing by a microwave
field :

< (δφ)2 > ∼ (eExω)2Dτ 5
D

~2
, ωτD ≪ 1 (2.32)

< (δφ)2 > ∼ (eEx)
2DτD

ω2~2
, ωτD ≫ 1 (2.33)

where τD is the mean diffusion time in the ring. We then have :
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Fig. 2.6 – Qualitative dependence on frequency of the magnetic field symmetric : Ipv+ and
antisymmetric : Ipv− components of the PV current.

In the low frequency regime :

Ipv− ∼ V
e2

~
ωτD

√
(eV ω)2τ 4

D

~2
∼ e3V 2

~2
ω2τ 3

D (2.34)

In the high frequency regime :

Ipv− ∼ V
e2

~
√

ωτD

√
(eV )2

ω2~2
∼ e3V 2

~2ω
√

ωτD
(2.35)

The expected qualitative behavior is summarized on Fig. 2.6. According to our calcu-
lations the photovoltaic current tends to an even function of magnetic field in the zero
frequency limit. This however is not true and it was shown both theoretically [9, 10, 11]
and experimentally [12] that a finite asymmetry survives even in the zero frequency limit
due to the presence of electron-electron interactions. Of course this effect is not captured
in our semiclassical model that does not take electron-electron interactions into account.
An extension of the semiclassical approach that includes electron-electron interactions is
described in [12].



2.5 Universal conductance fluctuations at finite fre-

quency

In the previous section I used the dependence of the amplitude of the universal conduc-
tance fluctuations as a function of frequency to obtain the typical value of the sum over
classical classical paths

∑
i Aie

iφi where Ai are classical probability amplitudes and φi are
quantum phases. This allowed to derive the scaling relations that led to the qualitative
picture Fig. 2.6 where even and odd components of the typical photovoltaic current are
shown as a function of microwave frequency.

In this section I develop in more detail the calculation of the amplitude of the Universal
conductance fluctuation at finite frequency ω using the Green function formalism and
deriving the scaling relation :

< (δReG(ω))2 >∝ e4

~2

Ec

~ω
(2.36)

The calculation described in this chapter is a finite frequency extension of the zero
frequency universal conductance fluctuation (UCF) theory. An excellent introduction to
UCF theory can be found in [13], hence I mainly focus on the steps of the calculation
where the frequency enters explicitly and highlight the differences with the static case that
is treated in detail in [13]. The starting point of the calculation is the Kubo formula for
conductivity σ(ω) as a function of the Green functions of a diffusive wire.

σ(ω) = s
~

2πΩ

∫
dǫ

f(ǫ) − f(ǫ − ~ω)

~ω
Tr[jxG

R
ǫ jxG

A
ǫ−~ω] (2.37)

Here GR,A are the retarded/advanced Green functions, that are defined through the
relation

ĜR,A(ǫ) =
1

ǫ − Ĥ ± i0
(2.38)

where Ĥ is the Hamiltonian of a one dimensional wire with a disorder potential V (x)

Ĥ = − ~
2

2m

∂2

∂x2
+ V (x) (2.39)

while the current operator operator in Eq. (2.37) reads ĵx = (ie~/m)∂/∂x. Note that the
system volume Ω is present in the denominator and s is the spin degeneracy.

One can check easily that the conductance obtained from the Kubo formula obeys the
relation

σ(ω)∗ = σ(−ω) (2.40)



Indeed

σ(ω)∗ = s
~

2πΩ

∫
dǫ

f(ǫ) − f(ǫ − ~ω)

~ω
(Tr[jxG

R
ǫ jxG

A
ǫ−~ω])∗ (2.41)

= s
~

2πΩ

∫
dǫ

f(ǫ) − f(ǫ − ~ω)

~ω
Tr[GR

ǫ−~ωjxG
A
ǫ jx] (2.42)

= s
~

2πΩ

∫
dǫ

f(ǫ) − f(ǫ − ~ω)

~ω
Tr[jxG

R
ǫ−~ωjxG

A
ǫ ] (2.43)

= s
~

2πΩ

∫
dǫ

f(ǫ′) − f(ǫ′ + ~ω)

−~ω
Tr[jxG

R
ǫ′jxG

A
ǫ′−~ω] (2.44)

= σ(−ω) (2.45)
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Fig. 2.7 – a) Diagrammatic representation of the Drude conductance, straight lines are
retarded disordered averaged Green functions while dotted lines are advanced Green func-
tions (see Eq. 2.47). b) Diagrammatic representation of a contribution to the correlator
< δσ(ω, ǫ)δσ(ω′, ǫ′) >T , neighboring dotted and continuous line represent a Diffuson or a
Cooperon term and squares represent Hikami boxes.

The Green function in the Kubo formula depends on a random potential and can not
be obtained analytically. However it is possible to derive the statistical properties of the
conductance by calculating disorder averaged quantities directly. For example in order to
find the disorder averaged Green function < GR >, one can average the series expansion
of the Green function as a function of the disorder potential.

< GR,A >=< GR,A
0 + GR,A

0 V GR,A
0 + GR,A

0 V GR,A
0 V GR,A

0 + .... > (2.46)

In this expansion GR
0 is the Green function defined by Eqs. (2.38,2.39) in the absence of

disorder potential V = 0. The average of each term over disorder can be done explicitly



in the case of a Gaussian-delta correlated disorder, then the dominant terms in Ec/EF are
resumed leading :

GR,A(k, ǫ) =
1

ǫ − ǫk ± i ~

2τe

(2.47)

In this expression ǫk = ~2k2

2m
is the carrier dispersion relation and τe is the mean free path.

With the disorder averaged Green functions it is possible to calculate the classical
contribution to conductance. This is achieved by neglecting the correlation terms in the
Kubo Formula Eq. (2.37) :

< jxG
R
ǫ jxG

A
ǫ−~ω >≃ jx < GR

ǫ > jx < GA
ǫ−~ω > (2.48)

The resulting approximation can be conveniently represented in a diagram shown on
Fig. (2.7.a) , since the disorder averaged Green functions are diagonal in the plane wave
basis (translational invariance is recovered after disorder average) the trace in the Kubo
formula can be readily calculated, and one recovers the Drude formula Eq. (2.2). However
by keeping cross correlation terms in the product jxG

R
ǫ jxG

A
ǫ−~ω, the Green function method

can keep track the contributions resulting from quantum interferences that lead to weak
localization and universal conductance fluctuations while this is not possible in the Kinetic
theory.

I will now proceed to the calculation of the correlators

< δσ(ω, ǫF )δσ(ω′, ǫ′F ) >T (2.49)

where the average is taken over all disorder realization and the thermal distributions at
temperature T , ω and ω′ are the frequencies while ǫF and ǫ′F represent the position of the
Fermi-level.

One of the possible contributions to this correlator is shown as a diagram on Fig. (2.7.b),
note that these calculations are very similar to UCF calculations at zero frequency and for
this reason I will not explain in detail the calculations corresponding to diagrams such as
Fig. (2.7.b).

The final expression for the conductance correlator can be cast in the following form

< δG(ω, ǫF )δG(ω′, ǫ′F ) >T =

∫
dΩ

T
G(

ω

T
,
ω′

T
,
Ω

T
)F (ω, ω′, Ω + ǫ′F − ǫF ) (2.50)

(in order to simplify notations we have set ~ = 1, and measure frequency in energy units).
In this expression the function G arises from integration over the Fermi-distributions

1

T
G(

ω

T
,
ω′

T
,
Ω

T
) (2.51)

=

∫
dǫ

f(ǫ) − f(ǫ − ω)

ω

f(ǫ + Ω) − f(ǫ + Ω − ω′)

ω′ = (2.52)

=
eΩ/T

ωω′

(
Ω − eω/T (Ω + ω − eΩ/T ω)

(−1 + eΩ/T )(−1 + e(Ω+ω)/T )
+

Ω − ω′

eΩ/T − eω′/T
+

eω/T (Ω + ω − ω′)

−e(Ω+ω)/T + eω′

)
(2.53)



and has the property

G(ω, ω′, Ω) = G(ω′, ω,−Ω) (2.54)

which can easily be checked from the integral representation of G.
The function F stems from the Diffuson and Cooperon terms inside the diagrams similar

to Fig. (2.7.b) :

F (ω, ω′Ω) = 4

(
se2D

hL2

)2
(

2
∑

q

(Pd(q,−Ω + ω′)Pd(q, Ω + ω) +
∑

q

Pd(q,−Ω + ω′)2 + Pd(q, Ω + ω)2

2

)

(2.55)

I remind that in the Diffusion term only the average along identical diffusion paths is kept
in the correlators < GAGR > whereas the Cooperon term retains only the contribution
of trajectories that are conjugated by time reversion symmetry. As a consequence, the
Cooperon contribution tends to vanish in presence of a magnetic field because it breaks
time reversal symmetry. The function Pd(q, ω) is the inverse of the diffusion operator in
Fourier space, its expression is derived in [13] and reads :

Pd(q, ω) =
1

−iω + Dq2
(2.56)

In the equations Eqs. (2.55,2.56) D is the diffusion constant, L is the wire length and s = 2
is the spin-degeneracy.

In the case of a one dimensional wire the expression for F can be cast in a more explicit
form :

F (ω, ω′, Ω) =

= 4s2

(
e2

h

)2∑

n>0

2
1

iΩ−ω′

Ec
+ π2n2

1

−iΩ+ω
Ec

+ π2n2
+

1

2

(
1

iΩ−ω′

Ec
+ π2n2

)2

+
1

2

(
1

−iΩ+ω
Ec

+ π2n2

)2

(2.57)

By inserting Eqs. (2.53,2.57) inside the expression of the correlator from Eq. (2.53) it
is possible to calculate numerically the behavior of the correlator as a function of various
system parameters. Figure Fig. (2.8) shows the behavior of the correlation function at zero
temperature and for ǫF = ǫ′F , it represents the amplitude of real/imaginary conductance
fluctuations as a function of frequency. At frequencies ω ≪ Ec, the conductance has mainly
a real part hence UCF mainly appear on the real part of conductance with a typical
value < (δReG)2 >≃ 2

15
(se2/h)2 which is known from zero frequency calculations. In this

low frequency regime, the amplitude of the fluctuations on the imaginary conductance
decays as a power law which is well approximated by the relation < (δImG)2 >≃ 2 ×
10−3(se2/h)2(ω/Ec)

2. This decay actually follows the behavior of the mean value of the
imaginary resistance than scales like ImG ∝ τeω at low frequencies. However the cutoff
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Fig. 2.8 – Amplitude of universal conductance fluctuations for real/imaginary part of
conductance as a function of frequency at zero temperature.

ω ≪ 10Ec ω ≫ Ec

< (δ ReG)2 > 2
15
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)2
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(
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)2
Ec

ω

< (δ ImG)2 > ≃ 2 × 10−3
(

se2

h

)2 (
ω
Ec

)2

≃ 2
(

se2

h

)2
Ec

ω

Tab. 2.2 – Possible regimes for real/imaginary universal conductance fluctuation amplitude
as function of frequency. The sign ≃ indicates that the numerical constant was determined
from a fit to the numerical data from Fig. 2.8 in the asymptotic regime.

frequency is the Thouless energy Ec for universal conductance fluctuations while it given
by the elastic rate for the mean Drude conductance. At high frequencies ω ≫ Ec the
fluctuation amplitude of real and imaginary components of conductance are equal and their
dependence on frequency is well described by the relation < (δImG)2 >=< (δReG)2 >≃
2(se2/h)2(Ec/ω). Hence our numerical data shows that the typical UCF amplitude decays
as δG ∝

√
Ec/ω at high frequency, note that the same dependence is observed as a function

of temperature δG ∝
√

Ec/T when temperature is low enough for phase coherence to
be preserved across the entire sample. In this respect frequency and temperature play a
similar role in UCF amplitude damping. Finally note that the transition from the low to
high frequency regime occurs at ω ≃ 10Ec. The results of this section are summarized in
Table 2.2.



2.6 Photo-magnetism in closed mesoscopic samples

In the previous sections we considered non linear transport in connected samples. It was
shown that due to the asymmetry of the disorder potential inside a mesoscopic sample,
an AC electromagnetic field can create a stationary current across the sample. In the
case where the sample is not connected to an external electrical circuit two scenarios are
possible. The current created by the microwave field can be compensated by a potential
drop across the sample which causes the total current to cancel. However it is also possible
that the photo-induced currents start to forms closed loops inside the sample. In this
hypothesis a stationary orbital momentum develops in the sample even at zero applied
magnetic fields. This effect is very different from equilibrium persistent currents, which are
a purely quantum mechanical effect. Indeed it is well known that a magnetic field gives
no magnetization in a classical system at thermal equilibrium (see e.g. [15]). However in
presence of microwave driving the sample may reach an out of equilibrium state, where a
stationary magnetization exists even in a classical regime.

The physical origin of this dynamical magnetization can be seen already from a simple
model of two decoupled dissipative oscillators for which a monochromatic driving leads
to a certain degree of synchronization with the driving phase [14]. This phenomenological
approach was proposed by Magarill and Chaplik [16] who gave first estimates for photoin-
duced magnetism in ballistic nanostructures.

In this approach the electron dynamics inside a two-dimensional (2D) dot is described
by a the classical Hamiltonian

H =
p2

x + p2
y

2m
+ U(x, y) − xfx cos ωt − yfy cos ωt (2.58)

where m is electron mass and px,y and x, y are conjugated momentum and coordinate.
An external force fx,y is created by a linear-polarized microwave field with frequency ω.
The polarization angle θ and the force amplitude f are defined by relations fx = f cos θ,
fy = f sin θ. For simplicity we consider the case of an harmonic potential

U(x, y) =
m(ω2

xx
2 + ω2

yy
2)

2
(2.59)

where ωx,y are oscillation frequencies in x, y directions (generally non equal).
The component of a magnetic moment along a system symmetry plane vanishes In

presence of irradiation, this holds when both the mesoscopic sample and the microwave
field are invariant under the plane symmetry. For a two dimensional system the 2DEG
surface is a natural symmetry plane and the momentum must be perpendicular to the
2DEG surface. When the microwave field is not oriented along x or y directions, this is the
only existing symmetry plane and momentum is not forbidden by spacial symmetries.

However magnetic moment changes sign under time reversion t → −t, and a time re-
versal symmetric microscopic dynamics can not lead to the onset a stationary magnetic
moment. Time reversal symmetry can be broken by dissipative processes, that introduce



irreversibility in the microscopic dynamics For this reason we assume that electrons expe-
rience an additional friction force F = −γp where γ is a relaxation rate. The dynamical
equations of motion in this case are linear and read :

{
x′′ + γx′ + ω2

xx = fx

m
cos(ωt)

y′′ + γy′ + ω2
yy = fy

m
cos(ωt)

(2.60)

U(x, y)

y

x

E cos(   t)ω

Fig. 2.9 – Electron motion in the potential U(x, y) = m(ω2
xx

2 + ω2
yy

2)/2 described by
equations of motion : Eq. 2.60.

At times t ≫ 1/γ, the solutions is found easily using the complex representation

{
x(t) = ℜ eiωtfx/m

ω2
x−ω2+iγω

= ℜ X(t),

y(t) = ℜ eiωtfy/m
ω2

y−ω2+iγω
= ℜ Y (t),

(2.61)

where ℜ marks the real part. In general, it corresponds to an elliptic rotations of the
electron inside the harmonic trap.A typical trajectory is shown on Fig. 2.9.

The kinetic momentum associated with these trajectories is obtained as :

L = m 〈x(t)vy(t) − y(t)vx(t)〉

= ℜ 1

m2

−iωfxfy

(ω2
x − ω2 + iγω)(ω2

y − ω2 − iγω)
. (2.62)
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Fig. 2.10 – a) Chaotic trajectory inside a billiard with specular walls in presence of a
microwave field and dissipation. b) Average flow inside the billiard under microwave irra-
diation. While the trajectory seems completely chaotic in the (x, y) plane, the average flow
shows a rotating (turbulent) structure with a finite orbital moment.

From a physical viewpoint an average momentum appears due to a phase shift between
oscillator phases induced by dissipation and an orbit takes an elliptic form with rotation
in one direction. In some sense, due to dissipation the two oscillators become synchronized
by external force [14]. As usual [15], an average orbital momentum L for one electron gives
a total magnetic moment M = NLe/2mc where N is a number of electrons in a quantum
dot.

The photomagnetic effect that I presented above share some common features with the
inverse Faraday effect where a medium is magnetized by a beam of circularly polarized
radiation [17, 18, 19]. However the inverse Faraday effect vanishes for linear polarizations
[17], while the geometrical asymmetry of the confining potential dot makes possible the



onset of a finite magnetization for linearly polarized microwave radiation even at zero
magnetic fields (the analogy between inverse Faraday and photomagnetic effects was put
forward in [20]) . In this respect the photomagnetic effect, is also distinct from non-linear
quantum coherence effects in driven mesoscopic systems where a photo-induced magnetic
moment was predicted only at non zero magnetic fields [21].

The rather phenomenological approach based on dissipative classical dynamics can be
extended to the case of quantum electrons inside an harmonic confining potential where
the electron distribution is governed by a Fermi-Dirac distribution [22]. In this case the
effects of microwave field on the quantum dot can be considered in the frame of the Kubo
formalism for the density matrix (see e.g. [13]). This analysis essentially confirms the above
results.

At last the above example is completely integrable and one may wonder if these statio-
nary orbital currents exist in the more generic case of a chaotic dot. In order to understand
this case we have studied numerically the case of a Bunimovitch stadium under the driving
of an external AC field (see Fig. 2.10). In this model we have assumed specular collisions
on the wall, and the presence of a (Metropolis) thermostat equilibrating the electron distri-
bution function to the Fermi-Dirac distribution (for more detail [22]). A typical trajectory
inside the stadium is chaotic and fills ergodically the interior of the stadium (see for e.g.
Fig. 2.10). Hence the onset of a magnetization in this model, can not be understood in term
of simple elliptic trajectories. Yet Fig. 2.10.b reveals that there is a an average electron
current circulating inside the stadium and hence a finite magnetization.

The amplitude of the circulating orbital current I can be estimated as :

I ∼ me3E2L3

~3
√

n
∼ evF

L

(
eEL

Eth

)2

, Eth = ~vF /L (2.63)

In this expression m is the carrier mass, E is the AC-electric field and L is the typical size
of the dot. Note that the orbital current can be cast in two equivalent forms, depending if it
is expressed as a function of the 2DEG carrier density n or of the Fermi-velocity vF . In the
later case, the current can be interpreted as the equilibrium persistent current increased by
the square of the ratio between the external AC potential drop eEL and effective Thouless
energy Eth = ~vF/L. This expression assumes that the mean free path is larger than the
dot size and that transport in the dot is ballistic. We have also assumed that the induced
orbital current does not depend on the energy relaxation rate (for e.g. γ in the harmonic
oscillator model). Note that the latter assumption is not fully consistent with monte-carlo
simulations of the dot dynamics.

Using the Biot-Savar law we can estimate the magnetic field H seen by a detector at
distance ∼ L from the quantum dot.

H ∼ µ0
I

L
∼ µ0me3E2L2

~3
√

n
(2.64)

For typical parameters n ≃ 1011 cm−2, L ≃ 10 µm and E ≃ Volt/cm we can estimate the
induced magnetic field H ≃ 75 mGauss. A magnetic field of this amplitude can be detected



with a 2DEG Hall probe. The advantage of this setup is that both the quantum dot and
Hall detector are can be fabricated in the same material which greatly simplifies on-chip
integration.

2.7 Fabrication of the Hall Probes

In this chapter I describe the fabrication steps which allow to prepare a ballistic billiard
coupled to a Hall detector in a two dimensional GaAs/GaAlAs electron gas (2DEG). For
our experiments on photo-magnetism we used a GaAs/GaAlAs heterostructure with elec-
tron density ne ≃ 1.2× 1011 cm−2 and mobility µ ≃ 1.2× 102 m2/Vs grown at Laboratoire
de Photonique et Nanostructures by A. Cavanna and B. Etienne.

A crucial step is to make Ohmics contacts to 2DEG. An Au/Ge film is evaporated onto
the areas dedicated for contacts. The sample is then heated to a temperature of 440 oC
in an argon atmosphere during a few minutes. This leads to diffusion of Au/Ge inside the
substrate down to the GaAs/GaAlAs interface where the electrons are confined at low
temperatures, for our samples the 2DEG was confined at about 200 nm below the wafer
surface. The contact quality is strongly decreased if an oxide layer is present at the sample
surface, in this case the contacts are not Ohmic at low temperature and can present a gap
of a few eV . In these conditions the sample can not function as a Hall probe, hence the
oxide layer must be carefully removed. We achieved this by cleaning the sample in a 20%
HCl solution for a few minutes just before evaporation of Au/Ge.

A pattern defining the shape of the billiard and of the Hall probe is created using a
computer aided design (CAD) software (see Fig. 2.11). Electron beam lithography allows
to transpose this pattern on a polymer film composed typically of a bilayer of methyl
methacrylate (MMA)/poly-methyl methacrylate (PMMA) which is about 300 nm thick.
After development in methyl isobutyl ketone (MIBK) an aluminum film about 100 nm
thick is evaporated to mask 2DEG from chemical etching. After lift-off the Al remains only
on the areas we want to protect from chemical etching.

The 2DEG was etched in a mixture of H3PO4, H2O2 and water (see Table. 2.3 for
exact composition). Wet chemical processing was favored over plasma etching since it is
known that chemical etching tends to follow existing defects in the sample and creates a
more specular edge potential for electrons at low temperature. The total etching time was
around 5 minutes with an etch rate of approximately 30 nm/min. After this procedure
the protecting Al mask was removed by cleaning the sample in an NaOH solution with
pH ≃ 12 for 6 minutes. An atomic force microscopy (AFM) image of a 2DEG sample
after etching and removal of the Al mask is shown on Fig. 2.12. It shows a topography
image of the billiard which is placed between the Hall probe and a lateral gate. The AFM
measurements confirm that the 2DEG was etched at a depth of around 150 nm.

Once the pattern inside 2DEG is defined we evaporate a copper top-gate (thickness
≃ 100 nm) over the Hall bar using another step of electron beam lithography. The top-
gate was designed to shield the Hall bar from microwave irradiation, it also allows to
modulate carrier density. A complete optical microscope image of the sample is shown on



Fig. 2.11 – NPGS layout for the fabrication of the Hall bar and of the billiard.

Fig. 2.13. The leftmost image is a large scale view where contacts and alignment marks
appear clearly. The Hall bar is located at the center of the sample, the layout of our Hall
bars is shown on Fig. 2.13.b,c. The 2DEG edges are clearly visible and appear as black
lines. The region where the 2DEG was covered by the Al mask is cleaner since it was
not contaminated during the chemical etching procedure. The copper top-gate covers the
active region of the Hall bar and gives an orange color. In a last batch of samples lateral
copper split-gates were also deposited (see Fig. 2.13.c), they were used to create a more
controlled microwave field around the billiard. The latter is highlighted with red circles.
It is positioned in a way to interact only with the left Hall probe. The probe on the right
serves as a control reference.

The sample is then mounted on a sample holder that provides macroscopic connectors
that allow to connect the sample with the circuitry inside the dilution refrigerators. We
have prepared a customized sample holder that allows to connect up to two SMA trans-
mission cables on the sample, additionally it provides many other contacts suitable for low
frequency signals. The link between the connection pads of the sample holder and the small



H3PO4 6 mL 84-87%
H2O2 2 mL 33%
H2O 160 mL

Tab. 2.3 – Solution used for etching of 2DEG.

Fig. 2.12 – AFM image of the billiard after etching of 2DEG with the solution from
Table 2.3.

contacts on the sample is obtained with ultrasound bonding procedure which solders thin
AlSi wires onto both contacts. This allows to contact the six contacts of the Hall bar, the
two 2DEG gates and the top gate. The 2DEG gates did not have a very good coupling to
our device, but they allowed to check that 2DEG etch was successful and that the etched
areas were insulating at low temperature.

2.8 Measurement of photo-induced orbital magnetism

with a Hall probe

In this chapter we describe our experiments aimed at establishing the existence of
photoinduced magnetization inside the billiard. When we want to measure an unknown
magnetic field with a Hall probe some care must be taken because of the residual geo-
metrical defects of the Hall probe which add a longitudinal resistivity component to the
measured resistance. For this reason the relation between Hall resistance RH and magnetic
field reads



a) b) c)

10 µm500 µm

Fig. 2.13 – Optical microscope image of the Hall bar samples fabricated during this thesis.
a) Large scale image sample showing Au/Ge contacts and 2DEG wires connecting the Hall
bar at the center of the sample b) Detailed view of the Hall bar region. The position of the
billiard is highlighted by a red circle. The copper top-gate with orange color screens the
microwave field from the Hall bar and allows to tune carrier density. c) In another sample,
two additional copper split gates were deposited near the billiard. They are colored in
blue/red for visibility.

RH =
H

ne
+ αRxx (2.65)

where H is the magnetic field n the carrier density. The co-
efficient α gives the contribution of longitudinal resistivity to the
transverse resistance that arises due to geometric imperfections of
the Hall probe (see sketch on the right). In order to determine the
magnetic field one must find a way to remove the contribution of
longitudinal resistance. One way to do this is to measure Rxx inde-
pendently and subtract it from measured RH . Another approach
is to measure the Hall resistance in two different configurations
where the role of current and voltage probes is interchanged (see Fig. 2.14) leading to two
values RH and R∗

H for the Hall resistance One then uses the Onsager-Casimir symmetry
that provides a relation between RH and R∗

H :

RH(H) = R∗
H(−H) (2.66)

Combining Eq. (2.65) and Eq. (2.66) we can express the unknown magnetic field as a
function of the difference :

H = ne(RH − R∗
H) (2.67)



Fig. 2.14 – Two different configurations for measurement of the Hall resistance where the
role of current and voltage probes is interchanged. We call RH and R∗

H the values of the
Hall resistance measured in these two experiments.

Note that in the derivation of the above relation we assumed that Rxx(H) = Rxx(−H).

Following this logic, the signature of photo-induced orbital magnetism in the billiard
is a shift of the Hall resistance under irradiation of the probe coupled to the billiard.
The observed change of Hall resistance must have the symmetry of a magnetic field under
exchange of current and voltage leads. However this implicitly assumes that Onsager-
Casimir relations are still valid in a Hall probe under microwave irradiation. Although quite
natural this assumption must be verified experimentally. This can be done by applying a
local RF field on the Hall bar and looking at the deviations from Onsager-Casimir relation
under driving. The outcome of these experiments can determine whether the Hall bar is a
good detector of magnetic fields under microwave driving.

2.9 Time reversal symmetry breaking in the Hall bar

In a four terminal sample microscopic time-reversibility leads to symmetry relations
between resistance measurements where the role of current and voltage leads are exchanged.
These reciprocity relations are a manifestation of general Onsager-Casimir symmetries in
equilibrium systems. We investigate experimentally the validity of time reversal symmetry
in a GaAs/Ga1−xAlxAs Hall bar irradiated by an external AC field, at zero magnetic
field. For inhomogeneous AC fields we find strong deviations from reciprocity relations and
show that their origin can be understood from the the billiard model of a Hall junction.



Under homogeneous irradiation the symmetry is more robust, indicating that time-reversal
symmetry is preserved.

The Onsager-Casimir relations are a consequence at a macroscopic scale of microscopic
time-reversal symmetry [23, 24]. In mesoscopic physics, these relations proved crucial in
the understanding of magnetotransport properties when the reciprocity relation between
resistances R and R∗ measured in experiments which exchange the current and voltage
leads : R(H) = R∗(−H) was derived [25] and verified experimentally [26]. Since then the
possibility to extend the reciprocity relation to out-of equilibrium conductors has attrac-
ted considerable attention. In the special case where the conductor has only two contacts
the reciprocity relation implies that the transport is symmetrical with magnetic field H :
R(H) = R(−H). In the nonlinear transport regime, it was predicted theoretically that two
terminal transport can be asymmetric with magnetic field [9, 10, 27], providing a signature
of time-reversal symmetry breaking. This fact was later confirmed in several experiments
[28, 29, 30, 31, 32], and lead to new theoretical proposals for the generalization of reciprocal
relations to nonlinear transport [33, 34]. Recently it was proposed that time-reversal sym-
metry breaking can be analyzed from linear dc-magnetotransport of a system coupled to
non-equilibrium baths [35], however in this model the presence of a magnetic field is neces-
sary to reveal the breaking of reciprocity relations. Other manifestations of time-reversal
symmetry breaking in non-equilibrium conductors at zero magnetic fields were predicted
including commensurability effects in the frequency domain [36] and generation of statio-
nary orbital magnetism [22]. However to our knowledge these effects have not yet been
observed experimentally. In this Chapter we directly probe experimentally time-reversal
symmetry in zero magnetic field by measuring deviations from the four terminal recipro-
city relations in a Hall geometry. We interpret our results using a billiard model initially
developed by Beenakker et.al [37]. to describe dc-magnetic field behavior. We extended
this model to investigate the influence of an inhomogeneous time dependent potential.

We have investigated two Hall bars fabricated in a GaAs/Ga1−xAlxAs two dimensional
electron gas (2DEG) with density ne ≃ 1.2×1011 cm−2 and mobility µ ≃ 1.2×102 m2/Vs.
The two samples, (A) and (B), were fabricated using wet etching and an aluminum mask.
They have six Au/Ge ohmic contacts to 2DEG labeled (1)−(6) (see Fig. 2.15). Both samples
are covered by a copper top-gate allowing to modulate carrier density. On sample (A) we
have also fabricated a local split gate [S] connected to a high frequency transmission line ;
this gate can produce an AC field inhomogeneous on the micron scale. We define the four
terminal resistances Rij,kl as Rij,kl = (Vk − Vl)/Ii where Vk and Vl are the voltages on the
leads k and l and Ii = −Ij is the current injected through the source lead i. The resistance
measured in the configuration where current and voltage leads are interchanged is noted
R∗

ij,kl = Rkl,ij. With this notations the reciprocity relation reads R∗
ij,kl(H) = Rij,kl(−H)

[25]. As expected the magnetic field dependence of the Hall resistances RH,1 = R14,26,
RH,2 = R14,35, and of the longitudinal resistance Rxx = R14,23 exhibits quantum Hall effect
plateaux and Shubnikov-de Haas oscillations at high magnetic fields H > 0.5 T. The
resistances were measured at temperature T = 0.3 K with an excitation current I = 1 µA
modulated at 67 Hz. Voltages were detected with a low noise amplifiers and standard lock-
in technique. At lower magnetic field we observe magneto-size peaks, which occur when
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the size of cyclotron orbits matches the width of the 2DEG sample, on both Hall and
longitudinal resistance for magnetic fields H ≃ 200 G. These observations confirm that our
samples are in a ballistic regime (the mean free path in our Hall bar is le ≃ 10 µm).

The magneto-size peaks on the Hall resistance are analyzed in more detail in Fig. 2.15
for different top-gate voltages. To emphasize the magneto-size peaks, we have subtracted
the classical Hall resistance ∆RH = RH − H

nee
where ne is the 2DEG density determined by

a linear fit to the Hall resistance at fields above the magneto-size peak. An additional cusp
appears in ∆RH at low magnetic fields for higher gate voltages Vg = 0.4 V. This can be
understood from the billiard model of a Hall junction [37]. In this model the Hall junction is
treated as a classical billiard with specular walls and four contact channels of width W with
absorbing boundary conditions at the reservoirs distant by L > W (possible theoretical
geometries are sketched on the left of Fig. 1). The classical probabilities Pi,j of propagating
from lead (j) to lead (i) are then determined numerically by injecting a large number of
classical particles (typically 105) at Fermi velocity vF into lead j and monitoring them
until they reach one of the leads i. The propagation is determined by classical equations
of motion in constant field H . The exit probabilities are then normalized to

∑
j Pi,j = 1,

and the conductance matrix is calculated from :

Gij =
1

R0

[(1 − Pii)δij + Pij(1 − δij)] (2.68)

Here R0 = h
2e2N

≃ h
2e2

π
kF W

where N is the channel number and kF the Fermi wavevector.
The characteristic magnetic field scale in this model is Hc = mvF

eW
, where m is the carrier

effective mass in 2DEG. From the conductance matrix all four terminal resistances can be
calculated including the Hall resistance RH . On the bottom panel of Fig. 2.15, we show
theoretical magneto-resistances ∆RH of Hall junctions with different central curvatures.
For the largest curvature, a cusp appears that is very similar to the behavior observed at
higher positive gate voltages. When the curvature radius is decreased the cusp disappears,
as in the magnetoresistance curves at lower gate voltages. These observations suggest that
positive gate voltage favor larger curvature radius, which is reasonable since higher gate
voltages are likely to reduce depletion at the sample boundaries. While there is a very
good qualitative agreement between the billiard model and our data, the agreement is not
quantitative. For example for Vg = 0.4 V with electron gas density ne ≈ 2.8×1011cm−2 and
estimated channel width W ≃ 5 µm we find Hc = mvF

eW
≃ 170 G (we used vF = ~

√
2πne/m)

. This leads to a predicted magneto-size peak at H ≃ 100G whereas experimentally the
peak appears at H ≃ 250 G.

We now address the question of the influence of an external time dependent potential
on the Hall resistance, in zero magnetic field. This problem can be treated theoretically if
we generalize the billiard model and introduce a local oscillating potential U(r) cos ωt. As
previously the transmission probabilities Pi,j are determined by integrating the classical
equations of motion (see typical particle trajectory inset in Fig. 2.16). In the static limit
ω = 0, an external potential creates a contribution to the Hall resistance by deforming the
electronic trajectories. However time reversal symmetry implies that the relation Pi,j = Pj,i

is preserved, and reciprocity relation holds RH = R∗
H . Our numerical simulations show
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and δRH,2 at injected microwave powers of 1µW and 10µW. The origin of the different
curves is shifted by an arbitrary offset for clarity (δRH vanishes at low frequencies f < 1
MHz) and the values of δRH at power 1µW are scaled up by a factor 2.

however that when the driving frequency ω is increased the probabilities Pi,j and Pj,i are
no longer equal. This causes a difference between RH and R∗

H even at zero magnetic field.
For frequencies larger than a certain threshold ωc the difference RH − R∗

H becomes of
the order of the symmetric contribution RH + R∗

H . We compare the amplitude of these
two components as a function of frequency on Fig. 2.16. Our simulation shows that this
frequency is nearly independent on the amplitude of the external potential. We note that
trajectories that are absorbed in the reservoirs after a single scattering on U(r) do not
break time reversal symmetry. Indeed in this case it is possible to choose the phase of the
external field in a way that the time reversed trajectory is also solution of the equations of
motion. As a result the difference between Pi,j and Pj,i must stem from trajectories that
scatter several times on the potential U(r) centered around r0. This allows us to associate
the frequency ωc with the average return time to r0. Interestingly we find in the simulations
that the frequency ωc is several times smaller than the characteristic frequency associated
with the size of the channels vF /W . This points to the role of long trajectories with many
reflections on the edges of the sample with typical length Lc = vF

ωc
which can be much

larger than W , of the order of the distance between reservoirs L.

Our theoretical model predicts that the onset of time-reversal symmetry breaking by



an ac-radiation can be probed directly by measurements of the difference RH − R∗
H as a

function of ac-frequency without introducing an external magnetic field. We have checked
this prediction experimentally by applying a high frequency potential on the split gate [S]
on sample (A). In order to remove the contribution of geometrical imperfections of our
Hall junctions that lead to non-zero RH even in the absence of magnetic field we now focus
on the difference δRH between the Hall resistance with AC-driving and its equilibrium
value. We have measured the change of Hall resistances for the two Hall junctions of the
sample, polarized in the two reciprocal configurations : δRH,1, δR

∗
H,1, δRH,2 and δR∗

H,2 as a
function of microwave frequency f for fixed injected microwave power. The data, shown on
Fig. 2.17, indicate the following scenario. At very low driving frequencies f < f0 ≃ 10MHz
both symmetric and anti-symmetric components δRH,i + δR∗

H,i and δRH,i − δR∗
H,i are zero

(i = 1, 2), we attribute this to the fact that our capacitive coupling is not efficient at so low
frequencies and the amplitude of the AC potential is very small in this limit. For higher
frequencies, a change of Hall resistance due to microwave irradiation is observed, however as
expected from our model the reciprocity relations is still valid δRH,i ≃ δR∗

H,i. It is only for
f > fc ≃ 50 MHz that the anti-symmetric component becomes significant, and for higher
frequencies (we measured up to f = 10 GHz) we observe that the symmetric and anti-
symmetric components are of the same order of magnitude. We find that that the critical
frequency fc is similar for both Hall junctions and weakly depends on injected microwave
power. This is consistent with our simulations where the threshold ωc did not depend
on the potential amplitude U0. We note that as in our theoretical results on Fig. 2.16,
δRH + δR∗

H scales proportionally to power (U2
0 ) for f < fc. At higher higher frequencies

a more complicated behavior is observed since δRH + δR∗
H may change sign as a function

of frequency. We showed that in a ballistic sample the length Lc = vF

ωc
is of the order

of the distance between reservoirs L, in a diffusive sample with mean free path le (we
estimate L ≃ 65 µm and le ≃ 10 µm for our samples) we expect that the relevant length
scale is determined by Lc ≃ L2/le ≃ 400 µm. Such a value for Lc is consistent with
a critical frequency fc = 50 MHz as observed in the experiment. We remark that the
onset of the difference δRH − δR∗

H could also be caused by the appearance of stationary
orbital magnetism under microwave irradiation, an effect that was predicted theoretically
in Ref. [22]. Indeed the quantity RH − R∗

H is proportional to the induced magnetic field.
However the magnetic field required to change the value of Hall resistance by δRH ≃ 10 Ω
as observed on Fig. 2.17 is H ≃ 30 G. This is several orders of magnitudes larger than the
effect predicted in [22], which under our experimental conditions should create magnetic
fields of the order of H ≃ 10−2 G.

We now show that the spatial inhomogeneity of the alternating electric field is essential
in order to observe strong deviations from Onsager symmetries. We prove this experimen-
tally by irradiating sample (B) with an external electromagnetic field homogeneous on the
sample scale emitted with a macroscopic antenna. For the Hall junction RH,1 the presence
of a quantum dot a few microns away from the sample (see Fig. 2.15) is expected to deform
the external potential creating inhomogeneities in the electric field. On the contrary for
RH,2 we expect an homogeneous irradiation. On Fig. 2.18, we compare the variation of
Hall resistances δRH,2, δR

∗
H,2 with frequency f at fixed power. We find that the Onsager
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relations are verified even in the limit of very high frequencies f ≃ 1 GHz compared to our
previous experiment, and the relation δRH,2 ≃ δR∗

H,2 is valid. We also note that δRH,2 is
proportional to the change of sample resistance, δRxx which is negative at all frequencies.
The sign of δRxx corresponds to heating, since we are in a regime where the sample re-
sistivity decreases with temperature (T ≃ 0.3 K). The proportionality between δRxx and
δRH,2 can be explained as a geometrical offset in RH,2 proportional to Rxx. In fact, such
a simple proportionality relation is a good indication of the external electric field homo-
geneity in the Hall junction. It does not hold for inhomogeneous irradiation, as shown by
our measurements on RH,1. In this case the proportionality to δRxx is not observed and we
find δRH,1 6= δR∗

H,1 (data not shown) as in sample (A).

In this chapter we have addressed the validity of reciprocity relations in a Hall bar under
AC driving. We have established that the magnetotransport in our samples is well described
by the billiard model of [37]. We have generalized this model to include the effect of an AC
field. With this model we predicted the onset of deviations from reciprocity relations at
high enough AC frequencies even at zero magnetic field. We have checked this prediction
experimentally by applying an inhomogeneous AC-field on the Hall bar. The transition from
the low frequency regime where reciprocity symmetry holds to the asymmetric regime at
high frequencies was clearly observed. Finally by irradiating a Hall bar with a macroscopic
antenna, we established that the reciprocal relations are more robust under homogeneous
irradiation. Intriguingly the signal we observe : RH − R∗

H resembles a static magnetic
field except for its very large amplitude. This raises the question of a detector that can
discriminate between inhomogeneous AC-electric fields and a small static magnetic field.
As a consequence a direct measurement of the photomagnetic effect at zero magnetic field
is not possible with a Hall probe, however we will show in Chapter 2.11 a signature of
stationary photo-induced orbital currents at high magnetic fields.

2.10 Quantum theory for microwave induced time re-

versal symmetry breaking

In this section we propose another interpretation of the origin of the deviations from
Onsager-Casimir symmetries under microwave driving. It is based on a scattering approach
to conductance in quantum devices. Here electrons are treated as waves which are scattered
by the potential distribution inside the Hall probe. The model geometry is shown on
Fig. 2.19, we assume that the junction is described by a stationary 4 × 4 S-matrix with
transmission/reflection coefficients t0ij , r

0
ij. In one of the leads a time dependent potential

V (x, t) = αδ(x) cos(ωt) creates additional scattering that can be described by a 2 × 2
scattering matrix with transmissions/reflections given by tV (τ), rV (τ). Since this potential
is not stationary the transmission/reflection coefficients depend explicitly on time.

The transmission from contact 1 → 2 can be expressed as a sum of over all paths after
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Fig. 2.19 – Schematic geometry of a four terminal sample where the scattering is described
by a 4 × 4 stationary S matrix. An additional time dependent is applied locally inside the
lead number (1).



multiple reflections at the junction and at the time dependent potential :

t1,2(τ) = tV (τ)eikLt01,2 + ei3kLtV (τ)r0
1,1rV (τ + τD)t01,2+

ei5kLtV (τ)r0
1,1rV (τ + τD)r0

1,1rV (τ + 2τD)t01,2 + ... (2.69)

The terms In this expression eikL represent the phase accumulated during the trip from
the potential V (x, t) to the center of the junction. The delay τD in the reflection amplitude
rV (τ + τD) takes into account the time τD it takes to the wave to travels from the potential
to the junction and return backward.

A similar expression holds for the reciprocal transmission coefficient t2,1

t2,1(τ) = t02,1e
ikLtV (τ) + ei3kLt02,1rV (τ)r0

1,1tV (τ + τD)+

ei5kLt02,1rV (τ)r0
1,1rV (τ + τD)r0

1,1tV (τ + 2τD) + ... (2.70)

In this sum we have assumed that r0
1,1 ≪ 1 so that only the first two terms can be kept

to lower non trivial order in r0
1,1, in general the sum over all possible reflections should be

considered in a way very similar to a Fabry-Pérot interferometer in optics.
A deviation from Onsager-Casimir symmetry is expected to appear when the time

average < |t1,2(τ)|2−|t2,1(τ)|2 >τ is non-zero. For this purpose we expand the transmission
probability keeping only the lowest order terms :

|t1,2(τ)|2 = |tV (τ)t01,2|2 + 2 Re
[
ei3kLtV (τ)r0

1,1rV (τ + τD)t01,2 × (t01,2e
ikLtV (τ))∗

]
+ ...

(2.71)

|t2,1(τ)|2 = |tV (τ)t02,1|2 + 2 Re
[
ei3kLt02,1rV (τ)r0

1,1tV (τ + τD) × (t02,1e
ikLtV (τ))∗

]
+ ...

(2.72)

The transmission and reflection coefficients tV (τ), rV (τ) can be found directly from the
Schrödinger equation in presence of a potential V (x) ∝ αδ(x) (see for e.g. Ref. [58])

tV (τ) =
2

2 + iα cos ωτ
, rV (τ) =

−iα cos ωτ

2 + iα cos ωτ
(2.73)

The time averaged transmission coefficients involve < |t1,2(τ)|2 >τ and < |t2,1(τ)|2 >τ

involve the correlators

< tV (τ)rV (τ + τD)t∗V (τ) >τ= −α2

8
+ O(α4) (2.74)

and

< rV (τ)tV (τ + τD)t∗V (τ) >τ= −α2

8
cos ωτD + O(α4) (2.75)

This yields

< |t1,2(τ)|2 − |t2,1(τ)|2 >= −α2

4
|t1,2|2 Re

[
ei2kLr0

1,1(cos ωτD − 1)
]

(2.76)



Physically this finite difference originates from the interference between the direct path
with a single passage across the time dependent potential V (x, t) and an indirect path
were a reflection occurred before the transmission. For a trajectory going from contact (1)
to contact (2) the transmission across the potential V occurs at the same time in both
cases. However for trajectories from (2) to (1), the transmission is delayed for a reflected
trajectory compared to the scenario where the particle directly passes through V (x, t).
This explains the difference in the structure of the correlators in Eq. (2.74) and Eq. (2.75).

A more complete and rigorous treatment of the origin of TRS symmetry breaking in
mesoscopic samples was recently proposed by M. Polianski [20]. In this article calculations
are done explicitly in the Landau-Bütttiker formalism for a coherent quantum dot. The
asymmetric contribution to resistance is found in second order perturbation theory versus
applied AC-voltages on the sample, the theoretical prediction derived by M. Polianski for
a small number of channels then reads :

δR− ∼ h

e2

(
eVAC

ǫ

)2

, ǫ = max(Ec, ~ω) (2.77)

where Ec is the Thouless energy, ω is the AC driving frequency and VAC is the amplitude
of the AC potential. This asymmetric contribution to sample 4-terminal resistance has
random sign which is typical for a quantum effect. Since a magnetic flux of order Φ0 inside
the sample induces an asymmetric fluctuation of order h/e2 the above formula can be cast
in the form of an effective flux :

φeff ≃ φ0

(
eVAC

ǫ

)2

, ǫ = max(Ec, ~ω) (2.78)

A fundamental question is whether this effective flux can be interpreted as a magnetic
flux created by microwave induced orbital magnetism inside the quantum dot. A priori an
explicit calculation of the induced magnetic moment in the quantum regime is needed in
a spirit similar to the calculations in Section 2.6. However a direct calculation of magne-
tization is not possible in the frame of Landauer-Büttiker formalism and new approaches
must be found. To answer this question experimentally, one must find a magnetometer
which is not sensitive to microwave irradiation. Possible candidates include NS SQUID, or
optical magnetometers (for e.g. Kerr magnetometry). We have tried to prepare NS SQUID
samples in order to check whether they provide a reliable measurement of magnetic field
under microwave irradiation However the technology involved in the fabrication is not well
controlled at the moment, and our samples did not display a SQUID behavior. Therefore
the determination of photomagnetic effects in mesoscopic samples is still an open question
from both experimental and theoretical points of views.

In the next section we describe an indirect detection of microwave induced orbital
currents, through measurements of rectified voltage across the Hall bar in an evanescent
wave geometry. We show that unexpectedly the currents can be detected using the Hall
resistance not as a magnetic field detector but as a measurement of the current in the
sample.
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Fig. 2.20 – Magneto-transport properties of the Hall bar. The dashed and neighbor curves
represent respectively the Hall resistances RH,2 = R14,35 and RH,1 = R14,26 (see text). The
oscillating curve represents the longitudinal resistance Rxx = R14,23. The data was acquired
with a 100 nA excitation and lock-in detection at frequency 67 Hz at a temperature of 300
mK. The inset is an optical image of the sample, the leads (1) − (6) form the contacts of
the Hall bar, while the electrodes [S] and [C] are local gates connected to a high frequency
50 Ω transmission line. The (orange) copper shield on top of the Hall bar can be used as
a top gate to change the carrier density in the 2DEG. The black scale bar corresponds to
10 µm.

2.11 Antisymmetric photovoltaic effect

Coherent mesoscopic samples present remarkable rectification properties, related to the
absence of spatial inversion symmetry of the disorder potential. In particular when submit-
ted to a radio-frequency radiation they develop a dc voltage. The dependence on magnetic
field of this photovoltaic (PV) effect, gives rise to random but reproducible fluctuations
that were predicted theoretically [38, 39] and observed experimentally in references [40, 41].
In contrast with universal conductance fluctuations that obey Onsager symmetry rules
[42, 25], the fluctuations of the PV-voltage do not have a well defined magnetic field sym-
metry [43]. At high frequency this can be understood from the violation of time inversion
symmetry by the microwave radiation [44, 45, 32]. At low frequencies, this behavior was ex-
plained through a mechanism involving electron-electron interactions [28, 29, 30, 31, 46, 47].
Recently the PV effect was studied in asymmetric antidot super-lattices where magnetic
field asymmetry was also present [48, 49]. In all these cases however, the anti-symmetric
component of the PV voltage was never larger than the symmetric one (see e.g. [50]). In



this Chapter we investigate the regime where the spatial symmetry of the system is broken
by a non homogeneous high frequency potential. This potential is screened in the region
of the sample where the photovoltaic voltage is measured by a copper shield evaporated
on the surface of the Hall bar. This reduces the mesoscopic fluctuations of the PV-voltage,
revealing a PV-voltage with a dominant anti-symmetric contribution.

The system consists of a Hall bar in a GaAs/Ga1−xAlxAs two dimensional electron gas
(2DEG) with density ne ≃ 1.2× 1011 cm−2 and mobility µ ≃ 1.1× 102 m2/Vs. The sample
was fabricated using wet etching and an aluminum mask using the procedure described in
Chap. 2.7. It was used for the measurements described in Chap. 2.9, in the present chapter
however we investigate the high magnetic field behavior. The six contacts of the Hall bar
are numbered (1) − (6) (see photograph inset in Fig. 2.20). The four terminal resistances
with source (i) and drain (j) and voltage probes k and l are defined by the usual relation
Rij,kl = (Vk −Vl)/Ii where Vk and Vl are the voltages on the leads (k) and (l) and Ii = −Ij

is the current injected in the source lead. We measure simultaneously the Hall resistances
RH,1 = R14,26, RH,2 = R14,35, and the longitudinal resistance Rxx = R14,23 as a function of
magnetic field H . As shown on Fig. 2.20 our samples exhibit quantum Hall effect plateaux
[51] for the Hall resistances RH,1, RH,2 and Shubnikov-de Haas (SdH) oscillations [52] in the
transverse resistance Rxx . We notice that the carrier density in our system is homogeneous
since RH,1 ≃ RH,2.

In the following, we excite the system with a high frequency potential Vac cos(2πft)
applied on a symmetrical split gate [S] shown in the inset of Fig. 2.20. This potential is
screened by a 100nm thick copper top-gate deposited over the Hall bar device and therefore
the induced potential is spatially non homogeneous and vanishes exponentially inside the
Hall bar. We note that while the topgate ensures a good shielding of the AC electric
potential on the Hall probe, this is not the case for AC magnetic fields at frequencies
below 10GHz such that the skin depth is larger than 100nm. However we expect the effect
of those fields to be negligible because of the electrostatic coupling between the RF lines
and the Hall probe. We measure the PV voltage drop Vpv = V3 − V2 induced by the
irradiation. In order to determine this voltage with a high precision we modulate the high
frequency signal at a low frequency below 1.5 kHz. The voltage Vpv is then amplified by
a low-noise amplifier and measured by a lock-in detector working at the frequency of the
amplitude modulation. In Fig. 2.21, we have studied the dependence of Vpv on magnetic
field and microwave power at fixed frequency f = 2.5 GHz. The photovoltaic voltage
displays oscillations as a function of magnetic field reminiscent of SdH oscillations in the
longitudinal resistance Rxx (Fig. 2.21 left panel), except that the PV voltage oscillates
around a zero mean value which is not the case for the longitudinal resistance. We also
notice that the oscillations of Vpv are quenched in the quantum Hall plateau region around
H = 2 Tesla (filling factor ν = 2), in contrast to oscillations in longitudinal resistance
(see Fig. 2.20). The amplitude of these oscillations increases with the injected microwave
power P . Since the microwaves are transmitted through a Z0 = 50 Ω adapted line, P
is related to the high frequency potential amplitude through V 2

ac = αZ0P . Here α is a
frequency dependent coefficient taking into account the attenuation and reflection in the
transmission line. We estimate that α ≃ 0.1 for frequencies in the GHz range. On the
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right panel of Fig. 2.21 we show the dependence of the rectified voltage on power more
quantitatively at selected values of magnetic field. We find that the photovoltaic voltage is
well described by Vpv ∝ P , the deviations at higher power are attributed to heating effects.
We have also performed experiments with asymmetric irradiation on the electrode [C],
with the electrode opposite to [C] floating. These experiments lead to a similar behavior
with the difference that the oscillations of the PV voltage are no longer centered around
zero. For this reason we focus on the case of symmetric irradiation on the local gate [S] in
the rest of this chapter.

The Shubnikov-de Haas (SdH) oscillations of resistivity in metals and in 2DEG are
symmetric with magnetic field. Indeed SdH oscillations are well described by the classical
relation [52, 53]

δR(H)

R0
= 4DT exp

(
− π

ωcτe

)
cos

(
2π

hne

2e

1

H

)
(2.79)

which shows that relative amplitude of the SdH oscillations δR(H)/R0 is an even function
of magnetic field. In this expression ne is the electron density, ωc the cyclotron frequency
and τe is the elastic time. The prefactor DT = γ/ sinh γ with γ = 2π2kBT/(~ωc) describes
the temperature damping of the oscillations on the scale of ~ωc/(2π2kB). In contrast as
illustrated on the left panel of Fig. 2.22, we find that the oscillations of the photovoltage are
mostly anti-symmetric with magnetic field. On this figure, in order to make the connection
with SdH oscillations more obvious we have shown the photovoltage Vpv as a function of the
inverse absolute value of the magnetic field. The photovoltage displays periodic oscillations
with inverse magnetic field with the exception of a missing half-period at H−1 ≃ 0.5 Tesla−1

in the quantum-Hall plateau regime (filling factor ν = 2). The right panel shows that the
period of the oscillations of the photovoltage can be modified by changing the density ne
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of the Hall probe with a top-gate voltage Vg. This further supports the connection with
SdH oscillation of resistivity whose period τH is related to electron density through τH =
e/(π~ne). We have also checked the anti-symmetry of the photovoltage at different gate
voltages. The data shown on Fig. 2.22 was obtained for f = 2.5GHz, at lower microwave
frequencies the photovoltage decreases and vanishes around f ≃ 10MHz while remaining
mostly anti-symmetric (see experimental data on Fig. 2.23). We attribute this decrease
to the inefficiency of our capacitive coupling at so low frequencies. We note that we are
always in the regime 2πf < ωc where ωc is the cyclotron frequency, therefore we do not
expect the frequency to play an important role in contrast with recent experiments where
a sharp frequency dependent PV effect was investigated around ω = ωc [54] in relation
with microwave induced resistance oscillations and zero resistance states [55, 56, 57].

Under homogeneous irradiation the photovoltage also displays 1/H oscillations with
the period τH as shown on Fig. 2.24. However these oscillations contain a large symmetric
component as a function of magnetic field in contrast with our data for evanescent irradia-
tion. This is consistent with the previous experimental results reported in [44, 45, 32] where
high frequency photovoltoaic effect did not exhibit a well defined magnetic field symmetry.

The SdH oscillations of longitudinal resistance Rxx as a function of inverse magnetic
field have a well defined phase, which is given by the expression Rxx(H

−1) = R0(H
−1) +
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R1(H
−1) cos(2π2ne~

eH
), where R0(H

−1) and R1(H
−1) are envelope functions weakly depending

on the magnetic field on the scale of one SdH oscillation period τH [52]. On Fig. 2.25 (main
figure) we compare the phase of the oscillations of Vpv and the phase of the oscillations
in Rxx. Our results demonstrate that the oscillation of the photovoltage are dephased by
π/2 compared to the oscillations of Rxx. We check this by calculating numerically the
integral

∫
Vpv(H

−1)dH−1 from the experimental data. We find that oscillations of this
quantity are in phase with the oscillations of Rxx(H

−1) (a theoretical argument justifying
this comparison is given below).

In summary we find that the SdH oscillations of the PV voltage are anti-symmetric
with magnetic field and are out of phase with the usual SdH oscillation of resistivity as a
function of H−1. These oscillations are quenched in the plateau regions of the quantum Hall
effect. The main lines of our explanation are the following. The high frequency potential
applied on the local gate [S] creates a stationary current distribution idc inside the sample
mostly along the y axis. A possible current distribution is shown in the inset of Fig. 2.25
with a simplified sample geometry. This current leads to the appearance of a static Hall
voltage drop Vpv ≃ RHidc along the x axis perpendicular to idc. For this expression to be
valid, the applied potential Vac must vanish in the region where Vpv is measured. Otherwise
an additional contribution appears from mesoscopic fluctuations induced by the alterna-
ting potential. This contribution has a large symmetric component. In this respect, the



evanescent potential geometry used in our experiment is crucial, and we have checked that
under an homogeneous irradiation we recover an essentially symmetric photovoltage.

It is possible to derive more quantitative estimates from this heuristic scenario. The
potential Vac on the local gate creates a modulation of the electronic density δn in the
Hall bar. We assume that for high magnetic fields this density modulation occurs in a
region of typical Larmor radius rl = vF m∗/eH inside the sample, where vF = ~

√
2πne/m

∗

is the Fermi velocity and m∗ the electron mass in 2DEG (colored regions in the sketch
of Fig. 2.25). Indeed in this regime most electronic trajectories are localized on cyclotron
orbits of radius rl, which is therefore the natural length scale. The total charge induced
on the Hall bar is given by CVac where C is the capacitance between the local gate and
the Hall bar, hence the amplitude of δn can be estimated as : δn ≃ C

r2
l

Vac cos(2πft). An

approximate value of the capacitance is ǫD, where ǫ is the permittivity and D is the
typical distance between the gate and the Hall bar. In the SdH regime, the amplitude of
the rectified current idc is given by :

idc ≃<
∂Gyy

∂ne
δn Vac cos(2πft) > (2.80)

where < . > denotes time averaging, and Gyy is the conductance in y direction of the
sample. Up to a geometrical factor we have Gyy ≃ Gxx and in the regime where Rxx ≪ RH ,

Gxx is given by Gxx ≃ Rxx/R
2
H . As noted above, Rxx = R0+R1 cos(2π2ne~

eH
) where R0 and R1

are slow functions of density and inverse magnetic field. This allows us to take into account

only the oscillating term in the density derivative, which yields : idc ≃ ~

eH

R1 sin( 2π2ne~

eH
)

R2
H

<

δnVac cos(2πft) >. By injecting in this formula the expression of δn as a function of Vac,
and using the relation Vpv = idcRH with the approximation RH = H/(ene) that is accurate
below 1 T, we obtain

Vpv ≃ eC

~
R1(H) sin

(
2π2ne~

eH

)
V 2

ac (2.81)

In this expression R1(H) is the typical SdH oscillation amplitude that is symmetric with
magnetic field. Consequently this expression reproduces the main features observed in our

experiment : Vpv is anti-symmetric with magnetic field, with a phase given by sin
(

2π2ne~

eH

)
,

and an amplitude that scales proportionally to microwave power Vpv ∝ V 2
ac ∝ P . This

expression also leads to the right order of magnitude for the observed photovoltaic voltage,
indeed for C ≃ ǫ0D with D ≃ 1 µm, V 2

ac = 1 nW×50 Ω and R1(H) ≃ 1 kΩ at H ≃ 1 T we
find that Vpv ≃ 0.1 µV (experimental amplitude is shown on the right panel of Fig. 2.21).

Further comparison is possible by noting that the product R1(H) sin
(

2π2ne~

eH

)
is propor-

tional to dRxx(H
−1)/dH−1. In our approximation, this leads to the simple prediction :

∫
Vpv(H

−1)dH−1 ∝ Rxx(H
−1) (2.82)
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Fig. 2.26 – Dependence of the photovoltage on temperature for several magnetic fields in
semi-logarithmic scale. The data for different magnetic fields can be rescaled on a single
linear curve as predicted by Eq. (2.83). The inset shows the photovoltage dependence on
inverse magnetic fields for different temperatures for f = 2.5 GHz and P = 1 nW.

On figure Fig. 2.25, we show that this relation is well verified as long as H−1 ≥ 1.5 T−1.
Deviations are observed for higher magnetic fields, specially at H−1 ≃ 0.5 T−1 where
a plateau appears in Vpv that is not present in Rxx. We attribute this deviation to other
quantum effects which are not taken into account in our simple model and become relevant
at higher magnetic field. Specially the physics of the quantum Hall effect is important, while
our model is based on a Shubnikov-de Haas approximation for conductivity.

We have also measured the temperature dependence of photovoltaic effect. Our results,
summarized on Fig. 2.26, show that the amplitude of the photovoltaic oscillations strongly
decreases with temperature in the 100 mK-1 K range, in a similar way to SdH oscillations
on the linear resistance. To achieve a more quantitative comparison we have tried to extract
the carrier effective mass from the temperature dependence of the amplitude of the SdH
oscillations of the photovoltage. As shown on Fig. 2.25 this dependence is well described
by a relation of the form

ln
|Vpv|
T

= −A
T

B
+ const (2.83)

For SdH oscillations of the resistivity the coefficient A is equal to A0 = 2π2kBm∗

e~
. In the case

of photovoltage oscillations of resistivity we find a higher value A ≃ 3.5A0. While detailed
studies as a function of both temperature and microwave power are needed to establish



the origin of this discrepancy, this most likely indicates that there is an additional energy
scale in the problem which is related to microwave power.

In conclusion we have investigated the photovoltaic effect in high mobility two dimen-
sional electron gas under irradiation by an evanescent microwave potential. We have found
that the photovoltaic voltage exhibits zero centered oscillations as a function of inverse
magnetic field. These oscillations are anti-symmetric with magnetic field and are out of
phase with the well known Shubnikov-de Haas oscillations in resistivity as a function of
inverse magnetic field. The amplitude of these oscillations is proportional to microwave
power. Our experimental findings can be understood from a simple model that predicts
the creation of stationary orbital currents in the sample under microwave driving. In this
model the stationary voltage across the sample appears as a Hall effect detection of the
orbital currents.



2.12 Summary on out of equilibrium experiments in

2DEG

We can now summarize the experimental and theoretical results on out of equilibrium
transport in 2DEG that we have obtained so far. A graphical representation of the results is
shown on Fig. 2.27. On the theoretical side we have shown that microwave irradiation can
create a stationary magnetic moment in an isolated mesoscopic sample. This effects can
appear only if the system formed by the sample and microwave irradiation does not have
mirror symmetries. It also requires a sample with weak disorder. We have attempted to
detect this magnetic moment with a Hall bar detector coupled to a ballistic billiard located
near one of the Hall probes of our detector. We expected that the irradiation would change
the value of the Hall resistance and create a deviation from Onsager reciprocity relations.
This behavior was indeed observed in our experiments however the magnetic fields needed
to create a comparable shift of Hall resistance (≃ 10 Gauss) were much stronger that those
predicted by theory ≃ 0.1 Gauss.

In order to understand these results we proposed an alternative theoretical explanation
for the onset of deviations from Onsager reciprocity relations in Hall bar. It consists in
a dynamical time reversal symmetry breaking by inhomogeneous microwave fields. These
effect can be captured in a simple semiclassical transport model where the conductance
matrix is determined from the transmission probabilities from one contact to another in
the Hall bar. This model was shown to reproduce magneto-size effects in our Hall probe
that appear when the Larmor radius is of the order of the wire width. Note that dynamical
time reversal symmetry breaking can also be understood in the framework of the Landauer-
Büttiker quantum transport theory.

Signatures of stationary orbital currents inside the sample could be seen at higher
magnetic fields where an effective Hall geometry allows to detect currents inside the sample
through the Hall voltage they induce. In this experiment the evanescent field geometry
used in our samples was crucial and allowed to detect a magnetic field anti-symmetric
photovoltoaic voltage. However the current geometry used in our samples did not allow a
precise control of the flow of the induced current. On figure Fig. 2.28 we show a sample
geometry where the current can be channeled more effectively inside the structure. However
the fabrication of such a sample requires the ability to make very small Ohmic contacts
to 2DEG, which is possible only for 2DEG samples closer to the sample surface. The
latter constraint however is hardly compatible with a large mean free path since high
mobility 2DEG tends to be buried deep under the sample surface (e.g. ≃ 200 nm for the
heterostructrue we used in our experiments).

In the next chapters, I will show describe a new theory that applies the ideas we
developed to interpret our experiments on phototransport in Hall probes to understand
the physical origin of microwave induced zero resistance states that attracted a strong
interest in the 2DEG community.



Fig. 2.27 – Graphical representation of the theoretical and experimental results obtained
on non equilibrium transport in 2DEG.
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Fig. 2.28 – Stationary orbital current excited by a localized microwave field in a ring
geometry. Asymmetric antidots (semi-disks) define an orientation for the rectified current,
which flows through the ring and induces a Hall voltage on the opposite side of the ring.
The microwave field must be screened completely in the region where the Hall voltage is
measured.



2.13 Microwave induced zero-resistance states

The samples we used in this thesis had mobility µ ≃ 1.1×102 m2/Vs. However progress
in molecular beam epitaxy (MBE) growth have allowed to prepare ultra-low disorder 2DEG
with mobilities exceeding 35 × 102 m2/Vs [59]. In these samples several new types of low
magnetic 1/B periodic oscillations have been detected in the sample magnetoresistance.
They appear at magnetic fields smaller than the characteristic magnetic field at which
the Schubnikov-de Haas oscillations start to show up ≃ 2 kGauss. The possible source
of these oscillations include electron-phonon coupling [60] and interaction static electric
field induced by passing strong DC currents through the sample [61]. For these oscillations
however the oscillation amplitude represented only a small fraction of the longitudinal
resistance Rxx.

In 2002-2003 two independent experimental groups announced the discovery of a new
class of low magnetic field resistance oscillations where the oscillation amplitude could
become of the order of the mean Rxx [62, 63]. In these experiments a high mobility
2DEG sample was irradiated with an electromagnetic field at frequencies f ≃ 50 GHz
(see Fig. 2.29 for a sketch of the experimental setup). The four terminal resistance Rxx

in presence of magnetic field irradiation displays a spectacular behavior which is mainly
governed by the dimensionless ratio j between the microwave and cyclotron frequencies :

j =
ω

ωc
, ωc =

eB

m
(2.84)

As shown on Fig. 2.30, the magnetoresistance under irradiation presents a maximum when
j is an integer. Surprisingly when j is of the form j = n + δ with n an integer and δ ≃ 1/4
the four terminal resistance Rxx vanishes. The plateaux where Rxx = 0 vanishes are called
zero resistance states. The experimental observation of microwave induced zero resistance
states (ZRS) attracted great experimental and theoretical interest.

λFermi < λT (at 1 K) ≪ rc ≪ Mean free path
≃ 50 nm ~√

mT
≃ 100 nm vF

ωc
≃ 1µm le ≃ 100 µm

Tab. 2.4 – This table summarizes the relevant length scales at equilibrium in an ultra-high
mobility 2DEG sample at low temperature.

In order to understand the theoretical challenge raised by zero-resistance states let us
assume for a moment that carriers move freely without disorder and interactions. When
electrons (classical or quantum) move in the presence of a magnetic field they behave as an
harmonic oscillator with cyclotron frequency ωc. The harmonic oscillator has only a single
resonance frequency at ω = ωc, all higher harmonics ω = nωc are not resonant. This is easily
seen in the classical oscillator. Quantum mechanics does not change this qualitative picture
and the above property takes the form of selection rules well known from atomic physics.
The coupling to the microwave radiation is dipolar and the interaction Hamiltonian can be
cast in the form Ĥint = −(â+â+)DErf where â+ and â are creation/annihilation operators,
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Fig. 2.29 – A simple sketch of an experimental setup, where irradiation is sent through a
waveguide onto a sample.

D is the dipolar moment and Erf is the microwave field. Hence even if Landau levels are
equally spaced the irradiation can create transitions only between neighbor Landau levels
and the transitions at frequencies jωc (j integer ¿ 1) are forbidden. Therefore both in
quantum and classical mechanics a source of nonlinearities is needed to explain the origin
of high order resonances observed in the experiments. If the disorder is smooth on the scale
of a Larmor radius, it just creates an additional mean force on the oscillator that shifts the
position of the resonance center without introducing high harmonics. In conclusion one of
the main theoretical challenge raised by the discovery of ZRS is to understand the origin
of high frequency harmonics in very clean samples with smooth disorder.

2.14 Edge channel theory of zero-resistance states

In this chapter we apply some of the ideas we developed to understand our photo-
transport experiments in Hall bar samples with lower mobilities to the context of ZRS. An
important property that played a role in our experiments is that guiding along sample edges
influences the magnetoresistance even in the semi-classical regime where Landau-levels are
smeared by disorder [72, 73]. This effects explains the appearance of magnetosize peaks
and negative magnetoresistance observed in clean Hall bar samples. All these effects are
naturally captured in the frame of the billiard model [73]. Due to the presence of disorder
guiding is not perfect and resistance can not vanish completely. For this reason it is usually
thought that ballistic transport along edges occurs only in the quantum regime with low
filling factors where a gap appears in the 2DEG density of states. In this chapter we show
that a microwave field can stabilize edge trajectories even in the semiclassical regime leading
to a vanishing longitudinal resistance. This mechanism gives a clear physical interpretation
for observed zero-resistance states.

Before explaining our model in detail, we review the theoretical explanations that have



Microwaves

Fig. 2.30 – Experimental results from Ref. [63] on magnetoresistance of utra-high mobility
2DEG under microwave irradiation (Fig. 1, from condmat cond-mat/0210034). Thick lines
represent Rxx (left axis) and Rxy (right axis) under microwave irradiation with frequency
f = 57 GHz at T ≃ 1 K. Thin lines shows Rxx without microwave irradiation. Inset depicts
the sample layout, contacts, DC current orientation, magnetic field B and electromagnetic
fields Eω and Hω.
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Fig. 2.31 – (Left pannel) Figure from [65] predicting negative resistance states. (Right pan-
nel) Figure from [70] illustrating the possible formation of an unstable region corresponding
to negative resistance states.

been proposed so far, which mainly rely on scattering mechanisms inside the bulk of 2DEG.
The “displacement” mechanism originates from the effect of microwaves on disorder elastic
scattering in the sample [64, 65, 66, 67], while the “inelastic” mechanism involves inelastic
processes that lead to a modified out-of equilibrium distribution function [68, 69]. Even if
these theories reproduce certain experimental features we believe that the physical origin
of ZRS is still not captured. Indeed several arguments can challenge those approaches. The
above theories naturally generate negative resistance states and one has to rely on an un-
controlled out of equilibrium compensation of all currents [70] to produce ZRS as observed
in experiments (see Fig. 2.31). This instability mechanism predicts a switching to a zero re-
sistance state as soon as microwave power is strong enough to generate negative resistances,
for stronger power the resistance should remain zero independently on the power value.
For example a similar behavior can be observed in a normal-superconductor transition that
occurs due to an instability of the Fermi-liquid state : once temperature is smaller than
the critical temperature, resistance is zero independently on temperature value. However
in ZRS experiments no switching is observed and the experimental dependence on power
is well described by an exponential decay [81].

Also ZRS is observed in very clean samples, therefore in the bulk the electron moves
like an oscillator where selection rules allow transitions only between nearby oscillator
states. Hence resonant transitions are possible only at cyclotron resonance where the ra-
tio j between microwave frequency ω and cyclotron frequency ωc is unity. However ex-
periments show that the onset of ZRS occurs also for high j = ω/ωc approximately at
j = 1 + 1/4, 2 + 1/4, .... High j resonances could appear due to nonlinear effects, however
the microwave fields are relatively weak giving a ratio ǫ between oscillating component
of electron velocity and Fermi velocity vF of the order of few percents. Therefore the ap-
pearance of high j ZRS in “displacement” models with weak disorder seems problematic.
In the “inelastic” models one assumes that 2DEG evolves in a far from equilibrium state



due to small energy relaxation rates. However since the microwave frequency is high com-
pared to the elastic rate, the 2DEG has mainly imaginary high frequency conductivity
and should not significantly absorb microwave power. This can be seen very clearly in [62]
where the amplitude of the Shubnikov-de Haas oscillations is not changed by the presence
of microwave radiation even when power is strong enough to generate ZRS. Hence it seems
unlikely that 2DEG actually reaches the out of equilibrium states needed for the “inelastic”
theories.

In order to develop a theory for ZRS we note that they occur when the mean free
path le is much larger than the cyclotron radius rc = vF /ωc. In usual 2DEG samples
with lower mobilities this regime corresponds to strong magnetic fields and quantum Hall
effect. In this case it is known that propagation along sample edges is ballistic and plays
a crucial role in magnetotransport. It leads to quantization of the Hall resistance Rxy and
to the disappearance of four terminal resistance Rxx strikingly similar to ZRS [71]. This
occurs at low filling factors ν when a gap forms in the 2DEG density of states due to
discreetness of Landau levels. In contrast ZRS appear at ν ≃ 50 where Landau levels
are smeared out by disorder. Even in this semiclassical regime, edge trajectories are still
important for transport. Guiding along sample edges can lead to a significant decrease
of Rxx with magnetic fields giving a negative magnetoresistance and singularities in Rxy

[72, 73] (note that negative magnetoresistance is also observed in ZRS samples [62, 63, 74]).
This behavior can be understood theoretically from the transmission probability T between
neighbor sample contacts [73]. The drop in Rxx is linked to increased T , but transmission
remains smaller than unity due to disorder and Rxx remains finite. Recently this model
was extended to understand experimental deviations from Onsager reciprocity relations in
samples under microwave driving [75]. But the impact of microwaves on stability of edge
channels was never considered before.

In this chapter we show that microwave radiation can stabilize guiding along sample
edges leading to a ballistic transport regime with vanishing Rxx and transmission exponen-
tially close to unity. It was established experimentally that edge channels are very sensitive
to irradiation [76] and recent contact-less measurements in the ZRS regime did not show
a significant drop of Rxx [77] that supports our edge transport mechanism for ZRS. Our
model also relies on the fact that scattering occur on small angles in 2DEG [62, 78]. This
contrasts with other ZRS models which do not rely on specific physical properties of 2DEG.

Since filling factors are large we study classical dynamics of an electron at the Fermi
surface [73] propagating along a sample edge modeled as a specular wall. The motion is
described by Newton equations :

dv/dt = ωc × v + ǫ cos ωt − γ(v)v + Iwall + IS (2.85)

where ǫ = eE/(mωvF ) describes microwave driving field E, velocity is measured in units
of Fermi velocity vF , and γ(v) = γ0(|v|2 − 1) describes relaxation processes to the Fermi
surface. The last two terms account for elastic collisions with the wall and small angle
scattering. Disorder scattering is modeled as random rotations of v by small angles in
the interval ±α with Poissonian distribution over microwave period. Examples of electron
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Fig. 2.32 – a) Examples of electron trajectories along sample edge for several values of
ω/ωc and y-polarized field ǫ. b) Poincaré section of (2.85) for ω/ωc = 9/4 at y-polarized
ǫ = 0.02 drawn in the region 0 < vy < 0.7 and −π < φ < π. c) Poincaré section in
the same region for the Chirikov standard map (2.86) giving approximate description of
dynamics in b). In a,b,c) dissipation and impurity scattering angle are zero. d,e,f) Density of
propagating particles on the Poincaré section in presence of noise and dissipation (red/gray
for maximum and blue/black for zero ; vy range is 0 < vy < 0.5), black points show
trajectories without noise and dissipation. For ω/ωc = 9/4 particles are trapped inside the
nonlinear resonance (d,e) while for ω/ωc = 2 microwave repels particles from the edge (f).
Here γ0 = 10−3 (d) and γC = 10−2 (e,f) and α ≃ 5 × 10−3.
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Fig. 2.33 – Poincaré section of (2.85) for j = ω/ωc = 9/4 (left) and j = 2.05 (right) at
y-polarized ǫ = 0.02 drawn in the region 0 < vy < 0.7 and −π < φ < π. For j = 2.05 the
resonance has an overlap with the region vy < 0, whereas for j = 9/2 only the separatrix
touches the line vy = 0.

dynamics along the sample edge for γ0 = 0 and α = 0 are shown in Fig. 2.32a. They show
that even a weak field ǫ = 0.1 has strong impact on dynamics along the edge. A more direct
understanding of the dynamics can be obtained from the Poincaré sections constructed for
the microwave field phase φ = ωt(mod2π) and the velocity component vy > 0 at the
moment of collision with the wall. The system (2.85) has two and half degrees of freedom
and therefore the curves on the section are only approximately invariant (Figs. 2.32b, 2.33).
The main feature of this figure is the appearance of a nonlinear resonance. We assume for
simplicity that 2DEG is not at cyclotron resonance and polarization is mainly along y
axis. Since Eq. (2.85) is linear outside the wall, one can go to the oscillating frame where
electron moves on a circular orbit while the wall oscillates in y with velocity ǫ sin ωt. Hence
collisions change vy by twice the wall velocity. For small collision angles the time between
collisions is ∆t = 2(π − vy)/ωc. This yields an approximate dynamics description in terms
of the Chirikov standard map [79] :

v̄y = vy + 2ǫ sin φ + Icc, φ̄ = φ + 2(π − v̄y)ω/ωc (2.86)

The additional term Icc = −γcvy + αn describes dissipation and noise, bars denote
values after map iteration (−α < αn < α). Damping from electron-phonon and electron-
electron collisions contribute to γc. The Poincaré sections for Eqs. (2.85,2.86) are compared
in Figs. 1b,c showing that the Chirikov standard map gives a good description for edge
dynamics under microwave driving. A phase shift by 2π does not change the behavior of
map (2.86) and hence the phase space structure is periodic in j = ω/ωc with period unity
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Fig. 2.34 – Top panel : dependence of Rxx and −∆Rxy (in arbitrary units) on ω/ωc

from [63]. ∆Rxy is obtained from measured Hall resistance by subtracting a linear fit
to Rxy. Bottom panel : calculated transmission along sample edge for three microwave
polarizations. Microwave field is ǫ = 0.05, relaxation γ0 = 10−3 and noise amplitude α =
3 × 10−3. Transmission without microwaves is T ≃ 0.95.

which naturally yields high harmonics. The resonance is centered at vy = π(1 − mωc/ω)
where m is the integer part of ω/ωc. The chaos parameter of the map is K = 4ǫω/ωc and
the resonance separatrix width δvy = 4

√
ǫωc/ω. The energy barrier of the resonance is

given by Er = (δvy)
2/2 = 8ǫωc/ω.

In presence of weak dissipation the center of resonance acts as an attractor for trajec-
tories inside the resonance. The presence of small angle scattering leads to a broadening of
the attractor but trajectories are still trapped inside. If the center is located near vy = 0
particles are easily kicked out from the edge, transmission T drops and Rxx increases.
On the other hand, if the resonance width δvy does not touch vy = 0 then orbits trap-
ped inside propagate ballistically with T → 1 and Rxx → 0. The trapping is confirmed in
Figs. 1d,e for both models at ω/ωc = 9/4 with propagating trajectories concentrated inside
the resonance, whereas for ω/ωc = 2 in Fig. 2.32f the region inside the resonance does not
propagate (propagating orbits concentrate on the unstable separatrix and their number is
much smaller).

In order to compare our theory with experiment we calculate the transmission T for
model (2.85). An ensemble of N = 5000 particles are thrown on the wall at x = 0 with
random velocity angle. They propagate in positive x direction but due to noise some
trajectories detach from the wall, we consider that a particle is lost in the bulk when
it does not collide with the wall for time 20π/ωc. These particles do not contribute to
transmission which is defined as the fraction of particles that reaches x = 250vF/ω, that
can be viewed as a distance between contacts. For le ≫ rc the billiard model of a Hall bar
[73, 75] gives Rxx ∝ 1 − T and a deviation from the classical Hall conductance ∆Rxy =
Rxy − B/ne ∝ −(1 − T ). The data in Fig. 2.34 show calculated 1 − T and experimental
Rxx and ∆Rxy [63]. One can see a good agreement between results of model (2.85) and
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Fig. 2.35 – Dependence of rescaled Rxx in model (2.86) on ω/ωc for microwave field
ǫ = 0.00375, 0.0075, 0.015, 0.03, 0.06 (curves from top to bottom at j = ω/ωc = 4.5). Here
γc = 0.01, α = 0.03. Average is done over 104 particles and 5000 map iterations. Insert
shows transmission probability T (j, x) at distance x along the edge for ǫ = 0.02 (red/gray
is for maximum, blue/black for zero, 0 < x < 103vF /ω).

experimental data. Both show Rxx peaks at integer j and zeros around j = 5/4, 9/4, .... We
also reproduce peaks and dips for “fractional” ZRS around j = 3/2, 1/2 [80]. Our specular
wall potential is specially suited for the cleaved samples from [63] where edges should follow
crystallographic directions but peak positions can be shifted for other edge potentials. We
also note that the possibility to observe ZRS on ∆Rxy was discussed in [81]. Finally our
data show weak polarization dependence which supports the Chirikov standard map model
(2.86).

This approximation is more accessible to analytical analysis and numerical simulations.
In this model a particle is considered lost in the bulk as soon as vy < 0. The displacement
along the edge between collisions is δx = 2vyω/ωc and an effective “diffusion” along the
edge is defined as Dx(ǫ) = (∆x)2/∆t where ∆x is a total displacement along the edge
during the computation time ∆t ∼ 104/ω. In numerical simulations Dx is averaged over
104 particles homogeneously distributed in phase space. We then assume that Rxx ∝ 1/Dx

and present the dependence of the dimensionless ratio Rxx/Rxx(ǫ = 0) on ω/ωc in Fig. 3.
The computation of transmission T (shown in Fig. 3 inset) gives similar results but is less
convenient for numerical analysis. The dependence on j = ω/ωc is similar to those shown
in Fig. 2.34. Both peaks and dips grow with the increase of microwave field ǫ.

The dependence on ǫ can be understood from the following arguments. Due to noise a
typical spread square width in velocity angle during the relaxation time 1/γc is Ds = α2/γc.
The resonance square width is (δvy)

2 = 16ǫωc/ω and therefore the probability to escape
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Fig. 2.36 – Dependence of rescaled Rxx on rescaled microwave field ǫ for models (2.85)
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from the resonance is

W ∼ exp(−(δvy)
2/Ds) ∼ exp(−Aǫωc/(Dsω)) (2.87)

Edge transport is ballistic for exponentially small W and Rxx/Rxx(0) ∼ 1 − T ∼ W . The
above estimate gives the numerical coefficient A = 16 while numerical data presented in
Fig. 2.36 for model (2.86) give A ≈ 12, and confirm dependence Eq. (2.87) on all model
parameters. It holds when edge transport is stabilized by the presence of the nonlinear re-
sonance which corresponds to regions around j = 5/4, 9/4, .... Deviations appear when the
parameter K = 4ǫω/ωc approaches the chaos border K ≈ 1 and trapping is weakened by
chaos. The numerical data for model (2.85) based on transmission calculation also confirm
the scaling dependence log Rxx/Rxx(0) ∝ −ωcǫ/ω as shown in Fig. 4. This dependence is
consistent with the power dependence measured in [62]. A detailed analysis of the power
dependence may be complicated due to heating and out of equilibrium effects at strong
power, but the global exponential decay of Rxx with power was confirmed in [81].

The billiard model used in our studies focuses on dynamics of an electron on the Fermi
surface which corresponds to a zero temperature limit. In order to include the effect of tem-
perature one needs to account for the thermal smearing of the electrons around the Fermi
surface. The relaxation rate to the Fermi surface that we introduced in our model is also
likely to depend on temperature. This makes rigorous analysis of temperature dependence
challenging. A simple estimate can be obtained in the frame of Arrhenius law with activa-
tion energy equal to the energy height of the nonlinear resonance Er = 16ǫωcEF/ω where
EF is the Fermi energy. This dependence appears as an additional damping factor in ZRS
amplitude in a way similar to temperature dependence of Shubnikov-de Hass oscillations
leading to

Rxx ∝ exp(−Aǫωc/(Dsω)) exp(−16ǫωcEF /ωT ) (2.88)

Our prediction on activation energy Er is in a good agreement with experimental data
and reproduces the proportionality dependence on magnetic field observed in [62, 63].



For a typical ǫ = 0.01 we obtain Er ∼ 20 K at j = 1. The proposed mechanism can
find applications for microwave induced stabilization of ballistic transport in magnetically
confined quantum wires [82].

In summary we have shown that microwave radiation can stabilize edge trajectories
against small angle disorder scattering. For propagating edge channels a microwave field
creates a nonlinear resonance well described by the Chirikov standard map. Dissipative
processes lead to trapping of particle inside the resonance. Depending on the position of
the resonance center in respect to the edge the channeling of particles can be enhanced
or weakened providing a physical explanation of ZRS dependence on the ratio between
microwave and cyclotron frequencies. In the trapping case transmission along the edges is
exponentially close to unity, naturally leading to an exponential drop in Rxx with micro-
wave power. Our theory also explains the appearance of large energy scale in temperature
dependence of ZRS. A complete theory should also take into account quantum effects
since about ten Landau levels are typically captured inside the resonance. A microscopic
treatment of dissipation mechanism is also needed for further theory development.

2.15 Screening in 2DEG

In the context of our theory for ZRS the microwave field must be present only in a
small region around the sample edges with thickness approximately equal to a Larmor
radius hence it was reasonable to neglect screening in a first approximation. However for
bulk theories the microwave field must penetrate inside the 2DEG bulk and screening
becomes important. In this Chapter we review some results on screening of an external
electric field by 2DEG. In general screening effects are important in 2DEG in spite of
its two dimensional nature which makes screening less efficient than in three dimensional
metals. Here we develop a systematic description founded on an effective continuum media
approximation, which describes the penetration of a microwave field in a sample. This
approximation is of course valid only for length-scales larger than microscopic parameters
such as Fermi and Thomas-Fermi wavelengths.

In order to describe the penetration of an external field Eext with wavelength much
larger than the sample size we consider the special case of a 2DEG stripe, that is infinite
in y direction. In the x direction the stripe is the region −b < x < b, (z = 0). Let λ(x) the
line-charge density in the stripe. The electric field then reads :

E(x) = Eext +
1

2πǫ

∫
λ(x′)

x − x′dx′ (2.89)

Note that for −b < x < b the integral is singular, a well defined equation is obtained if the
integral is taken in term of Cauchy its principal values.

We introduce Q(x) =
∫ x

−b
λ(x) the charge on the left of x, which allows us to write the



continuity equation :

iωQ(x) = −σ(ω)E(x) (2.90)

iωQ(x) = −σ(ω)

(
Eext +

1

2πǫ

∫
1

x − x′dx′dQ

dx′

)
(2.91)

where σ(ω) is the 2DEG conductivity, which in absence of magnetic field read in a Drude
approximation

σ(ω) =
q2nτ

m(1 + iωτ)
(2.92)

The integro-differential equation Eq. 2.91 also requires a boundary condition at stripe
edges, which we take as Q(−b) = Q(b) = 0. This amounts to assume that λ(x) has at most
an integrable singularity at the sample edges.

In the static limit the field Eext is completely screened inside the sample, an integral
equation on λ follows directly from Eq. 2.89

1

2π

∫ b

−b

λ(x′)

x − x′dx′ = −ǫEext (2.93)

by rescaling λ and x this equation can be cast in the dimensionless form :

1

2π

∫ 1

−1

λ(x′)

x − x′dx′ = 1 (2.94)

Equations of this type are well-known in integral equation theory [83]. In particular Eq. (2.94)
has the analytic solution

1

2π

∫ 1

−1

dx′

x − x′

(√
1 − x′

1 + x′ −
√

1 + x′

1 − x′

)
= 1 (2.95)

Actually the solution of Eq. (2.94) is not unique and we have chosen the solution with gives
an antisymmetric charge distribution λ(x) = −λ(−x), alternatively it is the only solution
with only integrable singularities. This leads to the charge distribution λ(x) on the stripe
in the static limit :

λ(x) = ǫEext

(√
b + x

b − x
−
√

b − x

b + x

)
(2.96)

From the charge distribution we can calculate quantities such as induced dipolar momen-
tum (per length unit of the stripe)

P (x) =

∫ b

−b

xλ(x)dx = ǫEextπb2 (2.97)
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Fig. 2.37 – Distribution of the electric field E(x, y) in the static limit where the field is
completely screened inside the 2DEG stripe. The charge distribution on the stripe (thick
blue line) is given by Eq. (2.96).

The induced electric field distribution is shown on Fig. 2.96, far from the sample the field
coincides with the external field but close to the sample the field lines are strongly distorted
and perpendicular to the stripe surface.

At higher frequencies the electric field starts to penetrate inside 2DEG, for utra-high
mobility 2DEG samples τi ≃ 1 nanosec. and for frequencies ω/(2π) > 1 GHz one can

neglect the real part of the Drude conductance σ ≃ q2n
imω

and Eq. (2.91) reduces to :

Q(x) − q2n

mω2

(
Eext +

1

2πǫ

∫ b

−b

1

x − x′
dQ

dx′dx′
)

= 0 (2.98)

The substitutions x → bx̃, Q(x) → 2πǫbEextQ̃(x) brings this equation to a dimensionless
form :

Q(x) − λ

(
1 +

∫ 1

−1

1

x − x′
dQ

dx′dx′
)

= 0 , λ =
q2n

2πǫmω2b
(2.99)

(in the above equation we have omitted the tildes on the dimensionless variables). There
is no known analytic solution for this integro-differential equation, and we have found the
solutions numerically using a method developed in detail in [84]. The field distribution
inside the stripe is shown on Fig. 2.38 in the limit of large λ ≫ 1 we recover the static limit
where the field is almost completely screened inside the sample. Fog λ ≪ 1 the electric
field penetrates inside the sample and oscillates around the value of the external electric
field. The electric field around the stripe for λ = 0.02 is represented on Fig. 2.39 where
oscillations of the electric field are clearly visible.

The wavelength of the oscillations and the mean electric field inside the sample can be
estimated by looking for an approximate solution in the form :

Q(x) = A + B cos kx (2.100)
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where k is the (so far unknown) wave number and A and B are amplitudes to be determined.
Physically A is the amplitude is proportional the mean electric field inside the stripe
whereas B gives the amplitude of the oscillating component.

The oscillating term gives rise to an integral of the form

−λ

∫ 1

−1

1

x − x′
dQ

dx′dx′ = λkB

∫ 1

−1

sin(kx′)

x − x′ dx′ (2.101)

The asymptotic value of the integral can be derived in the limit k ≫ 1,

∫ 1

−1

sin(kx′)

x − x′ dx′ = sin kx

[
−
∫ ∞

(1+x)k

cos y

y
dy +

∫ ∞

(1−x)k

cos y

y
dy

]
− cos kx

∫ (1+x)k

(−1+x)k

sin y

y
dy

(2.102)

≃ −π cos kx +
2 cos k

k

1

1 − x2
+ ... , k ≫ 1 (2.103)

this equations holds for x far enough from the sample borders. The above result implies
that the oscillating component in Eq. (2.99) for a trial solution of the form Eq. (2.100)
vanishes only if

k =
1

πλ
(2.104)

Restoring dimensions this leads the following expression for the plasmon wavenumber
in agreement with the results from the literature [85, 86].

kP =
2ǫmb

q2n
ω2 (2.105)



The above calculation can be extended to determine the amplitude of the mean electric
field inside the stripe :

λ

(
1 +

∫ 1

−1

1

x − x′
dQ

dx′dx′
)

= A + B cos(
x

πλ
) − λ

(
1 + Bk[π cos kx − 2 cos k

k

1

1 − x2
]

)

− λ(A + B cos k)

∫ 1

−1

dx′

x − x′ (δ(x′ + 1) − δ(x′ − 1)) + O(k−2)

(2.106)

= A − λ − λ
2A

1 − x2
+ O(k−2) (2.107)

In this calculation we have used the function form Eq. (2.100) for Q(x) and the asymptotic
expansion Eq. (2.103). The important step here is to account for the discontinuities of
Q(x) at x = ±1 which originate from the incompatibility between the boundary conditions
Q(−1) = Q(1) = 0 and the approximate form Eq. (2.100). Physically the δ functions re-
present the contribution of the charges accumulated at the edge of the sample. By requiring
that the field vanishes in the middle of the sample we derive the leading order correction
to the mean field inside the sample

< E(x) >

Eext

= 1 + 2λ + O(λ2) ≃ 1 +
q2nω2

πǫmb
(2.108)

This derivation of the plasmon correction to the mean field is possible because the ampli-
tude of plasmon oscillations cancels in Eq. (2.107) due to a compensation between the field
created by the oscillating charge density inside the stripe and the charges accumulated on
the sample edge. As a counterpart the analytical estimation of the oscillation amplitudes
proved difficult.

The situation is somewhat simpler when cos2 k ≃ 1 and in this case it was possible
to derive an approximation for the oscillating component of the electric field and for the
whole field distribution inside the stripe. This approximation reads

Q(x) ≃ − 3

2 cos k
(cos kx − cos k) − k

2 cos k
g(x) [ for cos2 k ≃ 1, k ≫ 1 ] (2.109)

g(x) =
cos k − cos kx

k
− 1

πk

∫ 1

−1

dy

√
1 − x2

1 − y2

sin ky

x − y
(2.110)

where we have defined the axillary function g(x) which does not contain any oscilla-
ting component. The case cos2 k ≃ 1 is easier because in this case the second term in the
asymptotic expansion Eq. (2.103) is maximal and a good approximation can be obtained
by attempting to compensate for this term. The opposite limit cos k → 0 is in this respect
more complicated since on the level of approximation used in Eq. (2.103) Q(x) = cos kx ap-
pears as an eigenfunction of the integral equation kernel introducing artificial divergences.
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Numerical simulations suggest that the problem is still well defined for cos k ≃ 0, hence a
proper treatment of the equation at the stripe edges should yield the correct solution.

To summarize the screening in 2DEG rises non-trivial problems of two dimensional
electrostatics. In the regime where the plasmon wavelength λP = πq2nω2

ǫmb
is smaller than

the stripe width, a high frequency electric field starts to penetrate in 2DEG in the form of
plasmon waves. In ZRS the experiments the plasmon wavelength λP ≃ 100 µm is smaller
than the sample size (few millimeters) but larger than the cyclotron radius which is around
1 µm. Hence plasmons should create a slow modulation of the microwave field amplitude
inside the sample bulk but the model developed in the previous section still applies since
it only depends on the eclectic field at the sample edge. It is worth to mention that in
general bulk ZRS theories do not take plasmon oscillations into account and assume an
uniform electric field in the sample. I will conclude this chapter by noting that a similar
integral equation describes the distribution of the Hall field in a 2DEG stripe in the integer
quantum Hall effect [87]. In this case also no exact analytical solution is known and the
asymptotic analysis of the solution properties is difficult.
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Chapitre 3

Mesoscopic transport in DNA
molecules

3.1 Structure of DNA molecules and possibilities for

electron transport

DNA is a double stranded molecule, with diameter 2 nanometer and length that can
vary from a few nanometers to centimeters for mammal DNA. It is rather stiff compared to
other polymers and polyelectrolytes with a persistence length of 50 nanometers. DNA has a
double helix structure, each strand contains four possible bases : adenine (abbreviated A),
cytosine (C), guanine (G) and thymine (T). The bases C-G and A-T are paired through
hydrogen-bonds and appear on complementary strands of the double helix. The backbone of
DNA is formed by sugar and negatively charged phosphate groups. The chemical structure
of DNA is summarized on Fig. 3.1, which shows the phosphate-desoxyribose backbone of
DNA, and the four possibles bases. In solution, these charged groups are surrounded by
a cloud of positively charged counter-ions which screens part of the negative charge. As a
result the effective charge of DNA in solution is still negative with average charge density
e/0.7 nm instead of e/0.34 nm for the bare chemical charge. (0.7 nm is the Bjerrum length
in water at room temperature).

The possibility of electronic transport through DNA molecules is motivated by the
existence of an overlap between π orbitals between bases stacked along the DNA back-
bone. The stacking-distance between neighbor basepairs is around 0.34 nm [1], close to
the distance between atomic planes in graphite. Hence the overlap between the molecular
orbitals could create delocalized electronic states along the DNA chain. The theoretical
modeling of electron delocalization along the helix is challenging due to the presence of a
complicated environment, where sugar, phosphates, water and counterions play an impor-
tant role. Most calculations however agree on the presence of a HOMO (highest occupied
molecular orbital) - LUMO (lowest unoccupied molecular orbital) gap of a few eV (see
Fig. 3.2). The overlap between HOMO/LUMO orbitals localized on neighboring basepairs
gives an electronic coupling of the order of 0.1 eV. This value must be compared to the
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ionization potential between adjacent basepairs which is for example 0.6 eV between gua-
nine and thymine [2]. These values suggest that electronic states are mainly localized on a
single basepair. However this picture can be strongly modified if the molecule is strongly
doped/depleted due to interaction with the metallic contacts.
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Fig. 3.1 – Chemical structure of DNA. Hydrogen bonds between basepairs A-T and G-C
are shown as dotted lines.

Practical interest in conducting DNA molecules is related to their self-assembly proper-
ties which allow to create nanostructures of a specific shape with a ’bottom-up’ approach
[3]. It is now possible to manufacture both two dimensional [4] and three dimensional
structures [5, 6] of well defined shape and chemical properties. It is also conjectured that
conduction inside DNA may play a role in DNA repair mechanisms, whose efficiency is not
well understood yet.
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Fig. 3.2 – Work functions of platinum and gold, and ionization potential of the DNA bases,
HOMO and LUMO orbitals are separated by a gap of approximately 3.75 eV.

3.2 Past experiments on DNA transport and outline

of our experiments

Many experiments were designed to probe transport properties of DNA molecules lea-
ding to a controversial history that spans across the past decade. Conceptually an expe-
riment to measure conduction of a DNA molecule is rather simple (see Fig. 3.3). Never-
theless many contradictory behaviors were reported primarily owing to the difficulty of
controlling electrode fabrication and the interactions between the molecule and its envi-
ronment on a substrate.

Here I will give a brief overview of the experiments in the field referring to [2] for
a more thorough review (see also introduction in French). Probably the first experiment
providing direct evidence of electron transport in DNA molecules was reported by Fink and
Schönenberger [7] in 1999. Previous spectroscopy experiments also showed charge transfer
on distances larger than 4 nm [8, 9], however DNA resistivity was not measured directly.

This experiment was followed by [10] where semiconducting behavior was observed on
poly(G)-poly(C) DNA molecules inserted in a platinum nanogap with separation between
electrodes around 8 nanometers. The gap reported in [10] was in the electron-Volt range.
The best conduction properties were reported by A. Yu. Kasumov [11] where conduction
was observed at cryogenic temperatures. The observation of the superconducting proxi-
mity effect suggested that electron transport could be coherent over distances larger than
100 nm.

Controversy emerged rapidly after the first experiments indicating transport in DNA
molecules. The experiment [7] was heavily criticized in Ref. [13] where conduction was at-



tributed to the formation of a carbon contamination layer under electron beam irradiation.
Absence of transport in DNA on the 100 nm scale was reported by several other groups,
[14, 15, 16] for DNA on mica and silicon dioxide substrates. Conduction was probed with
DC transport, using gold or platinum electrodes [14, 15] or with electric force microscopy
[16].

Fig. 3.3 – Schematic representation of an experiment for the measurement of DNA conduc-
tion. A small DNA molecule is connected to conducting electrodes separated by an insula-
ting gap.

In view of these results, it appeared that the key ingredient for observation of long range
transport in DNA molecules [11] resides in the control of molecule substrate interactions.
In the experiment by A. Yu. Kasumov et. al. where conduction could be observed on
a 100 nm scale an organic film (pentylamine) was deposited onto the substrate before
the deposition of DNA and separated molecules from the insulator/electrode surface [11,
12]. The key role of the organic film was confirmed in electrostatic mode AFM charge
delocalization experiments [17] but direct conduction measurements failed at detecting
long range conduction [18].

Recently several experiments observed conduction of short fragments of DNA (with
length of a few nanometers). By repeatedly forming DNA junctions in aqueous buffer
solution [19] concluded that resistance was proportional to the molecule length for poly(G)-
poly(C) whereas insertion of A-T bases led to an exponential decrease of conductance with

a decay constant of 0.43
◦

A. Using a scanning tunnel microscope operating at cryogenic



temperatures [20] determined the excitation spectrum of Poly(C)-Poly(G) molecules which
exhibited a clear gap further supporting the semiconductor model of DNA from Ref. [10].
At last both biological characterization and transport measurements were combined in
Ref. [21] in an experiments where the conduction of a short DNA sequence (15 basepair
or 4.5 nm) could be destroyed/restored by introducing/correcting mismatches in the DNA
sequence. Notwithstanding these recent advances for short molecules, the ability of DNA
to transport current on length scales of the order of 100 nm with rather low resistances
around 100 kΩ per molecule is still debated.

In order to clarify the regime where DNA can transport charge on a relatively long
length-scale we have tried to reproduce the experiment from Ref. [12]. The description of
our experiments will be organized as follow :

– Chap. 3.3 we describe the buffer solutions we use and deposition of λ-DNA onto
mica

– Chap. 3.4 we describe the deposition of λ DNA molecules on Pt electrodes, without
the pentylamine organic film. In this experiment molecules are found to be insulating.

– Chap. 3.5 we describe deposition of DNA molecules on a substrate with pentylamine.
We argue that the presence of carbon atoms is necessary to stabilize the pentylamine
layer and to bind DNA molecules.

– Chap. 3.6 we explain how λ DNA molecules can be combed across electrodes func-
tionalized with pentylamine. Unfortunately all samples where we deposited pentlya-
mine/molecules ourselves exhibited insulating behavior.

– Chap. 3.7 gives a description of the fabrication of the insulating gaps with a focused
ion beam. Starting from this chapter deposition of DNA molecules was done by D.
Klinov who deposited molecules as in the samples from [11, 12]. Some of the structures
became conducting after deposition of DNA molecules by D. Klinov.

– Chap. 3.8 describes transport measurements on the samples where conduction was
observed down to a low temperatures.

– Chap. 3.9 gives an overview of our atomic force microscopy/electron microscopy
data on the gaps. We attempt to establish a correlation between conduction and
presence of DNA molecules across the slits.

– Chap : 3.10 summarizes the content of the previous chapters (that are rather techni-
cal), and attempts to draw some conclusions on the possibility of long range transport
in DNA molecules. An important point is that due to the presence of metallic re-
sidues in the gap, conduction of DNA molecules may be actually probed on much
smaller scales than the average size of the gap (for e.g. 10 nm instead of an average
of 100 nm). Hence in all cases arguments for long range transport in DNA molecules
are scarce.

– Chap. 3.11 and Chap. 3.12. These two chapters are independent from the others.
Chap. 3.11 describes a contactless experiment to probe photo-transport in nanowires
that we plan to extend to DNA molecules. Chap. 3.12 is a theoretical discussion on
counterion condensation around large (hydrophobic) molecules.

As I mentioned in the beginning of this chapter transport in DNA molecules seems
strongly dependent on the molecule environment. Unfortunately even if very clean bulk



materials can now be synthesized, the surface structure and chemistry remain poorly
controlled. For these reasons technological details become very important, however the
understanding of how a certain process (electron beam lithography or ion beam etching)
modifies the surface state of the sample is very limited. As a consequence, I will often
just try to give a coherent interpretation to our empirical observations. Indeed if we had
to prove the origin of all our empirical observation with the rigor required to experimen-
tally prove a hypothesis, it would take us far from the goal of obtaining conducting DNA
structures and take a prohibiting time.

3.3 Deposition of DNA on a mica substrate

In order to reproducibly deposit DNA molecules on metallic electrodes, a microscopy
technique is needed to observe the molecules on the substrate. Two main microscopy tech-
niques have sufficient resolution to properly image DNA molecules. Transmission electron
microscopy (TEM) is the oldest technique which allows to study DNA molecules and still
offers the best spacial resolution and chemical sensitivity. However it has the disadvantage
that molecules have to be deposited on thin suspended carbon films on a TEM grid. A
special surface treatment is required in order to capture DNA molecules on hydrophobic
carbon films, and often molecules have to be “stained” with heavy metal salts (uranyl
acetate) to improve contrast [22]. Recently atomic force microscopy emerged as an alter-
native technique for visualization of single DNA molecules [23], in liquid and in air. For
this purpose DNA molecules must first be absorbed on a flat surface, which is usually mica
because it can be easily cleaved in order to provide an atomically flat surface. In the past
few years AFM resolution achieved incredible improvements. For example recently it was
shown that it is possible to determine the chemical structure of organic molecules absorbed
on a surface using an atomic force microscope in a mode where individual atoms can be
resolved [24].

Mica and DNA are both negatively charged in a water solution and therefore there
is no adsorption of DNA onto Mica when only monovalent salt is present in solution at
neutral pH [25]. Binding sites can be created by adding a poly-valent salt such as MgCl2.
Table 3.1 gives the chemical composition of a a typical solution we used for deposition of
lambda DNA molecules onto a mica substrate. The choice of the ammonium acetate buffer
is unusual, it is chosen mainly for consistency with buffers used in [11, 12]. Historically
this choice is also motivated by the use of ammonium acetate in some standard protocols
from electron microscopy on DNA molecules [26]. The solution of Table 3.1 contains only
a very small amount of ethylenediaminetetraacetic acid (EDTA) from the native solution,
hence it is not suitable for DNA storage. EDTA neutralizes metallic ions such as Ca2+

or Fe3+ which are always present in small quantity in solution, and act as catalysts for
metal-dependent enzymes which can damage DNA. For this reason we never used solutions
from Tab. 3.1 for longer than a single day.

In order to achieve a reproducible deposition of λ-DNA onto mica the following protocol
was suggested to us by D. Klinov. In order to obtain stable humidity conditions during



Mica Sample DNA Solution Rinsing

Fig. 3.4 – Setup for deposition of λ-DNA molecules onto mica. Inside the closed petri box,
three 100 µL droplets are deposited on top of a parafilm film : one drop of λ-DNA, and
two drops of purified water. The sample is deposited on top of the λ-DNA drop and is
subsequently moved onto the water droplets for rinsing. During deposition the petri box is
closed to ensure stable humidity conditions.

DNA deposition, the sample and DNA solution are kept in a closed petri box with wet filter
paper at the bottom (see Fig. 3.4). A drop of DNA solution (volume ≃ 100 µL) is deposited
onto the clean side of a para-film sheet folded around a glass slide. The freshly cleaved mica
sample is then deposited on top of the drop (clean side facing down). This reduces the area
of the water-air interface during deposition and reduces the contamination of the drop.
After 10 minutes, many λ-DNA molecules are attached to the mica surface at several
anchoring points and the sample can be moved onto of a purified watter droplet where salt
residues are left to dissolve for around 10 minutes. This rinsing process is repeated two
times.

The above protocol allows to achieve reproducible DNA deposition due to several ad-
vantages. DNA molecules have the time to adsorb on the surface before they undergo
the force of the meniscus during the drying of the sample, hence they are attached in



Ammonium acetate CH3COO− + NH+
4 15 mM

Magnesium chloride MgCl2 5 mL
λ-DNA bought from Invitrogen Cat no. 25250-028 5 µg/ml

Commercial DNA solution contains
λ-DNA 48 502 base pairs 0.25-0.6 mg/ml
Tris-HCl (HOCH2)3CNH2 + HCl (pH 7.4) 10 mM

Sodium chloride NaCl 5 mM
EDTA 0.1 mM

Tab. 3.1 – Solution for deposition of DNA onto mica for AFM imaging

a state where they are not overstretched and keep their natural persistence length. Two
AFM images from different samples are shown on Fig. 3.5, in both cases AFM shows long
molecules undulating on a clean substrate with very little contamination. This deposition
experiment allows us to check that our DNA solution has the right concentration and is
not contaminated by undesired chemical substances.

The measured height of DNA is around 0.7 nm, which contrasts with measurements
of DNA height on mica in liquid AFM cells where height around 2 nm can be observed
[23]. Several explanations can be put forward to explain this discrepancy. It is possible
that a water hydration layer forms near the DNA molecules reducing the apparent height
of the molecules. Another hypothesis is that DNA may be strongly denaturated by the
strong interaction with the surface when the sample is dry, which can create a transition
from B-DNA to A-DNA. However we note that there is no significant difference in DNA
diameter for A and B forms of DNA [27].

For overstretched molecules a transition to the Pauling’s P-DNA form is possible and
the molecule thickness may indeed be close to a nanometer since the phosphate backbones
are tightly interwound and the bases are exposed to the exterior of the molecule [28].
After deposition of DNA we check that the molecules absorbed on the substrate have a
persistence length close to their natural persistence length in solution. This ensures that
we apply a very limited strain on the molecules and transition to P-DNA form seems
unlikely in most of our experiments (see Fig. 3.5 for undulating molecules, examples of
overstretched molecules are shown on Fig. 3.6).

3.4 DNA deposition onto metallic surfaces

For transport measurements DNA must be deposited on a metallic substrate. Many
metals (for example Aluminum, Copper, ...) can form a thin insulating oxide layer on their
surface in atmospheric conditions. While the oxide layer does not influence conduction
properties in the bulk of the metallic film, it can prevent the formation of an electrical
contact between DNA and the metallic electrodes. Hence the choice of material for electrode
is limited to noble metals. For experiments on DNA mainly gold, platinum and rhenium



Fig. 3.5 – AFM image of λ-DNA molecules absorbed on a mica substrate using solution
Tab. 3.1 and following deposition procedure explained in Fig. 3.4. Molecule height is around
0.7 nm.

have been used so far [2] although carbon based materials (carbon nanotubes, graphite)
emerge as a promising material for contacting DNA electrically [21].

In our experiments we have used a thin Platinum metallic film of a few nanometers
(typically between 3 and 5 nm) deposited by Argon DC-plasma sputtering on a freshly
cleaved mica surface. Since platinum is deposited everywhere on the sample, no further
chemical processing is needed and the obtained metallic surface is very clean and chemically
inert. As a result there is in principle no binding sites to attach DNA molecules to the
substrate, and we do not expect DNA adsorption. This is not completely true however
since DNA molecules have active chemical end groups. For example it has been proposed
that in certain pH ranges DNA ends can expose hydrophobic domains of the bases and
bind to hydrophic surfaces [29]. Hence it is possible that DNA molecules bind to platinum
through their extremities.

If the DNA solution is incubated a few minutes on the sample both ends of the molecule
have in general enough time to attach to the substrate. Once the sample is dried the
molecules are stretched by the water flow leading to a characteristic “U” shape of the
molecules when the substrate is analyzed with an AFM (see Fig. 3.6.a). As molecules
already present on the substrate create additional binding sites for the adhesion of other
molecules in the solution, many ropes of DNA molecules can be observed on the Platinum
substrate. Note that the formation of ropes is less likely if the sample is incubated for a
shorter time (or rinsed under a continuous flow), in this case (see Fig. 3.6.b) AFM images
show only a small number of stretched DNA molecules which are mainly attached through
one of their extremities.
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Fig. 3.6 – Deposition of DNA molecules on a Platinum substrate without treatment of
the surface a) after an incubation time of a few minutes, combing was achieved with a
water meniscus b) after rinsing under a flow before drying using the protocol described in
Chap. 3.6.

In the above procedure the DNA molecules were deposited onto the platinum film
directly after sputtering. Of course transport measurements can not be realized in this
configuration. Transport measurements are possible only after electrodes have been pat-
terned on the substrate. The simplest way to fabricate an insulating gap is to protect the
regions where we do not want Pt deposition by a MMA/PMMA resist that can be pat-
terned beforehand using usual electron-beam lithography techniques. After sputtering the
resist is dissolved in hot acetone and a gap is formed. The presence of organic residues
originating from imperfect removal of the PMMA film changes the adsorption properties
of DNA molecules on the substrate. On this “contaminated” substrate it becomes possible
to deposit molecules without over-stretching or creation of ropes (see Fig. 3.7) although
the success rate is small since the surface state of these samples is rather poorly control-
led (indeed in many cases DNA molecules do not bind at all to sample). These sample
showed insulating behavior even if several DNA molecules crossed the gap between the Pt
electrodes (see for e.g. Fig. 3.7, shortest distance between electrodes was around 500 nm
in this sample). This insulating behavior is consistent with the experimental findings from
[14], which indicated that DNA is an insulator when it is deposited on Silicon/and mica
surfaces.

Because of the poor reproducibility of DNA deposition on bare metallic samples, and
confirmed absence of conduction we subsequently focused onto deposition of DNA on me-
tallic electrodes functionalized by a pentylamine plasma as proposed in Refs. [11, 12] where
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Fig. 3.7 – AFM image of DNA molecules deposited across Pt electrodes. The electrodes are
highlighted in blue on the left image and their height is approximately ≃ 3 nm. They were
fabricated with electron beam lithography on a SiO2/Si substrate. The right image shows a
magnified view of DNA molecules inside the gap. This sample displayed insulating behavior
after deposition of DNA molecules. (This sample actually underwent a pentylamine plasma
treatment, but due to the absence of a carbon film on the Pt substrate, this treatment was
most likely ineffective, see Chap. 3.5 for a more detailed discussion).

conduction on samples with DNA was observed at low temperature.

3.5 Pentylamine plasma functionalization for deposi-

tion of DNA molecules

N H2C H 3 ( C H 2 )4 N H 2

Fig. 3.8 – Chemical structure of the pentylamine molecule

The use of the pentylamine molecule (see Fig. 3.8) was introduced by Dubochet [30]
as a mean to render carbon support films for electron microscopy hydrophilic in order
to make possible adsorption of biological molecules. The sample is commonly placed bet-
ween two parallel electrode plates in a vacuum chamber with weak pentylamine pressure
(2.5 millibar). A high voltage (80 V) is then applied to the plates creating a glow discharge.
The ionic species produced during the discharge are deposited on the substrate and create



Bond dissociation energy kJ/mol
H − NH2 450
H − CH3 439

CH3 − CH3 376
C2H5 − CH2NH2 336
C6H5CH2 − NH2 297
Ionization energy kJ/mol

H 1312
CH3NH2 826
C5H11N 726

Tab. 3.2 – Dissociation energies for bonds present in the pentylamine molecule, and io-
nization energies of methylamine (CH3NH2) and piperidine (C5H11N) [32]. The last two
molecule are chemically close to pentylamine for which data is not available. Since the bond
dissociation energies are all comparable and smaller than the typical ionization energies it
seems very likely that all possible chemical species are present in the plasma.

a positively charged background favorable for DNA adsorption (typical discharge time was
30 s in our experiments, reported pressure and voltage values correspond to those used for
the setup in the group “Microscopie moléculaire” at Institut Gustave Roussy).

The chemical structure of the deposited chemical species is not well characterized and
is certainly complex (see also Table 3.2). For example it is known that a discharge of an
CF4/O2 gas mixture, creates CF+

3 , CF+
2 , O+

2 , O−, F− ions and CF3, CF2, O, F radicals [31]
Note however that the fraction of dissociated species among the gas molecules is usually
very small (of the order of 10−5) in this discharges used for material processing, hence it
is highly probable that not only dissociated molecules are deposited on the substrate.

The pentylamine discharge technique was adapted to attach DNA molecules to conduc-
ting electrodes in the experiments from Refs. [11, 12]. It constitutes the main difference
with other studies where in most cases the substrate was silicon dioxide. Hence we dedi-
cated considerable efforts to identify the substrate on which this treatment yields effective
binding of DNA molecules. These studies led us to the conclusion that reproducible adsorp-
tion of DNA with pentylamine treatment occurs only on carbon coated substrates, which
are similar to the carbon support films for electron microscopy. In this respect the analysis
in [12] is somewhat misleading since it claims that pentylamine can form a polymer film on
mica suitable for adsorption of DNA. Below we summarize the results of our DNA deposi-
tion experiments on different substrates using the pentylamine technique. In all cases the
DNA deposition was attempted rapidly (at most one hour) after the glow discharge since
we have observed that the efficiency of the pentylamine layer at binding DNA molecules
decreases quickly once it is exposed to ambient air.
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Our attempts to deposit DNA on a freshly cleaved
mica substrate functionalized by pentylamine plasma
were never successful. An example AFM image of the
mica substrate after pentylamine plasma and DNA de-
position is shown on the right. Only a single feature
reassembling a DNA molecule can be distinguished in-
side the 3 µm×3 µm scan area : this is much less than
the number of molecules on the Figs. 3.5,3.7 which have
similar scan size. The absence of molecules on the mica
substrate is puzzling since DNA binds to both pentyla-
mine functionalized surfaces and bare mica. A possible
explanation is that in a first stage molecules bind to
the pentylamine film on top of the mica surface. In a
second stage this film is washed away from the sur-
face when the sample is dried ripping away the DNA
molecules on top of the pentylamine film. Indeed the
pentylamine film must be destroyed at some stage of the deposition because the density
of DNA molecules on the surface is extremely small compared to the densities achieved
on the Pt/C surface with the same functionalization. It can not be destroyed immediately
when the drop is deposited on the surface, otherwise DNA molecules would bind to the
exposed mica surface. To summarize in the above scenario pentylamine masks the mica
surface from the DNA solution and is at least partially removed when the sample is dried,
carrying away the attached DNA molecules (this assumes that the layer formed during the
plasma discharge is continuous).



Deposition of DNA molecules on a platinum film
coated with an evaporated layer of amorphous car-
bon (around 10 nm) were reproducible and successful.
Most likely the free radicals created during the glow
discharge react with the amorphous carbon on the sur-
face, and anchor the pentylamine layer. As seen in this
image the molecules are not overstretched, it may also
seem that their persistence length is smaller than on
the mica substrate (see Fig. 3.5). This observation is
supported by other quantitative studies of DNA ad-
sorption on positively charged surfaces [33]. Following
Ref. [12] we have also tried to deposit DNA with the
pentylamine treatment directly onto platinum without
the carbon layer. For clean platinum films only a low
density of overstretched molecules could be detected
on the surface after DNA deposition. This most likely
indicates that the pentylamine is removed during the
DNA deposition and only a few molecules bind to the
platinum surface through their ends with a mechanism
similar to that described in Chap. 3.4. After discus-
sions with D. Klinov, we found that the Platinum deposited in [12] actually contained a
certain amount of carbon (around 10%) which allowed fixation of the pentylamine. In this
regard also the presentation in Ref. [12] is misleading.

In conclusion the adhesion of the pentylamine is reliable only on surfaces with a high
enough density of carbon atoms that can bind with the ions/radicals produced during the
glow discharge sticking the pentylamine to the surface. In this case the deposition of DNA
molecules is reproducible and molecules are not overstretched. The role of the carbon atoms
is only to anchor the pentylamine layer. Hence it is not necessary to form a continuous
carbon coating of the substrate. For example the Pt/C samples produced by D. Klinov
were obtained by simultaneous evaporation of both Platinum and Carbon in unknown
proportions. (However in the transport devices for measurement of DNA transport the
nature of the substrate will not be relevant since the active region will be contaminated by
carbon from the focused ion beam microscope).

3.6 Combing DNA molecules onto electrodes with the

pentylamine technique

In the previous chapter we described how DNA molecules can be attached on a metallic
film with the pentylamine plasma functionalization. From our experiments it seems that
this procedure is successful at attaching DNA molecules only on carbon coated substrates.
In this chapter the substrate will be a Platinum film (3 nm) sputtered on a cleaved mica
surface and covered by a layer (≃ 10 nm of evaporated amorphous carbon).



We now describe how to orient DNA molecules perpendicularly to an insulating gap
separating wide metallic electrodes. The possibility to orient individual DNA molecules
with a moving air-liquid interface was first established experimentally in Ref. [34]. Figure
3.9 shows a photography of the deposition setup, and an AFM image of the molecules
at the metal-insulator interface (both were covered by an amorphous carbon layer before
deposition). Even if molecules are combed on the electrodes, they seem to turn around at
the metal boundary avoiding the insulator. This guiding may be explained by pinning of
the liquid air-interface at the border between the two regions. Moreover many molecules
are overstretched which is to be avoided for transport measurements. For this reason we
have chosen an alternative technique which consists in orienting the molecules with a flow.
A macroscopic Poiseuille flow is not perturbed by defects and interfaces on the nanoscale,
and regulation of the flow velocity allows in principle to control the elongation of the
molecules.

DNA Solution and water for rincing 

Combing direction

Metal interface 

Fig. 3.9 – Combing of DNA molecules using a drying water air interface. A droplet of DNA
(≃ 15 µL) is incubated on the functionalized surface for a minute. Afterward ≃ 100 µL
of water are added to the drop to avoid formation of salt crystals when the solution is
dried. The combing is achieved by draining the liquid from the sample with a filter paper
(combing direction indicated by blue arrows, see photography on the left). An AFM image
of the molecules near metal-insulator interface is shown on the right. Molecules are combed
on the metal electrodes but turn around near the interface, and no molecule crosses the
interface in this picture.

In our deposition protocol (see Fig. 3.10 for a description of the setup) the droplet is
first incubated on the sample surface for around a minute. This allows DNA molecules to
bind to the surface at a few contact points without complete adsorption on the surface.
Afterward the rinsing flow is turned on, it provides a flow rate of ≃ 5 ml/min of pure water



on the sample. This flow has a double function of combing DNA molecules and rinsing salt
residues that may form on the surface rendering AFM imaging difficult. It is interesting
to know in which flow speed regime DNA molecules may start to be overstretched. A
quantitative study of the dynamics of a tethered DNA molecules under a Poiseuille flow
was performed recently [35] using fluorescence microscopy.

It was found that the elongation of the molecules was governed by a single dimensionless
parameter, called the Weissenberg number Wi = γ̇τ where γ̇ is the shear rate and τ is the
longest relaxation time of the DNA molecule (it was found to be τ ≃ 0.4 s for λ-DNA
labeled with fluorescent beads [35]). Complete elongation of the molecules occurred only
for Wi ≃ 100, while an elongation of 25% occurs already for Wi ≃ 5. The shear rate
in our experiments can be estimated as follows : the outflow of liquid on the surface is
Dflow ≃ 5 ml/min, for a cross section of the droplet of the order of S = H × (2R) where
H = 1.5 mm is the droplet height and R = 5 mm is the droplet radius. The mean velocity
in the fluid is V = D/S and since the flow vanishes at the contact with the substrate the
shear rate is γ̇ = V/H ≃ 4 s−1 leading to Wi = 1.5. This calculation shows that with our
typical flow parameters we are far from the threshold Wi ≃ 100 where molecules may start
to be overstretched. As a result we have set the debit to a value around 5 ml/min where
the flow on the sample was stable without risks of uncontrolled drying of the drop during
the rinsing process.

AFM images of DNA molecules deposited with this technique on a carbon coated
platinum surface are shown on Fig. 3.11. The extension of molecule depends on the number
of active binding sites created during the glow discharge, the incubation time before rinsing
and on the water flow rate. Since all these parameters are hard to fix in a reproducible way,
sometimes molecules are more collapsed onto themselves (Fig. 3.11.a) and sometimes they
are more extended (Fig. 3.11.c). However binding and orientation of the molecule (in the
range suggested by the different cases of Fig. 3.11) was reproducible with this technique.

Now all ingredients are assembled to deposit DNA molecules across an insulating gap
using the pentylamine technique. We have done this with electrodes produced with both
electron beam lithography and focused ion beam etching (this technique was also used in
[12] and will be described further on in Chap. 3.7). A cross section of the material layers
constituting electrodes and the gap is sketched on Fig. 3.12, this structure is similar for
both electron-and ion beam processed samples. The width of the gaps for these samples was
between 100 and 400 nm. Molecules crossing the gap are clearly visible in Fig. 3.13 however
all the gaps where we deposited molecules always remained insulating with resistances
larger than Giga-Ohms despite presence of carbon and pentylamine layers. In order to verify
that the surface of the electrodes is not insulating due to the formation of an oxide layer
or due to organic contamination we have deposited HIPCO single wall carbon nanotubes
(SWNT) from a dichloroethane solution across the electrodes. The resistance of the junction
then dropped to values of the order of 100 kOhms suggesting that our electrodes were clean
enough to make contacts to nanonotubes. However we will argue in the next chapters that
the electrodes were probably covered by an insulating pentylamine layer during deposition
of DNA molecules. The organic solvent of the SWNT may have cleaned the electrode
surface thereby allowing the formation of an electrical contact.
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Fig. 3.10 – Combing of DNA molecules with a flow. A drop of DNA solution is deposited
on the sample and incubated for a few minutes. The substrate is then rinsed with a flow of
pure water injected by a peristaltic pump. The liquid regularly runs off the sample, which
is tilted in the direction of the flow allowing to collect the excess liquid in a petri dish
under the sample. The liquid is drained by the peristaltic pump thus keeping the water
level constant.

These results are in disagreement with findings from [11, 12] which suggested that the
presence of a pentylamine layer creates a suitable substrate where conduction of DNA
molecules is possible. However the above experiments depend on many parameters which
are often poorly defined. In the absence of any credible indication on the origin of this
discrepancy we have asked D. Klinov to deposit DNA molecules with his setup on samples
with insulating gaps prepared in our laboratory using a focused ion beam reproducing as
accurately as possible the experiment from Ref. [12].
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Fig. 3.11 – AFM images of DNA molecules combed on a platinum carbon pentylamine
substrate with a liquid flow. Images from left to right correspond to increasing flow velocity.

Fig. 3.12 – Schematic representation of the material layers for samples produced by electron
beam lithography. Structure of the samples produced with the focused ion beam is similar
except that the substrate is mica and will be discussed in more detail in Chap. 3.7.
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Fig. 3.13 – AFM image of DNA molecules deposited across insulating gaps using the
flow combing technique. a) Shows a sample produced with focused ion beam etching. The
insulating gap is actually around 100 nm wide, even if apparent width is around 400 nm.
This occurs because the roughness of the Pt film is increased in a large area around the
gap after FIB irradiation. b) Shows DNA molecules across a gap produced with electron
beam lithography. Note that the gap realized with electron beam lithography is cleaner
and one can follow the molecules inside the gap. This is not possible for the gap produced
by focused ion beam etching due to the roughness of the substrate after etching (see also
Chap. 3.7).



3.7 Fabrication of narrow insulating gaps using a fo-

cused ion beam

This method of fabrication of insulating gaps does not use electron beam lithography
and therefore avoids the contamination of the surface by residues from organic resist. A thin
layer of platinum carbon was deposited in D. Klinov’s laboratory on a freshly cleaved mica
substrate. This metal layer has an estimated thickness of at around 5 nm and a resistance
per square of around 1 kΩ. A schematic representation of the sample layout after laser and
focused ion beam (FIB) etching is shown on Fig. 3.14. In a first step thick gold (≃ 200 nm)
contact pads were evaporated through a mechanical mask. We then cut long trenches in the
metallic film using an ultraviolet focused laser with spot-size around 10 to 30 µm. The laser
locally heats the surface and evaporates the metal layer creating holes in the metal of the
order of the spot size. Programmable motors then allow to expose the metal in predefined
patterns around the golden contacts leaving regularly spaced metal openings 60 µm long.
These remaining metal stripes were opened with a Gallium FIB which can etch narrow
100 nm wide trenches. In order to determine the minimal dose of FIB irradiation required
to produce a narrow insulating gap in the platinum film we have developed a technique for
in-situ measurement of the film resistance inside the FIB microscope.
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Fig. 3.14 – Sketch of a sample produced with FIB etching with a sample photography on
the background. It shows the gold contact pads, the pattern exposed to laser irradiation
(green line) and the small gaps etched with FIB at the last step (red line). The scales are
not all preserved on this diagram : the red line (region etched with FIB) is in reality 50 µm
long and 100 nm whereas the width of the lines etched with laser is roughly 10 µm.



This technique allows us to continuously monitor the resistance between several gaps
contacted in series (for e.g. between the hatched regions on Fig. 3.14). First an estimate of
the required etch time is obtained by cutting half of one gap and monitoring simultaneously
the increase of resistance as a function of time. We estimate the optimum etching time of
the PtC film from the value at which the resistance saturates. After this operation the
measured resistance is still finite since only half of the gap is etched, this allows to repeat
the operation and accumulate statistics on a few (typically 5) gaps. At the last step one
of the gap is opened completely until resistance diverges, the resistance dependence on the
etch time is shown on Fig. 3.15 for one of the junctions. This last measure gives a very
precise estimate of the minimal dose. Considering possible fluctuations in the thickness of
the film, we increase this dose by around 20% and etch all the remaining gaps with the
same dose.
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Fig. 3.15 – Resistance of a gap during FIB etching as a function of exposure time. The
gap is etched in a single scan mode with a scan time of 0.1 s which allows to measure
the resistance after each scan. After total time t > 9.7 s the resistance jumps and the gap
becomes insulating. Usually at the beginning of the etching there is a short phase were
conduction drops by a small amount that can not be seen on this scale. This surprising
behavior will be discussed in Chap. 3.9.

Atomic force microscopy images of the gaps fabricated with the FIB are shown on
Fig. 3.16. For the narrowest gap the height profile exhibits a characteristic peak with a
small dip in the center where the gap is insulating. Certainly the dip is actually deeper
than shown on the AFM image because of tip convolution effects. At higher irradiation
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Fig. 3.16 – Averaged height profile from two gaps prepared using FIB, their AFM images
are shown in the color insets. The narrow gap was obtained during the calibration resistance
measurement from Fig. 3.15 while the wide gap was obtained with a larger exposure time.
It is difficult to distinguish the insulating region from the main contrast that comes from
the roughness near the edge of the gap produced during the FIB etching.

doses, the gap grows in size and more pronounced side peaks appear.

Surprisingly for the minimal etch time width of the insulating region is of the order of
≃ 70 nm and is very slender compared to the contamination peak which extends over about
500 nm. The cross section of the peak for the narrow gap is Σ = (250 nm−70 nm)×7 nm ≃
1260 nm2 where 7 nm is the gap height, 250 nm and 70 nm are respectively the bump and
gap widths. Assuming that the thickness of the platinum film is around 5 nm we find that
the cross section of the excavated platinum is sensibly smaller 70 nm × 5 350nm2. It is
possible that FIB dug also into mica providing the remaining material inside the bump.
However since we stopped etching just when the gap became insulating, it is unlikely that
we dug very deep into the mica surface. It is instructive to compare the number of atoms N
inside this “bump” (we find that N = Σ×50 µm/(0.25 nm)3 ≃ 4 × 109 where 50 µm is the
gap length and 0.25 nm is the average distance between atoms for e.g. in a gallium crystal),
with the number of gallium atoms NFIB sent by the FIB. This number can be estimated
from the FIB current and the etch time for the narrow gap on Fig. 3.15, it amounts to



NFIB = 3.5 pA × 10 s/e ≃ 2 × 108 (e is the elementary charge). According to this
calculation there is an almost two order of magnitude difference between the quantity of
atoms in the bump N and the quantity of atoms emitted by the ion beam NFIB. Although
these estimates are not very accurate they suggest that there may be a third origin for
the peaks around the gap other than displacement of platinum and mica and injection of
gallium atoms. It is possible that the metallic film dewets locally from the mica surface due
to heating by FIB creating a bump (we have remarked adhesion of thin films is generally
not very good on mica). In all cases AFM scans in the direction parallel to the gap show
( see AFM images from Fig. 3.13.a ) that the surface is very rough in a region extending
across ≃ 700 nm much wider than the insulating region (≃ 200 nm), indicating that the
PtC film is damaged or contaminated in a large region outside the gap.

For the moment we stop here the analysis of the gap structure (but it continues in
Chap. 3.9 !). In the discussion that follows it is enough to keep in mind that the structure
of the gap may actually be quite complicated even if it is obtained by “physical” means
without organic resists.

A total of about twelve substrates were sent to D. Klinov in Moscow for the deposition
of DNA molecules, with about ten gaps opened by FIB on each sample. The deposition
protocol used by D. Klinov seems similar to the protocol we used in our deposition expe-
riments (see Chap. 3.6). The main difference seems that in D. Klinov’s pentylamine setup
a gas flow continuously refreshes the pentylamine gas in the discharge chamber. This pro-
cedure can reduce the probability of forming radicals/ions which require breaking several
bonds or removing several electrons from the pentylamine molecule. But this probability
is low anyway and it is not clear how it could influence the conduction of DNA.

The results on conduction after deposition of DNA molecules in D. Klinov’s laboratory
are summarized in Table 3.3. On three samples conduction was observed after deposition of
DNA molecules across slits that were insulating before DNA deposition. The statistics on
these three sample is very favorable since 11 out of 15 slits became conducting. Moreover
the deposition protocol was repeated with a buffer solution without DNA on a control
sample from the same batch as two of the conducting samples (the mica sample was cut
in three pieces before the pentylamine treatment) and all the 14 gaps remained insulating.
This statistic is strongly in favor of an interpretation in term of conduction through DNA
molecules. However this statistical argument must be handled with care. If we consider all
the samples were deposition of λ molecules was attempted, the conducting slits represent
only around 10% of the prepared structures. On the other samples or no DNA molecules
could be detected with AFM indicating that pentylamine functionalization was not effective
or the molecules were insulating. Hence observation of conductivity after attempts of DNA
deposition has actually a low success rate even when deposition is done by D. Klinov
following the recipes used in [11, 12]. We have reached the conclusion that one of the
reasons behind this irreducibility lies in the structure of the sample after etching which
will be disused in more detail in Chap. 3.9. We now turn to transport measurements on
the three samples where conduction was observed.



# of substrates 12
# of FIB slits ≃ 100

# of substrates with visible λ DNA 5
# of substrates with conducting slits after λ deposition 3

# of conducting slits after λ deposition 11
# of slits on the substrates with conduction 15

# slits where DNA molecules could be observed with the AFM in Orsay 1
# of slits on the control sample 14
# of conducting slits after buffer 0

Tab. 3.3 – Success rates for the formation of conductive junctions by deposition of λ
molecules.

3.8 Transport measurements on conducting DNA samples

Before performing transport measurements on the three substrates where conduction
appeared after deposition of DNA molecules we had to connect the samples to a sample
holder which can be mounted inside one of our dilution fridges. This connection can be rea-
lized through thin (≃ 20 µm diameter) wires with ultrasound bonding or glued with silver
paint. Ultrasound bonding on a sample with three conducting gaps, led to disappearance of
conduction on three gaps. It is possible that an electrical discharge was created during the
ultrasound bonding destroying the conduction across our samples. In order to avoid this di-
scharge we have decided to contact the second sample using silver paint. Surprisingly with
silver paint conduction was also destroyed on the five conducting gaps of the second sample.
During the process of contacting the gaps we checked their conductivity under a test-probe
several times. The resistance of a gap could change even when the silver paint drops were
deposited on the contact pads of the other samples. For example the resistance across one
of the gaps took the following values : 1.8 kΩ → 160 kΩ →> 1000 kΩ → 5 kΩ → ∞.
These observations suggested that our samples were sensible to the vapors of the silver
paint solvent. Hence we decided to avoid silver paint for the contacts on the last sample.
A possibility was to replace silver paint with indium paste however the latter did not stick
to contact pads after the pentylamine discharge probably because of the presence of the
organic layer. A. Kasumov then proposed to use a system of mechanical contacts with
springs that we fabricated specially to fit the geometric parameters of the last remaining
sample (see Fig. 3.17).

This allowed us to contact 5 conducting gaps which we measured at low temperature.
Their resistance at room temperature is listed in Tab. 3.4

To our surprise all four samples with room temperature resistance ≤ 10 kΩ exhibited
superconducting behavior at low temperature. Indeed contrarily to the experiment [11]
where superconducting electrodes where used to contact the DNA molecules, our plati-
num/carbon contacts are in a normal state. The dependence on temperature for different
magnetic fields is shown for two samples on Figs. (3.18,3.19). Superconductivity appeared
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Fig. 3.17 – Three dimensional model of the mechanical connection system we used to
contact our DNA sample to the dilution fridge.

measured at low temperature 3 kΩ 4.8 kΩ 6.1 kΩ 10 kΩ 10 MΩ
measured only at room temperature 4.0 kΩ 8.2 kΩ ∞ ∞

Tab. 3.4 – Room temperature resistances of the gaps at room temperature after deposition
of DNA molecules on the sample measured at low temperature.

below 4 K and results in a drop of resistance that saturates at low temperature because
of the finite resistance of the normal contacts. The 10 kΩ sample displayed a very smooth
transition as a function of temperature (see Fig. 3.18) and the drop of resistance saturated
at T ≃ 200 mK. In contrast less resistive samples had a sharper transition (see for e.g.
Fig. 3.19) with a saturation temperature around 2 K. The smooth transition observed in
the 10 kΩ sample has some similarities to smooth transitions observed in Superconductor-
Normal-Superconductor (SNS) junctions in the intermediate regime between a long and a
short junction. A long SNS junctions is characterized by the presence of two transitions.
The transition at the highest temperature, stems from the transition of the superconduc-
ting contacts while at a lower temperature proximity induced superconductivity sets-in in
the normal region [36]. When the length of the normal part is decreased the two transitions
merge into a single smoother transition [37, 38]. Since in our samples only a single transi-
tion is observed, this suggests that we have created an SNS junction in this intermediate
regime.

A possible origin of the superconductivity is the Gallium contamination deposited by
the FIB. An insight on the size of the superconducting contamination islands is provided
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Fig. 3.18 – Temperature dependence of resistance for the 10 kΩ junction (see Tab. 3.4)
at several magnetic fields.

by the dependence on magnetic field. Under a magnetic field the resistance of the samples
increased, however the maximal magnetic field available in our setup (5 Tesla) was not
sufficient to completely destroy superconductivity at low temperature indicating a critical
magnetic field of the order of 10 Tesla (see Figs. 3.18 and 3.19). Assuming the presence of
superconducting nanoparticles we can also understand the origin of this relatively high cri-
tical field. The magnetic field destroys superconductivity in a nanoparticle when it creates
a flux of the order of the flux quantum through the nanoparticle surface πR2 where R
is the nanoparticle radius. This criterion gives a typical nanoparticle radius of the order
of R ≃ 10 nm. Through extensive AFM/SEM characterization of the measured sample
(see Chap. 3.9) we were able to establish that these nanoparticles were deposited by FIB.
Gallium is superconducting with transition temperature ≃ 1 K, the presence of carbon
impurities may increase this transition temperature to ≃ 4 K. Indeed tungsten wires depo-
sited with FIB containing Gallium and carbon have critical temperature T ≃ 4 K whereas
the pure tungsten has critical temperature around < 50 mK [39]. Thus it is probable that
the source of superconductivity are superconducting nanoparticles inside (and even out-
side !) the gap cut by the FIB. The nanoparticles themselves can not give rise to ohmic
resistances of a few kOhms, hence the large amplitude of the resistance (drop for e.g. from
10 kΩ to 3 kΩ) between the normal and the superconducting states, indicates a confi-
guration where a normal nanowire connecting the contacts is rendered superconducting
by proximity effect from the nanoparticles. To conclude on the dependence on magnetic



field, one of the samples displayed SQUID like modulation in the magnetoresistance with
a period of 0.5 Tesla at temperature T ≃ 2 K. These oscillations disappeared at lower and
higher temperatures T < 1 K and T > 3 K suggesting a complex geometry with several
SNS junctions connected in series and/or in parallel.
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Fig. 3.19 – Temperature dependence of resistance for the 4.8 kΩ junction (see Tab. 3.4)
at several magnetic fields.

We have also measured the differential resistance of the sample as a function of a DC
current. The results for the 10 kΩ sample are shown on Fig. 3.20 and resemble the data
obtained from Ref. [11] on DNA samples with superconducting Rhenium contacts. At
zero magnetic field the differential resistance exhibits a large drop in the current interval
−250 nA ≤ i ≤ 250 nA. Inside the gap the resistance drops smoothly but does not vanish
probably because of the contact resistance of the normal electrodes. In our interpretation
the large peak at i ≃ ±250 nA corresponds to the critical current of a nanoparticle. The
smaller peaks may appear due to other nanoparticles weakly connected in series or in pa-
rallel in our conducting junction. As suggested by the colorscale diagram, the gap shrinks
when a magnetic field is applied. At the maximal available magnetic field H ≃ 5 Tesla, the
critical current is i ≃ 130 nA since as stressed above our magnetic fields are not strong en-
ough to completely suppress superconductivity. The three other less resistive junctions give
similar dV/di dependence (see Fig. 3.21). In these other samples more peaks are apparent
and one of the junctions was hysteric. Figure 3.21 also presents the low temperature diffe-
rential conductance of the resistive junction with room temperature resistance of 10 MΩ.
At low temperature this sample becomes insulating at low bias voltage. When the bias



exceeds 100 mV the conductance starts to increase following a cone shape typical for gra-
phite but a priori unexpected in our samples. An hysteric singularity appears when the
bias reaches a value around −3 V. Although it is hard to determine with certitude the
origin of this hysteresis we note that −3 V is close to the estimated HOMO-LUMO gap in
DNA and that similar singularities were observed at room temperature in the conduction
of DNA/lipid films confined between nanogaps [40]. In this respect this is the only sample
whose DC transport characteristics can hardly be mimicked by a metallic short-circuit of
very small dimensions.
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)Ω
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Fig. 3.20 – The black curve represents the differential resistance dV/di as a function
of DC current through the 10 kΩ sample at 100 mK. The color inset in the background
shows the evolution of the differential resistance encoded as a color scale with yellow/violet
representing maximal/minimal differential resistance. The x axis represents the DC-current
as in the main figure, and the y axis indicates the magnetic field ranging from 0 to 5 Teslas.

In order to search for sample characteristics which might be specific of DNA molecules
we have irradiated our samples with microwaves. Our idea was that the helix structure
of the molecule could induce special magnetic field asymmetry in the out of equilibrium
transport across the molecule. This expectation was not confirmed experimentally since
the R(B) dependence under irradiation remained rather symmetrical. However the DC-
magnetoresistance of our samples could become unstable under microwave irradiation (see
Fig. 3.22). Interestingly instabilities were observed mainly at rather low frequencies f <
1 GHz. A possible (although science fiction like) interpretation is that the microwave
field excites a mechanical transition between two possible equilibrium positions for a DNA
molecule suspended across the peaks created on both sides of the gap by the FIB etching ;
in this scenario the superconductivity just enhances the sensibility to these mechanical
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Fig. 3.21 – The panels a,b,c. show the differential resistance of the 3 kΩ, 4.8 kΩ and 6.1 kΩ
samples which have a superconducting behavior. The panel d. displays the differential
conductance of the resistive 10 MΩ sample. Temperature was 100 mK.

vibrations. However one must take into account that the response to microwave may be
very complicated in superconducting weak links where the switching may become chaotic.
In particular magnetic field anti-symmetric photovoltaic effect was observed in such systems
by [41]. Hence the presence of a magnetic field asymmetry does not allow to discriminate
between a chiral molecule like DNA and an array of superconducting weak links.

In the above experiments we have assumed that superconductivity was induced by
superconducting nanoparticles because of the high critical magnetic fields. Yet it is not
the only possibility since FIB irradiation can induce superconductivity in materials with
otherwise very small critical temperatures. For example the tungsten deposited under FIB
has critical temperatures around 4 K and a high critical magnetic field of 4 Tesla. Hence
there is also a possibility that the pics observed on the edges of the gap (see Fig. 3.16)
could become superconducting due to a high concentration of incorporated Gallium atoms.
In order to check experimentally if this is indeed the case we have deliberately prepared
a short-circuit across a clean Pt film by stopping the FIB etching before the gap became
completely insulating (this may be compared with Fig. 3.15 where the metallic film was
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Fig. 3.22 – Magnetoresistance of the 10 kΩ sample for several microwave powers. Micro-
wave frequency was f = 298 MHz.

etched until the gap became insulating). In this control sample superconductivity was
absent, but low temperature measurements revealed a low bias differential resistance peak
which grow at low temperature (see Fig. 3.23) in a behavior reminiscent of dynamical
Coulomb blockade [12]. The effect in Fig. 3.23 is smaller by an order of magnitude compared
to Ref. [12]. This is probably because we measured a short-circuit much more conductive
than conductance quantum, however short-circuits formed by FIB can be more resistive
see for e.g. Fig. 3.15. Hence FIB etching can create quasi-one dimensional filaments inside
the gap capable of producing dynamical coulomb blockade behavior. However it does not
induce superconductivity on the edges of the gap and the origin of superconductivity can
only be attributed to the presence of superconducting nanoparticles inside the insulating
gap.

In general these superconducting nanoparticles are unlikely to induce superconductivity
in a normal metal because of the inverse proximity effect. Direct proximity effect is possible
in this regime only if the density of states in the normal metal is very low. For example
it was recently proposed that nanoparticles could induce superconductivity in graphene
[42]. Since DNA molecules have a very low density of states they are good candidates for
forming the normal region of our SNS junctions. The image that then comes to mind (see
Fig. 3.23) is that of a DNA molecule connecting several nanoparticles and connected to
the normal PtC contacts.

However it is also possible that the nano-filaments created by FIB can be small enough



for the direct proximity effect to be possible. Indeed, even if the gaps were insulating before
deposition of DNA, one can imagine that the metallic residues inside the gap could have
been displaced by the DNA molecules creating a leak. Note that the absence of supercon-
ductivity in the control sample from Fig. 3.23 does not rule out this scenario. Indeed we
will show in the next chapter that the deposition of nanoparticle is not a reproducible phe-
nomena and a single control short-circuit sample may not be representative. It is actually
hard to discriminate between these two possibilities. Our samples do not have a backgate
since they are prepared on mica, heating up to the denaturation temperature of DNA is
not possible since pure Gallium melts at low temperature of ≃ 30 oC and experiments in
liquid may simply break the device by removing the pentylamine layer. As a result we have
chosen ultraviolet (UV) irradiation as the most distinctive experiment, indeed it is well es-
tablished that UV can damage the DNA molecules whereas it is not harmful for a metallic
film provided that there is no heating from the UV lamp. We tried to irradiate one of the
samples with an UV irradiation with wavelength λ = 233 nm. The electrical conduction
disappeared immediately (on the scale of seconds) after the UV lamp was switched, whe-
reas the resistivity of a platinum film of a few nanometers thickness did not change after
an hour of irradiation. Even if this experiment is spectacular it is not necessarily conclusive
because an electrical discharge could have occurred when the lamp was switched on (the
lamp and resistance measuring equipment are connected through a common connection to
the ground). Probably in future experiments UV must be attenuated to observe a more
progressive transition. In our case we had to spare samples for more detailed AFM studies
and these experiments have not yet been performed.

If our interpretation in term of proximity-induced superconductivity in DNA molecules
is valid, the number of peaks in the differential resistance measurements (see Fig. 3.20
and Figs. 3.21.a,b,c) gives an estimation of the number of nanoparticles connected to the
DNA molecules that transit to the superconducting state. Two limiting cases may occur
depending on the number of connected DNA molecules that exhibit proximity induced
superconductivity :

– 1. It is possible that only a single molecule transits into the superconducting state.
In this case each peak in the differential resistance should correspond to the critical
current of a superconducting nanoparticle connected to the superconducting DNA
molecule and the number of peaks should give the number of nanoparticles connected
to the superconducting DNA molecule. In our samples the number of peaks varies
from 3 to 6 (sample from Fig. 3.21.b and Fig. 3.21.a respectively). By dividing the
average length of the gap by the number of connected nanoparticles, we can estimate
the typical length of the individual DNA segments that connect neighboring nanopar-
ticles (see Fig. 3.24 for a sketch of the geometry). For a gap width of approximately
100 nm, we find that this length scale varies from 15 nm to 30 nm.

– 2. In the opposite limit, we can assume that there is only a single connected nano-
particle per superconducting molecule. Under this assumption the number of peaks
gives the number of superconducting molecules. The transport in DNA molecules in
this configuration is typically probed on a length scale corresponding to half of the
gap width : 50 nm.
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Fig. 3.23 – Differential resistance at several temperatures as a function of applied voltage
for the control short-circuit sample without DNA. During the FIB etching the sample
resistance was increased from 1.2 kΩ to 1.9 kΩ.

In conclusion the conductivity of DNA molecules is probed on a length scale between 10
and 50 nm which is smaller than width of the insulating gap which is around 100 nm wide.
We note that transport in DNA on a 10 nm scale was reported by several independent
groups for e.g. [10, 21].



Fig. 3.24 – Schematic representation of a conducting DNA molecule contacting the normal
PtC electrodes and superconducting Gallium nanoparticles.
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Fig. 3.25 – (left) SEM images of the gaps from our experiment. Images a,b and c were
taken on the control sample from Fig. 3.23. Even if we know that a short-circuit was present
we could not find it under SEM, probably because the slit is long and the short-circuit
is very narrow. (right) The SEM images d,e and f where taken from a sample used for
deposition of DNA molecules.



3.9 Characterization of the gaps from our transport

experiments

The topography characterization of the gaps etched by FIB was already exposed in
Chap. 3.7 and I will start this characterization chapter by describing the scanning electron
microscope (SEM) images of our gaps. SEM provides a strong contrast between insulators
and metals, whereas AFM in tapping mode is only sensible to topography. Hence SEM is
a good technique to detect metallic residues inside the gap where the topography is rough
after FIB etching. Note that no careful SEM analysis of the gaps was done in the previous
experiments [11, 12], however it is very likely that the gaps used in these experiments had
a similar structure specially in [12] where they were also fabricated by FIB.

Several SEM images of the FIB gaps are displayed on Fig. 3.25, intriguingly in all
the images metallic contamination is present in the gap after etching. Two possible limit
situations seem to emerge from our observations. In the case where the FIB dose is weak
the metallic residues take the form of filaments (Fig. 3.25 right panel) whereas after a
stronger dose the residues seem to form an ordered network of nanoparticles (Fig. 3.25
left panel). This transition may be inferred from Fig. 3.25.f, where two neighbor regions
were etched with different FIB doses under the same beam conditions. In the narrow
trench filaments can be clearly distinguished (see also Figs. 3.25.d,e ) while in the wider
trench where the dose was stronger residues form individual nanoparticles. Naturally one
can expect the residues to disappear after a sufficient FIB dose. This dose however seems
difficult to attain in practice. This difficulty is illustrated on Figs. 3.25.a,b. In the first
figure two intersecting regions were etched with FIB (they are highlighted by blue and
green lines). Both regions were exposed to a dose sufficient to etch most of the metallic
film leaving isolated nanoparticles inside the gap. Surprisingly the density of nanoparticles
does not decrease in the intersection between these two regions (parallelogram with edges
formed by blue and green lines) even if the intersection area received a dose about two
times larger than the other regions. A similar situation is observed on Fig. 3.25.b, where
a large area was etched by FIB irradiation around a slit cut by FIB (delimited by the
parallel green lines). The region inside the slit still contains nanoparticle even if it received
twice an irradiation dose capable of etching most of the platinum film. As a result the dose
needed to completely etch all metallic residues, is certainly much larger than the minimal
dose required to create an insulating slit.

The presence of nanoparticles has two possible origins, an instability of the gallium
tip that can start to emit small nanoparticles instead of individual gallium ions and the
recombination of the gallium atoms on the mica surface (the latter mechanism is then
specific to mica since it is not observed on Si/SiO2). Our observations suggests that both
mechanisms are possible. On one sample we have detected nanoparticles everywhere inside
a large square area corresponding to the scan size of the FIB (see Fig. 3.26). This proves that
in some uncontrolled regime FIB is capable of disseminating small nanoparticle instead of
individual gallium ions. The above behavior was observed on only a single sample, however
this was the sample that we studied at low temperature in Chap. 3.8, hence this rather
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Fig. 3.26 – (left) AFM image showing the boundary of the area contaminated by nano-
particle, it almost coincides with the border of the contamination layer deposited by FIB.
This image was taken on the sample measured at low temperature in Chap. 3.8 and is
representative of the other slits on that substrate. The typical height of the nanoparticle
is between 5 and 7 nm which is compatible with the estimates from Chap. 3.8. (right) The
position of the AFM tip is shown on an optical microscope photograph and coincides with
the border of the FIB scan windows with size ≃ 100 µm × 100 µm).

special case is very important for the interpretation of our transport measurements. In
other samples nanoparticles were observed only inside the gap indicating a different origin.
It may be possible that Gallium atoms recombine on the mica surface to form nanoparticles.
Note that a similar behavior has been observed on GaAs substrates [43] and the presence
of Aluminum atoms in mica substrate may play a role.

The atomic force microscopy measurements on the edge of the FIB scan window de-
picted on Fig. 3.26, revealed another source of contamination. A step of 1 − 2 nm height
systematically surrounded the FIB scan window, this contamination layer is probably com-
posed of carbon deposited during FIB imaging of the gaps (similarly to a contamination
layer deposited under SEM). This is actually very discouraging because the FIB techno-
logy was chosen because it supposedly limited contamination. In reality the electrodes are
covered by a poorly characterized carbon contamination layer. As a side consequence this
makes the debate on platinum versus platinum carbon electrodes not pertinent near the
slits.

I will now summarize the different contamination sources that were revealed through
SEM and tapping mode AFM microscopy. On mica substrate it seems that metal residues
are always present inside the gap (at least for practically reasonable FIB doses). They can



take the form of narrow filaments for low FIB doses or a net of nanoparticles at high doses.
An exceptional regime can also occur where the gallium tip of the FIB becomes unstable
and starts to stew nanoparticles everywhere in its scan area. From our experiments this
case seems rather improbable however it occurred at least once, on the sample that we
measured at low temperatures. Finally a carbon contamination layer is deposited near the
gap during the imaging inside the FIB microscope. Keeping in mind the above information,
I will now focus on the detection of DNA molecules across the gaps where conduction was
observed after deposition of DNA molecules.

In previous experiments [11, 12] DNA molecules crossing FIB slits could be detected
with tapping mode AFM. However AFM and low temperature transport measurements
were done independently, and probably on different samples while we know that fluc-
tuations are very strong from one sample to another. Thus the correlation between the
presence of DNA molecule and the appearance of electronic transport was supported only
by a statistical argument (absence of conduction on control samples when a buffer solution
without DNA was deposited). Here we tried to detect DNA molecules on the three samples
where conduction was induced after the deposition of DNA molecules with the pentylamine
technique was attempted.

We will start with two samples where conduction was destroyed during the attempts
to contact the samples electrically (see Chap.3.8). In one of the samples DNA molecules
could be observed both in the region far from the gaps where PtC was clean and inside the
area covered by the carbon contamination film near the gap as illustrated on Fig. 3.27. On
this sample we could confirm the presence of DNA on some of the conducting slits. It was
however impossible to make a complete statistic because after the electrical conduction was
destroyed we tried to recover the conduction by keeping the sample in a humid atmosphere
for a couple of days. This procedure did not restore the conductivity but it led to the
formation of unidentified “contamination pancakes” on the sample surface which impeded
further AFM characterization.

In the next samples (DnaBox3A) were taken after silver paint and ultrasound bonding
that destroyed conductivity across the slits. The experiments were done in this order be-
cause priority was given to transport measurements over AFM characterization and we were
afraid that the AFM tip could damage conducting DNA molecules when scanning. Hence
only the previous sample (Fig. 3.27, DnaBox3B), was well characterized before transport
measurements. We then (misleadingly) assumed some homogeneity between the samples.
Actually the AFM pictures from Fig. 3.28 reveal a different behavior from sample Dna-
Box3B. Many combed λ molecules could be observed far from the thin FIB slits outside
the carbon contamination layer. Near the slits however the surface was very different, it
included small holes around 3 nanometers deep and no visible DNA molecules.

The absence of DNA molecules near the gap inside the carbon contamination layer,
was observed for at least two other samples, including the sample DnaBox2B where elec-
tron transport was investigated in Chap. 3.8. The situation on this sample is depicted on
Fig. 3.29, far from the gap the surface is clean. The region near the slit is covered with
nanoparticles (see also Fig. 3.26) but the apparent density of DNA molecules seems very
low. Indeed after scanning across the entire length of a conducting FIB slit at most a single
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Fig. 3.27 – (Sample DnaBox3B) AFM microscopy images of a sample where conduction
was observed after deposition of DNA. DNA molecules can be observed far from the gap on
the clean PtC surface (panel a) and near the gaps. Some molecules crossing the slits were
also observed on this same sample (panel b). The gap shown on panel b was conducting after
deposition of DNA and took the following resistances 1.8 kΩ → 160 kΩ →> 1000 kΩ →
5 kΩ → ∞ while we tried to make contacts with silver paint on the sample. Panel c. shows
an image of DNA molecules crossing a slit obtained by D.Klinov, most likely on the same
sample.

molecules could be seen near the gap (Fig. 3.26.c). On the one hand the fact that we do
not observe DNA molecules does not prove that they are completely absent in the gap.
Imaging conditions could be spoiled because of the presence of nanoparticles/holes in the
contamination layer. We note that further AFM characterization, performed by Dmitry
Klinov using a sharper tip revealed some molecules crossing the FIB slits (see Fig. 3.30),
which supports this hypothesis. On the other hand, it is also possible that the presence of
a FIB contamination layer reduces significantly the efficiency of the pentylamine plasma.
This claim may seem strange since the experiments described in Chap. 3.6 demonstrate
that pentylamine is a reliable technique to attach DNA on metallic electrodes with a suffi-
cient quantity of carbon atoms on the surface. The above description apriori apply to the
FIB contamination layer. A hint on why this argument can fail, is provided by the insitu
transport measurements inside the FIB chamber. As mentioned in Chap. 3.7 the resistance
generally decreased slightly at the beginning of the FIB etching. Probably during this
time the deposition of contamination prevailed over etching, the drop of resistivity then
indicates that the carbon contamination layer is rather conducting and probably locally
graphitic. This claim is supported by the fact that platinum can be used as a chemical
vapor deposition (CVD) catalyst for the growth of single wall carbon nanotube [44]. A last
argument in this direction comes from the differential conductance of the resistive sample
on Fig. 3.21 which has a cone structure very similar to the density of states in graphene ; it
is possible that accidentally the current passed through a flake of few layer graphene in this
sample. Since graphite is very stable the available number of carbon atoms that can serve



to anchor the pentylamine plasma can be greatly reduced compared to the situation where
for example, the surface is covered with amorphous carbon. This can make the pentylamine
film less stable on the surface so that sometimes it is removed when the sample is dried in
a scenario similar to that described for mica in Chap. 3.6. The holes observed on Fig. 3.28
give a cue in this direction since they show that a layer at least 3 nm thick was partially
removed from the surface.

To summarize even if DNA molecules were detected across some conducting slits, it was
not possible to establish a clear correlation between conductivity and the presence of DNA
molecules on the basis of our AFM measurements. The major obstacle comes from the
contamination layer deposited by FIB around the slits. Due to this layer DNA deposition
near the gap does not take place in the same conditions as everywhere else on the clean
PtC surface and the density of DNA molecules seems reduced near the gap on several
samples. We have argued that the pentylamine layer may not be stable enough because
the carbon layer deposited by FIB is partially graphitic and provides few fixation points.
This hypothesis also gives an interpretation for the transport data on the resistive sample
from Chap. 3.8 (Fig. 3.21.d) where a graphene/DNA junction may incidentally have been
formed.

We now turn our attention to the last characterization issue of this chapter. The penty-
lamine plasma creates a positively charged organic layer that allows to bind DNA molecules
onto the electrodes. This layer is believed to permit a favorable interaction regime between
molecules and the substrate where DNA can be conducting [12]. However if this layer is
continuous it forms an insulating separation between DNA on top of the layer and elec-
trodes at the bottom. In a few samples we have noticed holes after deposition of DNA on
the pentylamine treated surface. Nevertheless in the majority of cases the surface remai-
ned smooth even after deposition of pentylamine and DNA molecules with a roughness
similar to that of the clean Platinum/Carbon surface. We suspect that holes appear when
pentylamine is not stable enough on the surface and partially desorbs in the buffer during
the deposition of DNA. From this point of view the depth of the holes gives an estimation
of the pentylamine film thickness. In the two cases displayed on Fig. 3.28.d and Fig. 3.28.f
this depth is respectively 3 and 1 nm. These values support the picture of a continuous
insulating layer and cast doubt on the possibility of an electrical contact between DNA
and electrodes in presence of pentylamine. Note that these values in the range of a few
nanometers, are even smaller than those measured in Ref. [45] where a different plasma
functionalization was used to deposit a positively charged organic layer. Plasma discharges
are even used industrially to grow silicon nitrate when both ammonia and silane are present
in the discharge chamber with a typical growth rate of 20 − 50 nm/s [46, 47]. In view of
the above data, our estimates for the thickness of the pentlyamine film are very plausible.

In order to determine experimentally whether electrical contact between DNA and
electrodes is possible in our samples we have carried on conducting AFM experiments at
the Institute for Electronics, Microelectronics and Nanotechnology (Lille, France) in the
group of D. Vuillaume. When we performed conducting AFM scans over the PtC electrodes
no current was detected between the tip with a typical bias of 100 mV and the grounded
sample electrodes. The absence of current is probably due to the insulating pentylamine



layer between the tip and the electrode surface. To check whether the absence of conduction
was due to the insulating pentylamine layer, we scratched the surface in contact mode until
conduction appeared probably removing the pentylamine on top of the electrode surface.
Once a finite current appeared we switched back to tapping AFM mode and scanned the
surface over a wider area. An AFM image obtained during the described experiment is
presented on Fig. 3.31.b. A hole roughly 1.5 nm deep was drilled in the region where
the substrate was scratched until conductivity appeared. Probably this value provides a
measurement of the pentylamine film thickness which in this case also is in the range of a
few nanometers.

Conducting AFM data in the bulk of the electrodes indicate that it is very difficult to
establish an electrical contact between DNA molecules and the electrodes beneath probably
because of the presence of the pentylamine layer. On the edge of the FIB slits however
the situation is different. A comparison between conduction (Fig. 3.31.c) and topography
(Fig. 3.31.d) images in the region of a slit shows that the edge of the gap are not covered by
the insulating film and contact is possible in this region. The above images were recorded
on a slit from the sample where low temperature conduction properties were investigated
in Chap. 3.8. They also give a clue on why inverse proximity effect does not occur in the
conduction model from Fig. 3.24 where DNA becomes superconducting due to nanoparticles
of diameter 10 nm although it is deposited on normal electrodes. Indeed even if the molecule
rests almost entirely over the normal electrodes, electrical contact can be established only
in a region of a few nanometers near the gap.
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Fig. 3.28 – (Sample DnaBox3A) AFM microscopy images of one of a sample where conduc-
tion was observed after deposition of DNA molecules. As on Fig. 3.27 DNA molecules can
be observed far from the gap on the clean PtC surface (panel a). some DNA molecules
cross the border of the carbon contamination. On panel b) the λ molecules cross a large
trench (not connected electrically) cut by FIB inside the carbon contamination layer. The
λ concentration seems to drop on the bottom side of the trench, one can notice small holes
in the substrate in this region. Panel c) is an AFM scan around the narrow FIB slit that is
connected electrically. No DNA molecules could be seen in this region, although we were
able to resolve many DNA molecules on the same scale on panels a) and b). Panel d)
shows in more detail the small dips in the surface. The depth of these holes is measured
on panel e) and is approximately ≃ 3 nm. Panel f) displays another sample where holes
appeared after deposition of DNA on a PtC substrate using pentylamine functionalization
(hole depth was ≃ 1 nm). The formation of holes was not observed on other samples.
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Fig. 3.29 – (Sample DnaBox2B) AFM microscopy images from the sample where low tem-
perature transport was investigated in Chap. 3.8. Panel a) shows DNA molecules observed
far from the slit, panel b) shows a 5 µmm × 5 µm image of a slit that became conducting
after deposition of λ-DNA molecules whereas panel c) displays several 5µ× 5µ scans mer-
ged together to form a complete AFM image of a gap. Figure Fig 3.30 obtained by Dmitry
Klinov using an ultrasharp AFM tip, shows at least one DNA molecule that crosses the
insulting gap cut by FIB.



DNA ?
DNA

b)a) c)

Fig. 3.30 – (Sample DnaBox2B) AFM microscopy images from the sample where low
temperature transport was investigated in Chap. 3.8. These images were taken by Dmitry
Klinov using an ultrasharp AFM tip, some images show the presence of DNA molecules
close to the insulating gaps (panel a) and b)). However on typical images DNA molecules
seem absent (see panel c of this figure, or Fig. 3.29 which was obtained in Orsay).
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Fig. 3.31 – a) The sample is PtC with deposited pentylamine and DNA. A small square
region was scratched with the AFM tip until conduction was observed. This image is a
tapping mode picture of the hole formed after this procedure (see cross section on panel
b). c) Conducting AFM image of a conducting slit from Chap. 3.8 where low temperature
transport was studied (see also Fig. 3.29). d) Contact mode topography image of the same
slit.



3.10 Conclusions on DNA transport experiments

I will first summarize the experimental results obtained in the previous chapters.

– Chap. 3.3 describes the λ DNA solution that was used in all our DNA deposition
experiments and showed that it yields satisfactory deposition onto mica.

– Chap. 3.4 shows that binding through DNA extremities allows to deposit mole-
cules on a metallic platinum substrate. No conduction was observed in this case, in
agreement with most of other works.

– Chap. 3.5 describes the pentylamine plasma functionalization for the adsorption
of DNA molecules. We argued that this technique is reliable only on carbon coated
surfaces. When it is applied on mica the pentylamine layer is probably removed at
the last step when the sample is dried explaining the absence of DNA molecules on
the surface.

– Chap. 3.6 we demonstrated that reliable combing of DNA molecules across insu-
lating slits can be achieved combining pentylamine and rinsing in a steady flow of
water. However the samples we prepared with this technique exhibited insulating
behavior for both samples prepared by electron beam lithography and ion beam et-
ching. A possible reason for the absence of conductivity may be that a thin layer of
amorphous carbon was evaporated at the last step just before deposition of pentyla-
mine and DNA molecules. While it ensured a good adhesion of pentylamine it could
render the edges of the gap insulating by stabilizing the pentylamine even there (see
Chap.3.9). Conducting atomic force microscopy (AFM) measurements could have
shown if this explanation is true.

– Chap. 3.7 explains how the gaps for deposition of DNA were fabricated using in
situ resistance measurements inside the focused ion beam microscope (FIB). AFM
topography of the gaps is also discussed. Starting from this chapter deposition of
DNA molecules was done by D. Klinov.

– Chap. 3.8 describes electrical transport measurements in the low temperature regime
on samples where conduction was established after the deposition of DNA molecules.
On four samples superconductivity was observed whereas a last resistive sample had
a differential conductance similar to graphene. Due to high critical magnetic fields
around 10 Tesla we interpreted the observed superconductivity as proximity effect
from superconducting nanoparticles inside the FIB slit. On a control sample where a
short circuit was formed by stopping FIB etching before the sample became insula-
ting no superconductivity was observed. However a zero bias anomaly was observed,
possibly due to the formation of conducting nanofilaments in the gap during the FIB
etching. Scanning electron microscope images of the filaments that may be formed
are shown on Fig. 3.25.

– Chap. 3.9 showed scanning electron microscope (SEM) and AFM images of the
gaps. Metallic nanoparticles were identified on the sample from Chap. 3.8, they ap-
peared because FIB worked in a special regime on this sample where it disseminated
Ga nanoparticles everywhere. On other samples, both metallic filaments and nano-
particles were observed inside the gap. AFM characterization revealed that a carbon



contamination layer was deposited by FIB around the gap. We conjectured that
this contamination layer was partially graphitic, this probably explains the poor re-
producibility of deposition near the slits while good reproducibility was achieved in
Chap. 3.6. This conjecture also gives insight on the origin of the “graphitic” sample
that we measured in Chap. 3.8. Due to the limits of AFM resolution on the rough
surface of the electrodes, we could not reach a definite conclusion on the presence of
DNA molecules around the gaps. Figure 3.30 shows a few molecules in this region,
however DNA was absent in most of our AFM images. Finally both tapping and
conducting mode AFM indicate that pentylamine forms an insulating film of a few
nanometers on top of the electrode surface. The electrical contact between DNA and
electrodes seem possible only at the edges of the slit were conduction was observed
in conducting mode AFM.

I will now focus on the conclusions that can be drawn from our experiments concerning
the possibility of electrical transport across DNA.

– Arguments in favor of DNA conduction. Two main arguments can be retained
to prove that transport was due to DNA molecules in our experiments. The first
argument is statistical, for transport was not observed after deposition of a buffer
solution without DNA. However one must be cautious with statistical arguments
in these systems where sample to sample fluctuations are large. The destruction of
conductance by UV irradiation with wavelength 233 nm is much more encouraging
since it is hard to imagine how UV may destroy metallic nano-filaments. However
the experiment was performed on only a single sample and more statistics and better
control of irradiation doses are needed.
Concerning the conduction data the observed proximity effect suggests that transport
takes place across a nanowire with a very small density of states. It is tempting to
conclude that only DNA molecules can match this criteria. However here also caution
is required since we have shown that FIB can create narrow conducting filaments
inside the slits whose properties are not well characterized (for e.g. they seem to
exhibit dynamical coulomb blockade). Note that the resistive sample with hysteric
behavior of differential conductance is in this respect an exception since transport is
strongly non ohmic and suggests transport across a molecule. Ultimately one must
keep in mind that even if the gaps are about 100 nm wide, transport may actually be
probed on a much shorter length-scales around 10 nm due to the presence of metallic
residues. The possibility of electron transport in DNA for very short fragments has
now been reported by several independent groups, thus our results may be consistent
with other experimental findings.

– Strategies for future experiments. Concerning the fabrication of samples with
pentylamine plasma, it is probably better to replace mica by silicon. This will make
possible the implementation of an electrostatic backgate, that could discriminate
between DNA and a metallic short circuit. Another important aspect is to improve
the reliability of the pentylamine plasma near the slits. Probably the best option
is to limit as far as possible FIB imaging, technologically this may be achieved by
cutting the FIB slits in the first stage when no alignment is needed (i.e. before laser



etching). Another alternative is to renounce using the FIB etching, and prepare a
thin metallic film bellow the percolation threshold. Our experiments suggest that
it would be possible to render this film conducting by depositing DNA molecules.
From the measurement point of view experiments using UV/blue light irradiation
at room temperature are most promising, alongside more detailed conducting-mode
AFM characterization.

In the next chapter I will describe an experimental technique that we developed to
probe phototransport in nanowires without direct electrical contacts that we plan to apply
to DNA in the near future. In the last Chapter 3.12 we will discuss in more detail counterion
condensation that played some role in the DNA deposition experiments from Chap. 3.6.



3.11 Contactless photoconductivity measurements on

(Si) nanowires

Conduction properties of DNA are extremely hard to probe due to contact problems
between electrodes and molecules. In this chapter we develop a technique to measure elec-
tronic transport in nanowires from the loss in a highly sensitive electromagnetic resonator.
We implement this technique by investigating phototransport in both bulk silicon and
silicon nanowires using a superconducting multimode resonator operating at frequencies
between 0.3 and 3 GHz. We find that whereas the bulk Si response is mainly dissipative,
the nanowires exhibit a large dielectric polarizability. This technique is contactless and
can be applied to many other semiconducting nanowires and molecules. Our approach also
allows to investigate the coupling of electron transport to surface acoustic waves in bulk
Si and to electro-mechanical resonances in the nanowires.

In recent years transport properties of conducting nanowires attracted a considerable
interest. Synthesis of carbon nanotubes and semiconducting nanowires opened the possibi-
lity of new mechanical, electronic and optical applications. For example carbon nanotubes
allowed to fabricate single electron transistors operating at room temperatures [48], and
very high quality nano-electromechanical resonators in suspended nanotube samples [49].
Numerous photonics applications were achieved with Si nanowires including microcavities
and waveguides [50]. Despite these successes, our understanding of transport properties
of nanowires is limited by our ability to make good ohmic contacts at low temperatures.
Thus for carbon nanotubes the nature of electronic transport at low temperatures is still
unknown (possibilities include formation of a Luttinger liquid or dynamical coulomb blo-
ckade) [51]. For more exotic nanowires like DNA, even qualitative information on whether
the molecule is conducting or insulating is not reliable [2]. Measurements of DNA conduc-
tivity using a contactless microwave technique have already been reported [52], however
the observed signal could also originate from ionic conduction inside the buffer or inside
the hydration layer around DNA. Note that vitreous materials may also contribute to
microwave loss even if they are insulating.

In this chapter, we propose a generic experiment to probe photoconductivity without
direct contacts. To this end, we couple nanowires to a multimode electromagnetic (EM)
resonator. Light irradiation is used to excite carriers in the nanowires which interact with
the EM field of the resonator and change the resonance parameters. This allows us to
discriminate clearly between the background signal (insensitive to light irradiation) and
the signal from the (photoconductive) sample. We demonstrate this technique in practice,
by measuring photo-transport in bulk silicon and Si nanowires.

Our probe is a multimode EM resonator formed by two superconducting meanders of
total length LR ≃ 25 cm (see Fig. 3.32.a). This structure has regularly spaced resonant
frequencies given by f ≃ fn = nf1 where f1 ≃ 365 MHz and n is an integer. The meanders
were fabricated by etching a 1 µm thick niobium film with SF6 reactive ion etching. Du-
ring this procedure the meanders were protected by an aluminum mask patterned using
optical lithography. In a last step Al was dissolved in a KOH solution [53, 54]. Two types
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Fig. 3.32 – (Color online) a) Scanning electron microscope (SEM) image of the supercon-
ducting niobium meanders that form a multimode resonator. The substrate in this samples
is Si/SiO2. b) SEM image of a resonator after deposition of undoped Si nanowires, for this
experiment the substrate is sapphire. c) FEM calculation of the electric field far from the
meander boundaries. The color/gray scale indicates the value of the scalar potential V (x, z)
while the arrows show the direction and amplitude of the electric field E = −∇V .



of dielectric substrates were used. In a first experiment the resonator was prepared on top
of a Si/SiO2 substrate (the oxide layer was ≃ 500nm thick), which allowed us to probe
conductivity of bulk Si under light irradiation (see Fig. 3.32.a). In a second experiment we
used sapphire as dielectric substrate and we deposited vapour-liquid-solid grown Si nano-
wires [55] on top of the resonator (see Fig. 3.32.b). Note that sapphire remains insulating
under blue irradiation (energy 2.5 eV) due to its high band gap of 9.9 eV.

The coupling between the resonator and the Si-nanowires is greatly enhanced by the
resonator’s meander structure which strongly confines the EM field near the substrate
interface where the nanowires are deposited. We have checked this using a finite element
(FEM) calculation of the potential and of the electric field. The results of the simulation
are shown on Fig. 3.32.c, and clearly indicate that the electric field vanishes for |z| ≤ 5 µm
where |z| is the distance to the substrate interface (distance between meanders is D =
7 µm). The FEM simulations also show that the electric field is mainly oriented along the
interface for z = 0.

During the measurements the resonators are immersed in liquid He4 at 4.2 K. The
shape and position of the resonances are determined by measuring the reflection along a
coaxial cable capacitively coupled to the resonator. At resonant frequencies more power is
absorbed by the resonator, and a dip in reflected power is observed (incident microwave
power was −60 dBm). The resonators were then irradiated with a blue light provided by
a commercial diode operating at low temperature. For samples on bulk Si the resonances
are strongly broadened under irradiation, a typical behavior is shown in Fig. 3.33.b for the
first harmonic of the resonator while no broadening was observed for a control resonator
on a sapphire substrate.

This drop of the resonance quality factor under irradiation can be understood in terms
of photoinduced conductivity in Si. Indeed the photon energy of ~ω ≃ 2.5 eV is much
larger than the Si gap ∆ ≃ 1.2 eV. Thus the adsorption of photons creates a stationary
population of electron/holes pairs, and a finite photo-conductivity σ(2πf) where f is the
microwave frequency. In the regime of a weak conductor with σ ≪ ǫ 2πf the screening is
negligible and the associated drop in the resonator quality factor is well described by the
relation [56] :

Re σ(2πf) = ǫ 2πf δQ−1 =
σ0

1 + (2πfτ)2
(3.1)

Here ǫ is dielectric constant in Si, and the last equality in Eq. (3.1) is a Drude approximation
to σ(2πf) with elastic relaxation time τ . The quantity δQ−1 is the difference between
Q−1 with and without irradiation. The experimental values for ǫ 2πf δQ−1 are shown
on Fig. 3.33, the quality factors are determined using both amplitude and phase of the
reflection coefficient to remove the artificial broadening of the resonance induced by the
coupling to the transmission line. Since the excited carrier concentration is proportional
to light intensity, we rescale the data of Fig. 3.33 by the electrical power absorbed by the
diode.

A good agreement with Eq. (3.1) is found for a relaxation time of τ = 90 ps that
corresponds to a mobility µ ≃ eτ/m ≃ 105 cm2/(Vs) (here m is the electron mass).
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Fig. 3.33 – (Color online) Measurements on a bulk Si sample (see Fig. 3.32.a). a) Top
panel : relative shift of resonance frequencies under light irradiation as a function of mi-
crowave frequency, symbol abscissa correspond to resonance positions. Bottom panel :
photo-conductivity σ(2πf) as obtained from the drop of resonance quality factor Q using
Eq. (3.1). The smooth black curve represents a Drude fit with a relaxation time of τ = 90 ps.
In both panels symbol shape indicates electrical power provided to the diode. The values
of δf/f and σ are divided by the power value in mW and collapse on a single curve (at
highest power data must be rescaled by 190mW to coincide with other curves, we attribute
this to nonlinear dependence of light intensity on electrical power). b) Broadening of the
fundamental resonance under light irradiation (drop of Q factor). Temperature is 4.2 K.
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Fig. 3.34 – (Color online) Measurements on the sample with Si nanowires (see also
Fig. 3.32.b) : a) δQ−1 and δf/f as a function of frequency for several light intensities,
b) Shift and broadening of the fundamental resonance under light irradiation. On control
sample without Si nanowires typical |δf/f | ≤ 2 × 10−6 and |δQ−1| ≤ 10−6 at maximum
light power.

From this value the effective carrier temperature Teff ≃ 20 K can be determined using
the mobility dependence on temperature in high purity Si [58]. This effective temperature
is determined by the energy transferred by a photon ~ω − ∆ to an electron-hole pair
and energy dissipation mechanisms in Si. It does not depend on light power as long as
the carrier density n+ remains small (from conductivity data on Fig. 3.33 we estimate
n+ ≃ 108 cm−3). The Drude approximation works for all frequencies except for the second
resonance at f = f2 ≃ 725 MHz. The relative frequency shift under irradiation δf/f
has also a peak at f ≃ f2. The origin of this resonant frequency can be understood in
terms of emission of surface acoustic waves (SAW) in the Si substrate. Indeed the periodic
structure of the meanders also creates a resonance for SAW. The corresponding frequency is
determined by the distance between meanders D ≃ 7 µm and the transverse sound velocity
in Si : VT ≃ 5500 m/s [57], giving a resonant frequency of fSAW = VT /D ≃ 785 MHz close
to the frequency f2 of the EM resonator. The blue irradiation intensity is also modulated
with a period D by the presence of the resonator and the continuous excitation of electron-
hole pairs can create a charge density wave with period D strongly increasing the coupling
between the acoustic and EM modes. This would explain why SAW resonance appears very
clearly in the photoconduction data.



We also used this technique to probe phototransport in Si nanowires (see sample on
Fig. 3.32.b). The typical behavior under irradiation is shown for the first resonance on
Fig. 3.34. Contrarily to samples on bulk Si where only a broadening of the resonance was
observed, a shift of the resonance position is clearly visible. In the bulk the charges were not
confined in the direction parallel to the Si interface hence only dissipative photoconductive
response ∝ δQ−1 could be observed. In the nanowires, photo-induced charges are confined
and can be polarized, creating a photopolarizability ∝ δf/f . In order to compare the
magnitude of these two effects we assume that we excite at most one electron-hole pair in
a nanowire, and we call nSi+ the surface density of the excited nanowires. The polarization
P of an excited nanowire is determined from an equilibrium Boltzmann distribution in

presence of the resonator electric field E : P ≃
∫ L/2

−L/2
qx exp

(
qEx
Teff

)
dx
L

≃ q2L2E/Teff . Here

L is the nanowire length, q is the carrier charge and Teff is the effective carrier temperature.
This polarization creates a shift of the resonant frequencies :

δf

f
≃ − q2L2

ǫTeff

nSi+

D
. (3.2)

where the factor 1/D originates from the confinement of the EM field. Photoconductivity
is determined by Eq. (3.1), the unknown conductivity σ0 can be estimated with a Drude

approximation : σ0 ≃ q2τSinSi+

mD
where nSi+/D is the effective carrier concentration. The

relaxation time τSi is determined by the collisions with the nanowire walls τSi ≃ R
√

m/Teff

where R is the nanowire radius and m is the electron mass. Combining these results with
Eq. (3.2) yields the dimensionless ratio Γ :

Γ = δQ−1/(δf/f) ≃ − R

2πfL2

√
Teff

m
(3.3)

The quantity Γ does not depend on nSi+ and thus on light power. This is confirmed by
extracting Γ from the data of Fig. 3.34 which gives typical Γ ≃ 10−1. After injecting this
value in Eq. (3.3) together with R ≃ 50 nm, L ≃ 2.5 µm and f ≃ 400 MHz we find an
effective temperature Teff ≃ 65 K of the same order of magnitude as in bulk Si.

The frequency dependence in Fig. 3.34 is characterized by a peak at fR ≃ 1.7 GHz.
The origin of this peak can be related to mechanical resonances in the nanowires, similarly
to interaction with SAW for bulk Si. Possible excited modes are shown on top of Fig. 3.34.
The bending mode resonance occurs at frequency fR ≃ VT /L ≃ 2.2 GHz where L ≃ 2.5µm
is the average nanowire length (length fluctuations are around 1 µm), whereas for the
stretching mode the frequency reads fR ≃ VL/(2L) ≃ 1.8 GHz, where VL ≃ 9000 m/s is
the longitudinal sound velocity in Si [57]. In our experiments the dispersion in nanowire
radius, length and orientation does not allow to discriminate between these two excited
modes.

In conclusion we have shown that using a high Q multimode resonator we can probe
effectively low temperature photo-transport in bulk Si and Si nanowires. For bulk Si, photo-
induced carriers induce a dissipative response which broadens the resonances. The drop of



quality factor allows to deduce the relaxation time and the carrier effective temperature.
At a special frequency resonant interaction with surface acoustic waves is observed. In
Si nanowires, photo-induced carriers can polarize the nanowires and thereby induce a
dominant non dissipative response absent in the bulk. We showed that the ratio between
dissipative and non-dissipative responses determines the effective carrier temperature in the
nanowires. For some special resonant frequencies mechanical resonances in the nanowire
could be excited. We stress that this technique is very generic and can be applied to
many other systems where photoconductivity is expected, possible examples include DNA
and photochromic molecular switches. Coupled with optical spectroscopy, it could provide
valuable transport data on nanowires with embedded quantum dots.

3.12 Counterion condensation around (hydrophobic)

poly-electrolytes

In order to perform the DNA combing experiments described in Chap. 3.6, it was
important to gain an understanding of the electrostatic properties of the DNA molecules
that play an important role in their adhesion properties. For this purpose, I worked on a
related theoretical problem concerning the behavior of hydrophobic polyelectrolytes under
the direction of Prof. E. Raphaël. It has been proposed that this system adopts a pearl-
necklace structure reminiscent of the Rayleigh instability of a charged droplet. Using a
Poisson-Boltzmann approach, we calculate the counterion distribution around a given pearl
assuming the latter to be penetrable for the counterions. This allows us to calculate the
effective electric charge of the pearl as a function of the chemical charge. Our predictions
are in good agreement with the recent experimental measurements of the effective charge
by Essafi et al. (Europhys. Lett. 71, 938 (2005)). Our results allow to understand the large
deviation from the Manning law observed in these experiments.

The study of polyelectrolytes has attracted an increased attention in the scientific com-
munity over the last decades. This interest is motivated by technological applications inclu-
ding viscosity modifiers, or leak protectors and by the hope that advances in this domain
will allow to unravel the structure of complex biological macromolecules. In these sys-
tems, the Coulomb interactions leads to many remarkable and counterintuitive phenomena
[59, 60, 61, 62, 63]. A celebrated example is the Manning-Oosawa counterion condensation.
In his classical work [59], Manning showed that a charged rod-like polymer can create
such a strong attractive force on its counterions, that a finite fraction condenses onto the
polymer backbone. This condensation-phenomenon was also described by Oosawa within
a two state model [60]. It leads to an effective decrease of the polymer charge, and the
macroscopic properties of the polyelectrolyte, like migration in an electrophoresis expe-
riment, are not determined by its bare charge, but by an effective charge that accounts
for the Manning-Oosawa counterion condensation. It is now well-established that counte-
rion condensation is a fundamental phenomenon, and that it occurs in many important
systems including DNA in both its double-stranded and single-stranded form [64]. It was



predicted in [59] that condensation occurs whenever the average distance l between co-ions
on the polymer backbone is smaller than the Bjerrum length ℓB = q2/(4πǫǫ0kBT ), where
q is the co-ion charge, kBT the thermal energy and ǫ the (relative) dielectric constant of
the solvent. This condensation is expected to lead to an average charge density of q/ℓB on
the polymer backbone. Since the original prediction by Manning, important efforts have
been devoted to a description of the Manning-Oosawa condensation within the Poisson-
Boltzmann theory and beyond [65, 66, 67, 68, 69], establishing the influence of salt, the
thickness of the condensed counterion layer and the corrections induced by short range
correlation.

While the conformation of many polyelectrolytes is well described by the rod-like mo-
del, many proteins organize into complex self-assembled structures [70]. A challenging
and important topic is the extent to which the structural complexity of biological en-
zymes can be understood from simple physical models. Polyelectrolytes with an hydro-
phobic backbone may provide an interesting system, that achieves a certain degree of
self-organization while the relevant interactions remain relatively simple. Indeed, it has
been predicted in a seminal paper by Dobrynin and Rubinstein that hydrophobic poly-
electrolytes should fold into an organized pearl-necklace structure where regions of high
and low monomer density coexist [71]. Therefore both theoretical and experimental studies
of the hydrophobic polyelectrolytes have shown a growing activity in the past few years
[72, 73, 62, 74, 75, 76, 77, 78, 63, 79].

The question of the validity of the Manning condensation model for hydrophobic poly-
electrolytes has been addressed experimentally by W. Essafi et al. [80]. The authors have
measured the effective charge fraction of a highly charged hydrophobic polyelectrolyte
(poly(styrene)-co-styrene sulphonate) by osmotic-pressure and cryoscopy measurements.
Their findings, which are recalled on Fig. 3.38, showed that the measured effective charge
is significantly smaller than that predicted by the Manning-Oosawa theory. The aim of the
present article is to provide a theoretical explanation of the counterion condensation in
this system, where the hydrophobicity of the backbone strongly influences its conforma-
tion. This problem was first addressed theoretically by Dobrynin, and Rubinstein [75], who
analyzed the phase diagram of a solution of hydrophobic polyelectrolytes as a function of
solvent quality and polymer concentration. However, the question of the effective charge
of the chains was not directly investigated by the authors.

Let us first recall for completeness the pearl-necklace theory of hydrophobic polyelectro-
lytes (for a more complete review, see [79]). The polyelectrolyte solution is parameterized
by its degree of polymerization N , its monomer size b (for the polyelectrolytes used by W.
Essafi et. al, one has b ≈ 0.25nm), the charge fraction along the chain f , and the reduced
temperature τ ≡ 1− Θ

T
, where Θ and T denote the theta temperature of the polyelectrolyte

and the temperature of the system, respectively. We note that in a bad solvent, the reduced
temperature is negative τ < 0. Let us denote by C the average monomer concentration in
the solution.

In a poor solvent, an uncharged polymer forms a globule in order to decrease its surface
energy. In a similar way, a drop of water adopts a spherical configuration in a hydrophobic
environment.



To estimate the gyration radius Rg of the polymer, we divide the polymer into smaller
units, in such a way that inside each unit the thermal fluctuations dominate and the chain
has Gaussian behavior. These units are usually called thermal blobs in the literature and
the typical radius of the blobs is denoted by ξT . It can be shown that they contain about
1/τ 2 monomers, and have a typical size of ξT ≃ b/|τ |. At larger scales, the polymer tends
to collapse onto itself in order to minimize its surface of contact with the liquid. This
can happen by forming a dense packing of thermal blobs. A polymer of polymerization
degree N can be split into τ 2N thermal blobs and the volume occupied by the polymer is
proportional to the number of subunits. Therefore one can estimate the gyration radius of
the polymer as

R3
g ≃ τ 2Nξ3

T ≃ Nb3

|τ | . (3.4)

The surface energy ES associated with this configuration is given by kBT times the number
of thermal blobs in contact with the solvent. This leads to

ES

kBT
≃ τ 2R2

g

b2
. (3.5)

Upon charging, the electrostatic repulsion sets in, which results in a change of the
globule shape. When the electrostatic repulsion energy becomes larger than the surface
energy, the globule splits into several globules of smaller size consisting of Ng monomers.
According to Eq. (3.4), the typical size of these globules is given by

R3
g ≃ Ngb

3

|τ | . (3.6)

This behavior is reminiscent of the Rayleigh instability of a charged droplet [81]. In this
state, the polyelectrolyte forms a sequence of globules that are connected by strings made of
thermal blobs (see Fig. 3.35). In the literature, this conformation is known as the “pearl-
necklace” structure. The presence of counterions will screen the electrostatic repulsion.
Therefore it is important to account for their role explicitly in the balance between the
surface tension and the electrostatic repulsion that governs the equilibrium structure of
the necklace.

For simplicity we assume that the main effect of the counterions is to reduce the charge
of the pearls. Indeed, some counterions can be attracted inside the globules due to the
attractive electrostatic forces. In the absence of any counterion condensation, the total
electrostatic charge of a globule consisting of Ng monomers is simply given by qfNg. If the
counterions penetrate inside the globule, its effective charge is decreased and is given by
qfeffNg, where feff denotes the effective charge fraction. We can understand this relation
by noting that in the presence of counterion condensation the total charge of the pearl is
the chemical charge of the pearl minus the charge of the counterions inside it. Therefore,
the electrostatic energy Eel of a pearl can be estimated as

Eel

kBT
≃ ℓB (feffNg)

2

Rg
, (3.7)



Fig. 3.35 – Schematic drawing of the pearl necklace structure of hydrophobic polyelec-
trolytes : Inside the blue (gray) circle the polymer backbone, represented by a continuous
black line, is wrapped into a dense configuration of typical radius Rg, that we call pearl
or globule in the text. The inset shows on a larger scale, that these pearls are connected
by thin polymer strings, thus forming the pearl necklace structure. The average distance
between the pearls is R (black vertical scale line).



where the Bjerrum length is defined as

ℓB =
q2

4πǫǫ0kBT
, (3.8)

where ǫ is the dielectric constant of the medium and kBT denotes the thermal fluctuation
energy. For example for water at room temperature (T = 300 K, ǫ = 80) the value of the
Bjerrum length is ℓB ≈ 0.7nm. Using the relation between Rg and the Ng given in Eq.
(3.6), the electrostatic energy of a pearl is simplified to

Eel

kBT
≃ |τ |2 f 2

eff

ℓBR5
g

b6
. (3.9)

In its equilibrium configuration the pearl-necklace tends to balance its electrostatic and
surface energies Eel ≃ ES. Inserting the results of Eq. (3.5) and Eq. (3.9) in this equality
leads to an expression of the globule radius Rg as a function of the effective charge fraction
feff :

Rg ≃ b

(
b

ℓB

)1/3
1

f
2/3
eff

. (3.10)

We stress that this relation between the typical pearl size and the effective charge has
been verified experimentally by D. Baigl et al. in [82] with an X-ray diffraction technique.
This suggests that the hydrophobic polyelectrolytes studied in the experiment of W. Essafi
actually formed a pearl necklace structure.

The problem of the effective charge of spherical microion-permeable globules of size Rg

surrounded by their own counterions can be solved in the mean-field approximation using
the Poisson-Boltzmann theory. This problem was first studied numerically and analytically
by Wall and Berkowitz [83]. It was shown that for such a globule, counterion condensation
can occur (see e.g. Ref [84] for a general discussion of the condensation phenomenon). In
this approach, a charged globule is modelled as a sphere with radius Rg and a uniform
charge distribution inside it. Therefore, the charge density of the globule is given by

qρ0 ≃ q
fNg

R3
g

, (3.11)

where ρ0 denotes the mean density of charged monomers that are distributed inside the
globule. Using Eq. (3.6), ρ0 can be simplified to

ρ0 ≃
f |τ |
b3

. (3.12)

In the solution, the mean monomer concentration is denoted by C. As far as the counterions
are distributed inside an elementary cell of radius R (Wigner-Seitz approach), the average
concentration of the counterions is given by

nav = fC. (3.13)



Using the electro-neutrality condition, one can find a relation between the radius of the
elementary cell, R, and the density of the charged monomers inside the globule as

ρ0R
3
g = navR

3. (3.14)

Assuming a spherical symmetry for the charge distribution, all the quantities such as
the electrostatic potential, the counterion concentration, etc depend only on the distance
r to the center of the globule. Under the assumption of a Boltzmann-distribution, the
concentration profile n(r) of the counterions is related to the electrostatic potential φ(r)
as

n(r) = nave
qφ(r)
kBT . (3.15)

Inserting this expression into the Poisson equation ∇2φ = − 1
ǫǫ0

(qρ0(r) − qn(r)) leads to
the well-known Poisson-Boltzmann (PB) equation :

∇2φ =
1

r2

d

dr

(
r2dφ

dr

)
= −qρ0(r)

ǫǫ0
+

qnav

ǫǫ0
e

qφ

kBT , (3.16)

where ρ0(r) is given by

ρ0(r) =

{
ρ0 ≃ fNg

R3
g

r ≤ Rg,

0 r > Rg.
(3.17)

For our system with spherical symmetry in the charge distribution, the electric field is zero
at r = 0. Electroneutrality also demands a vanishing electric field at the boundary r = R,
so that the boundary conditions for the above PB equation read

dφ(r = 0)

dr
=

dφ(r = R)

dr
= 0. (3.18)

In an elementary cell with the average counterion density nav, the Debye screening
length λD is given by

1

λ2
D

= 4πℓBnav. (3.19)

After defining the reduced electrostatic potential, u ≡ qφ/(kBT ), and x ≡ r/λD, PB
equation can be written as

d2u

dx2
+

2

x

du

dx
= eu(x) − A(x),

du(0)

dx
=

du(X)

dx
= 0, (3.20)

where X denotes R/λD and A(x) is defined as

A(x) ≡ ρ0(x)

nav
. (3.21)

The radius of the globule in the dimensionless form is denoted by xg ≡ Rg/λD. We will set
A as the value of A(x) inside the globule : A(x) = A for x ≤ xg. Using the aforementioned



reduced variables and the cell neutrality condition, Eq. (3.14), one can find the simple form
of A as

A =
ρ0

nav
=

(
X

xg

)3

≃ |τ |
Cb3

, (3.22)

where in writing the last term, the explicit forms of ρ0, Eq. (3.12), and nav, Eq. (3.13),
have been used. It appears that A does not depend on the chemical charge f . The quantity
A may be seen as the inverse packing (or volume) fraction.

The fraction of counterions outside the globule, P , can be found as

P =

∫ R

rg
nav eqφ(r)/kBT r2 dr
∫ Rg

0
ρ0r2 dr

=

∫ X

xg
eux2dx

∫ xg

0
Ax2dx

, (3.23)

where in writing the last term, the reduced variables and Eq. (3.22) have been used. Using
Eq. (3.20), integration leads to a simpler form of the above equation :

P (xg, A) = − 3

xgA

du(xg)

dx
. (3.24)

As far as the penetrated counterions inside the globule reduce its charge, the effective
charge of the globule is proportional to the fraction of counterions outside the globule.
Therefore, the effective charge of the globule can be written as

feff = P (xg, A)f. (3.25)

It has been shown in [83] that the potential u(x) defined by the boundary problem,
Eq. (3.20), is a decreasing function of x and the initial value of the potential satisfies
eu(0) ≤ A. Physically, this inequality signifies the absence of over-screening (inside the
globule qn(r) ≤ ρ0) as expected in a mean-field theory [85]. In order to estimate the lower
limit of eu(0), we re-write Eq. (3.20) as

u(x) = u(0) +

∫ x

0

(
y − y2

x

)[
eu(y) − A(y)

]
dy. (3.26)

Since u(x) is a decreasing function, it may be shown that

u(x) = u(0) +
1

6
min(x, xg)

2
[
eu(0) − A

]
, (3.27)

where min(x, xg) yields the smallest quantity. After inserting this result in the cell neutra-

lity condition,
∫ X

0
x2
[
eu(x) − A(x)

]
dx, we find that eu(0) satisfies the following inequality

relations :

1 − 2
ln (Z̃g/2)

Z̃g

≤ eu(0)

A
≤ 1, (3.28)
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Fig. 3.36 – (Color online) Typical behavior of counterion charge distribution n(x) and
effective potential u(x) in the cell. The dimensionless globule size is denoted by xg and the
cell size is denoted by X.

where we have set Z̃g = Ax2
g/3 > e. The quantity Z̃g has a simple interpretation as the

total charge of the co-ions inside the globule Zg = 4π
3

ρ0R
3
g multiplied by the ratio between

the Bjerrum length and the globule radius ℓB/Rg. Indeed, the following equality

Z̃g ≡ Zg
ℓB

Rg
=

1

3
x2

gA (3.29)

can be checked using the relations Rg = xgλD, ρ0 = navA and the expression of the Debye

length λD from Eq. (3.19). In what follows, we will refer to Z̃g as the reduced globule
charge. With these notations the chain of inequalities in Eq. (3.28) implies that in the

limit of large reduced globule charge Z̃g ≫ 1, we have eu(0)/A → 1.

The behavior of a typical solution u(x) is displayed in Fig. 3.36. It confirms that for

large values of Z̃g, the counterion concentration at x ≃ 0 is very close to the concentration

of charged monomers inside the globule : eu(x) ≃ A. As the value of Z̃g increases, the size
of the neutral region where u(x) ≈ lnA grows until it becomes of the order of globule size
xg. Therefore, to keep the system electrically neutral, the counterion concentration must
fall down to values below nav outside the globule.

The transition between these two regions occurs in a narrow layer of thickness ξ on the
boundary of the globule, as shown in Fig. 3.36. In order to estimate the behavior of ξ in
terms of the physical parameters of the problem, it is convenient to write the PB equation



for x & xg in the following manner

d2u

dx2

[
1 +

2

x

du
dx
d2u
dx2

]
= eu(x). (3.30)

We note that d2u/dx2 and du/dx are of the order of (ln A)/ξ2 and (ln A)/ξ, respectively.
Putting these values in the above equation, we find

ln A

ξ2

[
1 + 2

ξ

xg

]
≃ A. (3.31)

We assume that we are in the regime where ξ/xg ≪ 1. Therefore, ξ scales as

lnA

ξ2
≃ A =⇒ ξ ≃ 1√

A
, (3.32)

where we have neglected the logarithmic dependence on A. We note that for consistency,
the requirement ξ ≪ xg also implies Z̃g ≫ 1.

We are now in a position to estimate the counterion concentration outside the globule.
Using Eq. (3.24) in the limit of Z̃g ≫ 1, the fraction of counterion outside the globule is
found as

P (xg, A) ≃ 1

xgA

u

ξ
≃ 6√

2e

1

xg

√
A

. (3.33)

Using Eq. (3.29) we find that in the asymptotic regime of Z̃g ≫ 1, P depends only on the

reduced globule charge Z̃g through the simple equation

P =

√
6

eZ̃g

(3.34)

The proportionality constant in Eq. (3.33) was calculated by ignoring the first derivative
term 1

x
du
dx

in Eq. (3.20). Fig. 3.37 shows that there is a very good agreement between

the exact results and the analytical approximation in the limit Z̃g ≫ 1 (ξ ≪ xg). We
also see that for a wide range of A values, our analytical theory gives a good numerical
approximation for P as far as P . 0.4. For example for A = 500, the relative error of
our approximation is below 20% in this region. The exact numerical results were obtained
using the method described in [83]. As a guide to the eye, we have marked the parameter
range explored in the experiments of W. Essafi et al. with a black arrow on Fig. 3.37. This
range was obtained from the experimental data as the ratio feff/f , and is well within the
range of validity of Eq. (3.34).

In the regime explored experimentally by W. Essafi et al. [80], the value of the dimen-
sionless parameter A can be estimated as follows. For |τ | ≃ 1, monomer concentration
C = 0.1 Mol L−1 and the bond length in the polymer b = 0.25 nm, the expected value of
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Fig. 3.37 – (Color online) Dependence of P on Z̃
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volume fraction of the globules. The bottom (blue) curve is Eq. (3.33). The arrow shows
the P range explored in the experiment. It is obtained by calculating the ratio feff/f from
the experimental data on Fig. 3.38.
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Fig. 3.38 – (Color online) Effective charge fraction feff versus the chemical charge fraction
f . The experimental points were obtained in [80]. The red squares correspond to N = 410,
green circles : N = 930, purple diamonds : N = 1320, and black deltas : N = 2400. The
blue solid line corresponds to our theoretical model Eq. (3.36) with

√
b/ (|τ |3ℓB) = 0.4. The

dashed line corresponds to Manning’s model. The dotted (violet) line includes additional
counterion condensation outside the permeable globule. We note that this effect is a rather
weak correction to the predictions of Eq. (3.36).

A ≃ |τ |/(Cb3) is A ≃ 103 ≫ 1. The value of xg depends on both the chemical and effective
charge fraction, f and feff , as

xg =
Rg

λD

≃ |τ |1/2

A1/2

(
ℓB

b

)1/6
f 1/2

f
2/3
eff

. (3.35)

Using Eqs. (3.25), (3.33), and (3.35) the effective charge fraction feff is found as

feff ≃
√

b

|τ |3ℓB

f 3/2. (3.36)

This result predicts that the effective charge fraction feff is proportional to f 3/2. We
note that in this regime the effective charge does not depend on the average monomer
concentration C and depends only on intrinsic properties of the polymer. The scaling
law of Eq. (3.36) and the experimental data of Fig. 3.38 of [80] are shown in Fig. 3.38.



As one can see, there is a very good agreement between the predicted behavior and the
experimental data. We stress that only one free coefficient of order one has been used to
adjust the data. Thus, our theory can explain the origin of the difference between the
effective charge predicted by the Manning-law recalled on Fig. 3.38 and that observed in
experiments. Furthermore, using Eqs. (3.6), (3.10), and (3.36) the globule radius Rg and
the number of monomers inside the globule Ng are found as Rg ∝ |τ |b/f , and Ng ∝ |τ |4/f 3.
Assuming |τ | ∼ 1 and f varying in the range (0.2, 1), the above estimation for Rg allows

to convert Z̃g into Zg. The experimentally relevant range shown on the x-axis in Figure

3.37 is Z̃g ∈ (25, 225), which corresponds to Zg in the range (8, 225).

It is important to mention that in the experiments of [80], only samples with relatively
high chemical charge fraction f ≥ 0.3 were prepared, thereby limiting the range where
our theory can be checked. This is related to the difficulty to stabilize solutions of hy-
drophobic polyelectrolytes with low chemical charge because the polyelectrolytes can form
a macroscopic phase that is not soluble in the solvent. We expect that the formation of
a macroscopic phase can occur if the number of monomers inside a globule Ng becomes
larger than the polymerization degree of the polymer N . In this case the polymer chains
must stick together to form globules of size Ng ≈ |τ |4/f 3 > N , which may lead to form
an entangled polymer network that is not soluble in the solvent anymore. More detailed
theoretical studies are needed on this problem. We note that a detailed analysis of the
possible phases and their stability range has been done in [86]. As mentioned above, the
dimensionless factors are of order one and if we set N = 1000 this condition for phase
separation reads feff < 1/

√
N ≃ 0.03. This result is in a reasonable agreement with the

results displayed in Fig. 3.38. It is worth to mention that in the experiments no point could
be obtained below this limit. We also emphasize that in our theory, when a stable pearl-
necklace structure forms, the effective charge depends on Ng and not on polymerization
degree N . This property has been verified in the experiment, where N has been varied
from N = 410 to N = 2400 without apparent change of the measured values of feff .

In the above treatment, we have assumed that the polyelectrolyte chain in a dilute
regime forms a necklace structure in the solvent. Liao et al. [87] have studied the necklace
formation in polyelectrolyte solutions using both theory and molecular dynamics simu-
lations. They have shown that partially charged chains form necklace-like structures of
globules and strings in dilute solutions. For the dilute regime the phase diagram of hy-
drophobic polyelectrolytes was obtained in [87]. It has been shown that when the effective
charge of the chain is larger than a threshold

√
b|τ |/(ℓBN), the necklace structure is the

dominant feature of the polyelectrolytes in a bad solvent. Using Eq. (3.36) and the men-
tioned criterion, we find that for chains consisting of more than 1/(|τ |2f 3) monomers, the
necklace-structure is formed in the system. For the experimental condition explained in
[80], |τ | ≃ 1 and f > 0.2, gives 1/(|τ |2f 3) ≃ 150. All the chains that have been used in the
experiment [80] have more than 410 monomers on a chain, which means that our model
considering necklace structure for the hydrophobic polyelectrolyte in the solution is reaso-
nable. We note that our scaling approach does not allow to predict accurately the phase
diagram of the polyelectrolyte chains. A consistent minimization of the free energy would



require to properly account for the logarithmic dependence of the counterion entropic and
electrostatic energy as a function of the pearl radius [88]. The origin of such logarith-
mic terms can be seen by estimating the entropy of the counterions, since the condensed
counterions explore only a phase volume of R3

g out of the total volume. In our analysis
this dependence is ignored because the available phase volume is limited to the size of the
Wigner-Seitz cell in a periodic system. Furthermore, the correlation induced effects like the
nonmonotonic dependence of the solution osmotic coefficient on the polymer concentration
have been observed in computer simulation analysis [87], which cannot be described in our
model.

As we explained before, Eq. (3.36) is based on the validity of Eq. (3.33). It is justified
provided that P ≪ 1 ; our numerical calculations suggest that reasonable agreement is
already achieved for P . 0.4 for the experimental value of A ≃ 103. For the parameters
used in Fig. 3.38, the mentioned criterion is always satisfied. Furthermore, by placing
the pearls inside neutral Wigner-Seitz cells, we have ignored the effect of the interaction
between neighboring pearls on the counterion distribution. However the sharp decrease
of the counterion concentration on the boundary of the globule (see Fig. 3.36) suggests
that these interactions should not affect significantly the counterion distribution. We have
also ignored the effect of the ions along the strings that connect adjacent pearls. This
assumption can be checked by estimating the fraction s of the charged monomers present
inside the pearls. It can be shown that

s ≃ 1

1 + feff

√
ℓB

|τ |3b

≃ 1

1 + feff

, (3.37)

where we have assumed that both the parameter
√

ℓB

|τ |3b
and intermediate scaling constants

are of order one. These assumptions are consistent with the parameters used in Fig. 3.38.
Our theory holds as long as s ≃ 1, that is when the effective charge feff is be small. While
this is clearly the case in the range of small chemical charge f , the contribution of the
strings may become important when f ≃ 1. Physically, we expect that around the strings
the counterions will follow the usual Manning-condensation behavior. Therefore, the effect
of the strings will be mainly to keep the effective charge feff below the Manning limit b/ℓB.
In Fig. 3.38, the effective charge reaches this limit only at f ≃ 1 ; as a result the effect of
the strings is not visible and our prediction holds even up to f ≃ 1.

Finally we have not taken into account additional counterion condensation outside the
permeable globule. A popular criterion for counterion condensation in this setting, was
proposed by Alexander et al. [89]. The renormalized charge Z∗

g of an impermeable globule
of internal charge Zeff , is determined from a linearization of the PB equation that ensures
the best possible matching between the exact and linearized solution at the boundary of the
Wigner-Seitz cell. In our case, the globule is permeable and Zeff is smaller than the charge
of the co-ions inside the globule, and is given by Zeff = PZg. (We remind that P stands
for the counterion fraction outside the globule.) The dependence of the ratio Z∗

g/Zeff on

the system parameters, is governed by the dimensionless parameter Z̃eff = ZeffℓB/Rg,
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Fig. 3.39 – (Color online) Ratio between the Alexander charge of the globule Z∗
g and

the total charge inside the globule Zeff = PZg as a function of Z̃eff = ZeffℓB/Rg for
different values of the inverse volume fraction A. (A ≈ 103 in the experimental conditions).
The black arrow indicates the parameter range explored experimentally by Essafi et al.
estimated from Eq. (3.38).



where Rg is the globule radius [89, 90]. This parameter can be estimated as follows for the

case of our permeable pearl model : Z̃eff = PZgℓB/Rg = PZ̃g. Inserting the expression of
P from Eq. (3.34) leads to

Z̃eff =

√
6Z̃g

e
=

6

eP
(3.38)

Since the range explored by P is (0.15, 0.4), the above expression allows us to conclude

that Z̃eff ∈ (5, 15). We have calculated the ratio Z∗/Zeff in this parameter range using
the semi-analytical method proposed in [91] and our numerical procedure. The results
obtained are presented in Fig. 3.39, and do not show significant renormalization in our
regime. By combining the numerical results for inverse volume fraction A = 1000 and
the analytical results from Eq. (3.36) we can calculate the effective charge of the globules
including condensation outside the globule. Indeed the renormalized Alexander charge of
the globule is given by Z∗/ZeffPf where the product Pf gives as usually the charge
inside the globule. The behavior of the Alexander charge for this problem is shown on
Fig. 3.38 on the dotted line, which is the continuous line of equation feff = Pf scaled
down by a factor Z∗/Zeff . The comparison between these two curves confirms that Eq.
(3.36) is a very good approximation for the effective charge of the globule. For example in
the region explored experimentally, the difference between these two curves lies within the
experimental uncertainty range.

It is interesting to compare our results with the results of Dobrynin and Rubinstein [75].
These authors considered for the first time the problem of counterion-condensation around
an hydrophobic polyelectrolyte using a two-state model. They determined the fraction P
by using trial counterion densities of the form n(r) = (1 − P )nav

R3

R3
g

inside the globule (for

r < Rg), and n(r) = Pnav
R3

R3−R3
g

in the outer region. This family of density is parameterized

only by the parameter P . Therefore by minimizing the counterion free-energy density
functional on this trial set, they could deduce an expression of P as a function of the system

parameters [92]. However for reasonable values of |τ |
(

b
ℓB

)1/3

≃ 1, and for the experimental

value of A ≃ 103, the value of feff predicted from the equations of ref. [75] is very close to
f in most of the parameter range in contradiction with the experimental results of [80]. We
attribute the difference between our model and the results of [75] to the two-state model
used to estimate the fraction of dissociated counterions P . Indeed in the two state model
the charge density is constant in the two regions inside and outside the globule. The Poisson
equation then implies that in the two-state approximation, the graph of the electric field
(−du

dx
in our dimensionless units) as a function of x has a typical angle shape for all values

of P as illustrated in Fig. 3.40. In this figure, we have also compared this approximation,
to the exact numerical behavior of −du

dx
, for the typical parameters A = 500, xg = 1. Since

the charged monomers at the center of the globule are neutralized by the counterions, the
true electric field distribution takes the form of a narrow peak centered at xg. Because
of its reduced family of trial functions, the two-state model can not reproduce the true
behavior of the electric field. However the determination of the effective charge requires an
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accurate knowledge of the electric-field in the whole cell. Therefore, we believe that the two
state model is not accurate enough for the determination of the effective charge. Indeed it
was shown in [93] that at least a three state model is necessary in the case of a permeable
droplet.

In conclusion, we have developed a theory of counterion condensation around hydropho-
bic polyelectrolytes. Our theory is based on the pearl-necklace model for the polyelectrolyte
backbone. We assumed that the pearls are permeable to the counterions, and use analytic
results on the Poisson-Boltzmann equation to establish the fraction of counterions conden-
sed inside the pearls. It allows us to establish a power law dependence of the effective charge
feff on the chemical charge f as feff ∝ f 3/2. This prediction is in very good agreement
with recent experimental results by W. Essafi et al. [80] and explains the large deviation
from the Manning law observed in these experiments. While our main results concern the
effective charge of hydrophobic polyelectrolytes, the scaling laws that we derived may also
apply to other areas of physics and chemistry where the Poisson-Boltzmann equation plays
an important role.
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